A TRIANGLE STORY 1

With stops at Euclid, Descartes and Koch. In grateful memory of Gödel, Escher, Bach [START_REF] Hofstadter | Bach: An eternal golden braid[END_REF] and the untimely comments of a blog post.

Juan Ramón Álvarez

In memory of Luis Vega, dear friend and colleague, Spanish editor of the Elements.

I

In these days of book fairs (I am writing on May 15, 2017), we may be presented, as if unintentionally, with that saying of the Moor Terentianus, according to which Pro captu lectoris habent sua fata libelli [According to the reader's gifts, books have their destiny] that is, that the destiny (the sense) of books depends on the reader's capacity. And one could add that also of some of its "characters" -actants à la Tesniére or Latour-when they become involved in more than one book proper, in the course of a shared history. If it is true that philosophy must avoid being edifying (Hegel dixit), it must not be mortifying either; the same can be said of the history of science. Teaching experience shows that, on occasion, a combination of both may be interesting, if it manages to mix descriptive precision with interpretative wisdom, the former being characteristic of historiography and the latter of philosophy.

The "character" of this story is the equilateral triangle in the plane, and among its vicissitudes, I will focus on its relationship with Euclid's geometry, Descartes' geometry, and contemporary fractal geometry. The common thread that weaves this story is the set of actual and virtual structures that constitute the nature of geometric space. The exposition that begins here, as a blog post, is faut de mieux a preview of another more edifying one in the form of an essay and as a pleasant memory for me -I hope not mortifying for others-of several sessions of a graduate course, and its part corresponding to the geometric pathway studied there.

Many people repeat ad nauseam that Plato asked, with or without a poster, pleading or not, that no one who did not know geometry should enter the garden of Academus. In fair reciprocity -though I fear it will not prosper-it is desirable that geometricians (or at least historians of geometry) refrain from giving an opinion on the history of their craft if they are philosophically insolvent. It is not true that the reference to the history of geometry is the exclusive concern of historians thereof, nor is the sense of this history a matter reserved for philosophers (even if they are philosophers of geometry, with ample competence, as there are notable examples). This relationship between histori(ograph)y of geometry and the philosophical sensible history of geometry is a variant of the one already pointed out between History and Philosophy of History in the 19th century, and which José Luis Pardo (2016, p. 25) summarizes as follows:

[T]he distinction between history (with a lower case, empirical history, the succession of events one after the other) and the philosophy of History, the latter being the one that confers meaning to the former and converts the relation of sequence into a relation of consequence, the one that makes historical events comprehensible as the episodes of a storyline with a beginning, middle and end [...].

In this interplay between the reference located in its contextual insertion -the events that affect our "character"-and as the protagonist (or, cryptogonist, as we shall see) in each episode through the role it plays, we can appreciate how the variable sense of history can be glimpsed. Historians have to take care to establish, with the guarantees of their craft, the truths of that contextual insertion both in terms of its technical and scientific aspects, that is, in what has to do with efficacy and truth, respectively (Álvarez, 2005, pp. 25-28). Philosophers, on the other hand, will have to do so with the sense -meaning of theoretical language and purposiveness of actions-of this insertion, taking into account the efficacy -efficiency plus effectiveness-of technology and the truth of science. These three perspectives (efficacy, truth and sense) must be present in a solvent history of science -in this case, of geometry-in the different contexts of the appearance of outstanding "figures" such as our "character". Construct an equilateral triangle upon a given finite straight line (Figure 1a).

II

Figure 1a

Figure 1b To do this we construct the given finite line AB, on which we must in turn construct an equilateral triangle and proceed, in three phases, as follows.

Construction (with ruler and compass at that time (figure 1b); nowadays with computer and screen). Up to this point, a triangle has been constructed. Now it will be necessary to justify that it is equilateral. This cannot be done by measuring the figure drawn, because the sides will never be completely equal (Platonic objection), according to the resolution or scale of the ruler used. ABC, about which its equilaterality is demonstrated, is not, therefore, the figure drawn employing the ruler and the compass: this is not equilateral and will not be so whatever is constructed in its place. Therefore, instead of measuring, another procedure is used.

Demonstration (with reasoning)

And since point A is the center of the circle CAB, AC is equal to AB [Definition 15]; since point B is, in turn, the center of the circle CAE, BC is equal to BA [Definition 15]; but it has been shown that CA is equal to AB; therefore, each of the (straight) lines CA, CB is equal to AB. Now, things equal to the same thing are also equal to each other [Common Notion 1]; therefore, CA is also equal to CB; therefore the three CA, AB, BC are equal to each other.

At this point, we pass to the end.

Conclusion (necessary)

Therefore, the triangle ABC is equilateral and has been constructed on the given finite line AB. (Which is) what had to be done.

In the constructive process, the use of the instruments (ruler and compass; computer graphics) has effectively produced a closed trilateral configuration on the occasion of which one reasons about an absent object (the triangle necessarily equilateral) concluding in the true equilaterality of this object. Graphic efficacy serves to support valid reasoning with true premises whose (degree of) truth is transmitted to the conclusion. Now it remains to look for the sense, the philosophy, of this first episode.

NOTE: Figures and grounds.

The graphic technique does not guarantee equilaterality, but it would if things were as they should be and not as they are (Platonic complaint). The scientific demonstration exposes the necessary truth of the relations between diverse figures in the plane, about whose graphic representations the geometrician reasons. From the relation between this efficacy and this truth, the philosopher reflects on the sense of both. In Antiquity, Plato did so in The Republic, of course in his way (a detailed exposition in Álvarez (1977, pp. 36-41; 2005, pp. 29-35). Let us turn our attention to our "character," surrounded and composed as he is with other inhabitants of his space, interspersed with and among other figures, constructed and conceived through circles and straight lines. The space in which he is integrated is not amorphous at all and, although in the figure drawn the "circular scaffolding" between which the triangle has been assembled is after erased, just as those that have served to construct a building are removed at the end; it is nonetheless linked to them by virtual relationships that are graphically actualized in the construction. In the physical space in which a building is constructed, the scaffolding articulates actually existing forces, a physical structure in which the building itself is first constructed and maintained after the scaffolding is removed. A space is a structure composed of actual and virtual figures in which they stand out alternately one above the other. But there are other traveling companions.

Concerning the perceptual space we know the opposition figure/ground, which is not the last word on the subject, because we have learned that the ground is a virtual figure transformable by the change of attention, most of the time unconscious, into the so-called inverse figures: the old woman and the young woman, the vase and the faces, the duck and the rabbit, etc. Like those white letters (MAILBOX) and black figures that [START_REF] Hofstadter | Bach: An eternal golden braid[END_REF] offered us in his brilliant Gödel, Escher, Bach, (Chap. III. Also in these plastic spaces, the distinction between actual and virtual figures serves to correct the figure/ground opposition in actual figure(s)/virtual figure(s). Let us retain these ideas here and move on. III SECOND EPISODE. France, around 1637, the date of publication of the Discourse on Method, to conduct reason well, and to seek the truth in the sciences [START_REF] Descartes | Discourse de la méthode et Essais, Oeuvres de Descartes[END_REF]. In addition, the Dioptrics, the Meteors and the Geometry are essays of this method. Descartes and Fermat were the ones who welded the gap between arithmetic and geometry that had existed since Pythagoreanism -the incommunication of the genres referred to by Ortega between discrete quantity and continuous quantity-by coordinating geometric figures with the language of algebra, offering an algebraic representation of the former in what has come to be called analytic geometry. All this is well known and is even part of our general culture. Here we will touch on some points relevant to the history of our "character".

Among the inaccuracies that have been pronounced about Cartesian geometry, there are two that are important for our purpose here. First, through the algebraic representation of the figures all intuitive figurative spatial elements were eliminated. This is not only exaggerated, it is false. The fundamental figure of the coordinate system is ineliminable (although it can be formulated in algebraic terms, as will be seen later) since it is this that orders the space, allows us to situate the points of the figures with respect to the axes and to formulate in the language of algebra their equation -if any.

The second, which is linked to the first, consists in taking for granted that by employing algebraic representation one can assign to each figure its equation. Both are the result of a fundamental ignorance of the relationship between the synthetic geometry of figures in the plane (space) and the analytic geometry of equations in algebraic language, and of what Descartes says in this respect. To begin with, the text of Geometry does not refer to figures, but to lines, among which straight lines include the very coordinate axes and the curves that go from the conics to others of greater complexity. Thus, at the beginning of Book II of Geometry, on the nature of curves, he clarifies that:

The ancients pointed out very well that some of the problems of geometry are plane, others are solid and others linear, that is, some can be constructed by drawing only straight lines and circles, while others cannot be so unless at least a conic section is employed and, finally, without employing some other more complicated (composée) line (Oeuvres, ed. AT, VI, p. 388).

A triangle in the plane is not a line but is a closed figure formed by three straight lines intersecting by pairs, each of which has its corresponding equation, whose simplified form is y = mx + b. For a triangle ABC with sides 1, 2, 3, the representations of these sides are, respectively, the equations y 1 = m 1 x 1 + b 1 , y 2 = m 2 x 2 + b 2 , y 3 = m 3 x 3 + b 3 . Therefore, no polygon -a closed figure formed by n lines that intersect each other pairwise-has an equation, even if pairwise, and simultaneously, the respective equations of the lines on which the sides lie are solved giving the values of the vertices they share. (The expression "closed or broken polygonal line", referring to the one formed by n line segments of different directions whose ends meet, belongs to another expository context). Javier [START_REF] Echeverría | La reducción de las figuras geométricas a ecuaciones algebraicas[END_REF], many years ago contributed to clarifying the relationship between classical geometry and Cartesian analytical geometry, in a way that puts the two previous considerations in order. Given a coordinate system in the plane,

[t]he axes OX (abscissa axis) and OY (ordinate axis) "can be characterized by their respective equations, x = 0 and y = 0, just as the origin O can be expressed as an ordered pair (0,0) with respect to the reference system formed by O, OX and OY. These expressions only make sense relatively to that system, so the figure is mandatory for the reduction of lines to Cartesian equations. And, of course, the same procedure can be extended to other geometric figures, such as the bisector of the two initial lines. We can speak of this new object in words, we can designate it OA, but we can also characterize it by the equation x = y, which, in turn, only makes sense if the previous reference system is presupposed [...] (Ibid. p. 189).

The renaming of the original lines (axes) and the origin point (intersection of both) in terms of the zero value (0) of equation x = y ensures the homogeneity of the original crosshead + with other secondary lines in the algebraic notation. Although the original figure is mandatory, this does not prevent it from being integrated into the algebraic syntax as homogeneously combinable with the other line equations. As far as straight lines are concerned, it is established that they all have their equation and, first of all, the very original ones (axes). Polygons (closed broken lines) have no equation and as such lack representation. They are not the only thing that lacks a formulation in the algebraic language: "numerous figures, operations and constructions enormously useful for the proof of theorems in the Elements have no translation in this system of correspondences" (Ibid. p. 184) between the set of figures of synthetic geometry and that of the equations of analytic geometry.

The subsequent history of mathematical analysis also leaves our "character" and his beaked relatives out of many considerations. Problems such as differentiability and definability of derivatives on the peaks accentuate the problem. The title of one of the papers mentioned in IV reinforces this consideration. IV THIRD EPISODE. From an undetermined place in Sweden between 1904 and 1906, straddling the articles "On a continuous curve without tangent, obtained by an elementary geometrical construction" (1904) and "An elementary geometrical method for the study of certain questions of the theory of curves in the plane" (1906) [both in French]. Koch, not the one about the bacillus, but the lesser known Niels Fabian Helge von Koch (1870Koch ( -1924)), "a rather ordinary mathematician" [START_REF] Trochet | A History of Fractal Geometry[END_REF], made our "character" appear again in the field of the construction of geometric figures, this time one of those strange configurations that, like Cantor's evanescent set, provoked in some mathematicians a vehement interest that Hermite called a pitiful plague.

In the above commented Proposition 1, Euclid started from a line segment to construct an equilateral triangle. In the 1904 article, which unfortunately I do not have, so I have to stick to the general versions (Montesinos, 1985), Koch, like Cantor, started from a line segment. Both divide the starting segment into three equal subsegments. Cantor prescribes the elimination of the central subsegment, Koch the substitution of the same by an equilateral triangle without a base: one produces a gap, the other a peak. The one descends; the other ascends. Both prescribe the reiteration of the procedure "as much as one wants" (or can, for there were no computers then). Cantor "dusts" (his set has been so-called) the segment; Koch curls it with peaks. See the two amazing mathematical "monsters" and their corresponding construction programs in Table 1:

Cantor set

Koch (open) "curve"

Step 1: Draw a line segment.

Step 1: Draw a line segment.

Step 2: Divide the segment into three equal parts and remove the middle part.

Step 2: Divide the segment into three equal parts, remove the middle part and replace it with two segments of equal length that form an equilateral triangle based on it. Remove the base. Third step(s): Repeat the previous step as many times as you want.

Third step(s): Repeat the above as many times as you want Table 1 In the second step of the Koch curve our "character" reappears, and does so with consequences, because it is prescribed to insert an equilateral triangle in the hole produced by removing the central subsegment, but we are not told how to do it and how to make sure ("demonstrate") that the inserted triangle is equilateral. Since Euclid (Proposition 1) we know how to do this. Let us insert, then, the constructive procedure and the demonstrative justification in the second step. Thus the plane of the "curve" (open polygonal line) is covered by a network of figures composed of the triangle and its scaffolding. Not only does the broken line grow with further repetitions of the third step, but also the whole set of triangles and scaffolds. The plane in which the Koch curve lies is not amorphous, but its structure consists of a set of actual and virtual figures, among which the Koch curve is affected as an actual figure and the scaffold of circles as a virtual one.

The closed polygonal line formed from an equilateral triangle whose sides are treated as the initial segment, divided into three equal parts, with the same successive steps, is usually called a Koch star (Figure 2a). This is the closed version of the Koch "curve", which looks like this as the steps are iterated (Figure 2a). Here the triangle -our "character"-is given from the beginning and its sides, segments of three straight lines that cut each other pairwise, similar to the initial one of the open configuration, is the starting point.

In 1919, Sierpinski introduced a triangular counterpart of Cantor's set, where one starts from an equilateral triangle in which one suppresses the fourth part formed by the central triangle by four and repeats for the three preserved subtriangles the same operation of suppression of the central triangle "as many times as one wishes" (Figure 2b).

Fractal geometry, which deals with these exceptional figures, has come to develop in the second half of the last century. In Mandelbrot's book (The Fractal Geometry of Nature, 1982) its development was found concurrent with that of information and communication technologies, familiarly known as ICT. If Euclid's construction techniques were manual with a ruler and compass, and Cartesian was linguistic -with the formulations of algebraic language-those of fractal geometry are indissolubly linked to computer technology in the most efficient computers (conjunction of machine efficiency and mathematical effectiveness) that allow reiterations "without tiring" and run graphic design programs that have made so many fractal "figures" famous in scientific representations and works of art.

The preceding is not a history of fractal geometry, but instead the tale of an insistent equilateral triangle that appears to us around many corners of the historical path. To insist (insistere) is, according to the etymology of the word, to be repeatedly stuck inside something in which one is inseparably integrated. The sense of the story that concerns us is that of this integration, of this insistence, of some figures (with)in others, as a characteristic of spatial structures.

The sense of this story is made easy by exemplifying in the geometries and plastic arts the structures of actual and virtual figures proper of the different spaces, in which the equilateral triangle insists. But being faithful to Terentianus' dictum, and given a few keys of interpretation, each reader must make his own. I have noted mine, which awaits a better occasion for a more complete account

First

  episode: Alexandria, around 300 B.C., in Euclid's Elements (Στοιχεῖα) (1991), Book I, proposition 1, where a problem is posed requesting (Cf. Álvarez, 2005):

  With the center at A and the distance AB describe the circle BCA [Post. 3], and with the center at B and the distance BA describe in turn the circle ACE [Post. 3], and starting from the point C where the circles intersect each other, trace the straight lines CA, CB, to the points A, B [Post. 1].

  Figure and Ground, p. 75), where he pays tribute to Escher who, indeed, has put before us truly masterful compositions in which the figure/ground opposition is transposable to the figure/figure opposition. Let's see (never a better way to say it).

Figure 2a :

 2a Figure 2a: Koch star Figure 2b: Sierpinsky triangle

This text is an English version, with some slight modifications, of my blog post "Historia de un triángulo," posted on May 15,

at https://naturaetcultura.wordpress.com/. I have transalated the quotations, in Spanish in the original.