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A B S T R A C T

We derive a model for Bingham fluid flows down an inclined plane with a consistent asymptotic
method in the shallow-flow approximation. The variables are expanded up to the first order of
accuracy both in the sheared and pseudo-plug layers. The divergence of the strain rate, which
is obtained in classical approaches, is here avoided by removing the assumption of alignment
between the yield-stress tensor and the strain-rate tensor, but keeping the traceless property and
the equality between the norm of the yield-stress tensor and the yield stress. The model is derived
by averaging the mass, momentum and energy balance equations over the depth. This yields a
hyperbolic model of three equations for the fluid depth, the average velocity and a third variable,
called enstrophy, related to the variance of the velocity. The model features new relaxation source
terms and admits an exact balance energy equation. The velocity field in the depth is consistently
reconstructed using only the variables of the depth-averaged model without any derivative. The
physical relevance of the enstrophy is related to the shape of the velocity profile. The linear
stability of a uniform solution is investigated for this model, showing a stabilizing effect of the
plasticity. Roll waves are simulated numerically using a classical Godunov’s scheme. The model
for a Newtonian fluid is presented as a particular case.

1. Introduction
Viscoplastic materials behave like solid bodies when exerted stress is less than a certain threshold (the yield

stress), and flow like viscous fluids above this threshold. Such materials are encountered in various contexts including
biological fluids (blood clots, mucus), industrial processes (cement, waxy crude oil), and geophysical flows (avalanches,
debris and mud flows) [1]. The development of accurate models for describing free-surface flows of such viscoplastic
materials is of great importance for applications such as ink-jet printing or to better predict natural hazards [2]. In
the present work, we consider gravity-driven free-surface flows of idealized viscoplastic fluids propagating down an
inclined plane. By idealized viscoplasticity, we refer to a perfectly rigid behavior in the solid-like regime [3].

The mathematical modeling of idealized viscoplastic fluids generally relies on Hershel-Bulkley or Bingham
constitutive laws. Combined with Cauchy momentum equations, such constitutive laws can be used to compute fluid
flows. However, direct numerical simulation (DNS) of viscoplastic flows is not a straightforward task, notably due
to the complexity involved in identifying the yield surfaces separating unyielded (solid-like) from yielded (fluid-like)
regions. Two main methods have been developed to treat this issue. The regularization method consists in replacing
the rigid behavior in the unyielded zones by a highly-viscous flow [4]. The Augmented Lagrangian method introduces
a reformulation of the Cauchy momentum equations into a variational form to compute the flow as the solution of an
optimization problem [5–8]. In either cases, accurate DNS of viscoplastic flows generally requires large computing
times and the use of very fine meshes in the vicinity of yield surfaces.

For free-surface flows, an alternative to DNS is to derive models of reduced dimensionality. The most common
approach is based on a thin-layer approximation, which together with averaging the Cauchy momentum equations over
the depth of the flow forms the basis of numerous reduced-order models used in hydraulics [9, 10]. Another benefit of
the depth-averaged approach is that the boundary conditions are directly incorporated into the model, thus allowing for
easier and faster numerical resolution. Formally, the derivation of thin-layer models is generally based on two steps.
The first step consists in obtaining long-wave asymptotic expansions of the fields of interests with respect to flow
aspect ratio 𝜀 = ℎ0∕𝑙0, where ℎ0 and 𝑙0 denote typical depth and length of the flow, respectively. The second step
consists in averaging the governing equations over the depth of the flow and rewriting the resulting system in terms
of averaged quantities. To capture the right physics and properly account for the fluid rheology, the derived models
should be consistent at least at order 1. A model is said to be consistent at order 𝑛 if the leading terms in the model
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equations are of 𝑂(1), and if all terms vanish except for a remainder of 𝑂(𝜀𝑛+1) after having inserted the asymptotic
expansions obtained above into the model equations. Inconsistent reduced models lead to inaccurate predictions of,
e.g., instability thresholds [11, 12].

Depth-averaged models can be formulated as systems of one, two or three equations. One-equation models usually
have the simplest structure and are obtained from mass conservation by enslaving the fluid velocity to the fluid height
[13–18]. However, consistent one-equation models generally produce diverging or inaccurate solutions when the
instability threshold for uniform flows is exceeded [19–21]. Two-equation models introduce the averaged velocity as a
second independent variable. The second equation can be based on either the momentum balance or the work-energy
theorem. Such consistent two-equation models have been derived for a variety of Newtonian and power-law fluids and
were shown to provide accurate results in many applications [12, 14, 22–25]. Although relatively rare, a few studies
also considered the case of viscoplastic fluids [11, 26]. However, the mathematical structure and numerical resolution
of consistent two-equation models can be complicated, notably in the case of sheared flows. Moreover, Richard et
al [27] showed that two-equation models based on the depth-averaged momentum equation are not compatible with
the work-energy theorem, and vice-versa. To ensure Galilean invariance and compatibility between the depth-averaged
momentum and energy equations, Richard et al [28] derived a three-equation model for Newtonian fluids by introducing
a third variable, called enstrophy, related to deviation of the velocity from its averaged value. An important benefit
of this three-equation approach is that the resulting system has the mathematical structure of the Euler equations
of compressible fluids, which ensure the well-posedness of the problem and guarantees an efficient computational
resolution with reliable numerical schemes.

Although the derivation of long-wave asymptotic expansions is relatively straightforward for Newtonian or power-
law fluids, for viscoplastic fluids difficulties arise from the possible coexistence of yielded and unyielded regions within
the flows. At leading order with respect to 𝜀, the asymptotic expansion of longitudinal velocity describes a yielded
layer at the base of the flow, overlaid by an unyielded plug zone close to the free surface [29, 30]. At the next order of
approximation, Balmforth and Craster [31] showed that to have a consistent long-wave theory, this plug layer has to
be treated as a pseudo-plug in which the strain-rate is of order 𝑂(𝜀). These authors derived a first-order correction for
the longitudinal velocity profile in inertia-less limit. Later, Chambon et al [32] constructed the full expressions for the
longitudinal velocity up to the first order. However, the obtained asymptotic solution shows two main drawbacks: (1)
the strain rate in the pseudo-plug becomes infinite at the fake yield surface (i.e., the interface between the pseudo-plug
and the sheared layer), leading to an unphysical kink in the velocity profile; (2) the viscous contribution of the rheology
does not contribute to the shearing of the pseudo-plug at first order. For Bingham fluids, Balmforth and Craster [31] and
Fernandez-Nieto et al [26] proposed to avoid the divergence of the strain rate by introducing a transition layer between
the pseudo-plug and the sheared layer. Fernandez-Nieto et al [26] also derived a two-equation model, which remains
the only consistent shallow-flow model for idealized viscoplastic fluids to date. However, the extra terms arising from
the transition layer are complicated and of 𝑂(𝜀4∕3) order, such that the expansions providing the smooth transition at
the fake yield surface were not considered in deriving this model.

The goal of this paper is to generalize the three-equation approach of Richard et al [28] for Bingham fluid flows
propagating down an inclined plane in order to derive a consistent depth-averaged model with well-posed mathematical
structure. We construct a new asymptotic solution up to the first order in 𝜀, based on a reformulated version of the
tensorial constitutive law. This allows us to eliminate the issue with diverging the strain rate in the pseudo-plug without
the need to introduce a third layer in the model. A consistent depth-averaged model is then derived by averaging
the mass, momentum, and energy conservation equations over the fluid depth, introducing an enstrophy variable.
The resulting model is a fully hyperbolic system with relaxation source terms, whose computational resolution can
be handled by robust numerical schemes. An analysis on the linear stability of the derived model demonstrates the
stabilizing effect of plasticity and shows good agreement with the instability criterion obtained by Balmforth and Liu
[11] from generalized Orr-Sommerfeld equations. Another important advantage of the three-equation approach is also
highlighted, namely the full velocity field can be consistently reconstructed directly from the variables (flow height,
averaged velocity and enstrophy) of the model, without any derivatives. In particular, we analyze the physical relevance
of the enstrophy in terms of shapes of the velocity profiles within a roll wave.

In §2, we formulate the equations for the fluid flow. In §3, we construct the new shallow-flow asymptotic expansion
up to 𝑂(𝜀) order. In §4, the consistent three-equation model is derived by averaging the mass, momentum and energy
balances. In §4, the velocity field is reconstructed from the variables of the model. Finally, in §5 we investigate the
linear stability of the uniform flow, present numerical simulations of roll waves and discuss the physical relevance of
the enstrophy variations predicted by the model.
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2. Formulation of the problem
We consider a two-dimensional flow of a viscoplastic fluid propagating down an inclined plane under gravity 𝒈

(Figure 1). The angle of the slope with respect to the horizontal is 𝜃. The directions𝑂𝑥 and𝑂𝑧 are parallel and normal
to the plane, respectively. The corresponding components of the velocity field 𝒗 are denoted by 𝑢 and 𝑤, and the
components of the strain-rate tensor �̇� are defined as: �̇�𝑥𝑥 = 2𝜕𝑢∕𝜕𝑥, �̇�𝑥𝑧 = 𝜕𝑢∕𝜕𝑧+ 𝜕𝑤∕𝜕𝑥, �̇�𝑧𝑧 = 2𝜕𝑤∕𝜕𝑧. The fluid
depth is denoted by ℎ(𝑥, 𝑡). Lastly, the fluid is assumed to be incompressible (tr �̇� = 0) with a density 𝜌.
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Figure 1: Definition sketch

2.1. Constitutive law
The fluid is assumed to obey the Bingham constitutive law. The relation between the extra-stress tensor 𝝉 = 𝝈+𝑝𝑰

(with 𝝈 the total stress and 𝑝 the pressure) and the strain-rate tensor �̇� can be expressed as follows:

𝜏𝑖𝑗 = 𝜏𝑌𝑖𝑗 +𝐾�̇�𝑖𝑗 |𝝉| > 𝜏𝑐 , (2.1)

�̇�𝑖𝑗 = 0 |𝝉| ⩽ 𝜏𝑐 , (2.2)

where the rheological parameters 𝜏𝑐 and 𝐾 correspond to the yield stress and the Bingham viscosity of the material,
respectively. The tensor norm is defined as |𝑻 | = (0.5𝑻 ∶𝑻 )0.5 for any second-order tensor 𝑻 , where the colon denotes
the double dot product. Hence, the yielding of the fluid is governed by a von Mises criterion (|𝝉| = 𝜏𝑐). In (2.1), the
tensor 𝝉𝑌 corresponds to the yield-stress (or plastic) contribution to the stress. Accordingly, the second term 𝜏𝜈𝑖𝑗 = 𝐾�̇�𝑖𝑗
corresponds to the viscous contribution.

In most studies on viscoplastic fluids [31–33], the yield-stress tensor 𝝉𝑌 is expressed as follows:

𝝉𝑌 = 𝜏𝑐
�̇�
|�̇�|
. (2.3)

This expression, which assumes that 𝝉𝑌 is aligned with the strain-rate tensor �̇�, was first proposed by Hohenemser and
Prager [34]. It corresponds to a tensorial extension of the scalar Bingham law used in simple shear, as it simply reduces
to 𝜏𝑌𝑥𝑧 = 𝜏𝑐 in this configuration. However, as mentioned in a number of recent studies [35–37], this formulation fails to
capture the normal stress components that develop in viscoplastic fluids at yielding. Furthermore, as will be explained
later (see section 3), we argue that this expression also leads to a singularity in the expression for the strain rate at the
interface between yielded and unyielded regions. For the moment, we thus keep the yield-stress tensor 𝝉𝑌 unspecified,
and only consider the two following conditions for |𝝉| > 𝜏𝑐 :

|𝝉𝑌 | = 𝜏𝑐 , tr 𝝉𝑌 = 0. (2.4)

The first condition is required to have continuity of the stress at the interface between yielded and unyielded regions
(von Mises criterion). The second condition is assumed in relation to fluid incompressibility (i.e. any isotropic part of
the total stress tensor is assumed to contribute to the pressure). Note that these two conditions are obviously met in the
case of the classical formulation (2.3).
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2.2. Governing equations
The fluid motion is governed by the Cauchy mass and momentum conservation equations, completed by boundary

conditions on the bottom wall and at the free surface. The continuity equation writes

𝜕𝑢
𝜕𝑥

+ 𝜕𝑤
𝜕𝑧

= 0. (2.5)

The Cauchy momentum equations in the 𝑂𝑥 and 𝑂𝑧 directions are

𝜌
(𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+𝑤𝜕𝑢
𝜕𝑧

)

= −
𝜕𝑝
𝜕𝑥

+ 𝜌𝑔 sin 𝜃 +
𝜕𝜏𝑥𝑧
𝜕𝑧

+
𝜕𝜏𝑥𝑥
𝜕𝑥

, (2.6)

𝜌
(𝜕𝑤
𝜕𝑡

+ 𝑢𝜕𝑤
𝜕𝑥

+𝑤𝜕𝑤
𝜕𝑧

)

= −
𝜕𝑝
𝜕𝑧

− 𝜌𝑔 cos 𝜃 +
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑧𝑧
𝜕𝑧

. (2.7)

According to the constitutive equation (2.1) and the conditions on the yield-stress tensor (2.4), the stress components,
for |𝝉| > 𝜏𝑐 , can be written as

𝜏𝑥𝑥 = −𝜏𝑧𝑧 = 𝜏𝑌𝑥𝑥 + 𝜏
𝜈
𝑥𝑥, 𝜏𝜈𝑥𝑥 = 2𝐾 𝜕𝑢

𝜕𝑥
, (2.8)

𝜏𝑥𝑧 = 𝜏𝑌𝑥𝑧 + 𝜏
𝜈
𝑥𝑧, 𝜏𝜈𝑥𝑧 = 𝐾

(𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑥

)

, (2.9)

with the relation for the norm of the yield stress tensor:
(

𝜏𝑌𝑥𝑥
)2 +

(

𝜏𝑌𝑥𝑧
)2 = 𝜏2𝑐 . (2.10)

At the bottom we consider the no-penetration and the no-slip conditions:

𝑢
|𝑧=0

= 𝑤
|𝑧=0

= 0. (2.11)

At the free surface 𝑧 = ℎ(𝑥), the following kinematic boundary condition holds:

𝜕ℎ
𝜕𝑡

+ 𝑢
|𝑧=ℎ(𝑥)

𝜕ℎ
𝜕𝑥

= 𝑤
|𝑧=ℎ(𝑥)

. (2.12)

Lastly, capillarity is neglected and the atmospheric pressure is assumed to be constant and taken equal to zero.
Accordingly, the free surface is stress-free and the dynamic boundary conditions write

[

1 −
(𝜕ℎ
𝜕𝑥

)2]

𝜏𝑥𝑧|𝑧=ℎ(𝑥) = 2𝜕ℎ
𝜕𝑥
𝜏𝑥𝑥|𝑧=ℎ(𝑥) , (2.13)

[

1 −
(𝜕ℎ
𝜕𝑥

)2]

𝑝
|𝑧=ℎ(𝑥)

= −
[

1 +
(𝜕ℎ
𝜕𝑥

)2]

𝜏𝑥𝑥|𝑧=ℎ(𝑥) . (2.14)

2.3. Shallow-flow scaling
Let us define ℎ0 the characteristic depth of the flow in the 𝑂𝑧 direction, and 𝑢0 the characteristic velocity in the

𝑂𝑥 direction. The characteristic length in the 𝑂𝑥 direction is denoted by 𝑙0. The shallow-flow hypothesis corresponds
to assuming that the aspect ratio 𝜀 = ℎ0∕𝑙0 is small. The main dimensionless groups of this problem are the Reynolds
number 𝑅𝑒, the Froude number 𝐹𝑟 and the Bingham number 𝐵𝑖, which are defined as

𝑅𝑒 =
𝜌𝑢0ℎ0
𝐾

, 𝐹𝑟 =
𝑢0

√

𝑔ℎ0 cos 𝜃
, 𝐵𝑖 =

𝜏𝑐ℎ0
𝐾𝑢0

. (2.15)

These parameters, as well as the slope angle 𝜃, are assumed to be of order 𝑂(1) with respect to aspect ratio 𝜀. In order
to reformulate the problem (2.5)-(2.14) into a dimensionless form, let us rescale the variables as follows:

𝑥 = 𝑙0�̄�; 𝑧 = ℎ0�̄�; 𝑢 = 𝑢0�̄�; 𝑤 = 𝜀𝑢0�̄�; 𝑡 =
𝑢0
𝑙0
𝑡;

ℎ = ℎ0ℎ̄; 𝑝 = 𝜌𝑔ℎ0 cos 𝜃�̄�; 𝜏𝑖𝑗 = 𝜏𝑐𝜏𝑖𝑗 ; |𝝉| = 𝜏𝑐|�̄�|; |�̇�| =
𝑢0
ℎ0

|
̇̄𝜸|.

(2.16)
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Omitting the bars, the dimensionless continuity equation (2.5) keeps the same form

𝜕𝑢
𝜕𝑥

+ 𝜕𝑤
𝜕𝑧

= 0, (2.17)

while the dimensionless momentum equations (2.6)-(2.7) now write as

𝜀
(𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+𝑤𝜕𝑢
𝜕𝑧

)

= − 𝜀
𝐹 𝑟2

𝜕𝑝
𝜕𝑥

+ 𝜆
𝑅𝑒

+ 𝐵𝑖
𝑅𝑒

𝜕𝜏𝑥𝑧
𝜕𝑧

+ 𝜀𝐵𝑖
𝑅𝑒

𝜕𝜏𝑥𝑥
𝜕𝑥

, (2.18)

𝜀2
(𝜕𝑤
𝜕𝑡

+ 𝑢𝜕𝑤
𝜕𝑥

+𝑤𝜕𝑤
𝜕𝑧

)

= − 1
𝐹𝑟2

(

1 +
𝜕𝑝
𝜕𝑧

)

+ 𝜀𝐵𝑖
𝑅𝑒

𝜕𝜏𝑥𝑧
𝜕𝑥

+ 𝐵𝑖
𝑅𝑒

𝜕𝜏𝑧𝑧
𝜕𝑧

, (2.19)

with the driving parameter 𝜆 given by

𝜆 =
𝜌𝑔ℎ20 sin 𝜃
𝐾𝑢0

= 𝑅𝑒
𝐹𝑟2

tan 𝜃. (2.20)

The yielding criterion becomes |𝝉| = 1, and the expressions for the viscous and yield-stress components of the stress
(2.9)-(2.10), for |𝝉| > 1, are transformed to

𝜏𝑥𝑥 = 𝜏𝑌𝑥𝑥 +
1
𝐵𝑖
𝜏𝜈𝑥𝑥, 𝜏𝜈𝑥𝑥 = 2𝜀 𝜕𝑢

𝜕𝑥
, (2.21)

𝜏𝑥𝑧 = 𝜏𝑌𝑥𝑧 +
1
𝐵𝑖
𝜏𝜈𝑥𝑧, 𝜏𝜈𝑥𝑧 =

𝜕𝑢
𝜕𝑧

+ 𝜀2 𝜕𝑤
𝜕𝑥
, (2.22)

with the condition on the norm of the dimensionless yield-stress tensor:
(

𝜏𝑌𝑥𝑥
)2 +

(

𝜏𝑌𝑥𝑧
)2 = 1. (2.23)

The no-penetration and the no-slip conditions (2.11) keep the same form

𝑢
|𝑧=0

= 𝑤
|𝑧=0

= 0, (2.24)

while the dimensionless kinematic and dynamic boundary conditions at the free surface (2.12)-(2.14) are rewritten as

𝜕ℎ
𝜕𝑡

+ 𝑢
|𝑧=ℎ(𝑥)

𝜕ℎ
𝜕𝑥

= 𝑤
|𝑧=ℎ(𝑥)

, (2.25)
[

1 − 𝜀2
(𝜕ℎ
𝜕𝑥

)2]

𝜏𝑥𝑧|𝑧=ℎ(𝑥) = 2𝜀𝜕ℎ
𝜕𝑥
𝜏𝑥𝑥|𝑧=ℎ(𝑥) , (2.26)

[

1 − 𝜀2
(𝜕ℎ
𝜕𝑥

)2]

𝑝
|𝑧=ℎ(𝑥)

= −𝐵𝑖𝐹𝑟
2

𝑅𝑒

[

1 + 𝜀2
(𝜕ℎ
𝜕𝑥

)2]

𝜏𝑥𝑥|𝑧=ℎ(𝑥) . (2.27)

Lastly, the norms of the dimensionless stress and strain-rate tensors express as

|𝝉| =
√

𝜏2𝑥𝑥 + 𝜏2𝑥𝑧 |�̇�| =
√

(𝜕𝑢
𝜕𝑧

+ 𝜀2 𝜕𝑤
𝜕𝑥

)2
+ 4𝜀2

( 𝜕𝑢
𝜕𝑥

)2
. (2.28)

3. Asymptotic expansions
Let us assume the existence of regular expansions of the form

𝑓 = 𝑓 (0) + 𝜀𝑓 (1) +… (3.1)

for all variables of the problem (2.17)-(2.27), namely longitudinal and normal velocities 𝑢 and𝑤, pressure 𝑝 and stress
components 𝜏𝑖𝑗 . As mentioned in introduction, the structure of thin viscoplastic flows generally consist of a pseudo-
plug, in which the strain rate vanishes at leading order, overlying a sheared layer. These two layers are separated by
a fake yield surface. We shall construct the expansions in these two layer separately, using tilde notations for the
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pseudo-plug. In this layer, the leading-order longitudinal velocity �̃�(0) is assumed to be independent of the normal
coordinate 𝑧 [31]:

𝑢 = �̃�(0)(𝑥, 𝑡) + 𝜀�̃�(1)(𝑥, 𝑧, 𝑡) +… (3.2)

Accordingly, the strain rate in the pseudo-plug writes

|�̇�| = 𝜀

√

(

𝜕�̃�(1)
𝜕𝑧

)2
+ 4

(

𝜕�̃�(0)
𝜕𝑥

)2
+ 𝑂(𝜀2). (3.3)

3.1. Leading-order expansion
At 𝑂(1) with respect to 𝜀, integration of the momentum equation (2.18) with the boundary condition (2.26) gives

the following shear-stress profile for both the sheared and the pseudo-plug layers:

𝜏(0)𝑥𝑧 = 𝜆
𝐵𝑖

(ℎ − 𝑧), (3.4)

𝜏(0)𝑥𝑧 = 𝜆
𝐵𝑖

(ℎ − 𝑧). (3.5)

In the sheared layer, the flow behaves as a viscous fluid, for which the smallness of the normal stress results from
the shallow-flow assumption. We keep here this result and assume that the leading-order normal stress is zero in the
sheared layer:

𝜏(0)𝑥𝑥 = 0. (3.6)

This leads to |𝝉|(0) = (𝜆∕𝐵𝑖)(ℎ − 𝑧) in the sheared layer. The thickness of the pseudo-plug ℎ𝑝 can then be obtained
from the yielding criterion |𝝉|(0) = 1 at the fake-yield surface 𝑧 = ℎ − ℎ𝑝, which gives

ℎ𝑝 =
𝐵𝑖
𝜆
.

Further we consider the expansions for the pseudo-plug and the sheared layer separately.

3.1.1. In the pseudo-plug (𝑧 ⩾ ℎ − ℎ𝑝)
Owing to the expansions (3.2), the constitutive law (2.21)-(2.22) reduces to

𝜏(0)𝑥𝑥 = 𝜏𝑌 (0)
𝑥𝑥 , (3.7)

𝜏(0)𝑥𝑧 = 𝜏𝑌 (0)
𝑥𝑧 . (3.8)

From the condition on the norm of the yield-stress tensor (2.23), one then obtain

𝜏(0)𝑥𝑥 = 𝛿

√

1 −
(

ℎ − 𝑧
ℎ𝑝

)2
(3.9)

with 𝛿 = sgn(𝜏𝑥𝑥). Hence, it is found that the normal stresses contribute at leading-order in the pseudo-plug, to ensure
that the layer is just at the verge of yielding, |�̃�|(0) = 1. Note that these normal stresses vanish at the fake yield surface
𝑧 = ℎ − ℎ𝑝. Further, the pressure profile is obtained from integration of the momentum equation (2.19) with the
dynamic condition (2.27):

�̃�(0) = ℎ − 𝑧 − 𝛿𝐵𝑖𝐹 𝑟
2

𝑅𝑒

√

1 −
(

ℎ − 𝑧
ℎ𝑝

)2
. (3.10)

The expression for the longitudinal velocity �̃�(0)(𝑥, 𝑡) will be given later from matching with the sheared zone. The
normal velocity �̃�(0) can then be derived by integration of the continuity equation (2.17):

�̃�(0) = −𝑧𝜕�̃�
(0)

𝜕𝑥
+𝑤(0)

+ , (3.11)

where, again, the term 𝑤(0)
+ will be obtained from matching.
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3.1.2. In the sheared zone (𝑧 < ℎ − ℎ𝑝)
In this zone, the constitutive law expresses as

𝜏(0)𝑥𝑥 = 𝜏𝑌 (0)
𝑥𝑥 , (3.12)

𝜏(0)𝑥𝑧 = 𝜏𝑌 (0)
𝑥𝑧 + 1

𝐵𝑖
𝜕𝑢(0)

𝜕𝑧
. (3.13)

The condition on the smallness of the normal stress in the sheared layer (3.6) leads to 𝜏𝑌 (0)𝑥𝑥 = 0. Then the von Mises
criterion (2.23) implies that 𝜏𝑌 (0)

𝑥𝑧 = 1 and integration of equation (3.13) with the no-slip condition (2.24) results in a
parabolic longitudinal velocity profile:

𝑢(0) = 𝜆𝑧
(

ℎ − ℎ𝑝 −
𝑧
2

)

. (3.14)

Note that 𝜕𝑢(0)∕𝜕𝑧 = 0 at 𝑧 = ℎ − ℎ𝑝, consistently with the expansion (3.2) assumed in the pseudo-plug. The normal
velocity 𝑤(0) is then found from integration of equation (2.17) with the no-slip boundary condition (2.24):

𝑤(0) = −𝜆𝑧2
2

𝜕ℎ
𝜕𝑥
. (3.15)

Finally, integration of the momentum equation (2.19) and stress continuity at the fake yield surface 𝑧 = ℎ−ℎ𝑝 provide
the pressure profile:

𝑝(0) = ℎ − 𝑧. (3.16)

Note that, unlike in the pseudo-plug, a classical hydrostatic pressure distribution is recovered in the sheared layer.

3.1.3. Matching
The continuity condition �̃�(0) = 𝑢(0) at the fake yield surface 𝑧 = ℎ−ℎ𝑝 provides the expression of the longitudinal

velocity in the pseudo-plug:

�̃�(0) = 𝜆
2
(ℎ − ℎ𝑝)2. (3.17)

It is worth noting that the leading-order longitudinal velocity profile given by Eqs. (3.14) and (3.17) is identical to
the profile that would be obtained in a steady uniform flow of height ℎ, namely a parabolic profile overlaid by a
"true" unsheared plug. As will be shown in the next section, however, the plug effectively becomes a slightly-sheared
pseudo-plug at order 𝑂(𝜀).

Finally, matching the solutions 𝑤(0) and �̃�(0) at 𝑧 = ℎ − ℎ𝑝 gives the following expression for the normal velocity
in the pseudo-plug:

�̃�(0) = −𝜆(ℎ − ℎ𝑝)
(

𝑧 −
ℎ − ℎ𝑝

2

)

𝜕ℎ
𝜕𝑥
. (3.18)

3.2. O(𝜀) expansion
Here we construct the expansions at order 𝑂(𝜀) for the shear stress 𝜏(1)𝑥𝑧 and the longitudinal velocity 𝑢(1). The

expansions of the other variables will not be needed for the derivation of a depth-averaged model consistent at first
order. The leading-order solution derived above does not depend on whether one considers the classical expression
(2.3) for the yield-stress tensor 𝝉𝑌 , or one only assumes the conditions (2.4). This does not remain true, however, at
𝑂(𝜀). With the classical approach, equations (3.3) and (3.8) lead to the following relation in the pseudo-plug:

𝜏(0)𝑥𝑧 = 𝜏𝑌 (0)
𝑥𝑧 =

𝜕�̃�(1)

𝜕𝑧
√

(

𝜕�̃�(1)
𝜕𝑧

)2
+ 4

(

𝜕�̃�(0)
𝜕𝑥

)2
(3.19)
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and thus:

𝜕�̃�(1)

𝜕𝑧
=

2(ℎ − 𝑧)∕ℎ𝑝
√

1 − ((ℎ − 𝑧)∕ℎ𝑝)2

|

|

|

|

𝜕�̃�(0)

𝜕𝑥
|

|

|

|

. (3.20)

Expression (3.20) was used in former studies to derive the first-order velocity correction �̃�(1) in the pseudo-plug
[26, 31, 32]. However, it is easily seen that 𝜕�̃�(1)∕𝜕𝑧 diverges at the fake-yield surface 𝑧 = ℎ−ℎ𝑝, which contradicts the
assumption that the strain-rate should remain small in the pseudo-plug. As already suggested by Balmforth and Craster
[31] and explored by Fernandez-Nieto et al [26], this inconsistency could be alleviated by introducing a transition layer
between the sheared zone and the pseudo-plug. However, this significantly complicates the process of constructing the
solution. Another drawback of expressions (3.19) (3.20) is that the first-order correction 𝜕�̃�(1)∕𝜕𝑧 is controlled solely
by terms related to the yield-stress tensor. Instead, it could be expected that the slight shearing of the pseudo-plug be
rather associated to viscous stresses.

As already mentioned, these drawbacks motivated us to relax the assumption that 𝝉𝑌 is aligned with the strain-rate
tensor �̇�, and to only consider the conditions (2.4). As will be shown, these conditions together with the assumption
of small normal stresses in the sheared layer are actually sufficient to build the solution at order 𝑂(𝜀), even though the
yield-stress tensor 𝝉𝑌 is not fully specified.

3.2.1. In the pseudo-plug (𝑧 > ℎ − ℎ𝑝)
At order 𝑂(𝜀), the momentum equation along 𝑂𝑥 (2.18) leads to

𝐵𝑖
𝑅𝑒

𝜕𝜏(1)𝑥𝑧
𝜕𝑧

= 𝜕�̃�(0)

𝜕𝑡
+ �̃�(0) 𝜕�̃�

(0)

𝜕𝑥
+ 1
𝐹𝑟2

𝜕�̃�(0)

𝜕𝑥
− 𝐵𝑖
𝑅𝑒

𝜕𝜏(0)𝑥𝑥
𝜕𝑥

= 𝜆(ℎ − ℎ𝑝)
𝜕ℎ
𝜕𝑡

+ 𝜆2

2
(ℎ − ℎ𝑝)3

𝜕ℎ
𝜕𝑥

+ 1
𝐹𝑟2

𝜕ℎ
𝜕𝑥

− 𝛿 2𝐵𝑖
𝑅𝑒

𝜕
𝜕𝑥

⎛

⎜

⎜

⎝

√

1 −
(

ℎ − 𝑧
ℎ𝑝

)2⎞
⎟

⎟

⎠

. (3.21)

Note that the last term in (3.21) can be rewritten as

−2𝛿 𝜕
𝜕𝑥

⎛

⎜

⎜

⎝

√

1 −
(

ℎ − 𝑧
ℎ𝑝

)2⎞
⎟

⎟

⎠

= 2𝛿 𝜕
𝜕𝑧

⎛

⎜

⎜

⎝

√

1 −
(

ℎ − 𝑧
ℎ𝑝

)2⎞
⎟

⎟

⎠

𝜕ℎ
𝜕𝑥
, (3.22)

while the first dynamic boundary condition (2.26) at O(𝜀) is

𝜏(1)𝑥𝑧 |𝑧=ℎ(𝑥) = 2𝛿 𝜕ℎ
𝜕𝑥
. (3.23)

Integration of equation (3.21) coupled with (3.23) thus leads to the following expression for the shear stress correction:

𝜏(1)𝑥𝑧 = 𝑅𝑒
𝐵𝑖

(𝑧 − ℎ)
(

𝜆(ℎ − ℎ𝑝)
𝜕ℎ
𝜕𝑡

+ 𝜆2

2
(ℎ − ℎ𝑝)3

𝜕ℎ
𝜕𝑥

)

+ 𝑅𝑒
𝐵𝑖 𝐹 𝑟2

(𝑧 − ℎ)𝜕ℎ
𝜕𝑥

+ 2𝛿

√

1 −
(

ℎ − 𝑧
ℎ𝑝

)2 𝜕ℎ
𝜕𝑥
. (3.24)

Recall that stresses express as the sum of a yield-stress and of a viscous contributions, i.e. 𝜏(1)𝑥𝑧 = 𝜏𝑌 (1)
𝑥𝑧 + 𝜏𝜈 (1)𝑥𝑧 ∕𝐵𝑖. By

identification, the first-order correction to the yield-stress term writes

𝜏𝑌 (1)
𝑥𝑧 = 2𝛿

√

1 −
(

ℎ − 𝑧
ℎ𝑝

)2 𝜕ℎ
𝜕𝑥
, (3.25)

while the first-order correction to the viscous contribution is

𝜏𝜈 (1)𝑥𝑧 = 𝑅𝑒(𝑧 − ℎ)
(

𝜆(ℎ − ℎ𝑝)
𝜕ℎ
𝜕𝑡

+ 𝜆2

2
(ℎ − ℎ𝑝)3

𝜕ℎ
𝜕𝑥

)

+ 𝑅𝑒
𝐹𝑟2

(𝑧 − ℎ)𝜕ℎ
𝜕𝑥
. (3.26)
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In addition, from equation (2.22) it is found 𝜕�̃�(1)∕𝜕𝑧 = 𝜏𝜈 (1)𝑥𝑧 . We thus obtain the following expression for the first-order
correction of the velocity:

�̃�(1) = 𝑅𝑒
(

𝑧2

2
− ℎ𝑧

)(

𝜆(ℎ − ℎ𝑝)
𝜕ℎ
𝜕𝑡

+ 𝜆2

2
(ℎ − ℎ𝑝)3

𝜕ℎ
𝜕𝑥

)

+ 𝑅𝑒
𝐹𝑟2

(

𝑧2

2
− ℎ𝑧

)

𝜕ℎ
𝜕𝑥

+ 𝑢+(𝑥, 𝑡), (3.27)

where 𝑢+ is a matching term to be determined later. The first term on right side of (3.27) corresponds to an inertial
contribution, while the second term corresponds to a contribution due to the hydrostatic pressure.

It should be noted that, in contrast to equation (3.20) derived from the classical constitutive law (2.3), the velocity
derivative 𝜕�̃�(1)∕𝜕𝑧 remains here bounded everywhere in the pseudo-plug zone. Moreover, the first-order correction �̃�(1)
is here controlled by the viscous stress 𝜏𝜈 (1)𝑥𝑧 and not by the yield-stress term 𝜏𝑌 (0)

𝑥𝑧 . As a consequence, the expression
(3.27) for �̃�(1) includes the inertial terms, which was not the case in the previous approach.

3.2.2. In the sheared layer (𝑧 ⩽ ℎ − ℎ𝑝)
The momentum equation along 𝑂𝑥 (2.18) at 𝑂(𝜀) writes here

𝐵𝑖
𝑅𝑒

𝜕𝜏(1)𝑥𝑧
𝜕𝑧

= 𝜕𝑢(0)

𝜕𝑡
+ 𝑢(0) 𝜕𝑢

(0)

𝜕𝑥
+𝑤(0) 𝜕𝑢(0)

𝜕𝑧
+ 1
𝐹𝑟2

𝜕𝑝(0)

𝜕𝑥
= 𝜆𝑧𝜕ℎ

𝜕𝑥
+ 𝜆2𝑧2

2
(ℎ − ℎ𝑝)

𝜕ℎ
𝜕𝑥

+ 1
𝐹𝑟2

𝜕ℎ
𝜕𝑥
. (3.28)

Integration of this equation yields

𝜏(1)𝑥𝑧 = 𝑅𝑒
𝐵𝑖

(

𝜆𝑧2

2
𝜕ℎ
𝜕𝑡

+ 𝜆2𝑧3

6
(ℎ − ℎ𝑝)

𝜕ℎ
𝜕𝑥

)

+ 𝑧 𝑅𝑒
𝐵𝑖𝐹 𝑟2

𝜕ℎ
𝜕𝑥

+ 𝜏(1)𝑥𝑧 |𝑧=0, (3.29)

where the unknown term 𝜏(1)𝑥𝑧 |𝑧=0 can be found from the stress continuity condition at the fake yield surface
𝜏(1)𝑥𝑧 |𝑧=ℎ−ℎ𝑝 = 𝜏(1)𝑥𝑧 |𝑧=ℎ−ℎ𝑝 . This leads to the following expression for the shear stress correction:

𝜏(1)𝑥𝑧 = 𝑅𝑒𝜆
2𝐵𝑖

(𝑧2 − ℎ2 + ℎ2𝑝)
𝜕ℎ
𝜕𝑡

+ 𝑅𝑒𝜆2

6𝐵𝑖
(ℎ − ℎ𝑝)

(

𝑧3 − (ℎ − ℎ𝑝)2(ℎ + 2ℎ𝑝)
)𝜕ℎ
𝜕𝑥

+ 𝑅𝑒
𝐵𝑖 𝐹 𝑟2

(𝑧 − ℎ)𝜕ℎ
𝜕𝑥
. (3.30)

By identification, the yield-stress contribution 𝜏𝑌 (1)𝑥𝑧 is zero, since all terms involve the factor 1∕𝐵𝑖. Then from (2.22)
and the no-slip condition (2.24), the following velocity profile is obtained:

𝑢(1) = 𝑅𝑒𝜆
2
𝑧
(

𝑧2

3
− ℎ2 + ℎ2𝑝

)

𝜕ℎ
𝜕𝑡

+ 𝑅𝑒𝜆2

6
(ℎ − ℎ𝑝)𝑧

(

𝑧3

4
− (ℎ − ℎ𝑝)2(ℎ + 2ℎ𝑝)

)

𝜕ℎ
𝜕𝑥

+

+ 𝑅𝑒
𝐹𝑟2

𝑧
(𝑧
2
− ℎ

) 𝜕ℎ
𝜕𝑥
. (3.31)

3.2.3. Matching
The matching term 𝑢+ in (3.27) is obtained from the continuity condition 𝑢(1)|𝑧=ℎ−ℎ𝑝 = �̃�(1)|𝑧=ℎ−ℎ𝑝 . Finally, the

correction of the velocity profile in the pseudo-plug thus expresses as

�̃�(1) = 𝑅𝑒𝜆
6

(ℎ − ℎ𝑝)
(

3𝑧2 − 6ℎ𝑧 + (ℎ − ℎ𝑝)2
)𝜕ℎ
𝜕𝑡

+ 𝑅𝑒𝜆2

8
(ℎ − ℎ𝑝)3

(

2𝑧2 − 4ℎ𝑧 + (ℎ − ℎ𝑝)2
)𝜕ℎ
𝜕𝑥

+

+ 𝑅𝑒
𝐹𝑟2

𝑧
(𝑧
2
− ℎ

) 𝜕ℎ
𝜕𝑥
. (3.32)

3.3. Velocity profile comparisons
In this section we compare the asymptotic expansion of the longitudinal velocity 𝑢 derived by using the classical

expression of the yield-stress tensor (2.3) with the new asymptotic expansion obtained when this relation is relaxed.
Figure 2a presents the profiles of the dimensionless velocity for the leading order (black dash-dotted curve), for the
classical 𝑂(𝜀)-solution (blue dashed curve) and for the new 𝑂(𝜀)-solution (red curve). Figure 2b shows the profiles
of the velocity normalized by the depth-averaged value in each case. As already noted, at leading order all variables
(longitudinal and normal velocities 𝑢 and𝑤, pressure 𝑝 and stress components 𝜏𝑖𝑗) are the same in both cases (see Figure
2a). At order 𝑂(𝜀), the differences appear only in the pseudo-plug zone. In our approach, shearing in the pseudo-plug
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Figure 2: Velocity profiles for the leading order solution (black dashed-dot curve), for the classical 𝑂(𝜀)-solution (dashed
blue curve) and for the new 𝑂(𝜀)-solution (red curve): (a) dimensionless velocity profiles obtained with ℎ = 1, 𝜕ℎ∕𝜕𝑥 =
−0.05, 𝜕ℎ∕𝜕𝑡 = 0.05, 𝑅𝑒 = 1, 𝐹𝑟 = 0.6, 𝐵𝑖 = 0.3 and 𝜃 = 20◦; (b) velocity profiles normalized by the depth-averaged value
𝑈 , obtained with ℎ = 1, 𝜕ℎ∕𝜕𝑥 = −0.1, 𝜕ℎ∕𝜕𝑡 = 0.07, 𝑅𝑒 = 0.1, 𝐹𝑟 = 0.18, 𝐵𝑖 = 0.3 and 𝜃 = 18◦.

zone is related to the viscous contribution given by the first-order correction to the shear stress (3.26), which naturally
includes the inertial terms. On the contrary, with the classical approach, the shear rate is controlled by the yield-stress
contribution to the stress. As seen in Figure 2b, the leading-order solution clearly features a plug zone. The 𝑂(𝜀)
correction is expected to introduce a slight shearing in this zone. However, for the classical approach, the derivative
(3.20) diverges at 𝑧 = ℎ − ℎ𝑝, which corresponds to an infinite strain rate and leads to a non-physical kink in the
velocity profile at the fake yield surface. In contrast, with our approach, the velocity profile shows a smooth transition
from the sheared layer to the pseudo-plug zone.

4. Depth-averaged model
In this section, we derive a model by averaging the Cauchy mass and momentum equations over the fluid depth,

taking into account the boundary conditions and the formal asymptotic expansions at order 𝑂(𝜀) obtained in the
previous section. An important benefit of this approach is that the dimensionality of the final model is reduced by one
compared to the initial governing equations (2.17)-(2.19), and that the boundary conditions (2.24)-(2.27) are directly
included into the equations of the model. Accordingly, this approach is expected to make numerical solutions faster
and easier to compute, provided that the final model has a proper mathematical structure.

For any variable 𝐴 of the flow, let us define the depth-averaged value ⟨𝐴⟩ by

⟨𝐴⟩ = 1
ℎ

ℎ

∫
0

𝐴𝑑𝑧. (4.1)

For the averaged longitudinal velocity, it is convenient to use further the special notation ⟨𝑢⟩ = 𝑈 . In particular, the
expression for the leading order term 𝑈 (0) is readily obtained from the equations (3.14) and (3.17):

𝑈 (0) = 𝜆ℎ2

3

(

1 −
ℎ𝑝
ℎ

)2(

1 +
ℎ𝑝
2ℎ

)

. (4.2)

4.1. Mass conservation
Averaging the continuity equation (2.17), taking into account the kinematic boundary condition (2.25), yields the

following exact equation for mass conservation:
𝜕ℎ
𝜕𝑡

+ 𝜕ℎ𝑈
𝜕𝑥

= 0. (4.3)

Introducing the leading-order asymptotic solution for 𝑈 , i.e. 𝑈 = 𝑈 (0) into (4.3) results in a kinematic wave
equation:

𝜕ℎ
𝜕𝑡

+ 𝜆ℎ(ℎ − ℎ𝑝)
𝜕ℎ
𝜕𝑥

= O(𝜀), (4.4)
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which indicate that a perturbation of depth is propagated at the speed 𝑐0 = 𝜆ℎ(ℎ−ℎ𝑝). Equation (4.4) provides a useful
expansion for 𝜕ℎ∕𝜕𝑡:

𝜕ℎ
𝜕𝑡

= −𝜆ℎ(ℎ − ℎ𝑝)
𝜕ℎ
𝜕𝑥

+ O(𝜀). (4.5)

In particular, this expansion allows us to write the first-order correction 𝑈 (1) in the following form:

3𝑈 (1)

𝑅𝑒ℎ
=

[

2
5
𝜆2ℎ3

(

1 −
ℎ𝑝
ℎ

)2(

1 +
ℎ𝑝
ℎ

+
ℎ2𝑝
ℎ2

−
ℎ3𝑝
4ℎ3

−
ℎ4𝑝
4ℎ4

)

− 1
𝐹𝑟2

]

ℎ𝜕ℎ
𝜕𝑥
. (4.6)

4.2. Momentum balance
Averaging the momentum balance equation in the 𝑂𝑥-direction (2.18), together with the no-slip condition (2.24),

the kinematic boundary condition (2.25), and the dynamic boundary conditions (2.26) and (2.27), provides

𝜕
𝜕𝑡

(ℎ𝑈 ) + 𝜕
𝜕𝑥

⎛

⎜

⎜

⎜

⎝

ℎ⟨𝑢2⟩ + 1
𝐹𝑟2

ℎ

∫
0

𝑝𝑑𝑧 − 𝐵𝑖
𝑅𝑒

ℎ

∫
ℎ−ℎ𝑝

𝜏𝑥𝑥𝑑𝑧

⎞

⎟

⎟

⎟

⎠

=
𝜆ℎ − 𝐵𝑖𝜏𝑥𝑧(0)

𝜀𝑅𝑒
, (4.7)

where the quantity 𝜏𝑥𝑧(0) denotes the shear stress at the bottom 𝑧 = 0. To express the integral of the pressure in (4.7)
we use the equations (3.10) and (3.16):

1
𝐹𝑟2

ℎ

∫
0

𝑝𝑑𝑧 = ℎ2

2𝐹𝑟2
− 𝐵𝑖
𝑅𝑒

ℎ

∫
ℎ−ℎ𝑝

𝜏(0)𝑥𝑥 𝑑𝑧 + 𝑂(𝜀). (4.8)

Taking into account the expression for the normal stress at leading-order (3.9), the integral term on the right-hand side
of (4.8) writes

ℎ

∫
ℎ−ℎ𝑝

𝜏(0)𝑥𝑥 𝑑𝑧 =
𝜋ℎ𝑝
4
. (4.9)

As a result, the integral terms involving the normal stress 𝜏(0)𝑥𝑥 are constant and disappear from equation (4.7) after
differentiation. Further, using the leading-order representation for the shear stress (3.4), the averaged momentum
equation (4.7) reduces to

𝜕
𝜕𝑡

(ℎ𝑈 ) + 𝜕
𝜕𝑥

(

ℎ⟨𝑢2⟩ + ℎ2

2𝐹𝑟2

)

= −
𝐵𝑖𝜏(1)𝑥𝑧 (0)
𝑅𝑒

+ 𝑂(𝜀2). (4.10)

The quantity ⟨𝑢2⟩ in (4.10) can be expressed by considering the velocity as the sum of its average value 𝑈 and a
deviation 𝑢∗:

𝑢(𝑥, 𝑧, 𝑡) = 𝑈 (𝑥, 𝑡) + 𝑢∗(𝑥, 𝑧, 𝑡). (4.11)

By definition ⟨𝑢∗⟩ = 0, so that ⟨𝑢2⟩ = 𝑈2 + ⟨𝑢∗2⟩. In equation (4.10), the deviation ⟨𝑢∗2⟩ could be estimated at order 0
either as a function of ℎ or as a function of 𝑈 . This would lead to a closed system of two coupled equations for the flow
height ℎ and the depth-averaged velocity 𝑈 [23, 26]. However, as shown by Richard et al [27] for the Newtonian
fluid, while for the primitive Cauchy equations the momentum balance equation and the kinetic energy equation
are equivalent, this is not the case for the depth-averaged equations. A more robust approach, initially proposed by
Teshukov [38] and expanded by Richard and Gavrilyuk [39], is thus to define an independent variable related to ⟨𝑢∗2⟩.
The introduction of this new variable guarantees the compatibility of the averaged mass and momentum equations with
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the averaged energy equation (see §4.3). We adopt here this three-variable approach, and characterize the flow based
on its depth ℎ, its average velocity 𝑈 and the variance of its velocity. In fact, it is more convenient to use

𝜑 =
⟨𝑢∗2⟩
ℎ2

(4.12)

as the third variable of the model, since it plays the role of an entropy for the system [39]. In the particular case of a
constant vorticity, the quantity𝜑 is proportional to the square of the vorticity [38]. For this reason,𝜑 is called enstrophy.
The expansion of this new variable

𝜑 = 𝜑(0) + 𝜀𝜑(1) +… (4.13)

leads to 𝜑(0) =
⟨ (

𝑢∗(0)
)2 ⟩∕ℎ2 and 𝜑(1) = 2⟨𝑢∗(0)𝑢∗(1)⟩∕ℎ2. The calculation at leading order gives

𝜑(0) = 𝜆2ℎ2

45

(

1 −
ℎ𝑝
ℎ

)5(

1 +
5ℎ𝑝
4ℎ

)

. (4.14)

For the expansion at order 𝑂(𝜀), we obtain

𝜑(1)

𝑅𝑒
= 2𝜆ℎ2

45

[

3
7
𝜆2ℎ3

(

1 −
ℎ𝑝
ℎ

)2(

1 +
101ℎ𝑝
48ℎ

+
29ℎ2𝑝
12ℎ2

+
43ℎ3𝑝
48ℎ3

−
7ℎ4𝑝
12ℎ4

)

− 1
𝐹𝑟2

(

1 +
9ℎ𝑝
8ℎ

+
3ℎ2𝑝
8ℎ2

)]

(

1 −
ℎ𝑝
ℎ

)3
𝜕ℎ
𝜕𝑥
. (4.15)

Finally, with the introduction of the enstrophy 𝜑, the equation (4.10) can be written

𝜕
𝜕𝑡

(ℎ𝑈 ) + 𝜕
𝜕𝑥

(

ℎ𝑈2 + ℎ3𝜑 + ℎ2

2𝐹𝑟2

)

= −
𝐵𝑖𝜏(1)𝑥𝑧 (0)
𝑅𝑒

. (4.16)

To keep a proper mathematical structure, the main idea now is to remove all derivatives from the right-hand side and
to express the source terms of equation (4.16) as a sum of relaxation terms. Using the relation (4.5), the stress at the
bottom 𝜏(1)𝑥𝑧 (0) given by (3.30) reduces to

𝐵𝑖𝜏(1)𝑥𝑧 |𝑧=0
𝑅𝑒

=

[

1
3
𝜆2ℎ3

(

1 −
ℎ𝑝
ℎ

)2(

1 +
ℎ𝑝
ℎ

+
ℎ2𝑝
ℎ2

)

− 1
𝐹𝑟2

]

ℎ𝜕ℎ
𝜕𝑥
, (4.17)

which can also be rewritten in terms of 𝑈 (1):

𝐵𝑖𝜏(1)𝑥𝑧 |𝑧=0
𝑅𝑒

= 3𝑈 (1)

𝑅𝑒ℎ
− 𝜆2ℎ4

15

(

1 −
ℎ𝑝
ℎ

)3(

1 +
2ℎ𝑝
ℎ

+
3ℎ2𝑝
ℎ2

+
3ℎ3𝑝
2ℎ3

)

𝜕ℎ
𝜕𝑥
. (4.18)

Note that the quantity 𝑈 (1) can be expressed as:

𝑈 (1) = 𝑈 − 𝑈 (0)

𝜀
+ 𝑂(𝜀) (4.19)

which has the structure of a relaxation term in𝑈 . To express the derivative 𝜕ℎ∕𝜕𝑥 in (4.18), let us consider the following
relation obtained from the expansions for 𝑈 and 𝜑:

𝜑 − 𝑈2

5ℎ2

(

1 −
ℎ𝑝
ℎ

)(

1 +
5ℎ𝑝
4ℎ

)(

1 +
ℎ𝑝
2ℎ

)−2

= 2𝜀
35
𝑅𝑒𝜆𝜑ℎ3

(

1 −
ℎ𝑝
ℎ

)2(

1 +
5ℎ𝑝
4ℎ

)−1(

1 +
61ℎ𝑝
16ℎ

+
63ℎ2𝑝
8ℎ2

+
63ℎ3𝑝
8ℎ3

+
21ℎ4𝑝
16ℎ4

)

𝜕ℎ
𝜕𝑥
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+
𝜆ℎ𝑝
20ℎ

(

1 −
ℎ𝑝
ℎ

)3(

1 +
5ℎ𝑝
2ℎ

+
ℎ2𝑝
2ℎ2

)

(

1 +
ℎ𝑝
2ℎ

)−1
[

𝑈 − 𝑈 (0)
]

+ 𝑂(𝜀2). (4.20)

The left-hand side of (4.20) has the structure of a relaxation term in 𝜑. Indeed, using expressions (4.2) and (4.14) we
obtain

𝜑(0) −

(

𝑈 (0))2

5ℎ2

(

1 −
ℎ𝑝
ℎ

)(

1 +
5ℎ𝑝
4ℎ

)(

1 +
ℎ𝑝
2ℎ

)−2

= 0. (4.21)

As a result, the derivative 𝜕ℎ∕𝜕𝑥 can be expressed as a sum of two relaxation terms for𝑈 and 𝜑. Finally, the integrated
momentum equation (4.16) can thus be written as

𝜕
𝜕𝑡

(ℎ𝑈 ) + 𝜕
𝜕𝑥

(

ℎ𝑈2 + ℎ3𝜑 + ℎ2

2𝐹𝑟2

)

= 1
𝜀𝑅𝑒

[

𝜆ℎ − 𝐵𝑖 − 3𝑈
ℎ𝛼1(𝜉)

] [

𝛼1(𝜉) +
7
360

𝜆2ℎ2

𝜑
𝛽1(𝜉)

]

+ 1
𝜀𝑅𝑒

7
6
𝜆ℎ
𝜑

[

𝜑 − 𝑈2

5ℎ2
𝛼2(𝜉)

]

𝛽2(𝜉) (4.22)

where 𝜉 = ℎ𝑝∕ℎ and the functions 𝛼1, 𝛼2, 𝛽1 and 𝛽2 are defined as:

𝛼1(𝜉) = (1 − 𝜉)
(

1 +
𝜉
2

)

(4.23)

𝛼2(𝜉) = (1 − 𝜉)
(

1 + 5
4
𝜉
)

(

1 +
𝜉
2

)−2
(4.24)

𝛽1(𝜉) = 𝜉 (1 − 𝜉)5
(

1 + 5
4
𝜉
)

(

1 + 5
2
𝜉 + 1

2
𝜉2
)(

1 + 2𝜉 + 3𝜉2 + 3
2
𝜉3
)

1 + 61
16
𝜉 + 63

8
𝜉2 + 63

8
𝜉3 + 21

16
𝜉4

(4.25)

𝛽2(𝜉) = (1 − 𝜉)
(

1 + 5
4
𝜉
)

1 + 2𝜉 + 3𝜉2 + 3
2
𝜉3

1 + 61
16
𝜉 + 63

8
𝜉2 + 63

8
𝜉3 + 21

16
𝜉4

(4.26)

The first relaxation term on right-hand side of (4.22) interprets as the balance between the gravity, the yield stress and
the viscous friction forces along the 𝑂𝑥-axis. The second term corresponds to a relaxation for the enstrophy.

4.3. Kinetic energy equation
The proposed depth-averaged model involves three unknown variables, namely ℎ, 𝑈 and 𝜑. To close the problem,

a third equation is thus needed, which is provided by energy conservation. In dimensional form, the kinetic energy
equation (or work–energy theorem) can be written as

𝜕
𝜕𝑡

(1
2
𝜌𝑣2

)

+ div
(1
2
𝜌𝑣2𝒗

)

= div(𝝈𝒗) − 𝝈 ∶ �̇� + 𝜌𝒈𝒗 (4.27)

where we recall that 𝒗 denotes the velocity field and 𝝈 = −𝑝𝑰 + 𝝉 . Introducing the components of the vectors and
tensors involved in (4.27), we get the following expression written in dimensionless form:

𝜕
𝜕𝑡

(

𝑢2

2
+ 𝜀2𝑤

2

2

)

+ 𝜕
𝜕𝑥

[

𝑢
(

𝑢2

2
+ 𝜀2𝑤

2

2
− 𝑥 tan 𝜃

𝜀𝐹 𝑟2
+ 𝑧
𝐹 𝑟2

)

+
𝑝𝑢
𝐹 𝑟2

− 𝐵𝑖
𝑅𝑒

(𝜏𝑥𝑥𝑢 + 𝜀𝜏𝑥𝑧𝑤)
]

+ 𝜕
𝜕𝑧

[

𝑤
(

𝑢2

2
+ 𝜀2𝑤

2

2
− 𝑥 tan 𝜃

𝜀𝐹 𝑟2
+ 𝑧
𝐹 𝑟2

)

+
𝑝𝑤
𝐹𝑟2

− 𝐵𝑖
𝜀𝑅𝑒

𝜏𝑥𝑧𝑢 −
𝐵𝑖
𝑅𝑒
𝜏𝑧𝑧𝑤

]

= −2𝐵𝑖
𝑅𝑒

(

𝜏𝑝𝑥𝑥 + 2 𝜀
𝐵𝑖

𝜕𝑢
𝜕𝑥

) 𝜕𝑢
𝜕𝑥

− 𝐵𝑖
𝜀𝑅𝑒

(

𝜏𝑥𝑧 +
1
𝐵𝑖

(𝜕𝑢
𝜕𝑧

+ 𝜀2 𝜕𝑤
𝜕𝑧

))(𝜕𝑢
𝜕𝑧

+ 𝜀2 𝜕𝑤
𝜕𝑧

)

. (4.28)
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This equation has to be averaged over the depth. The details of this calculation are presented in appendix A. Taking
into account the boundary conditions and dropping all second-order terms, the depth-averaged work-energy theorem
can finally be expressed as:

𝜕
𝜕𝑡

(

ℎ𝑈2

2
+
ℎ3𝜑
2

+ ℎ2

2𝐹𝑟2

)

+ 𝜕
𝜕𝑥

(

ℎ⟨𝑢3⟩
2

+ ℎ2𝑈
𝐹𝑟2

)

= −𝜆ℎ𝑈
(1)

𝑅𝑒
+ 𝐵𝑖
𝑅𝑒

ℎ

∫
0

𝜏𝑌 (0)
𝑥𝑧

𝜕𝑢(1)

𝜕𝑧
𝑑𝑧. (4.29)

From the equation (4.11) and the definition of enstrophy 𝜑 , we have ⟨𝑢2⟩ = 𝑈2 + ℎ2𝜑 and

⟨𝑢3⟩ = 𝑈3 + 3ℎ2𝑈𝜑 + ⟨𝑢∗3⟩. (4.30)

Accordingly, (4.29) can be rewritten as:

𝜕
𝜕𝑡

(

ℎ𝑈2

2
+
ℎ3𝜑
2

+ ℎ2

2𝐹𝑟2

)

+ 𝜕
𝜕𝑥

(

ℎ𝑈3

2
+

3ℎ3𝑈𝜑
2

+ ℎ2𝑈
𝐹𝑟2

)

=

= −𝜆ℎ𝑈
(1)

𝑅𝑒
+ 𝐵𝑖
𝑅𝑒

ℎ

∫
0

𝜏𝑌 (0)
𝑥𝑧

𝜕𝑢(1)

𝜕𝑧
𝑑𝑧 − 𝜕

𝜕𝑥

(

ℎ⟨𝑢∗3⟩
2

)

. (4.31)

As for the momentum equation, we wish to express the right-hand side of (4.31) under the form of relaxation terms.
For turbulent water flows, Richard and Gavrilyuk [39] considered a weakly-sheared flow assumption, which allowed
them to neglect the term involving the cubic deviation ⟨𝑢∗3⟩ and thus to close the model. In the present work, since
the solution must satisfy the no-slip condition, this assumption is not appropriate. On the other hand, treating ⟨𝑢∗3⟩
as a fourth variable would lead to an infinite hierarchy of equations. To close the system, we thus calculate ⟨𝑢∗3⟩ as a
function of ℎ by employing the asymptotic expansions derived above. Namely, using expression (4.30), we obtain the
following expression at leading order:

⟨𝑢∗3⟩ = − 2
945

𝜆3ℎ6
(

1 −
ℎ𝑝
ℎ

)7(

1 +
49ℎ𝑝
16ℎ

+
35ℎ2𝑝
8ℎ2

)

+ 𝑂(𝜀). (4.32)

The derivative of ⟨𝑢∗3⟩ involved in (4.31) has thus the form:

− 𝜕
𝜕𝑥

(

ℎ⟨𝑢∗3⟩
2

)

= 𝜆3ℎ6

135

(

1 −
ℎ𝑝
ℎ

)6(

1 +
21ℎ𝑝
8ℎ

+
57ℎ2𝑝
16ℎ2

+
5ℎ3𝑝
4ℎ3

)

𝜕ℎ
𝜕𝑥

+ 𝑂(𝜀). (4.33)

The remaining term to be calculated in (4.31) is the integral:

𝐵𝑖
𝑅𝑒

ℎ

∫
0

𝜏𝑌 (0)
𝑥𝑧

𝜕𝑢(1)

𝜕𝑧
𝑑𝑧 =

𝜆ℎ𝑝
2

[

5
12
𝜆2ℎ5

(

1 −
ℎ𝑝
ℎ

)2(

1 +
ℎ𝑝
ℎ

+
3ℎ2𝑝
5ℎ2

−
ℎ3𝑝
ℎ3

)

− ℎ2𝐹𝑟−2
(

1 −
ℎ2𝑝
3ℎ2

)]

𝜕ℎ
𝜕𝑥

(4.34)

In the above expression, the term involving Froude number can be expressed in terms of 𝑈 (1) through equation (4.6).
Finally, employing also expression (4.19), the averaged energy equation (4.31) can be rewritten as follows:

𝜕
𝜕𝑡

(

ℎ𝑈2

2
+
ℎ3𝜑
2

+ ℎ2

2𝐹𝑟2

)

+ 𝜕
𝜕𝑥

(

ℎ𝑈3

2
+

3ℎ3𝑈𝜑
2

+ ℎ2𝑈
𝐹𝑟2

)

= 𝑈
𝜀𝑅𝑒

[

𝜆ℎ − 𝐵𝑖 − 3𝑈
ℎ𝛼1(𝜉)

] [

𝛼1(𝜉) +
7

1080
𝜆2ℎ2

𝜑
𝛽1(𝜉)𝑟(𝜉)

]

+ 𝑈
𝜀𝑅𝑒

7
18
𝜆ℎ
𝜑

[

𝜑 − 𝑈2

5ℎ2
𝛼2(𝜉)

]

𝛽2(𝜉)𝑟(𝜉) (4.35)

where again 𝜉 = ℎ𝑝∕ℎ and the function 𝑟 is defined by:

𝑟(𝜉) =
1 + 11

4
𝜉 + 87

16
𝜉2 + 107

16
𝜉3 + 𝜉4

(

1 +
𝜉
2

)

(

1 + 2𝜉 + 3𝜉2 + 3
2
𝜉3
)

. (4.36)
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The first relaxation term on right-hand side of (4.35) interprets as the balance between the power of the component
of the weight along the 𝑂𝑥 axis and the power of the yield stress and the viscous friction forces. The second term
corresponds to the relaxation for the enstrophy 𝜑.

4.4. Equation of enstrophy
From equations (4.3), (4.22) and (4.35), the following evolution equation for the enstrophy 𝜑 can be derived:

ℎ2

2

(

𝜕ℎ𝜑
𝜕𝑡

+
𝜕ℎ𝑈𝜑
𝜕𝑥

)

= 𝑈
𝜀𝑅𝑒

[

𝜆ℎ − 𝐵𝑖 − 3𝑈
ℎ𝛼1(𝜉)

] [

7
360

𝜆2ℎ2

𝜑
𝛽1(𝜉)

(

𝑟(𝜉)
3

− 1
)]

+ 𝑈
𝜀𝑅𝑒

7
6
𝜆ℎ
𝜑

[

𝜑 − 𝑈2

5ℎ2
𝛼2(𝜉)

]

𝛽2(𝜉)
(

𝑟(𝜉)
3

− 1
)

. (4.37)

Note that, since 𝑟(𝜉)∕3 − 1 < 0, the enstrophy properly relaxes toward its equilibrium value 𝛼2(𝜉)𝑈2∕5ℎ2.
Formally, any set of three equations from (4.3), (4.22), (4.35) and (4.37) can be used to describe the motion of

the fluid. However, to model shock waves (see Section 6), it is more natural to use the mass, momentum and energy
conservation equations, while the enstrophy, which plays the role of an entropy of the system, should increase according
to a Rankine–Hugoniot relation (for more details see [39]). Hence, we shall only consider the system consisting of
equations (4.3), (4.22), (4.35) in what follows.

4.5. Structure of the model
Here we show that the system of equations (4.3), (4.22) and (4.35) is equivalent to Euler equations for compressible

fluids with relaxation terms. This property ensures that the model is fully hyperbolic and can be handled by efficient
numerical schemes. Returning to dimensional variables, let us denote

Π = ℎ3𝜑 +
𝑔ℎ2 cos 𝜃

2
, (4.38)

𝑒 = 1
2
(

𝑈2 + ℎ2𝜑 + 𝑔ℎ cos 𝜃
)

. (4.39)

Equations (4.3), (4.22) and (4.35) can then be written as (in dimensional form):

𝜕ℎ
𝜕𝑡

+ 𝜕ℎ𝑈
𝜕𝑥

= 0, (4.40)

𝜕
𝜕𝑡

(ℎ𝑈 ) + 𝜕
𝜕𝑥

(

ℎ𝑈2 + Π
)

=
[

𝑔ℎ sin 𝜃 −
𝜏𝑐
𝜌

− 3𝜈 𝑈
ℎ𝛼1(𝜉)

] [

𝛼1(𝜉) +
7
360

(𝑔ℎ sin 𝜃)2

𝜈2𝜑
𝛽1(𝜉)

]

+ 7
6
𝑔ℎ sin 𝜃
𝜑

[

𝜑 − 𝑈2

5ℎ2
𝛼2(𝜉)

]

𝛽2(𝜉), (4.41)

𝜕
𝜕𝑡

(ℎ𝑒) + 𝜕
𝜕𝑥

[

ℎ𝑈
(

𝑒 + Π
ℎ

)]

= 𝑈
[

𝑔ℎ sin 𝜃 −
𝜏𝑐
𝜌

− 3𝜈 𝑈
ℎ𝛼1(𝜉)

] [

𝛼1(𝜉) +
7

1080
(𝑔ℎ sin 𝜃)2

𝜈2𝜑
𝛽1(𝜉)𝑟(𝜉)

]

+ 7
18
𝑈𝑔ℎ sin 𝜃

𝜑

[

𝜑 − 𝑈2

5ℎ2
𝛼2(𝜉)

]

𝛽2(𝜉)𝑟(𝜉) (4.42)

with 𝜈 = 𝐾∕𝜌, 𝜉 = 𝜏𝑐∕(𝜌𝑔ℎ sin 𝜃), and the functions 𝑟, 𝛼𝑖, 𝛽𝑖 (𝑖 = 1, 2) defined in (4.23)-(4.26) and (4.36). Hence, the
left-hand side of system (4.40)–(4.42) indeed has the form of Euler equations for compressible fluids with Π, 𝑒 and 𝜑
playing the roles of pressure, energy and enstrophy, respectively.

The reduced system obtained for the Newtonian case (𝜏𝑐 = 0) is given in Appendix B. It should be noted that, in this
Newtonian case, the present model improves on the former model derived by Richard et al [28] in that the enstrophy
relaxes toward a more physical value 𝑈2∕5ℎ2.
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5. Reconstruction of the velocity field
The solution of the system (4.40)-(4.42) provides us with the free-surface ℎ, the averaged velocity 𝑈 and the

enstrophy 𝜑 at order 𝑂(𝜀). For a comprehensive analysis of the flows, it can also be useful to reconstruct the velocity
field (𝑢,𝑤) from these computed variables ℎ, 𝑈 and 𝜑. Let us recall that, unlike the previous studies based on the
classical expression (2.3) for the yield-stress tensor, a notable benefit of our model is the possibility to consistently
reconstruct velocity profiles that are smooth at order 𝑂(𝜀) (see Section 3.3).

At leading order, the longitudinal velocity 𝑢 can be expressed as

𝑢(0) = 𝑈 (0)𝑓𝑠ℎ(𝑧) for 𝑧 < ℎ − ℎ𝑝, (5.1)

�̃�(0) = 𝑈 (0)𝑓𝑝𝑙 for 𝑧 ⩾ ℎ − ℎ𝑝, (5.2)

with

𝑓𝑠ℎ(𝑧) =
3𝑧
ℎ

(

1 − 𝑧
2(ℎ − ℎ𝑝)

)(

1 −
ℎ𝑝
ℎ

)−1(

1 +
ℎ𝑝
2ℎ

)−1

, 𝑓𝑝𝑙 =
3
2

(

1 +
ℎ𝑝
2ℎ

)−1

. (5.3)

Note that since the quantity 𝑈 (0) is the leading-order solution for the average velocity, we have

1
ℎ ∫

ℎ−ℎ𝑝

0
𝑓𝑠ℎ(𝑧) d𝑧 +

1
ℎ ∫

ℎ

ℎ−ℎ𝑝
𝑓𝑝𝑙 d𝑧 = 1. (5.4)

At order 𝑂(𝜀), the expansions for the longitudinal velocity are written

𝑢 = 𝑈𝑓𝑠ℎ + 𝜀
[

𝑢(1) − 𝑈 (1)𝑓𝑠ℎ
]

+ 𝑂(𝜀2) for 𝑧 < ℎ − ℎ𝑝, (5.5)

𝑢 = 𝑈𝑓𝑝𝑙 + 𝜀
[

�̃�(1) − 𝑈 (1)𝑓𝑝𝑙
]

+ 𝑂(𝜀2) for 𝑧 ⩾ ℎ − ℎ𝑝, (5.6)

where𝑈𝑓𝑠ℎ and𝑈𝑓𝑝𝑙 give the velocity profile at order 0 and the second terms in the right-hand side of these expressions
give the correction of order 1. These expressions can be used to reconstruct the velocity profile with the values of ℎ,
𝑈 and 𝜑, excluding their derivatives, since the derivatives 𝜕ℎ∕𝜕𝑡 and 𝜕ℎ∕𝜕𝑥, which are involved in the first-order
corrections 𝑢1 and �̃�1 (see equations (3.31) and (3.32)), can be consistently expressed in terms of ℎ, 𝑈 and 𝜑 by using
(4.5), (4.14), (4.19) and (4.20). Finally, this leads to

𝑢 = 𝑈𝑓 (𝜂; 𝜉) +
[

𝜒(𝜂; 𝜉) ℎ2

2𝐹𝑟2
+ 𝜓(𝜂; 𝜉)𝜆

2ℎ5

15

]

×

×
(

7
24𝜑ℎ2

[

𝜆ℎ − 𝐵𝑖 − 3𝑈
ℎ𝛼1(𝜉)

]

𝜁1(𝜉) +
7
18

𝜆
𝜑2ℎ

[

𝜑 − 𝑈2

5ℎ2
𝛼2(𝜉)

]

𝜁2(𝜉)
)

(5.7)

with 𝜉 = ℎ𝑝∕ℎ and 𝜂 = 𝑧∕ℎ. As above, the function 𝑓 , which corresponds to 𝑓𝑠ℎ and 𝑓𝑝𝑙, gives the profile of order 0
and the other terms give the corrections of order 1. For the sheared layer, 𝑧 < ℎ − ℎ𝑝, the functions 𝑓 , 𝜒 and 𝜓 are
defined by

𝑓 (𝜂; 𝜉) =
3𝜂

(1 − 𝜉)2
(

1 − 𝜉 −
𝜂
2

)(

1 + 1
2
𝜉
)−1

, (5.8)

𝜒(𝜂; 𝜉) =
𝜉𝜂

(1 − 𝜉)2
(

1 − 3
2
𝜂 − 𝜉2 + 1

2
𝜂𝜉2

)(

1 + 1
2
𝜉
)−1

(5.9)

𝜓(𝜂; 𝜉) = −𝜂
(

1 + 5
2
𝜉 − 3𝜂 + 5

2
𝜉2 − 3𝜉𝜂 + 5

2
𝜂2−5

2
𝜉3−3𝜉2𝜂−5

4
𝜉𝜂2−5

8
𝜂3

−5
2
𝜉4 + 3

4
𝜉3𝜂 − 5

4
𝜉2𝜂2 + 5

16
𝜉𝜂3 − 𝜉5 + 3

4
𝜉4𝜂 + 5

16
𝜉2𝜂3

)

(

1 + 1
2
𝜉
)−1

(5.10)
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while for the pseudo-plug zone, 𝑧 ⩾ ℎ − ℎ𝑝, they are defined as

𝑓 (𝜂; 𝜉) = 3
2

(

1 + 1
2
𝜉
)−1

, (5.11)

𝜒(𝜂; 𝜉) =
(

1 − 2𝜂 + 𝜂2 − 𝜉𝜂 + 1
2
𝜉𝜂2

)(

1 + 1
2
𝜉
)−1

, (5.12)

𝜓(𝜂; 𝜉) = −29
8

(

1 + 63
58
𝜉 − 60

29
𝜂 + 3

58
𝜉2 − 90

29
𝜉𝜂 + 30

29
𝜂2 − 30

29
𝜉2𝜂

− 7
58
𝜉3 + 45

29
𝜉𝜂2 + 3

58
𝜉4 + 15

29
𝜉2𝜂2

)

(1 − 𝜉)2
(

1 + 1
2
𝜉
)−1

. (5.13)

The functions 𝜁1 and 𝜁2 are given by

𝜁1(𝜉) = 𝜉 (1 − 𝜉)2
(

1 + 5
4
𝜉
)(

1 + 5
2
𝜉 + 1

2
𝜉2
)(

1 + 61
16
𝜉 + 63

8
𝜉2 + 63

8
𝜉3 + 21

16
𝜉4
)−1

, (5.14)

𝜁2(𝜉) = (1 − 𝜉)3
(

1 + 5
4
𝜉
)2 (

1 + 61
16
𝜉 + 63

8
𝜉2 + 63

8
𝜉3 + 21

16
𝜉4
)−1

. (5.15)

Lastly, the functions 𝛼1 and 𝛼2 are defined by (4.23)–(4.24).
Regarding the normal velocity 𝑤, the derivative 𝜕ℎ∕𝜕𝑥 in (3.15) can be expressed consistently in a similar way.

Since 𝑤 is a first-order quantity compared to 𝑢, it is sufficient to express 𝑤0 as a sum of relaxation terms to obtain an
accuracy at order 1. In the end, the following expression is obtained:

𝑤 = 𝜆ℎ2

𝜀𝑅𝑒

(

7
24𝜑ℎ2

[

𝜆ℎ − 𝐵𝑖 − 3𝑈
ℎ𝛼1(𝜉)

]

𝜁1(𝜉) +
7
18

𝜆
𝜑2ℎ

[

𝜑 − 𝑈2

5ℎ2
𝛼2(𝜉)

]

𝜁2(𝜉)
)

𝑞(𝜂; 𝜉) (5.16)

The function 𝑞 for the sheared layer, 𝑧 < ℎ − ℎ𝑝, is given by

𝑞(𝜂; 𝜉) = −
𝜂2

2
, (5.17)

and for the pseudo-plug, 𝑧 ⩾ ℎ − ℎ𝑝, by

𝑞(𝜂; 𝜉) = −(1 − 𝜉)
(

𝜂 −
1 − 𝜉
2

)

. (5.18)

In dimensional variables the reconstructed longitudinal velocity expresses as

𝑢 = 𝑈𝑓 (𝜂; 𝜉) +
[

𝜒(𝜂; 𝜉)
𝑔ℎ2 cos 𝜃

2
+ 𝜓(𝜂; 𝜉)

𝑔2ℎ5 sin2 𝜃
15𝜈2

]

×
(

7
24𝜈𝜑ℎ2

[

𝑔ℎ sin 𝜃 −
𝜏𝑐
𝜌

− 3𝜈𝑈
ℎ𝛼1(𝜉)

]

𝜁1(𝜉) +
7
18
𝑔 sin 𝜃
𝜈𝜑2ℎ

[

𝜑 − 𝑈2

5ℎ2
𝛼2(𝜉)

]

𝜁2(𝜉)
)

(5.19)

with 𝜉 = 𝜏𝑐∕(𝜌𝑔ℎ sin 𝜃). The dimensional normal velocity expresses as

𝑤 =
𝑔ℎ2 sin 𝜃

𝜈

(

7
24𝜑ℎ2

[

𝑔ℎ sin 𝜃 −
𝜏𝑐
𝜌

− 3𝜈𝑈
ℎ𝛼1(𝜉)

]

𝜁1(𝜉) +
7
18
𝑔 sin 𝜃
𝜈𝜑2ℎ

[

𝜑 − 𝑈2

5ℎ2
𝛼2(𝜉)

]

𝜁2(𝜉)
)

𝑞(𝑧∕ℎ; 𝜉). (5.20)

6. Applications
6.1. Characteristic velocities

The left-hand side of the system (4.40)–(4.42) is identical as in Richard and Gavrilyuk [39]. The right-hand side
involves only relaxation terms. Accordingly, the model is hyperbolic as proven by Teshukov [38]. The system can be
rewritten in the matrix form:

𝜕𝑽
𝜕𝑡

+𝑨𝜕𝑽
𝜕𝑥

= 𝑺, (6.1)
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Figure 3: Comparison between the instability threshold derived with our new model and that obtained by Balmforth and
Liu [11]: critical Reynolds number 𝑅𝑒𝑐 as a function of the Bingham number 𝐵𝑖.

where 𝑽 = [ℎ,𝑈, 𝜑]𝑇 , 𝑺 is the matrix of the source terms and the matrix 𝑨 is given by

𝑨 =
⎡

⎢

⎢

⎣

𝑈 ℎ 0
𝑔 cos 𝜃 + 3ℎ𝜑 𝑈 ℎ2

0 0 𝑈

⎤

⎥

⎥

⎦

(6.2)

The three characteristic velocities of the model are given by the eigenvalues of 𝑨, namely:

𝑈, 𝑈 −
√

𝑔ℎ cos 𝜃 + 3ℎ2𝜑, 𝑈 +
√

𝑔ℎ cos 𝜃 + 3ℎ2𝜑 (6.3)

As clear from these expressions, the shearing effect contributes to the characteristic velocities through the term 3ℎ2𝜑.

6.2. Long-wave instability
As explained in the previous paragraph, the characteristic velocities of the system depend only on the conservative

part of the equations, and not on the relaxation terms. On the contrary, the linear instability threshold and the expression
of the phase velocity of perturbations depend strongly on the relaxation source terms and, in particular, on the yield-
stress and viscous friction terms.

To establish the dispersion relation, let us linearize the system of equations (4.3), (4.22) and (4.35) around the base
solution (4.2) and (4.14). We write ℎ = 1 + ℎ′, 𝑈 = 𝑈 (0) + 𝑈 ′ and 𝜑 = 𝜑(0) + 𝜑′, where ℎ′, 𝑈 ′ and 𝜑′ are small
sinusoidal perturbations. Namely, we take the perturbations of the form [ℎ′, 𝑈 ′, 𝜑′]𝑇 = [𝐴1, 𝐴2, 𝐴3]𝑇 exp[i𝑘(𝑥− 𝑐𝑡)],
where 𝑘 is the wavenumber and 𝑐 is the phase velocity. The dispersion relation is found by equating the determinant
of the linearised system to zero. The details of this lengthy calculation are given in Appendix C. Up to the first order
in 𝜀, the relation writes

𝑐 = 𝜆(1 − ℎ𝑝) + i𝑘𝜀𝑅𝑒
3

[

2𝜆2
5

(1 − ℎ𝑝)2
(

1 + ℎ𝑝 + ℎ2𝑝 −
ℎ3𝑝
4

−
ℎ4𝑝
4

)

− 1
𝐹𝑟2

]

+ 𝑂(𝜀2). (6.4)

The base flow is stable if Im(𝑐) < 0.
Balmforth and Liu [11] studied a linear stability of the base flow for the linearized Cauchy equations (known as

generalized Orr–Sommerfeld equations) in the case of a Herschel–Bulkley fluid with power flow index 𝑛. In order to
compare our result with one obtained by these authors in particular case of the Bingham fluid (𝑛 = 1), we choose
the same characteristic velocity, namely 𝑢0 = 𝑔ℎ20 sin 𝜃∕𝜈. Note that this choice imposes 𝜆 = 1. As a result, in the
long-wave limit (𝜀 → 0) stability occurs for 𝑅𝑒 < 𝑅𝑒𝑐 , where the critical Reynolds number 𝑅𝑒𝑐 is given by

𝑅𝑒𝑐 =
10 cot 𝜃
(1 − 𝐵𝑖)2

(

4 + 4𝐵𝑖 + 4𝐵𝑖2 − 𝐵𝑖3 − 𝐵𝑖4
)−1 . (6.5)

Analysis of the expression (6.5) shows that the critical Reynolds number increases as the Bingham number increases.
This reveals the stabilizing effect of the plasticity, which was also highlighted in former studies [11, 26]. Figure 3
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Figure 4: Development of roll waves as a result of uniform flow instability for two values of 𝐵𝑖: evolution of (a) depth ℎ
and (b) enstrophy 𝜑 as functions of the distance from the system entrance (𝑅𝑒 = 75.71, 𝐹𝑟 = 4.96, 𝜆 = 1, and 𝜃 = 18◦).

compares our condition (6.5) with the one obtained by Balmforth and Liu [11] from generalized Orr-Sommerfeld
equations in the particular case of the Bingham fluid. As shown, our model reproduces almost the same instability
threshold. The slight difference (almost not visible in the figure) can be attributed to the different formulation of the
constitutive law. Note that the recent experimental study on the instability of viscoplastic fluids made by Mounkaila
Noma et al [40] shows good agreement with the criteria obtained by Balmforth and Liu [11] in the general case of a
Herschel–Bulkley fluid.

6.3. Simulation of roll waves
As the system of equations (4.40)-(4.42) is hyperbolic, it can be solved by simple and robust classical numerical

schemes. In this work, we use a Godunov-type scheme with a HLLC Riemann solver (for more details see Toro [41]).
An initially uniform flow is perturbed by applying a small sinusoidal disturbance of fixed frequency at the entrance of
the system. At the entrance, the values ℎ, 𝑈 and 𝜑 are imposed, while at the outlet a Neumann boundary condition
is considered. Parameters are chosen so that 𝑅𝑒 > 𝑅𝑒𝑐 , allowing an instability to develop. Namely, we choose the
following values for the dimensional parameters: 𝐾 = 20 Pa s, 𝜌 = 1000 kg m−3, ℎ0 = 0.01 m, 𝜃 = 18◦ and
𝑢0 = 𝑔ℎ20 sin 𝜃∕𝜈 = 1.5 m s−1. This corresponds to the dimensionless parameters: 𝑅𝑒 = 75.71, 𝐹𝑟 = 4.96 and 𝜆 = 1.

In order to capture the influence of the yield stress on the waves, we consider two cases, namely 𝜏𝑐 = 3 Pa and
𝜏𝑐 = 20 Pa, corresponding to 𝐵𝑖 = 0.1 and 𝐵𝑖 = 0.6 respectively. Figure 4 shows the evolution of the simulated
free-surface height ℎ and flow enstrophy 𝜑. Typical roll waves, with a discontinuous shock at the front, develop for
both values of 𝐵𝑖. It is observed in Figure 4a that the amplitude and the wavelength of these roll waves decreases as
the Bingham number is increased. The roll waves are also associated to marked variations of enstrophy, whose values
become smaller as the Bingham number increases (Figure 4b).

Figure 5 shows close-ups on the shape of a roll wave. It is seen that the maximum amplitude of the wave is not
reached by the shock, but that the free-surface height continues to grow upstream of the shock (Figure 5a). This feature
can be attributed to the presence of enstrophy in the model, and contrasts with the predictions of two-equations models,
for which the peak of the wave is reached exactly at the shock (Balmforth and Liu [11]). A similar behaviour was
reported for Newtonian fluids by [39], and shown to be in good agreement with experimental data. It can also be noted
that the enstrophy is strongly influenced by the shock, with a marked peak at the front of the wave (Figure 5b).

6.4. Interpretation of enstrophy variations
In this section, we relate the enstrophy variations observed within the roll waves (see Figure 5) to the shape of the

reconstructed velocity profile. More precisely, we analyze the deviations of the enstrophy from its equilibrium value
𝜑𝑒𝑞 given by Eq. (4.21):

𝜑𝑒𝑞 =
𝑈2

5ℎ2

(

1 −
𝜏𝑐

𝜌𝑔ℎ sin 𝜃

)(

1 +
5𝜏𝑐

4𝜌𝑔ℎ sin 𝜃

)(

1 +
𝜏𝑐

2𝜌𝑔ℎ sin 𝜃

)−2
. (6.6)

As a reference, let us start with the Newtonian case (𝐵𝑖 = 0). Alekseenko and Nakoryakov [42] measured the
velocity profiles in a wavy Newtonian film falling on a vertical wall. These authors distinguished four types regions
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Figure 5: Shape of the roll waves: evolution depth ℎ and enstrophy 𝜑 (𝑅𝑒 = 75.71, 𝐹𝑟 = 4.96, 𝐵𝑖 = 0.1, 𝜆 = 1 and 𝜃 = 18◦).

in the wave. In region I, the "velocity profile is described by the self-similar parabolic law". In region II, "the velocity
profile is less filled as compared to the parabolic one", while in region III, the velocity profile is "more filled". In region
IV, no velocity profile could be determined due to scatter in the experimental points. From the back to the front of the
wave, the authors first reported a region I, then a region II, a region I again, a region III located near the maximum
depth, and finally a region IV at the front. Similar observations were later made by Denner et al [43] from experimental
data and DNS. As demonstrated by Richard et al [28], these different zones can be directly related to the deviation of
the enstrophy from its equilibrium value. In the Newtonian case, 𝜑𝑒𝑞 = 𝑈2∕5ℎ2, and the longitudinal velocity 𝑢 at
order 𝑂(𝜀) is given by (see Eq. (5.19)):

𝑢 = 𝑈𝑓 (𝑧∕ℎ; 0) + 7
270

(

𝑔 sin 𝜃
𝜈

)3 ℎ4

𝜑2

[

𝜑 − 𝑈2

5ℎ2

]

𝜓(𝑧∕ℎ; 0). (6.7)

The first term in this expression corresponds to the classical parabolic profile obtained, e.g., in a steady uniform flow,
while the second term is zero for 𝜑 = 𝜑𝑒𝑞 . Hence, for 𝜑 ≈ 𝜑𝑒𝑞 , a parabolic velocity profile is recovered, corresponding
to region I. For 𝜑 > 𝜑𝑒𝑞 , the velocity profile is "less filled" and corresponds to region II, while for 𝜑 < 𝜑𝑒𝑞 , the
velocity profile is "more filled" and corresponds to region III. Comparisons between 𝜑 and 𝜑𝑒𝑞 in roll waves simulated
with our model for 𝐵𝑖 = 0 are shown in Figure 6, and the corresponding reconstructed velocity profiles are presented
in Figure 7. It is observed that the succession of the zones along the wave, as delineated from the deviation between
𝜑 and 𝜑𝑒𝑞 (Figure 6a), and the corresponding differences in the shape of the velocity profiles, are in good agreement
with the experimental observations of Alekseenko and Nakoryakov [42]. Note nevertheless that region III ends before
the peak of the wave, which was not the case in the experiments. This discrepancy is caused by the strong variation of
enstrophy at the shock and, as shown by Richard et al [28], can be alleviated by adding a diffusion term to the model.
Indeed, the shock and associated enstrophy discontinuity are suppressed by the additional diffusion, which leads to an
extension of region III up to the peak of the wave.

Turning to the case of a Bingham fluid, the equilibrium enstrophy is obtained from Eq. (4.21),𝜑𝑒𝑞 = 𝛼2(𝜉)𝑈2∕5ℎ2,
and the longitudinal velocity at order 𝑂(𝜀) is given by Eq. (5.19). The first term in (5.19) corresponds to the classical
parabolic velocity profile overlaid by an unsheared plug zone (see also section 3.1). However, unlike in the Newtonian
case, the deviation of the enstrophy 𝜑 from the equilibrium value 𝜑𝑒𝑞 does not fully define the type of velocity profile
here. Indeed, (5.19) includes a second relaxation term corresponding to the deviation of the averaged velocity 𝑈 from
the equilibrium value 𝑈𝑒𝑞 = 𝛼1(𝜉)(𝜌𝑔ℎ2 sin 𝜃 − 𝜏𝑐ℎ)∕3𝜌𝜈. Nevertheless, we observed that the regions where 𝑈 < 𝑈𝑒𝑞
(resp.𝑈 > 𝑈𝑒𝑞) approximately correspond to regions where𝜑 < 𝜑𝑒𝑞 and (resp.𝜑 > 𝜑𝑒𝑞). Again, comparisons between
𝜑 and 𝜑𝑒𝑞 along a simulated roll wave and corresponding reconstructed velocity profiles are shown in Figures 8 and 9.
Globally, similar trends as for Newtonian fluids are recovered. In zones for which 𝜑 ≈ 𝜑𝑒𝑞 , a parabolic velocity profile
with an unsheared plug zone is observed (regions I). In zones for which 𝜑 > 𝜑𝑒𝑞 , the velocity profile is "less filled"
than the equilibrium profile (region II), while for 𝜑 > 𝜑𝑒𝑞 the velocity profile is more filled (region III). Note also that
in region III, the longitudinal velocity profile displays a slight negative shearing in the pseudo-plug. The succession of
the regions along the waves, namely I-II-I-III, is also found to be similar as for the Newtonian case (Figure 8a). Here
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Figure 6: (a) Different regions within a roll wave defined from the deviation between the enstrophy 𝜑 and its equilibrium
value 𝜑𝑒𝑞: Newtonian case (𝑅𝑒 = 75.71, 𝐹𝑟 = 4.96, 𝐵𝑖 = 0, 𝜆 = 1 and 𝜃 = 18◦). Values of 𝜑𝑒𝑞 are computed from the local
depth ℎ and average velocity 𝑈 along the wave (see text). (b) Corresponding free-surface profile.
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Figure 7: Typical longitudinal velocity profiles reconstructed in regions I, II and III in the Newtonian case (see Figure 6).
The inset shows close-ups near the free surface.

again, the addition of a diffusion term to the model would likely decrease the peak of enstrophy near the front of the
wave, and increase the extent of region III up to the front of the wave.

7. Conclusion
In this paper, a three-equation shallow-flow model for a Bingham fluid propagating down an inclined plane is

consistently derived from the governing equations. The derivation of the model is based on a new asymptotic solution
describing the flow composed of a sheared layer at the base and a pseudo-plug zone, in which the strain-rate is of order
𝑂(𝜀), close to the free surface. In contrast to previous approaches, the expansion is constructed by relaxing the classical
assumption of alignment between the yield-stress tensor and the strain-rate. As a consequence, shearing in the pseudo-
plug is related to the contribution of viscous stress terms, which allows us to eliminate the divergence of the strain rate
at the fake yield surface, and to obtain smooth longitudinal velocity profiles at order 𝑂(𝜀). In addition, this asymptotic
solution accounts for inertial terms at order 𝑂(𝜀) in the pseudo-plug, which was not the case in previous studies. The
final model includes the depth-averaged mass conservation equation, the depth-averaged momentum balance equation,
and a depth-averaged energy balance equation obtained from the work–energy theorem. The variables of the model are
the fluid depth, the average velocity and the enstrophy, which is related to the deviation of the velocity with respect to
its average value and represents the internal shearing of the flow. The velocity field within the flow can be reconstructed
directly from the variables of the model, the benefit of which is the absence of the derivatives of the free-surface in the
corresponding formulas.

The derived three-equation model can be written in conservative form and has the same mathematical structure as
Euler equations for compressible fluids with relaxation terms. As a result, the model can be solved by classical and
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Figure 8: (a) Different zones within a roll wave defined from the deviation between the enstrophy 𝜑 and its equilibrium
value 𝜑𝑒𝑞: Bingham case (𝑅𝑒 = 75.71, 𝐹𝑟 = 4.96, 𝐵𝑖 = 0.1, 𝜆 = 1, ℎ𝑝 = 0.1 and 𝜃 = 18◦). Values of 𝜑𝑒𝑞 are computed from
the local depth ℎ and average velocity 𝑈 along the wave (see text). (b) Corresponding free-surface profile.
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Figure 9: Typical longitudinal velocity profiles reconstructed in regions I, II and III in the Newtonian case (see Figure 8).
The inset shows close-ups near the free surface.

robust numerical schemes with relatively low computational cost. In contrast, the two-equation model of Fernandez-
Nieto et al [26], which was the only other consistent shallow-water model for Bingham fluids to date, has a more
complex mathematical structure and does not admit the energy balance. Moreover, this former model is derived on the
base of non-smooth asymptotic velocity profiles, which precludes an accurate reconstruction of the velocity field at
order 𝑂(𝜀).

Several applications of the derived model are presented. The linear stability analysis of equilibrium flows
demonstrates the stabilizing effect of plasticity. Furthermore, the instability threshold is in good agreement with the
result of Balmforth and Liu [11] obtained from the generalized Orr-Sommerfeld equations for viscoplastic fluids. The
model is solved numerically to simulate the roll waves appearing above the instability threshold. It is shown that the
amplitude and the wavelength of these rolls waves decrease as the yield stress grows. The variations of enstrophy along
the waves is also analyzed, demonstrating that deviations of this quantity from its equilibrium value characterize the
type of shearing within the flow. Namely, if the enstrophy is larger than its equilibrium value, the shearing is positive
in the pseudo-plug; if the enstrophy is equal to its equilibrium value, the shearing is almost zero in the pseudo-plug;
and if the enstrophy is smaller than its equilibrium, the shearing is negative in the pseudo-plug. The true physical
relevance of this negative shearing should however be analyzed further, as its magnitude remains relatively small in
the presented simulations and artifacts related to the shallow-flow approximation could play a role. To clarify this issue,
further developments shall consider the inclusion of additional diffusive terms to the model, to smooth out the shock
at the front of the waves. Consideration of non-hydrostatic effects might also be helpful to enrich the physics captured
by the model.

Future works will also concentrate to extending the three-equation approach to the general case of a Her-
schel–Bulkley fluid and to three-dimensional flows, which will allow us to make direct comparisons with experimental
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data. In addition, the derivation of the model highlighted the important role played by the normal stress components
in such viscoplastic free-surface flows. The assumption made regarding the small magnitude of normal stresses in
the sheared layer may be questioned in the light of recent experimental studies [35–37] showing that normal stresses
might actually be as large as shear stress in sheared viscoplastic flows. However, a properly validated 3D constitutive
law accounting for these effects, which would also be necessary to fully specify the yield-stress tensor, is still lacking
at the moment.
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Appendix A. Derivation of the energy equation
Starting from the dimensionless form of the work-energy theorem (4.28) and dropping terms of order 𝑂(𝜀2) or

smaller, one obtains

𝜕
𝜕𝑡

(

𝑢2

2

)

+ 𝜕
𝜕𝑥

[

𝑢
(

𝑢2

2
− 𝑥 tan 𝜃

𝜀𝐹 𝑟2
+ 𝑧
𝐹 𝑟2

)

+
𝑝𝑢
𝐹 𝑟2

− 𝐵𝑖
𝑅𝑒
𝜏𝑥𝑥𝑢

]

+ 𝜕
𝜕𝑧

[

𝑤
(

𝑢2

2
− 𝑥 tan 𝜃

𝜀𝐹 𝑟2
+ 𝑧
𝐹 𝑟2

)

+
𝑝𝑤
𝐹𝑟2

− 𝐵𝑖
𝜀𝑅𝑒

𝜏𝑥𝑧𝑢 +
𝐵𝑖
𝑅𝑒
𝜏𝑥𝑥𝑤

]

= −2𝐵𝑖
𝑅𝑒

𝜏𝑌𝑥𝑥
𝜕𝑢
𝜕𝑥

− 𝐵𝑖
𝜀𝑅𝑒

(

𝜏𝑌𝑥𝑧 +
1
𝐵𝑖
𝜕𝑢
𝜕𝑧

) 𝜕𝑢
𝜕𝑧

(A.1)

Introducing the leading-order representation for the pressure (3.10), (3.16) and the normal stress (3.9) and averaging
equation (A.1) over the depth leads to:

𝜕
𝜕𝑡

(

ℎ⟨𝑢2⟩
2

+ ℎ2

2𝐹𝑟2

)

+ 𝜕
𝜕𝑥

⎛

⎜

⎜

⎜

⎝

ℎ⟨𝑢3⟩
2

+ ℎ2𝑈
𝐹𝑟2

− 2𝐵𝑖
𝑅𝑒

ℎ

∫
ℎ−ℎ𝑝

𝜏𝑌 (0)
𝑥𝑥 𝑢𝑑𝑧

⎞

⎟

⎟

⎟

⎠

= 𝜆ℎ𝑈
𝜀𝑅𝑒

− 2𝐵𝑖
𝑅𝑒

ℎ

∫
ℎ−ℎ𝑝

𝜏𝑌 (0)
𝑥𝑥

𝜕𝑢
𝜕𝑥
𝑑𝑧 − 𝐵𝑖

𝜀𝑅𝑒

ℎ

∫
0

(

𝜏𝑌𝑥𝑧 +
1
𝐵𝑖
𝜕𝑢
𝜕𝑧

) 𝜕𝑢
𝜕𝑧
𝑑𝑧 (A.2)

Note that the integral terms involving the normal component of the yield stress tensor 𝜏𝑌 (0)
𝑥𝑥 in (A.2) are equal at leading

order:

𝜕
𝜕𝑥

ℎ

∫
ℎ−ℎ𝑝

𝜏𝑌 (0)
𝑥𝑥 𝑢𝑑𝑧 =

ℎ

∫
ℎ−ℎ𝑝

𝜏𝑌 (0)
𝑥𝑥

𝜕𝑢
𝜕𝑥
𝑑𝑧 + 𝑂(𝜀) = 𝛿 𝜆𝜋

4
ℎ𝑝(ℎ − ℎ𝑝)

𝜕ℎ
𝜕𝑥
, (A.3)

and therefore cancel each other. Using also definition (4.12) for the enstrophy 𝜑, equation (A.2) can be rewritten as

𝜕
𝜕𝑡

(

ℎ𝑈2

2
+
ℎ3𝜑
2

+ ℎ2

2𝐹𝑟2

)

+ 𝜕
𝜕𝑥

(

ℎ⟨𝑢3⟩
2

+ ℎ2𝑈
𝐹𝑟2

)

=

= 𝜆ℎ𝑈
𝜀𝑅𝑒

− 𝐵𝑖
𝜀𝑅𝑒

ℎ

∫
0

(

𝜏𝑌𝑥𝑧 +
1
𝐵𝑖
𝜕𝑢
𝜕𝑧

) 𝜕𝑢
𝜕𝑧
𝑑𝑧 − 𝜕

𝜕𝑥

(

ℎ⟨𝑢′3⟩
2

)

(A.4)

After calculations, the integral term in (A.4) at leading order can be expressed as

𝐵𝑖
𝜀𝑅𝑒

ℎ

∫
0

(

𝜏𝑌 (0)
𝑥𝑧 + 1

𝐵𝑖
𝜕𝑢(0)

𝜕𝑧

)

𝜕𝑢(0)

𝜕𝑧
𝑑𝑧 = 𝜆ℎ𝑈 (0)

𝜀𝑅𝑒
, (A.5)
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while at order 1 we obtain

𝐵𝑖
𝑅𝑒

ℎ

∫
0

(

𝜏𝑌 (0)
𝑥𝑧 + 1

𝐵𝑖
𝜕𝑢(0)

𝜕𝑧

)

𝜕𝑢(1)

𝜕𝑧
𝑑𝑧 = 𝜆ℎ𝑈 (1)

𝑅𝑒
. (A.6)

Hence, we can write

𝐵𝑖
𝜀𝑅𝑒

ℎ

∫
0

(

𝜏𝑌𝑥𝑧 +
1
𝐵𝑖
𝜕𝑢
𝜕𝑧

) 𝜕𝑢
𝜕𝑧
𝑑𝑧 = 𝜆ℎ𝑈 (0)

𝜀𝑅𝑒
+ 2𝜆ℎ𝑈

(1)

𝑅𝑒
− 𝐵𝑖
𝑅𝑒

ℎ

∫
0

𝜏𝑌 (0)
𝑥𝑧

𝜕𝑢(1)

𝜕𝑧
𝑑𝑧 + 𝑂(𝜀), (A.7)

which leads to the averaged energy equation expressed in (4.29).

Appendix B. Newtonian case
For a Newtonian fluid (𝜏𝑐 = 0), the system of equations (4.40)-(4.42) reduces to

𝜕ℎ
𝜕𝑡

+ 𝜕ℎ𝑈
𝜕𝑥

= 0 (B.1)

𝜕
𝜕𝑡

(ℎ𝑈 ) + 𝜕
𝜕𝑥

(

ℎ𝑈2 + Π
)

=
[

𝑔ℎ sin 𝜃 − 3𝜈𝑈
ℎ

]

+ 7
6
𝑔ℎ̄ sin 𝜃
𝜑

[

𝜑 − 𝑈2

5ℎ2

]

(B.2)

𝜕
𝜕𝑡

(ℎ𝑒) + 𝜕
𝜕𝑥

[

ℎ𝑈
(

𝑒 + Π
ℎ

)]

= 𝑈
[

𝑔ℎ sin 𝜃 − 3𝜈𝑈
ℎ̄

]

+ 7
18
𝑈𝑔ℎ sin 𝜃

𝜑

[

𝜑 − 𝑈2

5ℎ2

]

. (B.3)

The difference with the Newtonian model derived by Richard et al [28] is that the enstrophy relaxes here toward
𝑈2∕5ℎ2, while it relaxes toward the term 𝑔 sin 𝜃ℎ2∕45𝜈2 in this former model. The two expressions are equivalent
except for modelling rest states (𝑈 = 0). In particular, the expression used by Richard et al [28] is at the origin of
nonphysical sources of momentum and energy at rest, which is not the case with the present model.

Appendix C. Derivation of the linear instability criterion
We linearize the system of equations (4.3), (4.22) and (4.35) by considering small sinusoidal perturbations

around the base flow (4.2) and (4.14): ℎ = 1 + ℎ′, 𝑈 = 𝑈 (0) + 𝑈 ′ and 𝜑 = 𝜑(0) + 𝜑′, with [ℎ′, 𝑈 ′, 𝜑′]𝑇 =
[𝐴1, 𝐴2, 𝐴3]𝑇 exp[i𝑘(𝑥 − 𝑐𝑡)]. The three linearized equations can be written as:

⎡

⎢

⎢

⎣

𝑈 (0) − 𝑐 1 0
𝐿𝑚ℎ − 𝑅𝑚ℎ 𝐿𝑚𝑈 − 𝑅𝑚𝑈 𝐿𝑚𝜑 − 𝑅𝑚𝜑
𝐿𝑒ℎ − 𝑅

𝑒
ℎ 𝐿𝑒𝑈 − 𝑅𝑒𝑈 𝐿𝑒𝜑 − 𝑅𝑒𝜑

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ℎ′
𝑈 ′

𝜑′

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

(C.1)

The coefficients 𝐿𝑚𝑗 (𝑗 = ℎ,𝑈, 𝜑) come from the left-hand side of the momentum equation (4.22), and are given by:

𝐿𝑚ℎ = i𝜀𝑘
(

3𝜑(0) + 1
𝐹𝑟2

)

, (C.2)

𝐿𝑚𝑢 = i𝜀𝑘
(

𝑈 (0) − 𝑐
)

, (C.3)
𝐿𝑚𝜑 = i𝜀𝑘. (C.4)

The coefficients 𝐿𝑒𝑗 (𝑗 = ℎ,𝑈, 𝜑) come from the left-hand side of the energy equation (4.35), and are given by:

𝐿𝑒ℎ = i𝜀𝑘
2

[

(

𝑈 (0))2 (𝑈 (0) − 𝑐
)

+ 3𝜑(0) (3𝑈 (0) − 𝑐
)

+ 2
𝐹𝑟2

(

2𝑈 (0) − 𝑐
)

]

, (C.5)
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𝐿𝑚𝑢 = i𝜀𝑘
2
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3
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𝐹𝑟2
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, (C.6)

𝐿𝑒𝜑 = i𝜀𝑘
2

(

3𝑈 (0) − 𝑐
)

. (C.7)

The coefficients 𝑅𝑚𝑗 (𝑗 = ℎ,𝑈, 𝜑) come from the right-hand side of the momentum equation (4.22), and are given by:
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𝑅𝑚𝜑 = 7
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𝜆
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𝛽2(ℎ𝑝)

𝜑(0)
, (C.10)

Lastly, the coefficients𝑅𝑒𝑗 (𝑗 = ℎ,𝑈, 𝜑) come from the right-hand side of the energy equation (4.35), and are given by:
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𝛽2(ℎ𝑝)𝑟(ℎ𝑝) (C.11)

𝑅𝑚𝑈 = −3𝑈 (0)

𝑅𝑒
(

1 − ℎ𝑝
)−1

(

1 + 1
2
ℎ𝑝
)−1 [

𝛼1(ℎ𝑝) +
7

1080
𝜆2

𝜑(0)
𝛽1(ℎ𝑝)𝑟(ℎ𝑝)

]

− 𝜆2

𝑅𝑒
7
135

𝑈 (0)

𝜑(0)

(

1 − ℎ𝑝
)3

(

1 + 5
4
ℎ𝑝
)(

1 + 1
2
ℎ𝑝
)−1

𝛽2(ℎ𝑝)𝑟(ℎ𝑝) (C.12)

𝑅𝑚𝜑 = 7
18

𝜆
𝑅𝑒

𝑈 (0)

𝜑(0)
𝛽2(ℎ𝑝)𝑟(ℎ𝑝) (C.13)

The dispersion relation (6.4) is obtained by equating the determinant of the system (C.1) to zero to have a non-trivial
solution:

[

i𝑅𝑒𝜑 + 𝜀𝑘
(

𝑐 − 3𝑈 (0)) ∕2
]

[

i𝑅𝑚ℎ + i
(

𝑐 − 𝑈 (0))𝑅𝑚𝑈 + 𝜀𝑘
(

𝑐2 − 1∕𝐹𝑟2
)

− 𝜀𝑘
(

2𝑐 − 𝑈 (0))𝑈 (0) − 3𝜀𝑘𝜑0
]

−
[

i𝑅𝑚𝜑 − 𝜀𝑘
] [

i𝑅𝑒ℎ + i
(

𝑐 − 𝑈 (0))𝑅𝑒𝑈 − 𝜀𝑘
(

2𝑐 − 𝑈 (0)) (𝑈 (0))2 + 𝜀𝑘
(

𝑐2 − 1∕𝐹𝑟2 − 3𝜑(0))𝑈 (0)
]

= 0
(C.14)

In the long-wave limit we can write: 𝑐 = 𝑐0 + 𝜀𝑘𝑐1 +𝑂(𝜀2). Substituting this expansion into relation (C.14), we obtain
after calculations:

𝑐0 = 𝜆(1 − ℎ𝑝), (C.15)

𝑐1 =
i𝑅𝑒
3

[

2𝜆2
5

(1 − ℎ𝑝)2
(

1 + ℎ𝑝 + ℎ2𝑝 −
ℎ3𝑝
4

−
ℎ4𝑝
4

)

− 1
𝐹𝑟2

]

, (C.16)

which corresponds to (6.4).

Denisenko, Richard and Chambon: Preprint submitted to Elsevier Page 25 of 27



A consistent shallow-flow model for Bingham fluids

References
[1] N.J. Balmforth, I.A. Frigaard, G. Ovarlez, Yielding to stress: recent developments in viscoplastic fluid mechanics, Annu. Rev. Fluid Mech.

46 (2014) 121–146, https://doi.org/10.1146/annurev-fluid-010313-141424
[2] C. Ancey, Plasticity and geophysical flows: a review, J. Non-Newtonian. Fluid Mech. 142 (2007) 4–35, https://doi.org/10.1016/j.

jnnfm.2006.05.005
[3] I.A. Frigaard, Simple yield stress fluids, Curr. Opin. Coll. Sci. 22 (2019) 638–663 https://doi.org/10.1016/j.cocis.2019.03.002
[4] I.A. Frigaard, C. Nouar, On the use of viscosity regularisation methods for visco-plastic fluid flow computation, J. Non-Newtonian. Fluid

Mech. 127 (2005) 1–26, https://doi.org/10.1016/j.jnnfm.2005.01.003
[5] R. Glowinski, A. Wachs, 2011 On the numerical simulation of viscoplastic fluid flow, in: R. Glowinski, J. Xu (Eds.), Handbook of Numerical

Analysis, Elsevier, 2011, pp. 483–717.
[6] Y. Dimakopoulos, M. Pavlidis, J. Tsamopoulos, Steady bubble rise in Herschel-Bulkley fluids and comparison of predictions via the

augmented Lagrangian method with those via the Papanastasiou model., J. Non-Newtonian. Fluid Mech. 200 (2013) 34–51, https:
//doi.org/10.1016/j.jnnfm.2012.10.012

[7] P. Saramito, A. Wachs, Progress in numerical simulation of yield stress fluid flows, Rheologica Acta 56 (2017) 211–230. https://doi.
org/10.1007/s00397-016-0985-9

[8] Y. Liu, N.J. Balmforth, and S. Hormozi, 2019 Viscoplastic surges down an incline, J. Non-Newtonian. Fluid Mech., 268 (2019) 1–11,
https://doi.org/10.1016/j.jnnfm.2019.04.007

[9] G.B. Whitham, Linear and Nonlinear Waves, Wiley, 1974.
[10] S. Kalliadasis, C. Ruyer-Quil, B. Scheid, M.G. Velarde, Falling Liquid Films, Springer, 2012.
[11] N.J. Balmforth, J.J. Liu, Roll waves in mud, J. Fluid Mech. 519 (2004) 33–54, https://doi.org/10.1017/S0022112004000801
[12] C. Ruyer-Quil, P. Manneville, Improved modeling of flows down inclined planes, Eur. Phys. J. B 15 (2000) 357–369, https://doi.org/

10.1007/s100510051137
[13] B. Hunt, Newtonian fluid mechanics treatment of debris flows and avalanches, J. Hydraul. Eng. 120 (1994) 1350–1363, https://doi.org/

10.1061/(ASCE)0733-9429(1994)120:12(1350)
[14] C. Ruyer-Quil, P. Manneville, Modeling film flows down inclined planes, Eur. Phys. J. B 6 (1998) 277–292, https://doi.org/10.1007/

s100510050550
[15] X. Huang, M.H. Garcìa, A Herschel–Bulkley model for mud flow down a slope, J. Fluid Mech. 374 (1998) 305–333, https://doi.org/

10.1017/S0022112098002845
[16] N.J. Balmforth, R.V. Craster, A.C. Rust, R. Sassi, Viscoplastic flow over an inclined surface, J. Non-Newtonian Fluid Mech. 139 (2006)

103–127, https://doi.org/10.1016/j.jnnfm.2006.07.010
[17] C. Ancey, S. Cochard, The dam-break problem for Herschel–Bulkley viscoplastic fluids down steep flumes, J. Non-Newtonian. Fluid Mech.

158 (2009) 18–35, https://doi.org/10.1016/j.jnnfm.2008.08.008
[18] N. Bernabeu, P. Saramito, C. Smutek, Numerical modeling of non-Newtonian viscoplastic flows: Part II. Viscoplastic fluids and general

tridimensional topographies, Inter. J. Numer. Anal. Model. 11 (2014) 213–228.
[19] D.J. Benney, Long waves on liquid films, J. Math. Phys. 45 (1966) 150–155, https://doi.org/10.1002/sapm1966451150
[20] A. Pumir, P. Manneville, Y. Pomeau 1983 On solitary waves running down an inclined plane, J. Fluid Mech. 135 (1983) 27–50, https:

//doi.org/10.1017/S0022112083002943
[21] T. Ooshida, Surface equation of falling film flows with moderate Reynolds number and large but finite Weber number, Phys. Fluids 11 (1999)

3247–3269, https://doi.org/10.1063/1.870186
[22] R. Usha, B. Uma, Modeling of stationary waves on a thin viscous film down an inclined plane at high Reynolds numbers and moderate Weber

numbers using energy integral method, Phys. Fluids 16 (2004) 2679–2696, https://doi.org/10.1063/1.1755704
[23] P. Noble, and J.-P. Vila, 2013 Thin power-law film flow down an inclined plane: Consistent shallow-water models and stability under large-

scale perturbations, J. Fluid Mech. 735 (2013) 29–60, https://doi.org/10.1017/jfm.2013.454
[24] M. Boutounet, J. Monnier, J.-P. Vila, Multi-regime shallow free surface laminar flow models for quasi-Newtonian fluids, Eur. J. Mech.

(B/Fluids) 55 (2016) 182–206, https://doi.org/10.1016/j.euromechflu.2015.10.005
[25] A. Chesnokov, Formation and evolution of roll waves in a shallow free surface flow of a power-law fluid down an inclined plane, Wave

Motion 106 (2021) 1–20, https://doi.org/10.1016/j.wavemoti.2021.102799
[26] E.D. Fernandez-Nieto, P. Noble, J.-P. Vila, Shallow Water equations for non-Newtonian fluids, J. Non-Newtonian. Fluid Mech. 165 (2010)

712–732, https://doi.org/10.1016/j.jnnfm.2010.03.008
[27] G.L. Richard, M. Gisclon, C. Ruyer-Quil, J.-P. Vila Optimization of consistent two-equation models for thin film flows, Eur. J. Mech. B.

Fluids 76 (2019) 7–25, https://doi.org/10.1016/j.euromechflu.2019.01.004
[28] G.L. Richard, C. Ruyer-Quil, J.-P. Vila, A three-equation model for thin films down an inclined plane, J. Fluid Mech. 804 (2016) 162–200,

https://doi.org/10.1017/jfm.2016.530
[29] P. Coussot, Steady, laminar, flow of concentrated mud suspensions in open channel, J. Fluid Mech. 32 (1994) 535–559, https://doi.org/

10.1080/00221686.1994.9728354
[30] G. Chambon,,A. Ghemmour, D. Laigle, Gravity-driven surges of a viscoplastic fluid: an experimental study, J. Non-Newtonian. Fluid Mech.

158 (2009) 54–62, https://doi.org/10.1016/j.jnnfm.2008.08.006
[31] N.J. Balmforth, R.V. Craster, A consistent thin-layer theory for Bingham plastics, J. Non-Newtonian. Fluid Mech. 84 (1999) 65–81,

https://doi.org/10.1016/S0377-0257(98)00133-5
[32] G. Chambon, P. Freydier, M. Naaim, J.-P. Vila, Asymptotic expansion of the velocity field within the front of viscoplastic surges: comparison

with experiments, J. Fluid Mech. 884 (2020), https://doi.org/10.1017/jfm.2019.943
[33] J.-M. Piau, Flow of a yield stress fluid in a long domain. Application to flow on an inclined plane, J. Rheol. 40 (1996) 711-723, https:

//doi.org/10.1122/1.550794

Denisenko, Richard and Chambon: Preprint submitted to Elsevier Page 26 of 27

https://doi.org/10.1146/annurev-fluid-010313-141424
https://doi.org/10.1016/j.jnnfm.2006.05.005
https://doi.org/10.1016/j.jnnfm.2006.05.005
https://doi.org/10.1016/j.cocis.2019.03.002
https://doi.org/10.1016/j.jnnfm.2005.01.003
https://doi.org/10.1016/j.jnnfm.2012.10.012
https://doi.org/10.1016/j.jnnfm.2012.10.012
https://doi.org/10.1007/s00397-016-0985-9
https://doi.org/10.1007/s00397-016-0985-9
https://doi.org/10.1016/j.jnnfm.2019.04.007
https://doi.org/10.1017/S0022112004000801
https://doi.org/10.1007/s100510051137
https://doi.org/10.1007/s100510051137
https://doi.org/10.1061/(ASCE)0733-9429(1994)120:12(1350)
https://doi.org/10.1061/(ASCE)0733-9429(1994)120:12(1350)
https://doi.org/10.1007/s100510050550
https://doi.org/10.1007/s100510050550
https://doi.org/10.1017/S0022112098002845
https://doi.org/10.1017/S0022112098002845
https://doi.org/10.1016/j.jnnfm.2006.07.010
https://doi.org/10.1016/j.jnnfm.2008.08.008
 https://doi.org/10.1002/sapm1966451150
https://doi.org/10.1017/S0022112083002943
https://doi.org/10.1017/S0022112083002943
https://doi.org/10.1063/1.870186
https://doi.org/10.1063/1.1755704
https://doi.org/10.1017/jfm.2013.454
https://doi.org/10.1016/j.euromechflu.2015.10.005
https://doi.org/10.1016/j.wavemoti.2021.102799
https://doi.org/10.1016/j.jnnfm.2010.03.008
https://doi.org/10.1016/j.euromechflu.2019.01.004
https://doi.org/10.1017/jfm.2016.530
https://doi.org/10.1080/00221686.1994.9728354
https://doi.org/10.1080/00221686.1994.9728354
https://doi.org/10.1016/j.jnnfm.2008.08.006
https://doi.org/10.1016/S0377-0257(98)00133-5
https://doi.org/10.1017/jfm.2019.943
https://doi.org/10.1122/1.550794
https://doi.org/10.1122/1.550794


A consistent shallow-flow model for Bingham fluids

[34] K. Hohenemser, W. Prager, Über die Ansätze der Mechanik isotroper Kontinua, Z. Angew. Math. Mech. 12 (1932) 216–226, https:
//doi.org/10.1002/zamm.19320120403

[35] J.M. Piau , Carbopol gels: elastoviscoplastic and slippery glasses made of indi- vidual swollen sponges. Meso- and macroscopic properties,
constitutive equa- tions and scaling laws, J. Non-Newton. Fluid Mech. 144 (2007) 1-29, https://doi.org/10.1016/j.jnnfm.2007.
02.011

[36] R. Thompson, L. Sica, P. de Souza Mendes, The yield stress tensor, J. Non-Newton. Fluid Mech. 261 (2018) 211–219, https://doi.org/
10.1016/j.jnnfm.2018.09.003

[37] H. de Cagny, M. Fazilati, M. Habibi, M.M. Denn, D. Bonn, The yield normal stress, J. Rheol. 63 (2019) 285–290, https://doi.org/10.
1122/1.5063796

[38] V.M. Teshukov, Gas-dynamics analogy for vortex free-boundary flows, J. Appl. Mech. Tech. Phys. 48 (3) (2007) 303–309, https:
//doi.org/10.1007/s10808-007-0039-2

[39] G.L. Richard, and S.L. Gavrilyuk, A new model of roll waves: comparison with Brock’s experiments, J. Fluid Mech. 698 (2012) 374–405,
https://doi.org/10.1017/jfm.2012.96

[40] D. Mounkaila Noma, S. Dagois-Bohy, S. Millet, V. Botton, D. Henry, H. Ben Hadid, Primary instability of a visco-plastic film down an
inclined plane: experimental study, J. Fluid Mech. 922 (2021) 1–11, https://doi.org/10.1017/jfm.2021.528

[41] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 2009.
[42] S.V. Alekseenko, V.E. Nakoryakov, Wave formation on vertical falling liquid films, Intl J. Multiphase Flow 11 (5) (1985) 607–627,

https://doi.org/10.1016/0301-9322(85)90082-5
[43] F. Denner, A. Charogiannis, M. Pradas, C.N. Markides, B.G.M. van Wachem, and S. Kalliadasis, Solitary waves on falling liquid films in the

inertia-dominated regime, J. Fluid Mech. 837 (2018) 491–519, https://doi.org/10.1017/jfm.2017.867

Denisenko, Richard and Chambon: Preprint submitted to Elsevier Page 27 of 27

https://doi.org/10.1002/zamm.19320120403
https://doi.org/10.1002/zamm.19320120403
https://doi.org/10.1016/j.jnnfm.2007.02.011
https://doi.org/10.1016/j.jnnfm.2007.02.011
https://doi.org/10.1016/j.jnnfm.2018.09.003
https://doi.org/10.1016/j.jnnfm.2018.09.003
https://doi.org/10.1122/1.5063796
https://doi.org/10.1122/1.5063796
https://doi.org/10.1007/s10808-007-0039-2
https://doi.org/10.1007/s10808-007-0039-2
https://doi.org/10.1017/jfm.2012.96
https://doi.org/10.1017/jfm.2021.528
https://doi.org/10.1016/0301-9322(85)90082-5
https://doi.org/10.1017/jfm.2017.867

