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ABSTRACT

Estimating fluid dynamics is classically done through the simulation and integra-
tion of numerical models solving the Navier-Stokes equations, which is computa-
tionally complex and time-consuming even on high-end hardware. This is a no-
toriously hard problem to solve, which has recently been addressed with machine
learning, in particular graph neural networks (GNN) and variants trained and eval-
uated on datasets of static objects in static scenes with fixed geometry. We attempt
to go beyond existing work in complexity and introduce a new model, method
and benchmark. We propose EAGLE, a large-scale dataset of ∼1.1 million 2D
meshes resulting from simulations of unsteady fluid dynamics caused by a moving
flow source interacting with nonlinear scene structure, comprised of 600 different
scenes of three different types. To perform future forecasting of pressure and ve-
locity on the challenging EAGLE dataset, we introduce a new mesh transformer. It
leverages node clustering, graph pooling and global attention to learn long-range
dependencies between spatially distant data points without needing a large number
of iterations, as existing GNN methods do. We show that our transformer outper-
forms state-of-the-art performance on, both, existing synthetic and real datasets
and on EAGLE. Finally, we highlight that our approach learns to attend to airflow,
integrating complex information in a single iteration.

1 INTRODUCTION

Despite consistently being at the center of attention of mathematics and computational physics, solv-
ing the Navier-Stokes equations governing fluid mechanics remains an open problem. In the absence
of an analytical solution, fluid simulations are obtained by spatially and temporally discretizing dif-
ferential equations, for instance with the finite volume or finite elements method. These simulations
are computationally intensive, take up to several weeks for complex problems and require expert
configurations of numerical solvers.
Neural network-based physics simulators may represent a convenient substitute in many ways. Be-
yond the expected speed gain, their differentiability would allow for direct optimization of fluid
mechanics problems (airplane profiles, turbulence resistance, etc.), opening the way to replace tradi-
tional trial-and-error approaches. They would also be an alternative for solving complex PDEs where
numerical resolution is intractable. Yet, the development of such models is slowed down by the dif-
ficulty of collecting data in sufficient quantities to reach generalization. Velocity and pressure field
measurements on real world systems require large and expensive devices, and simulation faces the
problems described above. For all these reasons, few datasets are freely available for training high-
capacity neural networks, and the existing ones either address relatively simple problems which can
be simulated in reasonable time and exhibiting very similar behaviors (2D flow on a cylinder, airfoil
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Figure 1: We introduce EAGLE, a large-scale dataset for learning complex fluid mechanics, accu-
rately simulating the air flow created by a 2D drone in motion and interacting with scenes of varying
2D geometries. We address the problem through an autoregressive model and self-attention over to-
kens in a coarser resolution, allowing to integrate long-range dependencies in a single hop — shown
in the given example by the attention distributions for ◼, which follows the airflow.

(Pfaff et al., 2021; Han et al., 2022)) , or simulations of very high precision, but limited to a few
different samples only (Graham et al., 2016; Wu et al., 2017).
In this paper, we introduce EAGLE, a large-scale dataset for learning unsteady fluid mechanics. We
accurately simulate the airflow produced by a two-dimensional unmanned aerial vehicle (UAV) mov-
ing in 2D environments with different boundary geometries. This choice has several benefits. It mod-
els the complex ground effect turbulence generated by the airflow of an UAV following a control law,
and, up to our knowledge, is thus significantly more challenging than existing datasets. It leads to
highly turbulent and non-periodic eddies, and high flow variety, as the different scene geometries
generate completely different outcomes. At the same time, the restriction to a 2D scene (similar to
existing datasets) makes the problem manageable and allows for large-scale amounts of simulations
(∼1.1m meshes). The dataset will be made publically available upon publication.
As a second contribution, we propose a new multi-scale attention-based model, which circumvents
the quadratic complexity of multi-head attention by projecting the mesh onto a learned coarser rep-
resentation yielding fewer but more expressive nodes. Conversely to standard approaches based on
graph neural networks, we show that our model dynamically adapts to the airflow in the scene by
focusing attention not only locally, but also over larger distances. More importantly, attention for
specific heads seems to align with the predicted airflow, providing evidence of the capacity of the
model to integrate long range dependencies in a single hop — see Figure 1. We evaluate the method
on several datasets and achieve state-of-the-art performance on two public fluid mechanics datasets
(Cylinder-Flow, (Pfaff et al., 2021) and Scalar-Flow (Eckert et al., 2019)), and on EAGLE.

2 RELATED WORK

Fluids datasets for deep learning – are challenging to produce in many ways. Real world mea-
surement is complicated, requiring complex velocimetry devices (Wang et al., 2020; Discetti & Co-
letti, 2018; Erichson et al., 2020). Remarkably, (Eckert et al., 2019; De Bézenac et al., 2019) lever-
age alignment with numerical simulation to extrapolate precise GT flows on real world phenomena
(smoke clouds and sea surface temperature). Fortunately, accurate simulation data can by acquired
through several solvers, ranging from computer graphics-oriented simulators (Takahashi et al., 2021;
Pfaff & Thuerey, 2016) to accurate computational fluid dynamics solver (OpenFOAM©, Ansys© Flu-
ent, ...). A large body of work (Chen et al., 2021a; Pfaff et al., 2021; Han et al., 2022; Stachenfeld
et al., 2021; Pfaff et al., 2021) introduces synthetic datasets limited to simple tasks, such as 2D flow
past a cylinder. EAGLE falls into this synthetic category, but differs in two main points: (a) simu-
lations rely on hundreds of procedurally generated scene configurations, requiring several weeks of
calculations on a high-performance computer, and (b) we used an engineer-grade fluid solver with
demanding turbulence model and a fine domain discretization. For a comparison, see table 1.
Learning of fluid dynamics – is mainly addressed with message passing networks. Recent work
focuses in particular on smoothed-particle hydrodynamics (SPH) (Shao et al., 2022; Ummenhofer
et al., 2020; Shlomi et al., 2021; Li et al., 2019; Allen et al., 2022), somehow related to a Lagrangian
representation of fluids. Sanchez-Gonzalez et al. (2020) proposes to chain graph neural networks
in an Encode-Process-Decode pipeline to learn interactions between particles. SPH simulations are
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Dataset Size Public
Dyn.
Scene

Dyn.
Mesh

# nodes
(avg)

# of
meas.CylinderFlow 15Gb ✓ ✗ ✗ 1,885 0.72MPfaff et al. (2021) AirFoil 56Gb 5,233 0.72MKS Equation N.A ✗ ✗ ✗(Grid) 64 1,200Incomp. Dec. 2,304 210Comp. Dec. 32,768 35Stachenfeld et al. (2021) Rad. Cooling 32,768 30Han et al. (2022) Vascular Flow N.A. ✗ ✗ ✓ 7,561 5,250Eckert et al. (2019) 351Gb ✓ ✗ ✗(Grid) 1.7M 0.015MDe Bézenac et al. (2019) SST N.A ✓ ✗ ✗(Grid) 4,096 0.1M

EAGLE(Ours) 270Gb ✓ ✓ ✓ 3,388 1.18M

Table 1: Fluid mechanics datasets in the literature. To the best of our knowledge, EAGLE is the
first dataset of such scale, complexity and variety. Smaller-scale datasets such as Li et al. (2008);
Wu et al. (2017) have been excluded, as they favor simulation accuracy over size. The datasets in
Stachenfeld et al. (2021) are not public, but can be reproduced from the information in the paper.
very suitable for applications with reasonable number of particles but larger-scale simulations (ve-
hicle aerodynamic profile, sea flows, etc.) remain out of scope. In fluid mechanics, Eulerian rep-
resentations are more regularly used, where the flow of quantities are studied on fixed spatial cells.
The proximity to images makes uniform grids appealing, which lead to the usage of convolutional
networks for simulation and learning (De Bézenac et al., 2019; Ravuri et al., 2021; Ren et al., 2022;
Liu et al., 2022; Le Guen & Thome, 2020). For instance, Stachenfeld et al. (2021) takes the prin-
ciples introduced in Sanchez-Gonzalez et al. (2020) applied to uniform grids for the prediction of
turbulent phenomena. However, uniform grids suffer from limitations that hinder their generalized
use: they adapt poorly to complex geometries, especially strongly curved spatial domains and their
spatial resolution is fixed, requiring a large number of cells for a given precision.
Deep Learning on non-uniform meshes – are a convenient way of solving the issues raised by
uniform grids. Nodes can then be sparser in some areas and denser in areas of interest. Graph
networks (Battaglia et al., 2016) are well suited for this type of structure. The task was notably
introduced in Pfaff et al. (2021) with MeshGraphNet, an Encode-Process-Decode pipeline solving
mesh-based physics problems. (Lienen & Günnemann, 2022) introduced a graph network structure
algorithmically aligned with the finite element method and show good performances on several public
datasets. Close to our work, Han et al. (2022) leverages temporal attention mechanism on a coarser
mesh to enhance forecasting accuracy over longer horizon. In contrast, our model is based on a
spatial transformer, allowing a node to communicate not only with its neighbors but also over greater
distances by dynamically adapting attention to the airflow.
EAGLE is comprised of fine-grained fluid simulations defined on irregular triangle meshes, which
we argue is more suited to a broader range of applications than regular grids and thus more represen-
tative of industrial standards. Compared to grid-based datasets De Bézenac et al. (2019); Stachenfeld
et al. (2021), irregular meshes provide better control over the spatial resolution, allowing for finer dis-
cretization near sensitive areas. This property is clearly established for most fluid mechanics solvers
(Versteeg & Malalasekera, 2007) and seems to transfer well to simulators based on machine learning
(Pfaff et al. (2021)). However, using triangular meshes with neural networks is not as straightforward
as regular grids. Geometric deep learning (Bronstein et al., 2021) and graph networks (Battaglia
et al., 2018) have established known baselines but this remains an active domain of research. Ex-
isting datasets focus on well-studied tasks such as the flow past an object (Chen et al., 2021a; Pfaff
et al., 2021) or turbulent flow on an airfoil (Thuerey et al., 2020; Sekar et al., 2019). These are
well studied problems, for some of which analytical solutions exist, and they rely on a large body of
work from the physics community. However, the generated flows, while being turbulent, are merely
steady or periodic despite variations in the geometry. With EAGLE, we propose a complex task, with
convoluted, unsteady and turbulent air flow with minimal resemblance across each simulation.

3 THE EAGLE DATASET AND BENCHMARK

Purpose – we built EAGLE in order to meet a growing need for a fluid mechanics dataset in ac-
cordance with the methods used in engineering, i.e. reasoning on irregular meshes. To significantly
increase the complexity of the simulations compared to existing datasets, we propose a proxy task
consisting in studying the airflow produced by a dynamically moving UAV in many scenes with
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Figure 2: Velocity field norm over time for three episodes, one for each geometry type. Turbulence
is significantly different from one simulation to another and strongly depends on the ground surface.

variable geometry. This is motivated by the highly non-steady turbulent outcomes that this task gen-
erates, yielding challenging airflow to be forecasted. Particular attention has also been paid to the
practical usability of EAGLE with respect to the state-of-the-art in future forecasting of fluid dy-
namics by controlling the number of mesh points, and limiting confounders variables to a moderate
amount (i.e. scene geometry and drone trajectory).
Simulation and task definition – we simulate the complex airflow generated by a 2D unmanned
aerial vehicle maneuvering in 2D scenes with varying floor profile. While the scene geometry varies,
the UAV trajectory is constant: the UAV starts in the center of the scene and navigates, hovering
near the floor surface. During the flight, the two propellers generate high-paced air flows interacting
with each other and with the structure of the scene, causing convoluted turbulence. To produce a
wide variety of different outcomes, we procedurally generate a large number of floor profiles by
interpolating a set of randomly sampled points within a certain range. The choice of interpolation
order induces drastically different floor profiles, and therefore distinct outcomes from one simulation
to another. EAGLE contains three main types of geometry depending on the type of interpolation
(see Figure 2): (i) Step: surface points are connected using step functions (zero-order interpolation),
which produces very stiff angles with drastic changes of the air flow when the UAV hovers over a
step. (ii) Triangular: surface points are connected using linear functions (first-order interpolation),
causing the appearance of many small vortices at different location in the scene. (iii) Spline: surface
points are connected using spline functions with smooth boundary, causing long and fast trails of air,
occasionally generating complex vortices.
EAGLE contains about 600 different geometries (200 geometries of each type) corresponding to
roughly 1,200 flight simulations (one geometry gives two flight simulations depending on whether
the drone is going to the right or to the left of the scene), performed at 30 fps over 33 seconds, resulting
in 990 time steps per simulation. Physically plausible UAV trajectories are obtained through MPC
control of a (flow agnostic) dynamical system we design for a 2D drone. More details and statistics
are available in appendix A.
We simulated the temporal evolution of the velocity field as well as the pressure field (both static and
dynamic) defined over the entire domain. Due to source motion, the triangle mesh on which these
fields are defined need to be dynamically adapted to the evolving scene geometry. More formally,
the mesh is a valued dynamical graph 𝑡 =

(

 𝑡,  𝑡, 𝑡, 𝑡) where  is the set of nodes,  the
edges,  is a field of velocity vectors and  is a field of scalar pressure values. Both physical
quantities are expressed at node level. Note that the dynamical mesh is completely flow-agnostic,
thus no information about the flow can be extrapolated directly from the future node positions. Time
dependency will be omitted when possible for sake of readability.
Numerical simulations – were carried out using the software Ansys© Fluent, which solves the
Reynolds Averaged Navier-Stokes equations of the Reynolds stress model. It uses five equations to
model turbulence, more accurate than standard 𝑘-𝜖 or 𝑘-𝜔 models (two equations). This resulted in
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Figure 3: The mesh transformer encodes the input mesh node values (positions, pressure and ve-
locity), reduces the spatial resolution through clustering + graph pooling, and performs multi-head
self-attention on the coarser level of cluster centers. A decoder upsamples the token embeddings to
the original resolution and predicts pressure and velocity at time step 𝑡 + 1.

3.9TB of raw data with ∼162,760 control points per mesh. We down-sampled this to 3,388 points in
average, and compressed it to 270GB. Details and illustrations are given in appendix A.
Task – for what follows, we define 𝑥𝑖 as the 2D position of node 𝑖, 𝑣𝑖 its velocity, 𝑝𝑖 pressure and 𝑛𝑖is the node type, which indicates if the node belongs to a wall, an input or an output boundary. We
are interested in the following task: given the complete simulation state at time 𝑡, namely 𝑡, as well
as future mesh geometry  𝑡+ℎ,  𝑡+ℎ, forecast the future velocity and pressure fields ̂ 𝑡+ℎ, ̂ 𝑡+ℎ, i.e.
for all positions 𝑖 we predict �̂�𝑡+ℎ𝑖 , �̂�𝑡+ℎ𝑖 over a horizon ℎ. Importantly, we consider the dynamical
re-meshing step  𝑡 →  𝑡+ℎ to be known during inference and thus is not required to be forecasted.

4 LEARNING UNSTEADY AIRFLOW

Accurate flow estimations require data on a certain minimum spatial and temporal scale. Deviations
from optimal resolutions, i.e. data sampled with lower spatial resolutions or lower frame rates, are
typically very hard to compensate through models of higher complexity, in particular when the es-
timation is carried out through numerical simulations with an analytical model. The premise of our
work is that machine learning can compensate loss in resolution by picking up longer rate regular-
ities in the data, trading data resolution for complexity in the modeled interactions. Predicting the
outcome for a given mesh position may therefore require information from a larger neighborhood,
whose size can depend on factors like resolution, compressibility, Reynolds number etc.
Regularities and interactions on meshes and graphs have classically been modeled with probabilistic
graphical models (MRFs (Geman & Geman, 1984), CRFs (Lafferty et al., 2001), RBMs (Smolen-
sky, 1986) etc.), and in the DL era through geometric DL (Bronstein et al., 2021) and graph net-
works (Battaglia et al., 2018), or through deep energy-based models. These models can capture
long-range dependencies between distant nodes, but need to exploit them through multiple itera-
tions. In this work we argue for the benefits of transformers and self-attention Vaswani et al. (2017),
which in principle are capable of integrating long-range interactions in a single step.
However, the quadratic complexity of transformers in terms of number of tokens makes its direct
application to large meshes expensive. While low-complexity variants do exist, e.g. (Katharopoulos
et al., 2020), we propose a different Ansatz, shown in Figure 3: we propose to combine graph cluster-
ing and learned graph pooling to perform full attention on a coarser scale with higher-dimensional
node embedding. This allows the dot-product similarity of the transformer model — which is at the
heart of the crucial attention operations — to operate on a semantic representation instead of on raw
input signals, similar to the settings in other applications. In NLP, attention typically operates on
word embeddings Vaswani et al. (2017), and in vision either on patch embeddings Dosovitskiy et al.
(2021) or on convolutional feature map cells Wang et al. (2018). In the sequel, we present the main
modules of our model; further details are given in appendix B
Offline Clustering – we down-scale mesh resolution through geometric clustering, which is indepen-
dent of the forecasting operations and therefore pre-computed offline. A modified k-means clustering
is applied to the vertices  𝑡 of each time step and creates clusters with a constant number of nodes,
details are given in appendix B.1. The advantages are twofold: (a) the irregularity and adaptive res-
olution of the original mesh is preserved, as high density region will require more clusters, and (b)
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constant cluster sizes facilitate parallelization and allow to speed up computations. In what follows,
let 𝑘 be the 𝑘𝑡ℎ cluster computed on mesh 𝑡.
Encoder – the initial mesh 𝑡 is converted into a graph  using the encoder in Pfaff et al. (2021).
More precisely, node and edge features are computed using MLPs 𝜙node and 𝜙edge, giving

𝜂1𝑖 = 𝜙node(𝑣𝑖, 𝑝𝑖, 𝑛𝑖), 𝑒1𝑖𝑗 = 𝜙edge(𝑥𝑖 − 𝑥𝑗 , ‖𝑥𝑖 − 𝑥𝑗‖). (1)
The encoder also computes an appropriate positional encoding based upon spectral projection 𝐹 (𝑥).
We also leverage the local position of each node in its cluster. Let �̄�𝑘 be the barycenter of cluster 𝑘,
then the local encoding of node 𝑖 belonging to cluster 𝑘 is the concatenation 𝑓𝑖 = [𝐹 (𝑥𝑖) 𝐹 (�̄�𝑘−𝑥𝑖)]𝑇 .
Finally, a series of𝐿Graph Neural Networks (GNN) extracts local features through message passing:

𝑒𝓁+1𝑖𝑗 =𝑒𝓁𝑖𝑗 + 𝜓
𝓁
edge

(

[

𝜂𝓁𝑖 𝑓𝑖
]

,
[

𝜂𝓁𝑗 𝑓𝑗
]

, 𝑒𝓁𝑖𝑗
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜀𝑖𝑗

, 𝜂𝓁+1𝑖 =𝜂𝓁𝑖 + 𝜓𝓁
node

(

[

𝜂𝓁𝑖 𝑓𝑖
]

,
∑

𝑗
𝜀𝑖𝑗

)

. (2)

The superscript 𝓁 indicates the layer, and 𝜓𝓁
node and 𝜓𝓁

edge are MLPs which encode nodes and edges,
respectively. The exact architecture hyper-parameters are given in appendix B. For the sake of read-
ability, in whats follows, we will note 𝜂𝑖 = 𝜂𝐿𝑖 and 𝑒𝑖𝑗 = 𝑒𝐿𝑖𝑗 .
Graph Pooling – summarizes the state of the nodes of the same cluster 𝑘 in a single high-
dimensional embedding𝑤𝑘 on which the main neural processor will reason. This is performed with a
Gated Recurrent Unit (GRU) Cho et al. (2014) where the individual nodes are integrated sequentially
in a random order. This allows to learn a more complex integration of features than a sum. Given an
inital GRU state ℎ0 = 0, node embeddings are integrated iteratively, indicated by superscript 𝑛,

ℎ𝑛+1𝑘 = GRU(
[

𝜂𝑖, 𝑓𝑖
]

, ℎ𝑛𝑘), 𝑖 ∈ 𝑘, 𝑤𝑘 = 𝜙cluster(ℎ𝑁𝑘 ), (3)
where 𝑁 = |𝑘| and 𝜙cluster is an MLP. GRU(⋅) denotes the update equations of a GRU, where we
omitted gating functions from the notation. The resulting set of cluster embeddings  = 𝑤𝑘|𝑘=1..𝐾significantly reduces the spatial complexity of the mesh.
Attention Module – consists of a transformer with𝑀 layers of multi-head attention (MHA) Vaswani
et al. (2017) working on the embeddings  of the coarse graph. Setting 𝑤1

𝑘 = 𝑤𝑘, we get for layer
𝑚: 𝑤𝑚+1𝑘 = MHA

(

𝑄=
[

𝑤𝑚𝑘 𝐹 (�̄�𝑘)
]

, 𝐾= ,=
)

, (4)
where Q, K and V are, respectively, the query, key and value mappings of a transformer. We refer to
Vaswani et al. (2017) for the details of multi-head attention, denoted as MHA(⋅).
Decoder – the output of the attention module is calculated on the coarse scale, one embedding per
cluster. The decoder upsamples the representation and outputs the future pressure and velocity field
on the original mesh. This upsampling is done by taking the original node embedding 𝜂𝑖 and con-
catenating with the cluster embedding 𝑤𝑀𝑘 , followed by the application of a GNN, whose role is to
take the information produced on a coarser level and correctly distribute it over the nodes 𝑖. To this
end, the GNN has access to the positional encoding of the node, which is also concatenated:

{

�̂�𝑡+1 = 𝑣𝑡 + 𝛿𝑣
�̂�𝑡+1 = 𝑝𝑡 + 𝛿𝑝

, (𝛿𝑣, 𝛿𝑝) = GNN (

[𝜂𝑖 𝑤𝑀𝑘 𝑓𝑖]
)

, (5)
where 𝑖 ∈ 𝑘 and GNN(⋅) is the graph network variant described in equation (2), parameters are not
shared. Our model is trained end-to-end, minimizing the forecasting error over horizon 𝐻 where 𝛼
balances the importance of pressure field over velocity field:

 =
𝐻
∑

𝑖=1
MSE

(

𝑣(𝑡 + 𝑖), �̂�(𝑡 + 𝑖)
)

+ 𝛼
𝐻
∑

𝑖=1
MSE

(

𝑝(𝑡 + 𝑖), �̂�(𝑡 + 𝑖)
)

. (6)

5 EXPERIMENTS
We compare our method against three competing methods for physical reasoning: MeshGraphNet
(Pfaff et al., 2021) (MGN) is a Graph Neural Network based model that relies on multiple chained
message passing layers. GAT is based upon MGN where the GNNs interactions are replaced by
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Figure 4: Qualitative comparisons with the state of the art on EAGLE. We color code the norm of
the velocity field.

Dataset Cylinder Flow Scalar Flow EAGLE
Horizon +1 +50 +250 +1 +50 +100 +1 +50 +250
MeshGraphNet 0.0058 0.0405 0.0792 0.0374 0.3193 0.5944 0.0916 0.5698 0.9896
GAT 0.0112 0.1774 1.3336 0.0434 0.3991 0.6414 7.5587 19.260 26.867
DilResNet 0.0429 0.0626 0.1295 0.0372 0.2212 0.3975 0.2987 0.5650 0.8944
Ours 0.0030 0.0221 0.0735 0.0128 0.0869 0.1467 0.0811 0.3495 0.6357

Table 2: Norm. RMSE (velocity and pressure) for our model (cluster size = 10) and the baselines.
graph attention transformers (Veličković et al., 2017). Compared to our mesh transformer, here
attention is computed over the one-ring of each node only. DilResNet (DRN) Stachenfeld et al.
(2021) differs from the other models as it does not reason over non uniform meshes, but instead
uses dilated convolution layers to perform predictions on regular grids. To evaluate this model on
EAGLE, we interpolate grid-based simulation over the original mesh, see appendix A.2. During
validation and testing, we project airflow back from the grid to the original mesh in order to compute
comparable metrics. All baselines have been adapted to the dataset using hyperparameter sweeps,
which mostly lead to increases in capacity, explained by EAGLE’s complexity.
We also compare to two other datasets: Cylinder-Flow (Pfaff et al., 2021) simulates the airflow
behind a cylinder with different radius and positions. This setup produces turbulent yet periodic
airflow corresponding to Karman vortex. Scalar-Flow (Eckert et al., 2019) contains real world mea-
surements of smoke cloud. This dataset is built using velocimetry measurements combined with
numerical simulation aligned with the observations. Following Lienen & Günnemann (2022); Kohl
et al. (2020), we reduce the data to 2D grid-based simulation by averaging along the 𝑥-direction.
We evaluate all models reporting the sum of the root mean squared error (N-RMSE) on both pressure
and velocity fields, which have been normalized wrt to the training set (centered and reduced), and
we provide finer-grained metrics in appendix C.1.
Existing datasets – show little success to discriminate the performances of fluid mechanics mod-
els (see table 2). On Cylinder-Flow, both ours and MeshGraphNet reach near perfect forecasting
accuracy. Qualitatively, flow fields are hardly distinguishable from the ground truth at least for the
considered horizon (see appendix C.2). As stated in the previous sections, this dataset is a great
task to validate fluid simulators, but may be considered as saturated. Scalar-Flow is a much more
challenging benchmark, as these real world measurements are limited in resolution and quantity. Our
model obtains good quantitative results, especially on a longer horizon, showing robustness to er-
ror accumulation during auto-regressive forecasting. Yet, no model achieved visually satisfactory
results, the predictions remain blurry and leave room for improvements (cf figure in appendix).
Comparisons with the state-of-the-art – are more clearly assessed on EAGLE. Our model gives
excellent results and outperforms competing baselines. It succeeds in forecasting turbulent eddies
even after a long prediction horizon. Our model outperforms MeshGraphNet, which provides evi-
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(a)

(d)

Ours

MeshGraphNet

Receptive field per
layer of GNN

(b)

(c)

Figure 5: Locality of reasoning. (a) velocity of an example flow and a selected point ; (b): The
receptive field for this point for the MeshGraphNet model (Pfaff et al., 2021) is restricted to a local
neighborhood, also illustrated through the overlaid gradients ||∇(𝑡)(𝑡+1||1. (c): the receptive
field of our method covers the whole field and the gradients indicate that this liberty is exploited; (d)
the attention distributions for point , certain maps correlate with airflow. Attention maps can be
explored interactively using the online tool at https://eagle-dataset.github.io.

dence for the interest in modeling long-range interactions with self-attention. GAT seems to struggle
on our challenging dataset. The required increase in capacity was difficult to do for this resource
hungry model, we failed even on the 40GB A100 GPUs of a high-end Nvidia DGX.
DilResNet shows competitive performances on EAGLE, consistent with the claims of the original
paper. However, it fails to predict details of the vortices (cf. Figure 4). This model leverages grid-
based data, hence was trained on a voxelled simulation, finally projected back on the triangular mesh
during testing. This requires precaution in assessment. We try to limit projection error by setting
images to contains ten times more pixels than nodes in the actual mesh. Yet, even at that scale, we
measure that the reconstruction error represents roughly a third of the final N-RMSE. This points out
that grid-based are not suited for complex fluid problem such as EAGLE, which require finer spatial
resolution near sensitive areas. We expose failure cases in appendix C.3.

Ablation Clustering
N-RMSE
(+250)

GNN 20 1.3484
1 1.0258One-ring 20 0.7976
1 0.7876Average 20 0.7797

Ours 20 0.6572

Figure 6: Ablations: GNN re-
places global attention by a set of
𝐿GNNs on the coarser mesh. One-
ring constrains attention to the one-
ring. Average forces uniform atten-
tion.

Self-attention – is a key feature in our models, as shown in
Figure 5b and c, which plots the gradient intensity of a selected
predicted point situated on the trail wrt. to all input points,
for fixed trained model weights. MeshGraphNet is inherently
limited to a neighborhood determined by the number of chained
GNNs, the receptive field, which is represented as concentric
black circles overlaid over the gradients. In contrast, our model
is not spatially limited and can exchange information across the
entire scene, even possible in a single step. The gradients show
that this liberty is exploited.
In the same figure we also show the attention maps, per head
and layer, for the selected point near the main trail in Fig-
ure 5d. Interestingly, our model discovers to attend not only to
the neighborhood (as a GNN would), but also to much farther
areas. More importantly, we observe that certain heads explicitly (and dynamically) focus on the
airflow, which provides evidence that attention is guided by the regularities in the input data. We re-
leased an online tool allowing interactive visualization and exploration of attention and predictions,
available at https://eagle-dataset.github.io.
Ablation studies – indicate how global attention impacts performance: (a) closer to MeshGraphNet,
we replace the attention layers by GNNs operating on the coarser mesh, allowing message passing
between nearest cluster only; (b) we limit the receptive field of MHA to the one-ring of the cluster;

8

https://eagle-dataset.github.io
https://eagle-dataset.github.io


Published as a conference paper at ICLR 2023

10 nodes per cluster
<latexit sha1_base64="SqWE4tu9N6VeZswIz3VqkcBb060=">AAAC4XicjVHLSsNAFD3GV31XXepisAiuSqKCLkU3LivYB1SRZDrW0DQJMxOxFDfu3Ilbf8Ct/oz4B/oX3hlTUIvohCRnzr3nzNx7gzQKlXbd1xFndGx8YrIwNT0zOze/UFxcqqkkk1xUeRIlshH4SkRhLKo61JFopFL43SAS9aBzYOL1SyFVmMTHupeK067fjsPzkPuaqLPiqueyEy2udJ/FSUsolgrJeJQpLeT1WbHkll272DDwclBCvipJ8QUnaCEBR4YuBGJowhF8KHqa8OAiJe4UfeIkodDGBa4xTdqMsgRl+MR26NumXTNnY9obT2XVnE6J6JWkZFgnTUJ5krA5jdl4Zp0N+5t333qau/XoH+ReXWI1Loj9SzfI/K/O1KJxjl1bQ0g1pZYx1fHcJbNdMTdnX6rS5JASZ3CL4pIwt8pBn5nVKFu76a1v428207Bmz/PcDO/mljRg7+c4h0Fts+xtlTePtkt7+/moC1jBGjZonjvYwyEqqJL3DR7xhGeHO7fOnXP/meqM5JplfFvOwwf/S5qk</latexit>

20 nodes per cluster
<latexit sha1_base64="7/tuHOuG2HU1V+cbhuH9KxUw6LY="></latexit>

30 nodes per cluster
<latexit sha1_base64="7wKuvqrIFsA3dMrooJymI5G6t7E="></latexit>

40 nodes per cluster
<latexit sha1_base64="O64ttRnGhZe2yONZc8/simR7ces="></latexit>

log
R
M
S
E

(velocity)
<latexit sha1_base64="gcZYBEJlmESVScc/Ue/K+YVbLTU="></latexit>

Figure 7: Impact of cluster size. Left: We color code RMSE in logarithmic scale on the velocity
field near a relatively turbulent area at a horizon of ℎ=400 steps of forecasting. Right: Error (+50),
inference time and FLOPs for different cluster sizes and the baselines.

Model Ours MGN
Ablated Geometry Stp Spl Tri ∅ Stp Spl Tri ∅

Stp 0.927 0.865 1.132 0.828 2.062 1.236 1.347 1.116
Spl 0.595 0.584 0.857 0.488 1.257 0.941 1.037 0.807N-RMSE (+250)
Tri 0.730 0.732 1.049 0.647 1.685 1.100 1.131 1.037

Table 3: Generalization to unseen geometries: we evaluate our model and MeshGraphNet in dif-
ferent setups, evaluating on all geometry types but removing one from training. Our model shows
satisfactory generalization, also highlighting the complementarity of each simulation type.

(c) we enforce uniform attention by replacing it with an average operation. As shown in table 6,
attention is a key design choice. Disabling attention to distant points has a negative impact on RMSE,
indicating that the model leverages efficient long-range dependencies. Agnostic attention to the entire
scene is not pertinent either: to be effective, attention needs to dynamically adapt to the predicted
airflow. We also conduct a study on generalization to down-sampled meshes in appendix C.4.
The role of clustering – is to summarize a set of nodes into a unique feature vector. Arguably, with
bigger clusters, more node-wise information must be aggregated in a finite dimensional vector. We
indeed observe a slight increase in N-RMSE when the cluster size increases (Figure 7a). Nonethe-
less, our model appears to be robust to even aggressive graph clustering as the drop remains limited
and still outperforms the baselines. A qualitative illustration is shown figure 7 (left), where we sim-
ulate the flow up to 400 time-steps forward and observe the error on a relatively turbulent region.
Clustering also acts on the complexity of our model by reducing the number of tokens on which at-
tention is computed. We measure a significant decrease in inference time and number of operations
(FLOPs) even when we limit clusters to a small size (Figure 7b and c).
Generalization experiments – highlight the complementarity of the geometry types in EAGLE,
since the removal of one geometry in the training set impacts the performances on the others. Mesh-
GraphNet suffers the most, resulting in a drop ranging from 10% in average (ablation of Spline) to
67% (ablation of Step). On our model, the performance losses are limited for the ablation of Step
and Spline. The most challenging geometry is arguably Triangular, as the ground profile tends to
generate more turbulent and convoluted flows.
6 CONCLUSION1

We presented a new large-scale dataset for deep learning in fluid mechanics. EAGLE contains accu-
rate simulations of the turbulent airflow generated by a flying drone in different scenes. Simulations
are unsteady, highly turbulent and defined on dynamic meshes, which represents a real challenge for
existing models. To the best of our knowledge, we released the first publicly available dataset of
this scale, complexity, precision and variety. We proposed a new model leveraging mesh transform-
ers to efficiently capture long distance dependencies on a coarser scale. Through graph pooling, we
show that our model reduces the complexity of multi-head attention and outperforms the competing
state-of-the-art on, both, existing datasets and EAGLE. We showed across various ablations and il-
lustration that global attention is a key design choice and observed that the model naturally attends to
airflow. Future work will investigate the impact of implicit representations on fluid mechanics, and
we discuss the possibility of an extension to 3D data in appendix D.

1Acknowledgements – we recognize support through French grants “Delicio” (ANR-19-CE23-0006) of call
CE23 “Intelligence Artificielle” and “Remember” (ANR-20-CHIA0018), of call “Chaires IA hors centres”.
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Appendix
A DATASET DETAILS

A.1 STRUCTURE AND POST-PROCESSING

The EAGLE dataset is composed of exactly 1,184 simulations of 990 time-steps (33 seconds at 30
fps). Scene geometries are arranged in three categories based on the order of the interpolation used to
generate the ground structure: 197 Step scenes, 199 Triangular and 196 Spline. A geometry gives
two simulations depending on whether the drone is crossing the left or the right part of the scene. A
proper train/valid/test splitting is provided ensuring that each geometry type is equally represented.
The train split contains 948 simulations, while test and valid splits each contain 118 simulations.
Simulation details – The scene is described as a 5m×2.5m 2D surface. Wall boundary conditions
(zero velocity) are applied to the frontiers, except for the top edge, which is an outlet (zero diffusion
of flow variables). The propellers is modeled as two squares starting in the middle of the scene, with
wall boundary conditions on the left, right and top edges, and inlet condition for the bottom edge
(normal velocity of intensity proportional to the rotation speed of the propeller). We mesh the scene
with triangular cells of an average size of 15mm, and add inflation near wall boundaries. We let the
simulator updates the mesh during time with default parameters.
Drone trajectory control – has received special care, and is obtained using model predictive control
(MPC) of a dynamical model of a 2D drone allowing realistic trajectory tracking. The model is
obtained by constraining the dynamics of a 3D drone model (Romero et al., 2022) to motion in a 2D
plane and reducing the number of rotors to two. The drone can therefore move along the axis 𝑥 and
𝑦, and pivot around the 𝑧-axis perpendicular to the simulation plane as follows:

⎧

⎪

⎨

⎪

⎩

�̈� = −𝐾1(Ω2
1 + Ω2
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2) cos(𝜃) − 𝑔 +𝐾2(Ω1 + Ω2)�̇�

�̈� = 𝐾3(Ω2
2 − Ω2

1),
(7)

where 𝑥, 𝑦 is the 2D position of the drone and 𝜃 its orientation, Ω1 and Ω2 the left/right propeller
rotation speed, 𝑔 = 9.81m/s is acceleration (gravity), and𝐾1 = 10−4, 𝐾2 = 5×10−5, 𝐾3 = 5.5×10−3
are physical constants depending on drone geometry. The resulting trajectories represent physically
plausible outcomes, taking into account inertia and gravity.
Mesh down-sampling – consists in simplifying the raw simulation data, as they are not suitable
for direct deep learning applications, and require post-processing (see Figure 8a). The simulation
software leverages a very fine-grained mesh dynamically updated in order to accurately solve the
Navier-Stokes equations. The main step thus consists in simplifying the mesh to a reasonable number
of nodes. Formally, our goal is to construct a new coarser mesh ( (𝑡)′, (𝑡)′) based upon the raw
mesh proposed by the simulation software ( (𝑡), (𝑡)). To cope with the dynamic nature of the
simulation mesh, our approach consists in dividing the target node set into a static and a dynamic
part  (𝑡)′ =  +(𝑡).

• The static mesh is obtained by subsampling the simulation point cloud using Poisson Disk
Sampling ((Cook, 1986)). However, the spatial density of  (𝑡) evolves over time (certain areas
of space are more densely populated at the end of the simulation than at the start). To preserve
finer resolution near relevant regions, we thus concatenated 5 regularly spaced point clouds
 (𝑡𝑘) into a single set. We then sub-sample the resulting set by randomly selecting a point,
and deleting all neighbors in a sphere of radius 𝑅 around the chosen point. This operation is
repeated until no more point is at a distance less than 𝑅 from another. We used an adaptive
radius 𝑅 correlated to the density map: when the original point cloud is dense, the radius is
smaller. Conversely, the radius increases in sparse areas. An example of the density map is
provided in Figure 8b.

• The dynamic mesh is mandatory to track drone motion accurately. We therefore complete the
static mesh with a dynamical part that follows the boundaries of the UAV. To do so, we used
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(a)

(b)
(c)

Figure 8: (a) sample of raw simulation measurements obtained on a high resolution mesh. This
single snapshot contains 158,961 nodes. (b) example of node density map controlling the sampling
disk radius. The raw mesh is more dense near the boundaries and on the left side, as this sample is
taken from a simulation where the drone explores the left region of the scene. (c) Mesh simulation at
final resolution. We drastically simplified the mesh while maintaining a satisfactory level of details.

the ground truth trajectory to track drone position and orientation across time and extrapolate
bounding boxes, which are then transformed into point clouds by sub-dividing the box into
several points.

Finally, the edge set  ′(𝑡) is computed using constrained Delaunay triangulation to prevent triangles
to spawn outside of the domain. Once ( (𝑡)′, (𝑡)′) has been computed, we evaluate the pressure
and velocity field (𝑡),(𝑡) on the nodes by averaging the three nearest points in raw simulation
data. We illustrate the final result in figure 8c. Better mesh simplification algorithm exists, notably
minimizing the interpolation error, yet such algorithms rely on the simulated flow to compute the
mesh, which may embed unwanted biases or shortcuts in the mesh geometry.

A.2 GRID BASED DATASET

One of the baselines, DilResNet (Stachenfeld et al., 2021), relies on convolutional layers for future
forecasting of turbulent flows, and therefore requires projecting EAGLE and Cylinder-Flow on a
uniform rectangular grid. However, such a discretization scheme can not adapt its spatial resolution
as a function of the geometry of the scene, which therefore constitutes a disadvantage with respect
to an irregular triangular mesh. To limit this effect, the resolution of the grid is chosen such that the
number of pixels is at least ten times larger than the number of points in the triangular mesh.
We project Cylinder-Flow onto a uniform 256 × 64 grid and EAGLE onto a 256 × 128 grid (the
dimensions were chosen to respect the height-width ratio of the original data). The value of the
pressure and velocity fields at each point in the grid is extrapolated from the nearest point in the raw
simulated data. We illustrate this projection in figure 9. While the grid-based simulation (figure 9b)
seems visually more accurate than the mesh-based simulation (figure 9d), we observed that the re-
projection error (ie. the error obtained after projecting the grid based data onto the triangular mesh)
is greater near sensible regions, as for example near the scene boundaries.

B MODEL DETAILS

B.1 CLUSTERING

We use our own implementation of the same size Kmeans algorithm described here2. Using equally
sized clusters has two main advantages :

2https://elki-project.github.io/tutorial/same-size_k_means
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(a) Cylinder Flow on uniform rectangular grid

(b) EAGLE on uniform rectangular grid

(c) Cylinder Flow on irregular triangle mesh

(d) EAGLE on irregular triangle mesh
Figure 9: Illustration of the pixellisation process. The left column (a and b) shows snapshots of
simulations from the grid-based datasets, used to train DilResNet. For comparison, we show the
same snapshots in the mesh-based datasets (c and d). While resolution seems better on grid-based
simulation, it lacks precision near sensible region, which are primordial for accurate forecasts.

• Areas of high density will be covered by a greater number of clusters, allowing the adaptive
resolution of irregular meshes to be preserved on the coarser mesh.

• The model can be implemented efficiently, maximizing parallelization, since clusters can be
easily stored as batched tensors.

Since the clustering depends solely on the geometric properties of the mesh (and not on the prediction
of the neural network), it is possible to apply the clustering algorithm as a pre-processing step to
reduce the computational burden during training. Note that since the mesh is dynamic, so are the
clusters: the 𝑘𝑒 cluster at time 𝑡 will not necessarily contain the same points at time 𝑡 + 1.

B.2 ARCHITECTURE AND TRAINING DETAILS

We kept the same training setup for all datasets and trained our model for 10,000 steps with the Adam
optimizer and a learning rate of 10−4 to minimize equation 6 with 𝛼 = 10−1 and 𝐻 = 8. Velocity
and pressure are normalized with statistics computed on the train set, except for Scalar-Flow, where
better results are obtained without normalization.
Encoder – 𝜙node and 𝜙edge are one-layer MLPs with ReLU activations, hidden size and output size of
128 ((𝜂𝑖, 𝑒𝑖𝑗) ∈ ℝ128). We used 𝐿=4 chained graph neural network layers composed of two identical
MLP 𝜓edge and 𝜓node with two hidden layer of dimension 128, ReLU activated, followed by layer
normalization. The positional encoding function 𝐹 is defined as follows:

𝐹 (𝑥) = [cos(2𝑖𝜋𝑥) sin(2𝑖𝜋𝑥)]𝑖=−3,...3 (8)

where 𝑥 is a 2D vector modeling the position of node 𝑖.
Graph Pooling – we used a single layer gated recurrent unit with hidden size of dimension 𝑊
followed by a single layer MLP with hidden and output size of𝑊 . This step produces a cluster feature
representation 𝑤𝑘 ∈ ℝ𝑊 . For Cylinder-Flow and EAGLE, 𝑊 =512. For Scalar-Flow, 𝑊 =128.
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Attentional module – Following (Xiong et al., 2020) an attention block is defined as follows for an
input 𝑤 ∈ ℝ𝑊 :

𝑤1 = LN(𝑤)|𝐹 (�̄�𝑘)
𝑤2 = MHA(𝑤1, 𝑤1, 𝑤1)
𝑤3 = 𝑤 + Linear(𝑤2)
𝑤4 = LN(𝑤3)
𝑤5 = MLP(𝑤4)
𝑤6 = 𝑤3 +𝑤5

where LN are layer norm functions, Linear is linear function (with bias), MHA is multi-head attention
and MLP is a multi-layer perceptron with one hidden layer of size 𝑊 . We denote the barycenter of
cluster 𝑘 as �̄�𝑘. We used 𝑀=4 chained attention block, with four attention head each. The last
attention layer is followed by a final layer norm.
Decoder – The decoder takes as input the node embeddings 𝜂𝑖, the cluster features updated by the
attentional module𝑤𝑀𝑘 and the node-wise positional encoding 𝑓𝑖. We applied a graph neural network
composed of two identical MLP (two hidden layers with hidden size of 128, ReLU activated and layer
norm). The resulting node embeddings are fed to a final MLP with two hidden layers and hidden
size of 128, with TanH as activation function.

B.3 BASELINES TRAINING DETAILS

After performing a grid search to select the best options, we found that training each baseline to
minimize equation 6 with Adam optimizer and learning rate of 10−4 produces best results. We vary
the weighting factor 𝛼 to maintain balance between pressure and velocity. For Cylinder-Flow and
EAGLE, we trained the baselines over 𝐻 = 5 time-steps. For Scalar-Flow, we set 𝐻 = 20.
MeshGraphNet – we performed grid search over the number of GNN layers to fit to each dataset,
but best results were obtained with the recommended depth 𝐿 = 15 for each dataset. Conversely to
what is suggested in Pfaff et al. (2021), we found that training MeshGraphNet over a longer horizon
improves the general performances. We used our own implementation of the baseline and make
sure to reproduce the results presented in the main paper (for Cylinder-Flow only). We get the best
trade-off between velocity and pressure with 𝛼 = 10.
GAT – we performed a grid-search over the number of heads per layer and the number of layers.
Best results were obtained for 10 layers of graph attention transformer and two attention heads per
layer (except for Cylinder-Flow, where four heads slightly improves the performances).
DilResNet – we found that increasing the number of blocks improves overall performance, setting
the number of convolutional blocks from 4 to 20.
The baselines are structurally built to predict pressure field ̂ ′(𝑡+ℎ) and velocity field ̂ ′(𝑡+ℎ) de-
scribed on the mesh geometry at current time  (𝑡). Auto-regressive forecasting on a longer horizon
thus requires interpolation of the predicted flow to the (provided) future mesh  (𝑡 + ℎ). We do not
want interpolation to disturb our problem of interest, which is turbulent flow prediction. Therefore,
we made the interpolation from  (𝑡) to time  (𝑡 + 1) straightforward. As the vast majority of the
mesh remains static (see previous section), only the nodes linked to the UAV need to be interpo-
lated. Since they can readily be associated in a one-to-one relation, nearest point interpolation can
be performed automatically by assigning ̂ ′(𝑡+ℎ) at these points to ̂(𝑡+ℎ).

C MORE RESULTS

C.1 DETAILED METRICS

Formally, we used the following metrics to report our results on the test set :

N-RMSE = 1
𝐻||

∑



𝐻
∑

𝑡=1

‖𝑣(𝑡) − �̂�(𝑡)‖2
�̃�

+
‖𝑝(𝑡) − �̂�(𝑡)‖2

�̃�
(9)
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Figure 10: The maps show the k-number computed for each cluster, that is, the number of nodes
required to reach 90% of the attention. A low k-number indicates a very specialized head (attending
to few nodes), while a high k-number indicates uniform attention.

where �̃� and �̃� are standard deviation of velocity and pressure field computed on the train set.
Detailed metric – raw root mean squared error (RMSE) on each field is reported in figure 11 as
well as temporal evolution of N-RMSE across prediction horizon. On Cylinder-Flow (Figure 11a),
velocity error is very similar between MeshGraphNet and ours. Our model slightly outperforms the
baseline on the pressure field, yielding overall better performances. However, temporal evolution
of the N-RMSE indicated that both models converge to the same accuracy for very long roll-out
prediction. On EAGLE, our model shows excellent stability over long horizon, and produces accurate
velocity and pressure estimates.
K-number – is a property which can be calculated for attention maps, and which consists in the
number of tokens required to reach 90% of attention (Kervadec et al., 2021). This property can be
used to characterize the shape of attention maps, varying from peaky attention (requiring few tokens
to reach 90%) to more uniform attention heads. We show k-numbers in Figure 10. Interestingly, the
k-number maps can be compared with attention maps figure 5d: peaky heads (in blue) are correlated
with relatively local attention maps, and conversely, more uniform heads (in red) correspond to at-
tention maps focusing on larger distances, often following the airflow. Some heads have different
behavior depending on the selected cluster, and are peaky in some areas (mainly around the bound-
aries of scene), but more uniform elsewhere. These cues support the importance of global attention
in our model.
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Horizon +1 +50 +250
Field V P V P V P
MGN 0.0004 0.0016 0.0047 0.0095 0.0144 0.0145
GAT 0.0015 0.0025 0.0278 0.0360 0.2595 0.2314
DRN 0.0098 0.0063 0.0152 0.0085 0.0344 0.0152
Ours 0.0003 0.0007 0.0044 0.0035 0.0179 0.0079

+1 +50 +100 +150 +200 +250
Horizon

10
2

10
1

10
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R
M

S
E

Normalized RMSE

MeshGraphNet
DilResNet

GAT
Ours

(a) CylinderFlow: (Right) RMSE on velocity V and pressure P fields. (Left) Normalized RMSE over forecast-
ing horizon. Our mesh transformer overcomes the baselines by a small margin. Yet qualitative results tends to
indicates that Cylinder Flow is already a well mastered task.

Horizon +1 +50 +100
Field V D V D V D
MGN 0.0009 0.0059 0.0105 0.0568 0.0231 0.1130
GAT 0.0009 0.0066 0.0097 0.0578 0.0200 0.1091
DRN 0.0014 0.0101 0.0130 0.0750 0.0237 0.1217
Ours 0.0005 0.0024 0.0035 0.0145 0.0059 0.0239

+1 +25 +50 +75
Horizon
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(b) Scalar Flow: (Right) RMSE on velocity V and density D fields. (Left) Normalized RMSE over forecasting
horizon. Our model shows improvements over the baselines on both fields.

Horizon +1 +50 +250
Field V P V P V P
MGN 0.0810 0.4256 0.5926 2.2492 1.0702 3.7220
GAT 0.1698 64.546 0.8551 162.56 1.0959 227.20
DRN 0.2517 1.4453 0.5374 2.4568 0.9188 3.5824
Ours 0.0537 0.4590 0.3494 1.4432 0.6826 2.4130

+1 +50 +100 +150 +200 +250 +300 +350
Horizon
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(c) EAGLE: (Right) RMSE on velocity V and pressure P fields. (Left) Normalized RMSE over forecasting
horizon. Our largely and consistently and reliably outperforms the competing baselines. While MeshGraphNet
and DilResNet shows comparable performances during first time-steps, our model succeed to control error
accumulation for reasonable horizons and eventually presented better simulations.
Figure 11: Detailed metrics on Cylinder-Flow, Scalar-Flow and EAGLE, evaluated for each base-
lines and our model.
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C.2 QUALITATIVE RESULTS

Figure 12: Examples of prediction forward in time on Cylinder-Flow
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Figure 13: Examples of prediction forward in time on Scalar-Flow
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Figure 14: Examples of prediction forward in time on EAGLE
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C.3 FAILURE CASE

Despite the excellent performance of our model against competitive baselines, there is still room for
improvement. Some more difficult configurations give rise to very turbulent flows, widely extended
in the scene. The evolution of these flows is more difficult to predict and the models we evaluated
failed to remains accurate. In these cases, the precision with which the small vortices are simulated
is essential, because some of them will grow to become the majority.
Moreover, our model suffers from an error accumulation problem, like any auto-regressive model.
Experimentally, we observe that the airflow tends to be smoothed by deep learning models when the
prediction horizon increases.

Figure 15: We expose failure cases of our mesh transformer on Eagle. The error increases when
the flow tends to intensify throughout the scene, and when turbulence dominates. Over a longer
prediction horizon, the airflow tends to be smoother and less turbulent.
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N-RMSE Training
90% 80% 70% 60%

Te
stin

g 90% 0.454 0.497 0.513 0.502
80% 0.427 0.446 0.467 0.440
70% 0.406 0.405 0.416 0.394
60% 0.401 0.370 0.368 0.348

Table 4: Mesh down-sampling: We train our mesh transformer under different regimes of down-
sampling by keeping a fix percentage of points from the initial mesh and removing the others. We
evaluate the resulting models on regimes different from training, and observe very little variations in
N-RMSE among them.

C.4 GENERALIZATION TO DIFFERENT MESH RESOLUTION

In EAGLE, the number of points varies from one simulation to another, forcing the model to general-
ize on meshes of different sizes. We explicitly demonstrate the performance of our mesh transformer
on this task in table 4. Four instances of the model are trained on a particular regime in which the
simulation meshes are randomly down-sampled, respectively at 90%, 80%, 70% and 60% of the initial
mesh resolution. These models are then evaluated in a different regime from the one used for train-
ing, either higher (more points on average during test than during training), or lower (fewer points in
test than in training). We show that our model generalizes well to these different regimes by giving
relatively close N-RMSE measurements for a given down-sampling regime.

D EXTENSION TO 3D FLUID SIMULATION

While we think that 3D simulations are indeed the long-term future on this subject, we argue that the
complexity in factors of variation we need for large-scale machine learning is currently not possible
in 3D simulations, and this has motivated our choice for a challenging 2D dataset. In this section, we
discuss the possible extension of our dataset and the mesh transformer method to problems in three
dimensions. We address two aspects: data generation itself, and the extension of the method.

D.1 DATA GENERATION

Fluids datasets in 3D are very limited, due to the computation time required for simulation. Mesh-
based simulation in three dimensions greatly increases the number of points in the mesh, and thus
exponentially increases the computing time (see numerical evidences in Kim (2019); Dantan et al.
(2017)). Classical workarounds rely on relaxing physical accuracy or versatility of the solver, e.g.
with SPH simulations. Accurate 3D simulations are mostly conducted on grid-based meshes, and for
rather simple, theoretic problems (Mohan et al., 2020a; Chen et al., 2021b; Stachenfeld et al., 2021).
The John Hopkins Turbulent Database (Li et al., 2008) contains nine direct numerical simulation
datasets (i.e. direct resolution of Navier-Stokes equations) but with only a single scene per dataset
simulated on a very fine grid and low time resolution.
Therefore, extending EAGLE to 3D simulations is very difficult without sacrificing one of the funda-
mental principles on which our dataset relies: (i) accuracy, guaranteed by the resolution of RANS
equations with demanding turbulence model on a very fine mesh (ii) irregular meshes, which are
much more versatile and widespread in engineering and (iii) large scale, with nearly 1200 different
scene configurations.

D.2 MODELS AND METHODS

Forecasting models in the literature mostly focus on 2D simulations (Li et al., 2019; Kashefi et al.,
2021; Han et al., 2022; Thuerey et al., 2020). To the best of our knowledge, there is no published
work on large-scale machine learning models performing flow prediction on irregular 3D meshes.
Therefore, publishing a 3D version of EAGLE seems premature, not to mention the difficulty of
distributing such a dataset and training models on reasonable setups. For grid-based simulation on
the other hand, few works leverage CNN-like structures for flow prediction (Stachenfeld et al., 2021;
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Mohan et al., 2020b; Fonda et al., 2019) or computer graphics Wiewel et al. (2020); Chu & Thuerey
(2017), yielding the limitations discussed in the main paper.
However, we emphasize that GNN-based model are theoretically not restricted to 2D and can readily
manage 3D simulations. The main challenge is the memory requirements to train graph neural net-
works on larger point-clouds. We argue that our mesh transformer is a step towards handling larger
meshes by reducing the number of features using clustering
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