
HAL Id: hal-03992515
https://hal.science/hal-03992515

Preprint submitted on 16 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

2-positive contractive projections on noncommutative
Lp-spaces

Cédric Arhancet, Yves Raynaud

To cite this version:
Cédric Arhancet, Yves Raynaud. 2-positive contractive projections on noncommutative Lp-spaces.
2019. �hal-03992515�

https://hal.science/hal-03992515
https://hal.archives-ouvertes.fr


ar
X

iv
:1

91
2.

03
12

8v
1 

 [
m

at
h.

O
A

] 
 3

 D
ec

 2
01

9

2-positive contractive projections on

noncommutative L
p-spaces

Cédric Arhancet - Yves Raynaud

Abstract

We prove the first theorem on projections on general noncommutative Lp-spaces asso-
ciated with non-type I von Neumann algebras where 1 6 p < ∞. This is the first progress
on this topic since the seminal work of Arazy and Friedman [Memoirs AMS 1992] where
the problem of the description of contractively complemented subspaces of noncommutative
Lp-spaces is explicitly raised. We show that the range of a 2-positive contractive projection
on an arbitrary noncommutative Lp-space is completely order and completely isometrically
isomorphic to some noncommutative Lp-space. This result is sharp and is even new for
Schatten spaces Sp. Our approach relies on non tracial Haagerup’s noncommutative Lp-
spaces in an essential way, even in the case of a projection acting on a Schatten space and
is unrelated to the methods of Arazy and Friedman.
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1 Introduction

The study of projections and complemented subspaces has been at the heart of the study of
Banach spaces since the inception of the field, see [Rand] and [Mos1] for surveys. Recall that a
projection P on a Banach space X is a bounded operator P : X → X such that P 2 = P and
that a complemented subspace Y of X is the range of a bounded linear projection P . If the
projection is contractive, we say that Y is contractively complemented.

Suppose 1 6 p < ∞. A classical result from seventies essentialy due to Ando [And],
and completed by [Tza, BeL] tells that a subspace Y of a classical (=commutative) Lp-space
Lp(Ω) is contractively complemented if and only if Y is isometrically isomorphic to an Lp-space
Lp(Ω′) (see also [Dou], [HoT], [Ray2], [See]). Moreover, Y is the range of a positive contractive
projection if and only if there exists a isometrical order isomorphism from Y onto some Lp-space
Lp(Ω′), see [Rand, Theorem 4.10] and [AbA, Problem 5.4.1]. A positive contractive projection
on Lp(Ω), 1 6 p < ∞, p 6= 2, acts in the band generated by its range as a weighted conditional
expectation [BeL]. This last result was extended later to a larger class of Banach function
spaces [DHdP].

It is natural to examine the case of noncommutative Lp-spaces associated to von Neumann
algebras. Schatten spaces are the most basic examples of noncommutative Lp-spaces, these

are the spaces Sp of all operators x : ℓ2 → ℓ2 such that ‖x‖p =
(
Tr(|x|p)

) 1

p is finite. It is
known from a long time that the range of a contractive projection P : Sp → Sp on a Schatten
space Sp is not necessarily isometric to a Schatten space. It is a striking difference with the
world of commutative Lp-spaces of mesure spaces. Indeed, in their remarkable memoirs [ArF1]
and [ArF2], Arazy and Friedman have succeeded in establishing a complete classification of
contractively complemented subspaces of Sp. Building blocks of contractively complemented
subspaces of Sp are the so called Cartan factors.

The description of general contractively complemented subspaces of noncommutative Lp-
spaces is an open problem raised explicitly in [ArF2, page 99]. If p = 1, Friedman and Russo
[FrB] have given a description of the ranges of contractive projections on preduals (=noncom-
mutative L1-spaces) of von Neumann algebras. Such a subspace is isometric to the predual of a
JW∗-triple, that is a weak* closed subspace of the space B(H,K) of bounded operators between
Hilbert spaces H and K which is closed under the triple product xy∗z + zy∗x. Actually, the
Friedman-Russo result is valid for projections acting on the predual of a JW∗-triple, not just
on the predual of a von Neumann algebra.

Since Pisier’s work [Pis1] [Pis2], we can consider noncommutative Lp-spaces and their com-
plemented subspaces in the framework of operator spaces and completely bounded maps. Using
Arazy-Friedman Theorem, Le Merdy, Ricard and Roydor [LRR, Th. 1.1] characterized the com-
pletely 1-complemented subspaces of Sp. They turn out to be the direct sums of spaces of the
form Sp(H,K), where H and K are Hilbert spaces. The strategy of their proof is to examine
individually each case provided by Arazy-Friedman Theorem. See also [NO], [NeR] for related
results.

Recall that a map T : Lp(M) → Lp(M) is n-positive for some integer n if the linear map
IdSpn ⊗ T : Spn(Lp(M)) → Spn(Lp(M)) is a positive map. In particular such a map is positive.
Our main result is the following theorem which implies that the range of a 2-positive contractive
projection P : Lp(M) → Lp(M) on some noncommutative Lp-space Lp(M) is completely order
and completely isometrically isomorphic to some noncommutative Lp-space Lp(N).

Theorem 1.1 (Main Theorem) Suppose 1 6 p < ∞. Let P : Lp(M) → Lp(M) be a 2-
positive contractive projection.

1. There is a projection s(P ) ∈ M , a von Neumann subalgebra N of s(P )Ms(P ), a normal
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semifinite faithful weight ψ on s(P )Ms(P ) and a normal faithful conditional expectation
E : s(P )Ms(P ) → s(P )Ms(P ) with range N leaving ψ invariant such that

(a) P (Lp(M)) = s(P )P (Lp(M))s(P ) = P (s(P )Lp(M)s(P )),

(b) the restriction of the projection P on Lp(s(P )Ms(P )) identifies with the conditional
expectation Eψ,p : Lp(s(P )Ms(P )) → Lp(s(P )Ms(P )) naturally associated with E

and the weight ψ,

(c) the projection P is N -bimodular on s(P )Lp(M)s(P ), that is

P (xhy) = xP (h)y, x, y ∈ N, h ∈ s(P )Lp(M)s(P ),

In particular, the range P (Lp(M)) is a N -module.

(d) the range P (Lp(M)) is completely isometric and completely order N -bimodular iso-
morphic to Lp(N).

2. Moreover, the σ-finite projections in N are exactly the (left or right) supports of the
elements of P

(
Lp(M)

)
.

3. Finally, if 1 < p < ∞ then for any x ∈ Lp(M) we have P (x) = P (s(P )xs(P )).

The maps Eψ,p that we call “conditional expectations” (on noncommutative Lp spaces)
appear in the literature of noncommutative probability, in association with a normal state ψ,
see e.g. the works [Gol, HT, JX, HJX, AcC]. The most achieved one is probably that of [JX].
We cannot limit ourselves to this ‘probabilistic’ frame, since the von Neumann algebras we are
dealing with are not necessarily countably decomposable, and thus may not support a faithful
normal state. For this reason we give a definition of theses maps which differs from those of
these authors, but follows a very classical scheme in commutative probability, and then verify
the coherence of the new definition with that of [JX] in the ‘probabilistic case’.

The result stated in the Main Theorem is even new for Schatten spaces Sp. The assumption
of 2-positivity cannot be dropped. Indeed, if σ : Sp → Sp, [xij ] 7→ [xji] denotes the transpose

map then the map P
def
= 1

2 (IdSp + σ) : Sp → Sp is a positive contractive projection on the space
{x ∈ Sp : σ(x) = x} of symmetric matrices. The more general case of positive contractive
projections will be investigated in a companion paper [Arh2]. It should also be noted that the
use of non-tracial Haagerup’s noncommutative Lp-spaces is necessary for the case of tracial
noncommutative Lp-spaces. The paper [Arh1, Th. 5.4] contains an application of this result.
Finally, we refer to [PiX] and [HRS] for more information on the structure of noncommutative
Lp-spaces.

The paper is organized as follows. Section 2 gives a brief presentation of Haagerup non-
commutative Lp-spaces, followed by a presentation of conditional expectation on Lp-space in a
general formulation which makes sense for non σ-finite von Neumann algebras, then some pre-
liminary well-known facts on positive projections in von Neumann algebras and positive linear
maps between Lp-spaces are presented or recalled, that are at the root of our results. Finally,
Section 3 contains a proof of Theorem 1.1. It is divided in four subsections, the first one gives
a local description of the action of a contractive, 2-positive projection. The second subsection
presents a short handling of the passage from local to global description in the case where
the von-Neumann algebra is σ-finite, while the third subsection presents the more elaborated
treatment of the general case. At this stage the two first points in Main Theorem are proven.
The last point of the Main Theorem is a consequence of the general result presented in the last
subsection of section 3.
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2 Preliminaries

The readers are referred to [ER], [Pau] and [Pis1] for details on operator spaces and completely
bounded maps and to the surveys [Kos1], [PiX], [Terp] and [Ray1] for noncommutative Lp-spaces
and references therein.

2.1 Haagerup’s noncommutative L
p-spaces.

It is well-known by now that there are several equivalent constructions of noncommutative
Lp-spaces associated with a von Neumann algebra. In this paper, we will use Haagerup’s
noncommutative Lp-spaces introduced in [Haa5] and presented in a more detailed way in [Terp].
M will denote a general von Neumann algebra acting on a Hilbert space H and we denote by
sl(x) and sr(x) the left support and the right support of an operator x. If x is a positive
operator then sl(x) = sr(x) is called the support of x and denoted by s(x).

If M is equipped with a normal semifinite faithful trace, then the topological ∗-algebra
of all (unbounded) τ -measurable operators x affiliated with M is denoted by L0(M, τ). If
a, b ∈ L0(M, τ)+, we have

(2.1) a 6 b ⇐⇒ dom b
1

2 ⊂ dom a
1

2 and ‖a
1

2 ξ‖H 6 ‖b
1

2 ξ‖H , for any ξ ∈ dom b
1

2 .

If a, b ∈ L0(M, τ), we have

(2.2) ab = 0 ⇒ sr(a)b = 0 and asl(b) = 0.

In the sequel, we fix a normal semifinite faithful weight ϕ on M and σϕ = (σϕt )t∈R denote
the one-parameter modular automorphisms group associated with ϕ [Tak2, page 92].

For 1 6 p < ∞, the spaces Lp(M) are constructed as spaces of measurable operators
relative not to M but to some semifinite bigger von Neumann algebra, namely, the crossed

product M
def
= M ⋊σϕ R of M by one of its modular automorphisms groups, that is, the von

Neumann subalgebra of B(L2(R, H)) generated by the operators π(x) and λs, where x ∈ M

and s ∈ R, defined by

(
π(x)ξ

)
(t)

def
= σ

ϕ
−t(x)(ξ(t)) and λs(ξ(t))

def
= ξ(t− s), t ∈ R, ξ ∈ L2(R, H).

For any s ∈ R, let W (s) be the unitary operator on L2(R, H) defined by

(
W (s)ξ

)
(t)

def
= e−istξ(t), ξ ∈ L2(R, H).

The dual action σ̂ : R → B(M) on M [Tak2, page 260] is given by

(2.3) σ̂s(x)
def
= W (s)xW (s)∗, x ∈ M, s ∈ R.

Then, by [Haa4, Lemma 3.6] or [Tak2, page 259], π(M) is the fixed subalgebra of M under the
family of automorphisms σ̂s:

(2.4) π(M) =
{
x ∈ M : σ̂s(x) = x for all s ∈ R

}
.

We identify M with the subalgebra π(M) in M. If ψ is a normal semifinite weight on M , we

denote by ψ̂ its Takesaki’s dual weight on the crossed product M, see the introduction of [Haa1]
for a simple definition using the theory of operator valued weights. This dual weight satisfies
the σ̂-invariance relation ψ̂ ◦ σ̂ = ψ̂, see [Terp, (10) page 26]. In fact, Haagerup introduces an
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operator valued weight T : M+ → M̄+ with values in the extended positive part1 M̄+ of M
and formally defined by

(2.5) T (x) =

∫

R

σ̂s(x) ds

and shows that for a normal semifinite weight ψ on M , its dual weight is

(2.6) ψ̂
def
= ψ̄ ◦ T

where ψ̄ denotes the natural extension of the normal weight ψ to the whole of M̄+.
By [Str, page 301] [Haa4, Th. 3.7] [Terp, Chap. II, Lemma 1], the map ψ → ψ̂ is a bijection

from the set of normal semifinite weights on M onto the set of normal semifinite σ̂-invariant
weights on M.

Recall that by [Haa2, Lemma 5.2 and Remark page 343] and [Haa1, Th. 1.1 (c)] the crossed
product M is semifinite and there is a unique normal semifinite faithful trace τ = τϕ on M
satisfying (Dϕ̂ : Dτ)t = λt for any t ∈ R where (Dϕ̂ : Dτ)t denotes the Radon-Nikodym cocycle
[Str, page 48] [Tak2, page 111] of the dual weight ϕ̂ with respect to τ . Moreover, τ satisfies the
relative invariance τ ◦ σ̂s = e−sτ for any s ∈ R by [Haa2, Lemma 5.2].

If ψ is a normal semifinite weight on M , we denote by hψ the Radon-Nikodym derivative of

the dual weight ψ̂ with respect to τ given by [Str, Theorem 4.10]. By [Str, Corollary 4.8], note

that the relation of hψ with the Radon-Nikodym cocycle of ψ̂ is

(2.7) (Dψ̂ : Dτ)t = hit
ψ, t ∈ R.

By [Terp, Chap. II, Prop. 4], the mapping ψ → hψ gives a bijective correspondence between
the set of all normal semifinite weights on M and the set of positive self-adjoint operators h
affiliated with M satisfying

(2.8) σ̂s(h) = e−sh, s ∈ R.

Moreover, by [Terp, Chap. II, Cor. 6], ω belongs to M+
∗ if and only if hω belongs to L0(M, τ)+.

One may extend by linearity the map ω 7→ hω to the whole of M∗. The Haagerup space L1(M,ϕ)
is defined as the set {hω : ω ∈ M∗}, i.e. the range of the previous map. This is a closed linear
subspace of L0(M, τ), characterized by the conditions (2.8).

By [Terp, Chap. II, Th. 7], the mapping ω 7→ hω, M∗ → L1(M,ϕ) is a linear order
isomorphism which preserves the conjugation, the module, and the left and right actions of M .
Then L1(M,ϕ) may be equipped with a continuous linear functional Tr : L1(M) → C defined
by

(2.9) Trhω
def
= ω(1), ω ∈ M∗

[Terp, Chap. II, Def. 13]. A norm on L1(M,ϕ) may be defined by ‖h‖1
def
= Tr(|h|) for every

h ∈ L1(M,ϕ). By [Terp, Chap. II, Prop. 15], the map M∗ → L1(M,ϕ), ω 7→ hω is a surjective
isometry.

More generally for 1 6 p 6 ∞, the Haagerup Lp-space Lp(M,ϕ) associated with the normal
faithful semifinite weight ϕ is defined [Terp, Chap. II, Def. 9] as the subset of the topological
∗-algebra L0(M, τ) of all (unbounded) τ -measurable operators x affiliated with M satisfying
for any s ∈ R the condition

(2.10) σ̂s(x) = e− s
p x if p < ∞ and σ̂s(x) = x if p = ∞

1. If M = L∞(Ω), M̄+ identifies to the set of equivalence classes of measurable functions Ω → [0, ∞].
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where σ̂s : L0(M, τ) → L0(M, τ) is here the continuous ∗-automorphism obtained by a natural
extension of the dual action (2.3) on M. By (2.4), the space L∞(M,ϕ) coincides with π(M) that
we identify with M . The spaces Lp(M,ϕ) are closed self-adjoint linear subspaces of L0(M, τ).
They are closed under left and right multiplications by elements of M . If h = u|h| is the polar
decomposition of h ∈ L0(M, τ) then by [Terp, Chap. II, Prop. 12] we have

h ∈ Lp(M,ϕ) ⇐⇒ u ∈ M and |h| ∈ Lp(M,ϕ).

Suppose 1 6 p < ∞. By [Terp, Chap. II, Prop. 12] and its proof, for any h ∈ L0(M, τ)+,
we have hp ∈ L0(M, τ)+. Moreover, an element h ∈ L0(M, τ) belongs to Lp(M,ϕ) if and only if
|h|p belongs to L1(M,ϕ). A norm on Lp(M,ϕ) is then defined by the formula

(2.11) ‖h‖p
def
= (Tr |h|p)

1

p

if 1 6 p < ∞ and by ‖h‖∞
def
= ‖h‖M , see [Terp, Chap. II, Def. 14].

Let p, p∗ ∈ [1,∞] with 1
p + 1

p∗
= 1. By [Terp, Chap. II, Prop. 21], for any h ∈ Lp(M,ϕ)

and any k ∈ Lp
∗

(M,ϕ) we have hk, kh ∈ L1(M,ϕ) and the tracial property Tr(hk) = Tr(kh).
If 1 6 p < ∞, by [Terp, Ch. II, Th. 32] the bilinear form Lp(M,ϕ) × Lp

∗

(M,ϕ) → C,
(h, k) 7→ Tr(hk) defines a duality bracket between Lp(M,ϕ) and Lp

∗

(M,ϕ), for which Lp
∗

(M,ϕ)
is (isometrically) the dual of Lp(M,ϕ).

On the other hand, if the weight ϕ is tracial, i.e. ϕ(x∗x) = ϕ(xx∗) for all x ∈ M , then the
Haagerup space Lp(M,ϕ) isometrically coincides with Dixmier’s classical tracial noncommuta-
tive Lp-space, see [Terp, page 62].

It is essentially proved in [Terp, page 59] that Lp(M,ϕ) is independent of ϕ up to an
isometric isomorphism preserving the order and modular structure of Lp(M,ϕ), as well as the
external products and Mazur maps. In fact given two normal semifinite faithful weights ϕ1, ϕ2

on M there is a ∗-isomorphism κ : M1 → M2 between the crossed products Mi
def
= M ⋊σϕ

i
R

preserving M , as well as the dual actions and pushing the trace on M1 onto the trace on M2,
that is

π2 = κ ◦ π1, σ̂2 ◦ κ = κ ◦ σ̂1 and τ2 = τ1 ◦ κ−1.(2.12)

Furthermore, κ extends naturally to a topological ∗-isomorphism κ̂ : L0(M1, τ1) → L0(M2, τ2)
between the algebras of measurable operators, which restricts to isometric ∗-isomorphisms be-
tween the respective Lp(Mi, ϕi), preserving the M -bimodule structures.

Moreover it turns out also that for every normal semifinite faithful weight ψ on M , the dual
weights ψ̂i corresponds through κ, that is ψ̂2◦κ = ψ̂1. It follows that if ω ∈ M∗ the corresponding
Radon-Nikodym derivatives must verify hω,2 = κ̂(hω,1). In particular if ω ∈ M+

∗ , we have

(2.13) Tr1 hω,1
(2.9)
= ω(1)

(2.9)
= Tr2 hω,2 = Tr2 κ̂(hω,1).

Hence κ̂ : L1(M,ϕ1) → L1(M,ϕ2) preserves the functionals Tr:

(2.14) Tr1 = Tr2 ◦κ̂.

Since κ̂ preserves the p-powers operations, i.e. κ̂(hp) =
(
κ̂(h)

)p
for any h ∈ L0(M1), it induces

an isometry from Lp(M,ϕ1) onto Lp(M,ϕ2). It is not hard to see that this isometry is completely
positive and completely isometric, a fact which is of first importance for our study.

This independence allows us to consider Lp(M,ϕ) as a particular realization of an abstract
space Lp(M). The M -bimodule structure and the norm of Lp(M) are defined unambiguously
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by those of any of its particular realization, as well as the trace functional of L1(M) and the
bilinear products Lp(M)×Lq(M) → Lr(M), 1

r = 1
p+ 1

q , and the Mazur maps Lp+(M) → L1
+(M),

h 7→ hp (and their inverses). An element h ∈ L1(M) identifies with the linear form ψ ∈ M∗

defined by the conditions ψ(x) = Tr(xh), x ∈ M , and the positive part Lp+(M) may be seen as

the cone of p-roots ψ
1

p of positive elements of M∗.
A key fact for our analysis of positive contractions on noncommutative Lp-spaces is that

for every projection e in M the linear subspace eLp(M)e := {ehe : h ∈ Lp(M)} is completely
positively isometric to Lp(eMe), the Lp-space of the reduced von Neumann algebra eMe. This
fact is not evident from a given realization of Lp(M,ϕ), since the restriction ϕe of ϕ to eMe

may not be semifinite, or the crossed product R⋊σϕe eMe not be a reduct of R⋊σϕ M .
Recall that the centralizer [Str, page 38] of a normal semifinite faithful weight is the sub-von

Neumann algebra Mϕ = {x ∈ M : σϕt (x) = x for all t ∈ R}. If x ∈ M , we have by [Str, (2)
page 39]

(2.15) x ∈ Mϕ ⇐⇒ xmϕ ⊂ mϕ, mϕx ⊂ mϕ and ϕ(xy) = ϕ(yx) for any y ∈ mϕ.

If e belongs to the centralizer of ϕ, it is well-known that we can identify Lp(eMe) with the
subspace eLp(M)e of Lp(M) ([GoLa, Lemma 4.3], [Wat1, page 508]). Let us give some details.

Let ϕ be a faithful normal semifinite weight on a von Neumann algebra M on a Hilbert
space H . For each projection e in Mϕ, let ϕe be the restriction of ϕ on eMe. It results from
(2.15) that the weight ϕe is still semi-finite. From the KMS-condition, it is easy to see that
σϕe = σϕ|eMe, and it follows that eMe ⋊σϕe R coincides with ē(M ⋊σϕ R)ē, where ē is the
canonical image of e in M, in fact ē = e⊗ IdB(L2(R)). From (2.5) and (2.6) it is clear that the
dual weights to ϕ and ϕe are linked by the equation

ϕ̂e = (ϕ̂)ē

Let τ = τϕ be the canonical trace on M = M ⋊σϕ R, and hϕ = d
dτ ϕ̂. Note that hit

ϕ = λt

commutes with ē, and so does h
1

2

ϕ ; morover ehϕ is a positive self-adjoint operator affiliated with
ēMē. Then for x ∈ ēMē:

ϕ̂(x) = τ
(
h

1

2

ϕxh
1

2

ϕ

)
= τ

(
h1/2
ϕ ēxēh

1

2

ϕ

)
= τē

(
(ēhϕ)

1

2 x(ēhϕ)
1

2

)

where τē is the reduced (normal, semifinite) trace on ēMē. Hence by [Str, Theorem 4.10]

(Dϕ̂e : Dτē)t = (ēhϕ)it = ēhit
ϕ = ēλt.

Since ēλt is the translation operator on ēMē it follows by uniqueness that τē coincides with
the canonical trace on eMe⋊σϕe R. Then it becomes clear that the *-algebra of τē-measurable
operators on ēMē is realized as a L0-closed *-subalgebra of L0(M, τ), namely eL0(M, τ)e,
either abstractly by completing the respective von Neumann algebras in their L0-topologies, or
concretely by representing them as *-subalgebras of (unbounded) closed operators on L2(R, eH)
and L2(R, H) respectively if M is given as a von Neumann subalgebra of some B(H). Indeed,
a (closed, unbounded) operator with dense domain a on L2(R, eH) may be trivially extended
to an operator ã on L2(R, H) by setting

ãξ = aeξ, ∀ξ ∈ dom ã = dom a⊕ L2(R, (1 − e)H).

Since the dual action of σϕe is the restriction of that of σϕ to e(M ⋊σϕ R)e, it is not difficult
to show that the mapping a → ebe gives a topological *-isomorphism between L0(ēMē, τe) and
ēL0(M, τ)ē, sending Lp(eMe) onto eLp(M)e for every 1 6 p 6 ∞.
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If ψ ∈ (eMe)+
∗ is a normal positive bounded linear form on eMe, we may consider its natural

extension ieψe to M (ieψ(x) = ψ(exe), x ∈ M). Using (2.5) and (2.6) it is clear that

∀x ∈ M îeψ (x) = ψ̂(ēxē)

We have ψ̂(ēxē) = τē(h
1/2
ψ ēxēh

1/2
ψ ) = τ(ē(h

1/2
ψ ēxēh

1/2
ψ ē)) = τ(h

1/2
ψ xh

1/2
ψ ) (since hψ ∈ ēL0(M, τ)ē).

It is then clear by unicity of the Radon-Nikodym derivative that

hieψ = hψ.

It follows that the Haagerup trace Trϕ restricts to Trϕe on L1(eMe). Indeed

Trϕ hieψ = ieψ(1) = ψ(e) = Trϕe hψ

It follows at once that the inclusions Lp(eMe) ⊂ Lp(M) are isometric and preserve duality.
Let e ∈ M be a projection. Let us construct a n.s.f. weight on M with centralizer containing

e. Choosing with [Str, 10.10] [KaR2, Exercise 7.6.46] two normal semifinite faithful weights ϕ1

and ϕ2 on eMe and e⊥Me⊥. We can define a normal semifinite faithful weight ϕ on M by

(2.16) ϕ(x)
def
= ϕ1(exe) + ϕ2(e⊥xe⊥), x ∈ M+

With (2.15), it is easy to check that e belongs to the centralizer of ϕ. In fact it is not hard to
see that this example is generic.

We will use the following classical lemma. We add the uniqueness part in part 1.

Lemma 2.1 Let M be a (semifinite) von Neumann algebra equipped with a faithful normal
semifinite trace τ .

1. Let a, b ∈ L0(M, τ)+ satisfy a 6 b. Then there exists a unique x ∈ M such that a
1

2 = xb
1

2

and xs(b) = x. Moreover, we have necessarily ‖x‖∞ 6 1.

2. If a 6 b in L0(M, τ)sa and if x ∈ L0(M, τ) then x∗ax 6 x∗bx.

Proof : 1. Suppose that M acts on a Hilbert H . If x satisfies the properties then x is obviously
null on the subspace (1 − s(b))H . Moreover, the restriction of x on the subspace s(b)H is given
by x|s(b)H = a

1

2 b− 1

2 where b− 1

2 : s(b)H → s(b)H . We conclude that x is uniquely determined.
The proof of the existence is given in [DeJ1, Remark 2.3] and shows the relation xs(b) = x.

The second is an easy observation.

Lemma 2.2 Let M be a von Neumann algebra and 1 6 p < ∞. Let h be a positive element of
Lp(M).

1. The map s(h)Ms(h) → Lp(M), x 7→ h
1

2xh
1

2 is injective.

2. Suppose 1 6 p < ∞. The subspace h
1

2Mh
1

2 is dense in s(h)Lp(M)s(h) for the topology of
Lp(M).

Proof : 1) If h
1

2xh
1

2 = 0 then s(h)xs(h) = 0 by using (2.2) twice. Since x ∈ s(h)Ms(h), we
conclude that x = s(h)xs(h) = 0.

2) Suppose that y ∈ Lp
∗

(M) belongs to the annihilator
(
h

1

2Mh
1

2

)⊥
of the subspace h

1

2Mh
1

2

of Lp(M). For any x ∈ M , we have Tr
(
h

1

2xh
1

2 y
)

= 0, i.e. Tr
(
xh

1

2 yh
1

2

)
= 0. Since h

1

2 yh
1

2 ∈

L1(M), we deduce that h
1

2 yh
1

2 = 0. We infer that s(h)ys(h) = 0. It follows immediately that

that y belongs to the annihilator
(
s(h)Lp(M)s(h)

)⊥
. The proof is complete.

The following is a variant of [Sch, Lemma 2.2 (d)]. Our approach is probably more trans-
parent. See [PeT1] and [Kos3, Prop. 3.1] for related facts.
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Lemma 2.3 Let M be a von Neumann algebra. Suppose 1 6 p < ∞. If a, b ∈ Lp(M)+ verify
a 6 b then there exists a unique z ∈ s(b)Ms(b) such that a = b

1

2 zb
1

2 . Moreover, we have
0 6 z 6 s(b).

Proof : Let Lp(M,ϕ) be a realization of Lp(M) in M = M ⋊σϕ R. By Lemma 2.1 there exists
a unique x ∈ M such that a

1

2 = xb
1

2 and xs(b) = x. Note that a
1

2 , b
1

2 ∈ L2p(M). Then for any
s ∈ R

e− s
2p a

1

2

(2.10)
= σ̂s

(
a

1

2

)
= σ̂s

(
xb

1

2

)
= σ̂s(x)σ̂s

(
b

1

2

) (2.10)
= σ̂s(x)e− s

2p b
1

2 .

Hence a
1

2 = σ̂s(x)b
1

2 . On the other hand, since x = xs(b) and s(b) ∈ M , we have

σ̂s(x) = σ̂s(xs(b)) = σ̂s(x)σ̂s(s(b))
(2.10)

= σ̂s(x)s(b).

Thus by uniqueness of x we get σ̂s(x) = x for every s ∈ R. That is x ∈ M by (2.4). By Lemma
one has necessarily ‖x‖ 6 1.

From a
1

2 = xb
1

2 and ‖x‖∞ 6 1 it follows readily that a = b
1

2x∗xb
1

2 and that 0 6 x∗x 6

‖x∗x‖∞ = ‖x‖2
∞ 6 1 where we use [Dix, 1.6.9] in the second inequality. If we set z

def
=

s(b)x∗xs(b) then we have z ∈ s(b)Ms(b). Moreover, since s(b
1

2 ) = s(b), we have b
1

2 zb
1

2 =
b

1

2 s(b)x∗xs(b)b
1

2 = b
1

2 x∗xb
1

2 = a and 0 6 z 6 s(b).
The uniqueness of x follows from Lemma 2.2.

2.2 Conditional expectations on L
p-spaces.

Recall that a positive map T : A → A on a C∗-algebra A is said faithful if T (x) = 0 for some
x ∈ A+ implies x = 0.

Let B be a C∗-subalgebra of a C∗-algebra A. A map E : A → A is called a conditional
expectation on B if it is a positive projection [Str, §9.1] of range B which is B-bimodular, that
is

E(xyz) = xE(y)z, y ∈ A, x, z ∈ B,

Such a map is completely positive [Str, Prop. page 118].
Now, suppose that A = M is a von Neumann algebra, that B = N is a von Neumann

subalgebra and that there exists a faithful normal conditional expectation E : M → M from M

onto N , and that ψ is a normal semifinite faithful weight on N . Then by [Con, Lemme 1.4.3],

ϕ
def
= ψ ◦ E is a normal semifinite faithful weight on M and the automorphisms groups of the

two weights are linked by the relation

(2.17) E ◦ σϕt = σ
ψ
t ◦ E, t ∈ R.

This implies that N is invariant under σϕ, i.e. σϕt (N) ⊂ N for all t ∈ R, and that σψt : N → N

is the restriction of σϕt : M → M to N .

Then the crossed product N
def
= N ⋊σϕ R is a ∗-subalgebra of M

def
= M ⋊σϕ R, and the

natural representation of N in N is the restriction of that of M in M. It is clear that the dual
action σ̂ϕ of R on M restricts to σ̂φ on N .

Let now Ê be the restriction to M of IdB(L2(R))⊗E, when M is considered as a von Neumann

subalgebra of B(L2(R))⊗M . Note that Ê is normal and faithful since Id ⊗ E is ([Tom1, Th.
2]). Since Ê preserves the operators λs, s ∈ R and sends π(M) onto π(N) (due to relation
(2.17)) it sends M onto N . The M-bimodularity of Ê results from the fact that IdB(L2(R)) ⊗ E

is B(L2(R))⊗N -bimodular. We obtain therefore a normal faithful conditional expectation Ê

from M onto N .
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Lemma 2.4 The dual weights ϕ̂, φ̂ on M, resp. N to the weights ϕ, φ satisfy the relation

(2.18) ϕ̂ = φ̂ ◦ Ê.

Proof : It is easy to see that each automorphism σ̂s commutes with Ê. It follows from (2.5)
that the operator valued weights TM and TN verify the relation

(2.19) TN ◦ Ê = Ē ◦ TM

where Ē : M̄+ → N̄+ is the natural extension of the operator E : M+ → N+. Let us also denote
by ω̄ the natural extension to M̄+ of any normal weight ω on M [Haa2, Prop 1.10]. Then

ϕ̂
(2.6)
= ϕ̄ ◦ TM = φ ◦ E ◦ TM = φ̄ ◦ Ē ◦ TM

(2.19)
= φ̄ ◦ TN ◦ Ê

(2.6)
= φ̂ ◦ Ê.

Let τN be the canonical trace on the crossed product N . Using [Con, Lemme 1.4.4] in the
second equality, we obtain

(
Dϕ̂ : D(τN ◦ Ê)

)
t

(2.18)
=

(
D(φ̂ ◦ Ê) : D(τN ◦ Ê)

)
t

=
(
Dφ̂ : DτN

)
t

= λt =
(
Dϕ̂ : DτM

)
t
, t ∈ R.

By [Str, page 49], we deduce that τN ◦ Ê is the canonical trace τM on the crossed product M.
In particular, τN is the restriction of τM. From now on, we set τ = τM, and τN = τ |N

It follows that the inclusion N ⊂ M extends to a topological linear embedding L0(N , τN ) ⊂
L0(M, τM) (which respects the operations of ∗-algebras). Using the characterization (2.10) of
Haagerup Lp-spaces, it is easy to see that for 1 6 p 6 ∞,

(2.20) Lp(N,φ) = Lp(M,ϕ) ∩ L0(N , τ).

Note that the external products and Mazur maps in the scale (Lp(N,ϕ)) are inherited from the
scale (Lp(M,ϕ)) and that the inclusion ip of Lp(N,φ) into Lp(M,ϕ) is automatically isometric,
in virtue of the formula

‖h‖p = τ
(
χ[1,+∞)(|h|)p

) 1

p

(see [Terp, Ch. II, Lemma 5] for the case p = 1). The map ip is also positive since

Lp(N,φ)+ = Lp(N,φ)∩L0(N , τ)+ = Lp(M,ϕ)∩L0(N , τ)+ ⊂ Lp(M,ϕ)∩L0(M, τ)+ = Lp(M,ϕ)+

In fact ip is completely isometric and completely positive, since for each n ∈ N, the map
idSpn ⊗ ip : Spn(Lp(N,φ)) → Spn(Lp(M,ϕ)) identifies to the inclusion map Lp(Mn(N), φn) ⊂
Lp(Mn(M), ϕn) where φn = Trn ⊗φ, ϕn = Trn ⊗ϕ (Trn being the ordinary trace on the algebra
Mn of n× n matrices).

On the other hand there is a natural isometric linear injection of N∗ into M∗, namely the
map E∗ : ω 7→ ω◦E. It turns out that in the identification of preduals with L1-spaces, this maps
becomes exactly the inclusion map of L1(N,φ) into L1(M,ϕ), that is

hφω = h
ϕ
ω◦E(2.21)

for every ω ∈ N∗. Indeed, using [Con, Lemme 1.4.4] in the third equality, we have

(
h
ϕ
ω◦E

)it (2.7)
=

(
Dω̂ ◦ E : Dτ

)
t

=
(
D(ω̂ ◦ Ê) : D(τ |N ◦ Ê)

)
t

=
(
Dω̂ : Dτ |N

)
t

(2.7)
= (hφω)it.
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It follows easily that the functional Trϕ on L1(M,ϕ) and Trφ on L1(N,φ) coincide on L1(N,φ):

(2.22) Trϕ |L1(N,φ) = Trφ .

Similarly the restriction map R : M∗ → N∗, ω 7→ ω
∣∣
N

, identifies to the map E1 : L1(M,ϕ) →

L1(N,φ) defined by

E1(hϕω) = h
φ
ω|N

= h
ϕ
ω◦E

for every ω ∈ M∗, which means that

Tr
(
E1(h)x

)
= Tr

(
hE(x)

)
, h ∈ L1(M,ϕ), x ∈ M(2.23)

that is, E is conjugate to E1 in the duality of the trace functional Tr. Note that in particular
Tr = Tr ◦E1 (take x = I). It is also easy to see that E1 is N -bimodular, that is

E1(xhy) = xE1(h)y, x, y ∈ N, h ∈ L1(M,ϕ).

Now for 1 < p < ∞ and h ∈ Lp(M,ϕ) we define Ep(h) as the unique element of Lp(N,φ)
such that

Tr
(
Ep(h)k

)
= Tr(hk), k ∈ Lp

∗

(N,φ)(2.24)

where 1
p + 1

p∗
= 1. That Ep(h) exists and is unique stems directly from the fact that Lp(N) is

the conjugate space to Lp
∗

(N). It is then easy to see that Ep is a contractive linear projection
in Lp(M,ϕ), which is positive (since the positive cone in Lp

∗

(M) is polar to that in Lp(M),
[Terp, Ch. II, Prop. 33]). For h ∈ Lp(M,ϕ), k ∈ Lp

∗

(M,ϕ) we have

Tr
(
Ep(h)k

)
= Tr

(
Ep(h)Ep∗(k)

)
= Tr

(
hEp∗(k)

)

thus the conjugate of Ep, viewed as a map from Lp(M,ϕ) into itself, is Ep∗ . Moreover if
1
p + 1

q = 1
r 6 1, h ∈ Lp(M,ϕ) and k ∈ Lq(N,φ) it is easily seen that

Er(hk) = Ep(h)k and Er(kh) = kEp(h).(2.25)

In particular with q = ∞ we get that Ep is N -bimodular.
Let us point a more abstract way to characterize Ep. For 1 6 p 6 ∞ let ip : Lp(N) → Lp(M)

be the embedding associated with the weight ϕ and the ϕ-invariant conditional expectation E.
Then for 1 6 p 6 ∞ we have

Ep = ip ◦ (ip∗)∗ if 1 6 p 6 ∞, E1 = i1 ◦ (i1)∗(2.26)

where (i∞)∗ means the preconjugate of i∞.

Remark 2.5 In the case where ϕ is a normal bounded linear functional, the above defined
conditional expectations Ep verify the formula:

(2.27) Ep
(
h

1

2p
ϕ xh

1

2p
ϕ

)
= h

1

2p
ϕ E(x)h

1

2p
ϕ , x ∈ M.

In particular if ϕ is a normal state, they coincide with the conditional expectations Ep defined
in [JX, sec. 2].
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Proof : In this case the ‘density operators’ hϕ and hφ associated with the weights ϕ, resp. φ
belong respectively to L1(M,ϕ) and L1(N,φ); moreover by (2.21) they coincide trivially modulo
the embedding of L1(N,φ) into L1(M,ϕ) described above (2.20). Thus hϕ ∈ L1(N,φ), hence

h
1

2p
ϕ ∈ L2p(N,φ) and the equation (2.27) is then an immediate consequence of the bimodularity

property (2.25). The map Ep in [JX, sec. 2] coincides thus with Ep on the subspace h
1

2p
ϕ Mh

1

2p
ϕ ,

which is dense in Lp(M,ϕ) by Lemma 2.2. These maps are both linear and contractive (as for
Ep see [JX, Lemma 2.2]), they coincide thus everywhere.

It is well known, at least in the ‘probabilistic’ case, that the maps Ep are completely positive
and completely contractive, see e.g. [JRX, p. 92]. The proof there is by the usual tensorisation
argument, and it works as well with our definition of Ep in the general case. But in our context
these properties may be derived directly from the relations (2.26) and the complete positivity
and isometry of the maps ip.

2.3 Projections on von Neumann algebras

Let A be a C∗-algebra. Recall that a linear map T : A → A is a Schwarz map if T (x)∗T (x) 6

T (x∗x) for any x ∈ A [Pal2, Definition 9.9.5]. Note that a Schwarz map is positive. By [Sto2,
Corollary 1.3.2], each 2-positive contraction T : A → A on a unital C∗-algebra A is a Schwarz
map. By [Sto2, Theorem 2.2.2 (2)], if P : A → A is a faithful projection map which is a Schwarz
map then RanA is a C∗-subalgebra of A.

Proposition 2.6 Let M be a von Neumann algebra. If P : M → M is a normal faithful unital
projection which is a Schwarz map, then P is a conditional expectation and RanP is a von
Neumann subalgebra.

Proof : By the above result, the range RanA is a (unital) C∗-subalgebra of A. Since P is
normal, RanP = ker(IdM − P ) is weak* closed and thus RanP is a von Neumann subalgebra
of M . Note that ‖P‖ = ‖P (1)‖ = ‖1‖ = 1 since P is positive. Using Tomiyama’s theorem [Str,
Theorem page 116], we conclude that P is a (normal faithful) conditional expectation.

2.4 Positive linear maps between noncommutative L
p-spaces

Our main tool will be the following extension of [JRX, Theorem 3.1]. The above lemmas allows
us to remove some assumptions in [JRX, Theorem 3.1]. Since the proof of [JRX, Theorem 3.1]
contains some gaps and misleading points2 and since this result is fundamental for the sequel,
we give full details.

Theorem 2.7 Let M and N be von Neuman algebras. Suppose 1 6 p < ∞. Let T : Lp(M) →
Lp(N) be a positive linear map. Let h be a positive element of Lp(M). Then there exists a
unique linear map v : M → s(T (h))Ns(T (h)) such that

(2.28) T
(
h

1

2 xh
1

2

)
= T (h)

1

2 v(x)T (h)
1

2 , x ∈ M.

Moreover, this map v is unital, contractive, and normal. If T is n-positive (1 6 n 6 ∞), then
v is also n-positive.

2. The complete positivity is not proved. The argument for the contractivity is ineffective.
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Proof : We let e
def
= s(T (h)) be the support projection of the element T (h) of Lp(N). For any

x ∈ M+, since 0 6 x 6 ‖x‖∞, we have by the part 2 of Lemma 2.1 that 0 6 h
1

2 xh
1

2 6 ‖x‖∞h.
Using the positivity of T , we obtain that

0 6 T
(
h

1

2 xh
1

2

)
6 ‖x‖∞T (h).

If x 6= 0, note that s(‖x‖∞T (h)) = s(T (h)) = e. By Lemma 2.3, for any x ∈ M+, there exists
a unique element z(x) ∈ eNe satisfying

T
(
h

1

2xh
1

2

)
=

(
‖x‖∞T (h)

) 1

2 z(x)
(
‖x‖∞T (h)

) 1

2 .

Moreover, we have 0 6 z(x) 6 e. Note that z(1) = e since e = s((T (h))
1

2 ). For any x ∈ M+,

we let v(x)
def
= ‖x‖∞z(x). So ‖v(x)‖∞ 6 ‖x‖∞‖z(x)‖∞ 6 ‖x‖∞‖e‖∞ 6 ‖x‖∞. Furthermore,

we have

(2.29) T
(
h

1

2xh
1

2

)
= T (h)

1

2 v(x)T (h)
1

2

and v(1) = e. Let us show that v : M+ → (eNe)+ is additive. For any x, y ∈ M+, we have

T (h)
1

2 v(x + y)T (h)
1

2

(2.29)
= T

(
h

1

2 (x+ y)h
1

2

)
= T

(
h

1

2xh
1

2

)
+ T

(
h

1

2 yh
1

2

)

(2.29)
= T (h)

1

2 v(x)T (h)
1

2 + T (h)
1

2 v(y)T (h)
1

2 = T (h)
1

2

(
v(x) + v(y)

)
T (h)

1

2 .

We conclude with Lemma 2.2 that v(x + y) = v(x) + v(y). By a standard reasoning, see e.g.
[AlT, Lemma 1.26], the map v extends uniquely to a real linear positive map v : Msa → (eNe)sa.
We may extend it to a positive complex linear map from M into eNe by letting v(x + iy) =
v(x) + iv(y). As a positive and unital map (v(1) = e) between C∗-algebras, v is contractive by
[Pau, Corollary 2.9]. The equation (2.28) follows by linearity from the case x > 0.

The uniqueness of v is a consequence of part 1 of Lemma 2.2 applied with T (h) and N

instead of h and M .
Now, we prove that v is normal. Since 1 6 p < ∞, we may consider T ∗ : Lp

∗

(N) → Lp
∗

(M).

We define the element k
def
= T (h)p of L1(M)+ and define a linear map w : k

1

2Nk
1

2 → L1(M) on
the dense subspace k

1

2Nk
1

2 of L1(eNe) (Lemma 2.2) by

(2.30) w(k
1

2 yk
1

2 )
def
= h

1

2T ∗
(
k

1

2p∗ yk
1

2p∗

)
h

1

2 , y ∈ N.

If x ∈ M , we have

Tr
(
w(k

1

2 yk
1

2 )x
) (2.30)

= Tr
(
h

1

2T ∗
(
k

1

2p∗ yk
1

2p∗

)
h

1

2x
)

= Tr
(
T ∗

(
k

1

2p∗ yk
1

2p∗

)
h

1

2xh
1

2

)

= Tr
(
k

1

2p∗ yk
1

2p∗ T (h
1

2xh
1

2 )
) (2.29)

= Tr
(
k

1

2p∗ yk
1

2p∗ T (h)
1

2 v(x)T (h)
1

2

)
= Tr

(
k

1

2 yk
1

2 v(x)
)
.(2.31)

It follows that
∣∣∣Tr

(
w(k

1

2 yk
1

2 )x
)∣∣∣ =

∣∣∣Tr
(
k

1

2 yk
1

2 v(x)
)∣∣∣ 6

∥∥k 1

2 yk
1

2

∥∥
1
‖v(x)‖∞ 6

∥∥k 1

2 yk
1

2

∥∥
1
‖x‖∞.

Therefore w extends to a contraction from L1(eNe) into L1(M). Furthermore, by (2.31) we
conclude that w∗ = v. Hence v is normal.

Assume that T is n-positive. Using (2.28) with the positive operator T (n) = IdSpn ⊗
T : Spn(Lp(M)) → Spn(Lp(N)) and by replacing h with In ⊗ h whose projection support is
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s(In ⊗ h) = s(In) ⊗ s(h) = In ⊗ e, we see that there exists a unique normal completely positive
contraction vn : Mn(M) → (In ⊗ e)Mn(N)(In ⊗ e) = Mn(eNe) such that for any [xij ] ∈ Mn(M)
we have

T (n)
(

(In ⊗ h)
1

2 [xij ](In ⊗ h)
1

2

)
=

(
T (n)(In ⊗ h)

) 1

2 vn ([xij ])
(
T (n)(In ⊗ h)

) 1

2 .

Note that

T (n)
(

(In ⊗ h)
1

2 [xij ](In ⊗ h)
1

2

)
= T (n)






h

. . .

h




1

2


x11 · · · x1n

...
...

xn1 · · · xnn






h

. . .

h




1

2




= T (n)






h

1

2 x11h
1

2 · · · h
1

2 x1nh
1

2

...
...

h
1

2 xn1h
1

2 · · · h
1

2 xnnh
1

2





 =



T (h

1

2x11h
1

2 ) · · · T (h
1

2x1nh
1

2 )
...

...

T (h
1

2xn1h
1

2 ) · · · T (h
1

2xnnh
1

2 )




=



T (h)

1

2 v(x11)T (h)
1

2 · · · T (h)
1

2 v(x1n)T (h)
1

2

...
...

T (h)
1

2 v(xn1)T (h)
1

2 · · · T (h)
1

2 v(x2nn)T (h)
1

2




=



T (h)

. . .

T (h)




1

2


v(x11) · · · v(x1n)

...
...

v(xn1) · · · v(xnn)






T (h)

. . .

T (h)




1

2

=
(
T (n)(In ⊗ h)

) 1

2 vn ([xij ])
(
T (n)(In ⊗ h)

) 1

2 .

Consequently, by unicity, we conclude that IdMn
⊗ v = vn. Hence v is n-positive.

Let M be a von Neumann algebra equipped with a normal faithful state ϕ. Let hϕ the
density operator associated with ϕ. If 1 6 p < ∞, note that by Lemma 2.2 (see also [JX,

Lemma 1.1] and [Wat1, Corollary 4]), h
1

2p
ϕ Mh

1

2p
ϕ is a dense subspace of Lp(M). Suppose that

N is another von Neumann algebra equipped with a normal faithful state ψ. Consider a unital
positive map T : M → N and assume that ψ(T (x)) = ϕ(x) for any x ∈ M+. Given 1 6 p < ∞
define

(2.32)
Tp : h

1

2p
ϕ Mh

1

2p
ϕ −→ h

1

2p

ψ Nh
1

2p

ψ

h
1

2p
ϕ xh

1

2p
ϕ 7−→ h

1

2p

ψ T (x)h
1

2p

ψ

By [HJX, Theorem 5.1], the map Tp above extends to a contractive map from Lp(M) into
Lp(N).

3 Projections in noncommutative L
p-spaces

3.1 A local description of contractive 2-positive projections.

Suppose 1 6 p < ∞. Let ϕ be a normal semifinite faithful weight on M . Let P : Lp(M) →
Lp(M) be a nontrivial 2-positive contractive projection. First consider a non-zero element h of
P (Lp(M)+). We have P (h) = h and h ∈ Lp(M)+. Moreover if 0 6 k 6 h, k ∈ Lp(M), then 0 6

Pk 6 Ph = h. By linearity it follows that the linear subspace I(h)
def
= Span {k ∈ Lp(M), 0 6

14



k 6 h} = h
1

2Mh
1

2 is preserved by P , and by continuity, so is its closure I(h) = s(h)Lp(M)s(h).
Thus

(3.1) P
(
s(h)Lp(M)s(h))

)
⊂ s(h)Lp(M)s(h)

Hence, the restriction P |s(h)Lp(M)s(h) is a projection from s(h)Lp(M)s(h) into s(h)Lp(M)s(h).
Recall that s(h)Lp(M)s(h) may be identified to the space Lp(Mh), the Lp-space of the reduced
von Neumann algebra Mh = s(h)Ms(h). In the sequel, we will show that we can identify the
range of this restriction with the noncommutative Lp-space of a suitable von Neumann subal-
gebra Nh of Mh, which is the range of a conditional expectation Eh. Thus P

(
s(h)Lp(M)s(h)

)

will be a completely order and completely isometric copy of Lp(Nh) in Lp(Mh). Moreover the
restriction of P will be identified to the conditional expectation Eh,p associated to E and a
suitable weight ψh on Mh.

By applying Theorem 2.7 to P and the positive element h of Lp(M), we see that there exists
a unique linear map Eh : Mh → s(P (h))Ms(P (h)) = Mh such that

(3.2) P
(
h

1

2xh
1

2

)
= h

1

2 Eh(x)h
1

2 , x ∈ Mh.

Moreover, this map Eh is unital, contractive, normal and 2-positive. Below, we will show that
Eh : Mh → Mh is a conditional expectation onto a von Neumann subalgebra of Mh.

Lemma 3.1 The map Eh : Mh → Mh is faithful.

Proof : Recall that for 1 < p < ∞, the space Lp(M) is uniformly convex by [PiX, Cor. 5.2],
hence strictly convex by [Meg1, Prop. 5.2.6]. It is easy to deduce that the Lp-norm is strictly
monotone3. This fact remains trivially true in the case p = 1. Now, we will show that if
0 6 k 6 h and P (k) = 0 then k = 0. Indeed, from

h = P (h) = P (h) − P (k) = P (h− k)

we deduce that ‖h‖p = ‖P (h − k)‖p 6 ‖h − k‖p by the fact that P is contractive. Since
0 6 h − k 6 h we infer that ‖h‖p = ‖h − k‖p and finally k = 0 by strict monotonicity of the
Lp-norm.

It results at once that Eh is faithful. Indeed, if x ∈ M+
h and Eh(x) = 0 we have

P
(
h

1

2xh
1

2

) (3.2)
= h

1

2 Eh(x)h
1

2 = 0.

Since h
1

2 xh
1

2 6 ‖x‖∞h by [Dix, 1.6.9] we see that h
1

2xh
1

2 = 0 by the first part of the proof.
Since Mh = s(h)Ms(h), we conclude that x = 0 by Lemma 2.2.

Lemma 3.2 The map Eh : Mh → Mh is a normal conditional expectation onto a von Neumann
subalgebra Nh of Mh.

Proof : For any x ∈ Mh, we have

P
(
h

1

2 xh
1

2

)
= P 2

(
h

1

2xh
1

2

) (3.2)
= P

(
h

1

2 Eh(x)h
1

2

) (3.2)
= h

1

2 E2
h(x)h

1

2 .

Using the unicity of Eh given by Theorem 2.7, we infer that E2
h = Eh, i.e. Eh is a projection.

Moreover Eh is unital (since Ph = h). Since Eh is in addition a 2-positive contraction, we

3. Suppose 0 6 x 6 y. If x 6= y then we have ‖x‖p < ‖y‖p.
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deduce by Proposition 2.6 that Nh
def
= RanEh is a sub-von Neumann algebra of Mh and that

Eh is a conditional expectation from Mh onto Nh.

Note that hp belongs to L1(M), thus the map x 7→ Tr(hpx) defines a normal positive linear
form on M with support s(h) (a normal state if ‖h‖p = 1). Let ψh be its restriction to the
algebra Mh.

Now, we prove that Eh is ψh-invariant. This property will allows us to extend Eh in a
compatible way to all Lq(Mh), 1 6 q 6 ∞, as explained in section 2.2.

Lemma 3.3 We have ψh ◦ Eh = ψh.

Proof : Let p∗ be the exponent conjugate to p. Consider first the case where 1 < p < ∞. Using
the contractive dual map P ∗ : Lp

∗

(M) → Lp
∗

(M), we see that

‖h‖pp
(2.11)

= Tr(hp) = Tr(hhp−1) = Tr
(
(P (h)hp−1

)
= Tr

(
hP ∗(hp−1)

)

6 ‖h‖p
∥∥P ∗(hp−1)

∥∥
p∗

6 ‖h‖p‖h
p−1‖p∗ = ‖h‖pp.

Thus ‖P ∗(hp−1)‖p∗ = ‖hp−1‖p∗ and Tr
(
hP ∗(hp−1)

)
= ‖h‖p‖hp−1‖p∗ . By [PiX, Cor. 5.2], the

Banach space Lp(Mh) is smooth. Hence, by unicity of the norming functional of h (see [Meg1,
Cor. 5.4.3]) we obtain

(3.3) P ∗(hp−1) = hp−1.

For any k ∈ Lp(M), it follows that

(3.4) Tr
(
hp−1P (k)

)
= Tr

(
P ∗(hp−1)k

) (3.3)
= Tr(hp−1k).

In particular, for every x ∈ Mh, we have

Tr
(
hp−1(h

1

2 Eh(x)h
1

2 )
) (3.2)

= Tr
(
hp−1P (h

1

2xh
1

2 )
) (3.4)

= Tr
(
hp−1(h

1

2xh
1

2 )
)

that is Tr
(
hpEh(x)

)
= Tr(hpx) hence ψh

(
Eh(x)

)
= ψh(x).

In the case p = 1, using the contractivity of P ∗ : M → M , we note that by [Dix, 1.6.9]

0 6 P ∗(s(h)) 6
∥∥P ∗(s(h))

∥∥
∞

1 6 ‖s(h)‖∞ 6 1.

Hence 0 6 s(h)P ∗(s(h))s(h) 6 s(h). It follows that

(3.5) h
1

2P ∗(s(h))h
1

2 = h
1

2 s(h)P ∗(s(h))s(h)h
1

2 6 h
1

2 s(h)h
1

2 = h

However
Tr

(
h

1

2P ∗(s(h))h
1

2

)
= Tr(hP ∗(s(h))) = Tr(P (h)s(h)) = Tr(h)

hence
‖h− h

1

2P ∗(s(h))h
1

2 ‖1 = Tr
(
h− h

1

2P ∗(s(h))h
1

2

)
= 0

and the inequality in (3.5) is in fact an equality, which implies by Lemma 2.2

s(h)P ∗(s(h))s(h) = s(h).(3.6)

Then for every k ∈ s(h)L1(M)s(h) we have

Tr(P (k)) = Tr(s(h)P (k)) = Tr(P ∗(s(h))k) = Tr(P ∗(s(h))s(h)ks(h))

= Tr(s(h)P ∗(s(h))s(h)k)
(3.6)
= Tr(s(h)k) = Tr(k).
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If k = h
1

2 yh
1

2 , with y ∈ Mh, we obtain:

ψh(Ehy) = Tr
(
h

1

2 Ehy h
1

2

)
= Tr(P (h

1

2 yh
1

2 )) = Tr(h
1

2 yh
1

2 ) = Tr(hy) = ψh(y).

We deduce that ψh ◦ Eh = ψh also in this case.

Consider a normal semifinite faithful weight χ on M such that s(h) belongs to the centralizer
of χ and such that the reduced weight χs(h) (see subsection 2.1) on Mh = s(h)Ms(h) coincides
with ψh. Then

(3.7) ψh(s(h)xs(h)) = Trϕ(hpx) = Trχ(κ̂(h)px), x ∈ M

where κ̂ : Lp(M,ϕ) → Lp(M,χ) is the canonical map. Note that κ̂(s(h)Lp(M,ϕ)s(h)) =
s(h)Lp(M, χ)s(h) = Lp(Mh, ψh) (since s(κ̂(h)) = κ̂(s(h)) = s(h) by (2.12)) and the result-
ing identification of the subspace s(h)Lp(M)s(h) of Lp(M) with the noncommutative Lp-space
Lp(Mh) is completely order preserving and completely isometric.

In the sequel, we will use the density operator hψh ∈ L1(Mh, χsh) associated with ψh. We
have

(3.8) Trψh(hψh x) = ψh(x)
(3.7)
= Trχ(κ̂(h)p x) = Trψh(κ̂(h)p x), x ∈ Mh

(recall that the traces coincide on L1(s(h)Ms(h))). We conclude that

(3.9) hψh = κ̂(h)p.

Let Eh,p : Lp(Mh) → Lp(Mh) be the conditional expectation on Lp(s(h)Ms(h)) associated with
the conditional expectation E and the weight ψh. Recall that (by equation (2.27))

Eh,p
(
h

1

2p

ψh
xh

1

2p

ψh

)
= h

1

2p

ψh
Eh(x)h

1

2p

ψh
, x ∈ Mh.

For any x ∈ Mh, we have

P κ̂−1
(
h

1

2p

ψh
xh

1

2p

ψh

) (3.9)
= P κ̂−1

(
κ̂(h)

1

2xκ̂(h)
1

2

)
= P

(
h

1

2xh
1

2

) (3.2)
= h

1

2 Eh(x)h
1

2

(3.9)
= κ̂−1(hψh)

1

2pEh(x)κ̂−1(hψh)
1

2p = κ̂−1
(
h

1

2p

ψh
Eh(x)h

1

2p

ψh

) (2.27)
= κ̂−1Eh,p

(
h

1

2p

ψh
xh

1

2p

ψh

)
.

Hence, by density,

P κ̂−1(k) = κ̂−1Eh,p(k)(3.10)

for all k ∈ Lp(Mh, ψh); we conclude that we have the following commutative diagram:

Lp(M,ϕ) �
� P

// Lp(M,ϕ)

Lp(M,χ)

κ̂−1

OO

Lp(M,χ)

κ̂−1

OO

s(h)Lp(M,χ)s(h) = Lp(Mh, ψh)
?�

OO

Eh,p
// Lp(Mh, ψh) = s(h)Lp(M,χ)s(h)

?�

OO

Thus P (Lp(Mh)) = P
(
s(h)Lp(M)s(h)

)
is completely order and completely isometrically iso-

morphic to Lp(Nh).
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Since Lp(Nh) is aNh-bimodule in Lp(Mh), and the identification of Lp(Mh) with s(h)Lp(M)s(h)
respects the actions of Mh, then P (s(h)Lp(M)s(h)) is a Nh-bimodule. Moreover P is Nh-
bimodular, that is

P (xky) = xP (k)y, x, y ∈ Nh, k ∈ s(h)Lp(M)s(h).

This results simply from the Nh-bimodularity of Eh,p.

Note that the left supports sℓ(k), σℓ(k) of k ∈ Lp(Nh), viewed either as an element of Lp(M)
or as an element of Lp(Nh), do coincide. Indeed we have clearly σℓ(k) > sℓ(k). Moreover if

r
def
= σℓ(k) − sℓ(k), then 0 6 Eh(r) 6 σℓ(k) and Eh(r)k = Eh,p(rk) = 0, which imply Eh(r) = 0

and thus r = 0 since Eh is faithful on s(h)Ms(h). The same coincidence occurs of course for
right supports.

Note that the projections of a σ-finite von Neumann algebra M are exactly the right (or left)
supports of elements of Lp(M). Hence Nh is the von Neumann subalgebra of M generated by
the right (resp. left) supports of the elements of P (s(h)Lp(M)s(h)). In particular Nh depends
only on s(h), i.e. s(h1) = s(h2) implies Nh1

= Nh2
.

3.2 From local to global: the σ-finite case.

Suppose 1 6 p < ∞. Let M be a σ-finite (= countaby decomposable) von Neumann algebra
and P : Lp(M) → Lp(M) be a positive contractive projection. We define the support s(P ) of
RanP as the supremum in M of the supports of the positive elements in RanP :

(3.11) s(P )
def
=

∨

h∈RanP,h>0

s(h).

Proposition 3.4 Suppose 1 6 p < ∞. Let M be a σ-finite von Neumann algebra and
P : Lp(M) → Lp(M) be a positive contractive projection. Then there exists a positive element
h of RanP such that s(h) = s(P ).

Proof : We note first that for every at most countable family (hi)i∈I of positive elements in
RanP there is a positive element h in RanP such that s(h) > s(hi) for all i ∈ I. Indeed
assuming ‖hi‖p 6 1 for all i, take simply h =

∑
i∈I

2−ihi. By [KaR2, Exercice 7.6.46], we can

consider a normal faithful state ψ on M . We introduce the positive real number

a
def
= sup

{
ψ(s(h)) : h ∈ RanP, h > 0

}
.

This supremum is attained. Indeed, consider a positive sequence (hn) of positive elements in
RanP such that ψ(s(hn)) ↑ a, then any positive element h ∈ RanP such that s(h) > s(hn) for
all n satisfies ψ(s(h)) = a.

Fix such an element h ∈ Ran(P ) with h > 0 such that ψ(s(h)) = a. We have s(h) 6 s(P ).
If s(h) 6= s(P ), there exists h′ ∈ RanP with h′ > 0 such that s(h′) 66 s(h). This implies that

s(h+ h′) > s(h) ∨ s(h′) > s(h).

Hence ψ(s(h+ h′)) > ψ(s(h)) which is impossible by maximality of ψ(s(h)). Thus s(h) = s(P )
as desired.
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Proof of parts 1) and 2) of Theorem 1.1 in the σ-finite case : Let ϕ be a normal state on M .
We can suppose ‖h‖ = 1. Clearly RanP = s(P ) RanPs(P ) since4 P is positive. So we have

RanP = P (RanP ) = P
(
s(P ) RanP s(P )

)
⊂ P

(
s(P )Lp(M)s(P )

)
⊂ RanP.

Finally, we obtain

RanP = P
(
s(P )Lp(M)s(P )

)
= P

(
s(h)Lp(M)s(h)

)
.

Note that the map s(h)Ms(h) → C, s(h)xs(h) 7→ Trϕ(hpx) is a faithful normal state on
s(h)Ms(h). Using the procedure (2.16), we can consider a normal faithful state χh on M

such that s(h) belongs to the centralizer of χh and the reduced weight ψh
def
= (χh)s(h) on

Mh
def
= s(h)Ms(h) satisfies

(3.12) ψh(s(h)xs(h)) = Trϕ(hpx), x ∈ M.

If κ̂ : L1(M,ϕ) → L1(M,χ) is the canonical map, we obtain by (2.14) the equality

(3.13) ψh(s(h)xs(h)) = Trχ(κ̂(hpx)) = Trχ(κ̂(h)px), x ∈ M.

By the results of Subsection 3.1, the range RanP identifies to the noncommutative Lp-spaces
Lp(Nh) of the von Neumann subalgebra Nh of s(h)Ms(h) = s(P )Ms(P ) generated by the right
(resp. left) supports of the elements of RanP .

Moreover, the restriction of P to s(P )Lp(M)s(P ) identifies to a faithful normal conditional
expectation in this reduced Lp-space, with range Lp(Nh).

3.3 The non σ-finite case.

3.3.1 The set of supports of elements in the range of P and its associated VNA.

Let P(P ) be the set of all support projections of positive elements in Ran(P ). If s ∈ P(P ) we
define Ns as the von Neumann subalgebra of sMs generated by the projections e ∈ P(P ) with
e 6 s. The link with the subalgebras Nh defined in section 3.1 is given by the following Lemma.

Lemma 3.5 For every h ∈ Ran(P ) we have Ns(h) = Nh.

Proof : Let e ∈ Nh be a projection. We have e 6 s(h), hence by (2.2) s(ehe) = e. Since
P (s(h)Lp(M)s(h)) is Nh-bimodular, we have ehe ∈ RanP . Thus e ∈ P(P ) and by e 6 s(h),
e ∈ Ns(h). Since Nh is generated by its projections, it follows that Nh ⊂ Ns(h). Conversely if 0 6

k ∈ P (Lp(M)) with s(k) 6 s(h), then k = P (k) = P (s(h)ks(h)), hence k ∈ P (s(h)Lp(M)s(h))
and thus s(k) ∈ N(h). Since Ns(h) is generated by such projections, it follows that Ns(h) ⊂ Nh.

Lemma 3.6 If s1, s2 ∈ P(P ) then s1 ∨ s2 belongs to P(P ).

Proof : We can write si = s(hi) for some positive element hi of RanP . Then the positive
element h = h1 + h2 belongs to RanP and s(h1 + h2) = s(h1) ∨ s(h2).

We denote by s(P ) the supremum of all projections in P(P ) (the support of RanP ) and by
NP the weak* closed ∗-algebra generated by P(P ).

4. If h ∈ Ran P , we can write h = h1 − h2 + i(h3 − h4) with h1, h2, h3, h4 > 0. Hence h = P (h1) − P (h2) +
i(P (h3) − P (h4)) where P (h1), P (h2), P (h3), P (h4) > 0.
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Lemma 3.7 i) If s ∈ P(P ) and e ∈ Ns is a projection, then e ∈ P(P ).
ii) if s1, s2 ∈ P(P ) with s2 6 s1 then s2 ∈ Ns1

and Ns2
= s2Ns1

s2.
iii) for not necessarily comparable s1, s2 ∈ P(P ) we have still s2Ns1

s2 ⊂ Ns2
.

Proof : i) See the first part of the proof of Lemma 3.5.

ii) It follows from the definition of the algebras Ns that Ns2
⊂ Ns1

whenever s2 6 s1. Then
clearly Ns2

= s2Ns2
s2 ⊂ s2Ns1

s2. Conversely every projection e of the reduced von Neumann
algebra s2Ns1

s2 belongs to Ns1
, hence to P(P ) by (i), and is majorized by s2, thus e ∈ Ns2

. It
follows that s2Ns1

s2 ⊂ Ns2
.

iii) In this case we have s2Ns1
s2 ⊂ s2Ns1∨s2

s2 = Ns2
.

It follows from the two preceding lemmas that the family (Ns)s∈P(P ) is nested by inclusion,

so that NP =
⋃

s∈P(P )

Ns
w∗

. Here is a more tractable definition:

Lemma 3.8 The algebra NP is the subset of s(P )Ms(P ) consisting of elements x such that
sxs ∈ Ns for every s ∈ P(P ).

Proof : Since each algebra Ns is included in s(P )Ms(P ) and the latter algebra is weak* closed
in M , the whole algebra NP is also included in s(P )Ms(P ). The set

A
def
=

{
x ∈ s(P )Ms(P ) : sxs ∈ Ns for all s ∈ P(P )

}

is weak* closed and contains all the Ns’s with s ∈ P(P ), thus A contains NP . For every x ∈ A

and s ∈ P(P ), we have sxs ∈ Ns ⊂ NP . Then sxs → s(P )xs(P ) weak* when s ↑ s(P ) (as a
consequence of the fact that sϕ → s(P )ϕ in the norm of M∗, for every ϕ ∈ M∗). Thus x ∈ NP ,
and A ⊂ NP .

Lemma 3.9 The map P is NP -bimodular on s(P )Lp(M)s(P ), and consequently RanP is a
NP -bimodule.

Proof : We have to prove that P (x1hx2) = x1P (h)x2 for every h ∈ Lp(M) and x1, x2 ∈ NP .
Since the maps x 7→ xh and x 7→ hx are weak* to weak continuous, we may reduce to the case
where x1, x2 belong to some Ns0

with s0 ∈ P(P ). Since s(P ) =
∨

P(P ) we have

s(P )Lp(M)s(P ) =
⋃

e∈P(P )

eLp(M)e

(norm closure) so by another approximation argument we may assume that h ∈ eLp(M)e with

e ∈ P(P ). Then, setting s
def
= s0 ∨ e, we have x1, x2 ∈ Ns and h ∈ sLp(M)s. Since P is

bimodular with respect to Ns on sLp(M)s, the equation P (x1hx2) = x1P (h)x2 follows, as well
as the bimodule property.

Our goal is now to prove that RanP is a suitable copy of Lp(NP ) inside s(P )Lp(M)s(P ). To
this end we define a conditional expectation EP from s(P )Ms(P ) onto NP and an EP -invariant
normal semifinite faithful weight on s(P )Ms(P ). A preliminary step will be to find a partition
of s(P ) into projections belonging to P(P ).

Lemma 3.10 The set P(P ) is closed under finite or countable joins, under arbitrary meets,
and under relative orthocomplements.

20



Proof : We have seen that if (hi)i∈I is an at most countable family of normalized positive
elements in RanP , then

∨
i∈I s(hi) is the support of h =

∑
i 2−ihi. Thus P(P ) is closed under

finite or countable joins.
If s, e ∈ P(P ) with e 6 s, then e belongs to Ns by Lemma 3.7 and so does its relative

orthocomplement s − e. Since s − e is a projection in Ns it belongs to P(P ), by the same
Lemma 3.7.

If s1, s2 ∈ P(P ), then e1
def
= s1 ∨ s2 − s1 and e2

def
= s1 ∨ s2 − s2 belong both to P(P ) by the

preceding, and so does s1 ∧ s2 = s1 ∨ s2 − e1 ∨ e2.

If (si)i∈I is an arbitrary family in P(P ) and e
def
=

∧
i∈I si, then fixing i0 ∈ I we have

e =
∧
i∈I s

′
i, where s′

i = si ∧ si0 . The s′
i belong all to P(P ), and moreover s′

i 6 si0 ∈ P(P ). By
Lemma 3.7 s′

i ∈ Ns0
for every i ∈ I, hence e ∈ Ns0

and this projection belongs to P(P ) by the
same lemma.

Theorem 3.11 There is a family (si)i∈I of pairwise disjoint projections in P(P ) such that

s(P ) =
∨

i∈I

si.

Proof : Consider a maximal family (si)i∈I of pairwise disjoint nonvanishing projections in

P(P ). Clearly s
def
=

∨
i∈I si 6 s(P ). If s 6= s(P ) there exists e ∈ P(P ) such that e 6= e ∧ s. But

e− e ∧ s =
∧
i∈I

(e − e ∧ si) belongs to P(P ) by Lemma 3.10, which contradicts the maximality

of the family (si).

3.3.2 Application to the proof of the Main Theorem.

In this subsection we complete the proof of points 1) and 2) of the Main Theorem (Theorem
1.1) in the non-σ-finite case.

Fix a maximal family (si)i∈I of pairwise disjoint projections in P(P ), the existence of which
is given by Theorem 3.11. For each i ∈ I let hi be a positive element of RanP with support
s(hi) = si. Let ψi be the normal positive bounded linear form on M associated with the element

h
p
i of L1(M,ϕ). For each finite subset J of I, let us set sJ

def
=

∑
i∈J si , hJ

def
=

∑
i∈J hi and let

ψJ be the linear form associated with h
p
J . Note that s(hJ) = sJ . Moreover, we have

P (hJ ) = P

( ∑

i∈J

hi

)
=

∑

i∈J

P (hi) = hJ and h
p
J =

∑

i∈J

h
p
i , hence ψJ =

∑

i∈J

ψi.

Let us also define a n. s. f. weight ψ on s(P )Ms(P ) by

ψ(x) =
∑

i∈I

ψi(x).(3.14)

All the projections si, i ∈ I belong to the centralizer of ψ, and more generally so do the

projections sΓ
def
= w∗-

∑
i∈Γ si, Γ ⊂ I (Γ finite or not).

By the results of Section 3.1, we have a normal faithful conditional expectation EJ
def
=

EhJ : sJMsJ → sJMsJ satisfying

(3.15) ψJ = ψJ ◦ EJ and P
(
h

1

2

J xh
1

2

J

)
= h

1

2

JEJ(x)h
1

2

J
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Moreover by Lemma 3.5, the range of EJ does not depend on the choice of the hi and equals
NsJ = sJNP sJ (by definition of NP ).

In the sequel we denote by F(I) the set of finite subsets of I. This set is naturally ordered
by inclusion.

Lemma 3.12 The family (EJ )J∈F(I) of conditional expectations is compatible, that is if J1 ⊂ J2

then EJ2
|sJ1

MsJ1
= EJ1

. Similarly, we have ψJ2
|sJ1

MsJ1
= ψJ1

.

Proof : If J1 ⊂ J2, then hJ1
= sJ1

hJ2
= hJ2

sJ1
, hence h

1

2

J1
= sJ1

h
1

2

J2
= h

1

2

J2
sJ1

and for every
x ∈ sJ1

MsJ1
:

h
1

2

J2
EJ1

(x)h
1

2

J2
= h

1

2

J1
EJ1

(x)h
1

2

J1

(3.2)
= P

(
h

1

2

J1
xh

1

2

J1

)
= P

(
h

1

2

J2
xh

1

2

J2

) (3.2)
= h

1

2

J2
EJ2

(x)h
1

2

J2

which implies EJ1
(x) = EJ2

(x) since both EJ1
x, EJ2

x belong to sJ2
Lp(M)sJ2

. Hence EJ1
is the

restriction of EJ2
to s1Ms1.

Next we want to extend the family (EJ ) to a conditional expectation in s(P )Ms(P ). To
this end we shall make use of the following lemma.

Lemma 3.13 A bounded net (xα)α∈A of elements of s(P )Ms(P ) converges w* iff the reduced
nets (sJxαsJ)α, J ∈ F(I) are all w*-convergent.

Proof : Note first that the maps PJ : s(P )Ms(P ) → s(P )Ms(P ), x 7→ sJxsJ are w*-w*
continuous projections on s(P )Ms(P ), which commute (PJPK = PKPJ = PJ∩K , with the

convention P∅ = 0). Moreover PJx
w∗

→ x when J ↑ I, which implies that the family (PJ )J∈F(I)

is separating (PJ (x) = 0 for all J ∈ F(I) implies x = 0).
If the net (xα)α∈A converges w* to x, it is clear by the continuity of PJ that (PJ (xα))α

converges w* (to PJ (x)) for each J ∈ F(I). Conversely assume that PJ (xα)
w∗

→ yJ for every
J ∈ F(I)). Then if y is a w*-clusterpoint of the net (xα) (some exists by w*-compactness of
the balls), PJ (y) is a w*-cluster point of (PJxα), hence coincides with the w*-limit yJ of the
net (PJxα)α. By the fact that the family (PJ ) is separating , the w*-cluster point y is unique,
and thus it is the w*-limit of (xα).

Remark 3.14 As a consequence of the preceding lemma, for every bounded family (xJ )J∈F(I)

such that xJ ∈ sJMsJ , and xK = PK(xJ ) for every K ⊂ J ∈ F(I), then there is a unique
x ∈ s(P )Ms(P ) such that xK = PKx for all J ∈ F(I).

Proof : Indeed apply the Lemma 3.13 to the nested family (xJ )J∈F(I). Since for each K ∈ F(I)
the net (PK(xJ ))J∈F(I) is stationary (constant for J ⊃ K), the net (xJ ) is w*-convergent and
its limit x satisfies the relations PKx = w∗- lim

J
PKxJ = xK , for all K ∈ F(I).

Lemma 3.15 The compatible set of maps (EJ ) has a unique normal extension E : s(P )Ms(P ) →
s(P )Ms(P ). The map E is a normal faithful conditional expectation with range NP .

Proof : Existence of E. Note that if K ⊂ J ∈ F(I) we have

PKEJPJx = EJPKx = EKPKx(3.16)

for all x ∈ s(P )Ms(P ) (the first equation by NJ -bimodularity of EJ , the second by Lemma
3.12). By Remark 3.14 there exists a unique map E : s(P )Ms(P ) → s(P )Ms(P ) such that:

PKEx = EKPKx(3.17)
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for all x ∈ s(P )Ms(P ). Moreover we have Ex = w∗- limJ EJPJx. If x ∈ sKMsK we have
EJx = EKx for all J ⊃ K and thus Ex = EKx, i. e. E extends all the EK , K ∈ F(I). Then
by Lemma 3.13 the w*-w* continuity of E follows from that of the EJ , J ∈ F(I). As for the
faithfulness, it results from (3.16) and faithfulness of the EJ , since if x ≥ 0 we have

Ex = 0 =⇒ ∀J ∈ F(I), EJPJx = PJEx = 0 =⇒ ∀J, PJx = 0 =⇒ x = 0.

It is clear that E is sJMsJ -bimodular for every J . The NP -modularity follows by w*-continuity.
Finally RanE is included in NP and contains s(P ). By NP -modularity, RanE = NP .

Unicity. If E is another extension of the EJ ’s then by w*-continuity

Ex = E(w∗- lim
J
PJx) = w∗- lim

J
EPJx = w∗- lim

J
EJPJx = w∗- lim

J
EPJx = Ex.

Lemma 3.16 We have ψ = ψ ◦ E.

Proof : For x ∈ s(P )M+s(P ) we have

ψ(Ex) =
∑

i∈I

ψi(si(Ex)si) =
∑

i∈I

ψi(Eisixsi) =
∑

i∈I

ψi(sixsi) = ψ(x)

As explained in § 2.2 there is a canonical inclusion of the L0 space of the crossed product
NP⋊σψR into that of s(P )Ms(P )⋊σψR, with preservation of their canonical traces, which leads
to inclusions ip of the respective Lp-spaces: Lp(NP , ψ|NP ) ⊂ Lp(s(P )Ms(P ), ψ), 1 6 p 6 ∞.
The conditional expectation Eψ,p : Lp(s(P )Ms(P ), ψ) → Lp(s(P )Ms(P ), ψ) was defined there
by transposition of ip∗(for the Haagerup trace duality).

Lemma 3.17 We have the following commutative diagram:

Lp(s(P )Ms(P ), ψ)
Ep

// Lp(s(P )Ms(P ), ψ)

sJLp(s(P )Ms(P ), ψ)sJ = Lp(sJMsJ)
?�

OO

EJ,p
// Lp(sJMsJ) = sJLp(s(P )Ms(P ), ψ)sJ

?�

OO

Proof : For h ∈ Lp(sJMsJ , ψ) and k ∈ Lp∗(NP , ψ) we have

Trψ(hk) = Trψ(sJhsJk) = Trψ(hsJksJ) = TrψJ (hsJksJ )

= TrψJ ((EJ,ph)sJksJ) = Trψ((EJ,ph)sJksJ)

= Trψ(sJ (EJ,ph)sJk) = Trψ((EJ,ph)k)

(using twice the fact that sJ is in the centralizer of ψ), hence Eψ,p h = EJ,p h.

Let us consider now a n. s. f. weight χ on M such that s(P ) belongs to the centralizer
of χ, and χs(P ) = χ|s(P )Ms(P ) = ψ. Let κ : (M ⋊σϕ

i
R, τϕ) → (M ⋊σχ

i
R, τχ) be the canonical

trace-preserving isomorphism, κ̂ : L0(M ⋊σϕ
i
R, τϕ) → L0(M ⋊σχ

i
R, τχ) its natural extension,

which preserves the respective Haagerup’s Lp(M)-spaces. Recall that if we identify M with its
canonical image in each crossed product then by (2.12) κ̂ fixes the points of M .
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Proposition 3.18 We have the following commutative diagram:

Lp(M,ϕ) �
� P

// Lp(M,ϕ)

Lp(M,χ)

κ̂−1

OO

Lp(M,χ)

κ̂−1

OO

s(P )Lp(M,χ)s(P ) = Lp(s(P )Ms(P ), ψ)
?�

OO

Eψ,p
// Lp(s(P )Ms(P ), ψ) = s(P )Lp(M,χ)s(P )

?�

OO

Proof : For every J ∈ F(I), the projection sJ belongs to the centralizer of χ, since it belongs
to the centralizer of ψ = χs(P ), while s(P ) belongs to the centralizer of χ. It follows by (3.10)
that

P κ̂−1(k) = κ̂−1EJ,p(k)

for all k ∈ sJLp(s(P )Ms(P ), ψ)sJ = Lp(sJMsJ , ψJ). Since by Lemma 3.17, EJ,p is the restric-
tion of Eψ,p : Lp(s(P )Ms(P ), ψ) → Lp(s(P )Ms(P ), ψ) to sJLp(sJMsJ , ψJ)sJ we obtain

P κ̂−1(k) = κ̂−1Eψ,p(k)

for all k ∈
⋃
J Lp(sJMsJ). By density of

⋃
J Lp(sJMsJ) in Lp(s(P )Ms(P )) it follows that P

coincides with κ̂−1 ◦ Eψ,p ◦ κ̂ on s(P )Lp(M,ϕ)s(P ).

3.4 Complement on the case 1 < p < ∞

Part 3 of Theorem 1.1 is a consequence of a more general fact on contractive projections in
non-commutative Lp spaces. For the sake of stating the result we introduce the left and right
supports of a projection P , that we denote respectively by sℓ(P ) and sr(P ). We set:

(3.18) sℓ(P )
def
=

∨

h∈RanP

sℓ(h), sr(P )
def
=

∨

h∈RanP

sr(h).

Clearly if P is positive then sℓ(P ) = sr(P ) and both these supports coincide with s(P ) defined
by formula (3.11). The general result is then:

Proposition 3.19 Let 1 < p < ∞ and P : Lp(M) → Lp(M) be a contractive projection. Then
for every h ∈ Lp(M) we have

P (h) = P (sℓ(P )hsr(P )).

The proof of this proposition follows the line of classical proofs for the contractive projection
in commutative Lp-spaces. Let us first recall some facts about duality mappings.

Recall that a normed linear space X is said to be strictly convex (or rotund) if for any

x, y ∈ X the equalities ‖x+y‖X
2 = ‖x‖X = ‖y‖X imply x = y.

Let X be a Banach space. For each x ∈ X , we can associate the subset

JX(x) =
{
x∗ ∈ X∗ : 〈x, x∗〉X,X∗ = ‖x‖2

X = ‖x∗‖2
X∗

}

of the dual X∗. The multivalued operator JX : X → X∗ is called the normalized duality
mapping of X . From the Hahn-Banach theorem, for every x ∈ X , there exists y∗ ∈ X∗ with
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‖y∗‖X∗ = 1 such that 〈x, y∗〉X,X∗ = ‖x‖X . Using x∗ = ‖x‖Xy∗, we conclude that JX(x) 6= ∅
for each x ∈ X . If the dual space X∗ is strictly convex (i.e. X is smooth), JX is single-valued.
Indeed, if x∗

1, x
∗
2 ∈ J(x) then

‖x‖X

∥∥∥1

2
(x∗

1 + x∗
2)

∥∥∥
X∗

>

〈
x,

1

2
(x∗

1 + x∗
2)

〉
X,X∗

= ‖x∗
1‖2
X∗ = ‖x∗

2‖2
X∗ = ‖x‖2

X .

Since X∗ is strictly convex, we conclude that x∗
1 = x∗

2. When X is a reflexive and strictly convex
space with a strictly convex dual space X∗, JX is a singlevalued bijective map and its inverse
J−1
X : X∗ → X∗∗ = X is equal to JX∗ : X∗ → X . Indeed, for x∗ ∈ X , by definition of JX∗(x∗)

we have

‖JX∗(x∗)‖X = ‖x∗‖X∗ and
〈
JX∗(x∗), x∗

〉
X,X∗

=
〈
x∗, JX∗(x∗)

〉
X∗,X

= ‖x∗‖2
X∗ .

We deduce that JX(JX∗(x∗)) = x∗. Hence JXJX∗ = IdX∗ . By symmetry, we get also JX∗JX =
IdX .

Proof of Proposition 3.19 : Suppose 1 < p < ∞. Recall that Lp(M) is strictly convex and
smooth [PiX, Cor. 5.2]. Hence JLp(M) : Lp(M) → Lp

∗

(M) is a singlevalued bijective map.
Moreover, (JLp(M))

−1 = JLp∗ (M). For any h ∈ Lp(M) with polar decomposition h = u|h|, we
have ∥∥‖h‖2−p

p |h|p−1u∗
∥∥
p∗

= ‖h‖2−p
p

∥∥|h|p−1
∥∥
p∗

= ‖h‖2−p
p ‖h‖p−1

p = ‖h‖p

and using the fact that u∗u is the support projection of |u| by [Pal2, Theorem 9.1.25], we obtain
〈
h, ‖h‖2−p

p |h|p−1u∗
〉

Lp(M),Lp∗ (M)
= ‖h‖2−p

p Tr
(
u|h||h|p−1u∗

)
= ‖h‖2−p

p Tr
(
|h|p

)
= ‖h‖2

p.

Hence, we infer that the explicit description of JLp(M) is given by

JLp(M)(h) = ‖h‖2−p
p |h|p−1u∗.(3.19)

From this formula it is clear that the right (resp. left) support of JLp(M)(h) = ‖h‖2−p
p |h|p−1u∗

coincides with the left (resp. right) support of h.
On the other hand, from the last line of the proof of [Cal, Th. 1], the map JLp(M) sends

Ran(P ) onto Ran(P ∗). This remark together with formulae (3.18) imply that sr(P
∗) = sℓ(P ),

sℓ(P
∗) = sr(P ). Thus for every h ∈ Lp(M), we obtain that

∥∥P (h)
∥∥p

Lp(M)
= Tr

(
P (h)JLp(M)(P (h))

)
= Tr

(
hP ∗(JLp(M)(P (h)))

)
= Tr

(
hJLp(M)(P (h))

)

= Tr
(
hsℓ(P

∗)JLp(M)(P (h))sr(P
∗)

)
= Tr

(
hsr(P )JLp(M)(P (h))sℓ(P )

)

= Tr
(
sℓ(P )hsr(P )JLp(M)(P (h))

)
.

Hence P (h) = 0 whenever hsr(P ) = 0 or sℓ(P )h = 0. Now, for any h ∈ Lp(M), we have

P (h) =P
(
(1 − sℓ(P )

)
h

(
1 − sr(P ))

)
+ P

(
(1 − sℓ(P ))hsr(P )

)
+ P

(
sℓ(P )h(1 − sr(P ))

)
+

+ P
(
sℓ(P )hsr(P )

)
= P

(
sℓ(P )hsrP )

)
.

Remark 3.20 It is well known that even in the commutative case and for positive projections
the statement of Proposition 3.19 becomes false for p = 1.
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