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1.  Introduction
Noncontact measurement techniques are increasingly used to monitor rivers, especially in flood events, when 
traditional flow gauging techniques are difficult to apply (e.g., Le Coz et al., 2010; Perks et al., 2016). Exist-
ing noncontact techniques have been used almost exclusively for measuring the surface flow velocity pattern, 
using radar or ultrasound scattering from the water surface (e.g., Dolcetti et al., 2017; Plant et al., 2005; Welber 
et al., 2016), or tracking floating tracer particles or surface ripples with cameras (e.g., Fujita & Tsubaki, 2002; 
Muste et  al.,  2005; Perks et  al.,  2016; Tauro et  al.,  2017). Measuring river discharge using only noncontact 
instrumentation is challenging, mainly because of the difficulty in estimating the water depth. Relative variations 
of the typical water level can be quantified based on images of the intersection of the water-air interface with 
the river banks (e.g., D. S. Young et al., 2015; Eltner et al., 2018). However, the estimation of the water depth 
requires determination of the bed level, which could change significantly, especially during and after flood events 
(Johnson & Cowen, 2016).

Direct measurements of the bathymetry based on ground penetrating radar (Spicer et al., 1997) or terrestrial laser 
scanners (Smith et al., 2012) can measure complex channel shapes, but they are expensive and energy demanding 
and so are difficult to deploy (Detert et al., 2017). Techniques based on water color or photogrammetry are limited 
to shallow, clear water (Woodget et al., 2015). Techniques to estimate the discharge based solely on the surface 

Abstract  Estimating river discharge requires simultaneous measurement of velocity and flow depth. While 
surface velocities are relatively easy to measure using noncontact techniques, depth measurement usually 
requires physically intrusive instrumentation. This limits our capability to remotely monitor discharge in natural 
rivers subject to bed level variations. This work tests the potential to estimate the surface velocity, the water 
depth, the depth average velocity, and then discharge of a river using only a sequence of images of the dynamic 
water surface. The method is based on a comparison between the spatiotemporal Fourier spectra of the pixel 
intensities of these images and the theoretical dispersion relations of turbulence-generated surface fluctuations 
and gravity-capillary waves. The method is validated through the analysis of water surface videos obtained 
with fixed cameras from two river sections equipped with conventional discharge gauging. The applicability 
of the approach is demonstrated and the measurement uncertainties are quantified. The method is affected by 
two main sources of uncertainty: one derives from the estimation of the velocity index and the other from the 
obtainable resolution of the Fourier analysis. This resolution strongly controls the observation of depth and/
or velocity variations in space and in time. The technique has advantages over current approaches: it has clear 
physical foundations; the equipment is low cost and is highly mobile; it does not need artificial tracers or 
physical equipment to measure depth; and it can directly provide estimates of the key flow parameters just from 
time series of images of the water surface.

Plain Language Summary  Continuous river flow discharge measurement is of great importance for 
managing natural water resources and flood risks. Current remote measurements that can be performed without 
immersing sensors only determine the velocity of the very upper surface layer of the river. River water surfaces 
have distinct patterns of waves. This work demonstrates that by remotely observing the dynamics of water 
surface waves using a low-cost video camera and using wave theory, it is possible to estimate the surface water 
velocity, water depth, depth-average velocity, and therefore the flow rate.
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velocity distributions have been proposed, for example, by Bradley et al. (2002), Gharahjeh and Aydin (2016), 
Yang et al. (2019). However, these methods require a site-specific calibration based on a previous survey of the 
measurement site in similar conditions (i.e., without significant changes of the bed level). A method described 
by Moramarco et al. (2019) estimates the bathymetry (and the discharge) by fitting the measured surface velocity 
profile with a model based on entropy theory. Johnson and Cowen (2016) and Jin and Liao (2019) proposed to 
exploit an empirical correlation between the water depth and the statistics of turbulence at the water surface. 
Turbulence measurements in the field using Large Scale Particle Image Velocimetry (LSPIV) require a high 
density of tracers, and velocity measurement can be uncertain in the presence of water waves (e.g., Dolcetti 
et al., 2020; Tauro et al., 2014). The method presented here is complementary to the empirical approaches of 
Johnson and Cowen (2016) and Jin and Liao (2019), it is theoretically grounded and is specifically developed to 
take account of the presence of dynamic water surface waves.

In the ocean, the propagation velocity of wind-generated surface gravity waves is known to change with depth and 
with currents. Therefore, the current velocity (I. R. Young et al., 1985; Senet et al., 2001), the vertical profile of 
velocity (Campana et al., 2016; Lund et al., 2015; Stewart & Joy, 1974), and the water depth (Bell, 1999; Dugan 
et al., 2001) are all quantities that can be estimated indirectly based on spatiotemporal measurements of the ocean 
surface dynamics which can be obtained by radar, cameras, or even satellite images (Salameh et al., 2019). In 
turbulent open channel flows, various laboratory studies (Dolcetti et al., 2016; Savelsberg & Van De Water, 2009) 
have highlighted the presence of water surface gravity and gravity-capillary waves, with a velocity of propagation 
that can be predicted by analytical models (Dolcetti & García Nava, 2019b; Dolcetti et al., 2016). This knowledge 
allows for use of approaches derived originally for ocean waves (e.g., Serafino et al., 2009) to wave types that 
form at the surface of shallow river flows.

The approach followed here is based on fitting of the three-dimensional (2D-spatial and 1D-temporal) spatiotem-
poral spectrum of the local water surface slope to an analytical wave model. Streβer et al. (2017) were the first to 
use a similar approach in rivers, but their application was limited to the estimation of the surface velocity. Here, 
mean surface velocity and water depth are determined simultaneously from noncontact measurements of the 
water surface motion. Based on the velocity-area method (e.g., Welber et al., 2016), an estimate of the discharge 
can be obtained, Q, as

𝑄𝑄 =

𝑁𝑁
∑

𝑗𝑗

𝛼𝛼𝑗𝑗𝑈𝑈𝑗𝑗𝑑𝑑𝑗𝑗𝑤𝑤𝑗𝑗,� (1)

where Uj is the time-averaged surface velocity, dj is the water depth, αj is the velocity index (the ratio between the 
depth-averaged flow velocity and the surface velocity), and the index j denotes that each quantity is measured at 
the jth location along a transect, over a sub-section of width wj, where 𝐴𝐴 𝐴𝐴 =

∑𝑁𝑁

𝑗𝑗
𝑤𝑤𝑗𝑗 is the river width, and N is 

the number of sub-sections. In practice, the spatial resolution of the proposed analysis method allowed only one 
estimate per river cross-section, therefore the flow rate had to be estimated based on the equation below

𝑄𝑄 = 𝛼𝛼𝛼𝛼0𝑑𝑑𝑑𝑑 𝑑� (2)

where α, U0, and d represent the average velocity-index, surface velocity, and water depth, for an area with width 
comparable to W.

The validity of the approach was tested using several videos recorded at two sites for which measurements of 
the depth and discharge were obtained using fixed conventional gauging installations. The river sections selected 
for this study were heavily modified, relatively steep, with coarse gravel beds, and trapezoidal channel sections. 
These conditions are considered to provide a reasonable environment for the method validation, since they yield 
visible water surface deformations and relatively simple velocity distributions while being at “field scale” in 
terms of Reynolds and Froude numbers.

This work is structured as follows: Section 2 summarizes the equations that describe the dynamics of water 
surfaces in an idealized channel; Section 3 describes how a Fourier analysis of image sequences of the river 
surface can measure surface dynamics, and how to infer flow properties using the equations introduced in 
Section 2; Section 4 examines measurement uncertainty; Section 5 describes the measurement sites, and presents 
some example water surface Fourier spectra; Section 6 presents a comparison of the quantities of the flow esti-
mated with the proposed approach and measured with traditional gauging equipment; Section 7 discusses the 
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accuracy and scalability of this approach; Section 8 summarizes the conclusion; Appendix A provides some 
additional details about the fitting algorithm used for this work; and Appendix B reports the full equations that 
describe the sensitivity of the dispersion relation of gravity-capillary waves from variations of the surface veloc-
ity and water depth.

2.  Water Surface Dynamics in Rivers
2.1.  Types of Water Surface Deformations

Free surface deformations in rivers can be caused by a variety of phenomena, such as turbulence, shear instabil-
ities, and wind (Brocchini & Peregrine, 2001; Muraro et al., 2021). They are usually divided into two catego-
ries, based on their appearance and dynamics: deformations forced locally by the action of turbulent structures 
within the flow, and freely propagating gravity-capillary (GC) waves (Brocchini & Peregrine, 2001; Teixeira & 
Belcher, 2006). Turbulence-forced deformations can have the form of local 2D (scars) or 1D (vortex dimples) 
surface indentations above vortex filaments (e.g., Sarpkaya, 1996), or they can appear as patches of divergent 
surface flow with a smoother surface but with well-defined, rough margins, often populated with short capillary 
ripples (Longuet-Higgins,  1996). The occurrence of these patches has been linked to strong surface-renewal 
eddies in highly turbulent flows (often called boils, e.g., Nezu and Nakagawa,  1993). Known causes of GC 
waves, on the other hand, include wind, rain drops, or emerging obstacles and vegetation that produce character-
istic oblique “wake-like” patterns. GC waves can also be created by turbulence-forced deformations, or they can 
grow due to a resonance with turbulence pressure fluctuations in a sheared flow (Teixeira & Belcher, 2006). GC 
waves that appear to be fixed in space and in time (called stationary or standing waves) are known to form at near 
critical Froude numbers over rough beds (Chanson, 2000), and they were also found to dominate free-surface 
spatial and temporal scales at relatively low Froude numbers 𝐴𝐴 𝖥𝖥 ∼ 0.2 (Dolcetti et al., 2016). These waves can 
exchange energy with the turbulent flow to promote the growth of other, nonstationary, GC waves, and the 
resulting patterns seem to represent the main type of surface deformation for a wide range of subcritical Froude 
numbers (Dolcetti & García Nava, 2019b; Muraro et al., 2021).

2.2.  Dispersion Relations

GC waves are distinguished from turbulence-generated surface deformations (i.e., boils, scars, etc.) because 
they appear periodic at least in one spatial dimension. However, groups of waves with different wavelengths 
and directions can combine and form rather complex patterns. A quantitative separation of the two types of 
surface deformations is based on a Fourier analysis of the surface-elevation data in space and in time (e.g., 
Dolcetti et al., 2016; Savelsberg & Van De Water, 2009), which decomposes the data in a series of plane waves, 
each with a radian frequency ω = 2πf, where f is the frequency in Hz, and with a wavenumber vector k, where 
k = |k| = 2π/λ, λ is the wavelength, and k is orthogonal to the wave crest. The ratio between the frequency and 
wavenumber, c = ω/k is the speed of propagation (phase speed) of a wave, and the relation ω = Ω(k) is called 
the dispersion relation.

A Fourier analysis can be applied to any type of surface deformations, including turbulence-generated ones. If 
the mean speed of the flow is faster than the speed at which the patterns deform, the temporal fluctuations of the 
surface elevation at a fixed point is due primarily to advection and the wavenumber-frequency relation can be 
approximated by (Dolcetti et al., 2016)

𝜔𝜔 ≈ ΩA (𝐤𝐤,𝐔𝐔0) = 𝐤𝐤 ⋅ 𝐔𝐔0.� (3)

ΩA represents the advection of the surface patterns at a constant velocity. In this case, the surface deformations 
are believed to travel at the same speed as the turbulent structures that cause them, which is close to the average 
speed of the flow near the surface, U0.

GC waves, on the other hand, propagate relative to the mean flow, and their speed changes with the wavelength. 
The dispersion relation for GC waves in still water with depth d is (e.g., Lamb, 1945, p. 459)

𝜔𝜔 = Ωi(𝑘𝑘𝑘 𝑘𝑘) = 𝑘𝑘

√

𝑔𝑔𝑔𝑔
(1 + 𝖡𝖡)

𝖡𝖡

tanh(𝑘𝑘𝑘𝑘)

𝑘𝑘𝑘𝑘
,� (4)
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where 𝐴𝐴 𝖡𝖡 = 𝜌𝜌𝜌𝜌∕
(

𝑘𝑘2𝛾𝛾
)

 is the Bond number, which indicates the ratio of gravity 
and surface tension effects, g is the acceleration due to gravity, γ is the surface 
tension coefficient, and ρ is the water density.

Ωi(k, d) is often called the intrinsic wave frequency, since it does not include 
the effects of the mean flow, and it does not depend on the direction of 
propagation. When the speed of the flow beneath the waves varies along 
the vertical co-ordinate, U  =  U(z), the dispersion relation varies nontrivi-
ally. Specific formulations have been derived for power-function velocity 
profiles (Fenton, 1973), or for profiles with arbitrary shape (e.g., Ellingsen & 
Li, 2017), but they all require the numerical solution of an implicit equation. 
Apparently the only way to make the problem explicit and practicable for 
solution is to approximate the vertical profile of the streamwise velocity with 
a linear profile,

𝑈𝑈 (𝑧𝑧) =

(

𝑚𝑚
𝑧𝑧

𝑑𝑑
+ 𝑞𝑞

)

𝑈𝑈0,� (5)

where m is the vertical gradient of streamwise velocity and q = 1 − m, so that 
U0 = U(d) is the speed at the surface. For the velocity profile of Equation 5, 
the dispersion relation can be calculated explicitly as (e.g., Biésel,  1950; 
Teixeira & Belcher, 2006)

𝜔𝜔 = ΩGW (𝐤𝐤,𝐔𝐔0, 𝑑𝑑) = [1 − 𝛽𝛽(𝑘𝑘𝑘𝑘𝑘 )] ΩA (𝐤𝐤,𝐔𝐔0) ±

√

[𝛽𝛽(𝑘𝑘𝑘𝑘𝑘 )ΩA (𝐤𝐤,𝐔𝐔0)]
2
+ Ω

2

i
(𝑘𝑘𝑘𝑘𝑘 ),� (6)

where

𝛽𝛽(𝑘𝑘𝑘 𝑘𝑘) =
𝑚𝑚

2

tanh(𝑘𝑘𝑘𝑘)

𝑘𝑘𝑘𝑘
.� (7)

The ± sign in Equation 6 indicates the two waves with opposite direction of propagation.

Equation 6 is plotted in Figure 1 as a function of the two components of the wavenumber vector k1 and k2 aligned 
with the horizontal coordinates x1 and x2, respectively, for a case where x1 is in the direction of the flow, that is, 
U0 = (U0, 0) = U0e1. The two solutions with opposite signs correspond to two surfaces that can intersect the ω = 0 
plane for certain combinations of k1 and k2.

All waves with ω = 0 are stationary waves. Among these, the stationary waves with the crest perpendicular to 
the flow (k2 = 0) are of importance because they define the representative scale of water surface deformations 
for turbulent flows over rough beds in the laboratory and in the field (Dolcetti & García Nava, 2019b; Dolcetti 
et al., 2016; Muraro et al., 2021). The wavenumber of these stationary waves, k0, is found from the solution of 
ΩGW(k, U0, d) = 0 for a case with k0 ⋅ U0 = −k0U0, which results in

�0� =
[

� + 1
�2

(1 + �)
�

]

tanh(�0�) , →
�0

�
= 2��2

[

(1 + �)∕� + ��2
]

tanh(2��∕�0)
,� (8)

where λ0 = 2π/k0 is a characteristic wavelength. Equation 8 will be used for estimating the horizontal scale of 
water waves while quantifying the measurement uncertainties in Section 4. In the deep-water gravity wave limit 
(k0d ≫ 1, 𝐴𝐴 𝖡𝖡 ≫ 1 ) it is simplified as (Teixeira, 2019)

𝑘𝑘0𝑑𝑑 = 𝑚𝑚 +

1

𝖥𝖥2

→
𝜆𝜆0

𝑑𝑑
=

2𝜋𝜋𝖥𝖥2

1 + 𝑚𝑚𝖥𝖥2

.� (9)

The dispersion relationships of turbulence-generated water surface fluctuations and of GC waves depend on the 
flow parameters, namely the flow surface speed U0, and the depth d. This dependence is exemplified in Figures 2a 
and 2b, and in Figures 2c and 2d, respectively. The results in Figures 2a and 2c are for waves that propagate 
parallel to the flow (k = k1, k2 = 0), while those in Figures 2b and 2d are for orthogonal direction of propagation 
(k = k2, k1 = 0). ΩA(k1) increases linearly with U0, and is independent of d. As U0 increases, ΩGW(k1) increases for 

Figure 1.  3D Dispersion relation of gravity-capillary waves, Equation 6. Here, 
k1 is in the direction of the flow.
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the waves that propagate downstream (k1 > 0), and decreases for the waves 
that propagate upstream (k1 < 0) (see Figure 2a). Since ΩGW depends on the 
inner product k ⋅U0, the waves that propagate orthogonally with respect to the 
flow are not affected by the flow velocity, therefore ΩGW(k2) is independent 
of U0 (see Figure 2b). Depth variations have a smaller effect, but they affect 
the frequency of all GC waves, including those that propagate perpendicu-
larly to the flow. For these waves, ΩGW(k2) increases with the depth. This is 
more evident at low wavenumbers (long waves), as shown in Figure 2d. The 
effect on the waves that propagate parallel to the flow, shown in Figure 2c is 
more difficult to generalize because of the nontrivial dependence of β and 
Ωi on d.

3.  Remote Estimation of Flow Parameters
3.1.  Measurement of Water Surface Deformations From Video Images

The analysis described below can be applied to water surface elevation meas-
urements obtained with different sensing technologies, for example, with 
radar (Shen et  al.,  2015), with ultrasound (Krynkin et  al.,  2016), or opti-
cally (Benetazzo et al., 2018). In practice, direct measurements of the water 
surface shape over an area comparable to the river width, with high spatial 
and temporal resolution, are difficult to obtain. Variations of the spatial 
gradient of the water surface (surface slope) in time can be observed using 
low cost cameras. The technique has been used in oceanography for a long 
time (Williams,  1947). Two phenomena contribute mostly to the intensity 
of light that reaches the camera from a certain region in space after having 
been reflected from a water surface: the dependence of the brightness of the 
sky from the azimuth angle and the variation of light reflectivity at the water 
surface. The color of a clear or uniformly cast sky varies smoothly, and is 

typically brighter near the horizon (e.g., Almar et  al.,  2021); the reflectivity of the surface changes with the 
angle of incidence of the light, and is maximum at grazing incidence when no light penetrates into water (e.g., 
Stilwell, 1969). A camera that looks at the reflection of the sky on a flat water surface will see a smooth variation 
of the pixel intensity, with higher intensities at lower angles of reflection, toward the background of the image. 
Since light reflects secularly at the water surface, the local angle of inclination (slope) of the surface governs the 
point of the sky that is reflected at a specific location, and also the angle between the reflection and the surface 
normal direction. This produces a deformation of the pattern of light intensity that maps between the brightness 
of the image recorded by the camera at each pixel and the local and instantaneous water surface slope field. If the 
slope angles are small, the perturbations of the pixel intensities are proportional to the slope variations along the 
looking direction, and the Fourier spectrum of the pixel intensities is proportional to the surface slope spectrum 
(Stilwell, 1969). The approach presented here exploits the fact that both the slope spectrum and the spectrum of 
the surface elevation follow the same dispersion relationship since the slope of a wave moves at the same speed 
of the wave itself. Once a collection of consecutive images has been orthorectified, that is, once the brightness 
at each pixel has been assigned to a location on the plane of the water surface, the relation between wavelength 
and frequency (the dispersion relation) is the same for the image intensity and for the water surface elevation. 
This allows detection of variations of the water surface dynamics by means of a Fourier analysis of pixel intensity 
values contained in video images.

3.2.  Water Surface Fourier Spectra

In order to estimate the parameters of the dispersion relation, the statistical behavior of the water surface elevation 
in time and in space needs to be represented. This can be done in terms of a cross-correlation (e.g., Bell, 1999), a 
cross-spectrum (e.g., Holman et al., 2013), or a 3D Fourier power spectrum (e.g., Dugan et al., 2001) of the water 
surface elevation. The latter approach is more suited for the complex water surface dynamics of river flows. A 
3D discrete Fourier transform decomposes a signal into a combination of waves, each with a certain frequency 
and wavenumber. The power spectrum indicates how the variance of the signal is distributed among the different 

Figure 2.  Effect of (a and b) flow velocity and (c and d) depth on the 
frequency of (solid lines) gravity-capillary waves and (dashed lines) 
turbulence-generated surface deformations. (a and c) Waves are parallel to the 
flow direction, k = k1, k2 = 0. (b and d) Waves are perpendicular to the flow 
direction, k = k2, k1 = 0. Example calculated for m = 0.34. (a and b) d = 0.5 m. 
(c and d), U0 = 0.4 m/s.
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wavenumber and frequency combinations, and its value is expected to be higher where such combinations are 
close to the theoretical dispersion relations.

The 3D Fourier spectrum of the videos is calculated as follows. First, each pixel intensity value needs to be asso-
ciated with a unique position in space. This is achieved by means of an image orthorectification algorithm, which 
uses ground control points with known coordinates to correct the distortions induced by the camera lens and 
perspective (e.g., Messerli & Grinsted, 2015). The images are projected onto a discretized horizontal plane (x1, 
x2), where x1 = ξΔx1 and x2 = ηΔx2 are the horizontal coordinates, ξ = 0, …, N1 − 1, η = 0, …, N2 − 1 are integer 
indices, Δx1 = L1/N1 and Δx2 = L2/N2 represent the spatial resolutions, and L1 and L2 define the spatial extent of 
the measurements. Each image represents the surface slope field (see Section 3.1) at a certain time t = τΔt, where 
τ = 0, …, Nt − 1 is an integer index, Δt = T/Nt = 1/fs is the temporal increment, T is the duration of the recording, 
and fs is the sampling rate. zξ,η,τ is the brightness of the rectified image at location (ξΔx1, ηΔx2) at time τΔt. Then, 
the discrete frequency-wavenumber power spectrum of the image is a 3D array defined as

Ip,q,n =
1

N1N2Nt

|

|

|

|

|

|

N1−1
∑

�=0

N2−1
∑

�=0

Nt−1
∑

�=0

z�,�,�exp
[

−i2�(p�∕N1 + q�∕N2 − n�∕Nt)
]

|

|

|

|

|

|

2

,� (10)

where p = −N1/2, …, N1/2 − 1 and q = −N2/2, …, N2/2 − 1 are the integer wavenumber indices in the spatial 
directions 1 and 2, respectively, and n = 0, …, Nt is the frequency index. The indices p and q correspond to the 
two components of the wavenumber, k1 = pΔk1, k2 = qΔk2, while the index n is associated with the frequency 
ω = nΔω. Δk1 = 2π/L1, Δk2 = 2π/L2, and Δω = 2π/T identify the spectral resolutions.

3.3.  Fitting Procedure

If surface waves follow the dispersion relations presented in Section 2, the spectrum Ip,q,n should be higher for 
certain combinations of p, q, and n, that satisfy

𝑛𝑛Δ𝜔𝜔 ≈ Ω (𝑝𝑝Δ𝑘𝑘1, 𝑞𝑞Δ𝑘𝑘2,𝐔𝐔0, 𝑑𝑑) ,� (11)

where Ω is one of the dispersion relations of Equation 3 (ΩA) or Equation 6 (ΩGW). Since Ω depends on U0 (both 
ΩA and ΩGW) and d (only ΩGW), one or both of these parameters can be estimated by “tuning” the dispersion rela-
tion until it intersects the largest possible proportion of the higher values of the measured spectrum. According to 
Serafino et al. (2009), this can be achieved by maximizing the inner product of the measured 3D Fourier spectrum 
matrix and of a characteristic weighing matrix Mp,q,n, with the Normalized Scalar Product (NSP) method. Mp,q,n 
can be a Gaussian function of the frequency difference, such as (Smeltzer et al., 2019)

M𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = exp
{

−[𝑛𝑛Δ𝜔𝜔 − Ω (𝑝𝑝Δ𝑘𝑘1,𝑞𝑞 Δ𝑘𝑘2,𝐔𝐔0, 𝑑𝑑)]
2
}

.� (12)

The values of the parameters U0 and d that provide the best fit between the measured spectra and the theoretical 
dispersion relation can be estimated by searching for the maximum of the following normalized scalar product:

𝐺𝐺(𝐔𝐔, 𝑑𝑑) =

[

∑

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

I𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝M𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

][

∑

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

I𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∑

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

M𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

]−1

.� (13)

As discussed in Section 2, river surface waves follow different dispersion relations according to their nature and 
direction of propagation. Therefore, the weighing matrix was modified to account for both types of waves, that is, 
Mp,q,n was defined as the maximum (at each p, q, n index) of the weighing matrices calculated for ΩA and ΩGW, 
respectively,

M𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = max

{

𝑒𝑒−[𝑛𝑛Δ𝜔𝜔−ΩA(𝑝𝑝Δ𝑘𝑘1 ,𝑞𝑞Δ𝑘𝑘2 ,𝐔𝐔0 ,𝑑𝑑)]
2

, 𝑒𝑒−[𝑛𝑛Δ𝜔𝜔−ΩGW(𝑝𝑝Δ𝑘𝑘1 ,𝑞𝑞Δ𝑘𝑘2 ,𝐔𝐔0 ,𝑑𝑑)]
2
}

.� (14)

This was the same as partitioning the wavenumber-frequency space into two volumes based on the distance from 
the two surfaces ΩA and ΩGW, and calculating the weighing based on the closest dispersion relation.

Only the form of Equation 6 with the positive sign was considered. This followed the experimental results of 
Dolcetti et al.  (2016), which showed a poor fit between measurements and the solution with a negative sign. 
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The solution with the negative sign represents GC waves that attempt to propagate against the flow, but with a 
relatively low speed, so that they are swept downstream by the mean flow. The failure to represent these waves 
accurately could be due to the presence of a critical layer, that is, a plane where the mean flow velocity matches 
the speed of the water waves, enabling a resonant exchange of energy between flow and water surface which 
violates the assumptions of linearity and stationarity upon which Equation 6 is based (Zakharov & Shrira, 1990). 
Even with other models of vertical profile of streamwise velocity, these interactions are difficult to study, because 
models with nonconstant vorticity have a singularity at the critical layer, which does not appear to have been 
addressed in previous studies (e.g., Fenton, 1973).

Examples of a measured Fourier spectrum and of the weighing matrix Mp,q,n are shown in Figures 3a and 3b, 
and in Figures 3c and 3d, respectively. The problem of maximizing G was solved by means of a Self-Adaptive 
Differential Evolution (SADE) algorithm (Qin & Suganthan, 2005). This algorithm was found to be more robust 
and less dependent on the choice of the initial conditions compared to preliminary attempts with alternative 
methods (e.g., least squares, simplex). Details of the data preprocessing and optimization procedure are provided 
in Appendix A.

4.  Sensitivity and Uncertainties
This section includes a discussion of the factors that can affect the estimation of the surface velocity, depth, and 
discharge.

Figure 3.  Example of spectra fitting procedure. (a and b), Normalized measured frequency-wavenumber power spectra of a sequence of images of the water surface, 
Ip,q,n. (c and d), weighing matrix Mp,q,n, after fitting. (a and c), cross-sections of the 3D power spectra in the streamwise direction, that is, for k = k1. (b and d), 
cross-sections of the 3D power spectra in the transverse direction, that is, for k = k2. The green lines show the theoretical dispersion relations calculated for the best-fit 
parameters values. (Dashed), ΩGW. (Dashed-dotted), ΩA. The example is based on flow condition S04 (see Table 1).
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4.1.  Idealization of the Velocity Profile

The linear velocity profile described in Equation 5 was used to allow a prac-
tical explicit solution of the dispersion equation and is argued in this context 
to be a pragmatic approximation of the typical vertical profile of stream-
wise velocity in a river reach. Figure  4 shows a comparison of the linear 
profile and a power function profile U(z) ∝ z η, where η was chosen in order 
to yield the same depth-averaged to surface velocity ratio for both profiles. 
The accuracy of the linear profile model is less for the longer water waves 
that interact with a more strongly sheared flow closer to the bed. These waves 
tend to be dominant at higher Froude number flows. For instance, the differ-
ence between the values of the characteristic wavenumber k0 calculated for 
the linear and for the power-function velocity profile (Fenton, 1973), is less 
than 1% for Froude numbers lower than 0.5, but it can be as high at 20% 
for Froude numbers close to one (Dolcetti & García Nava, 2019a). Unfortu-
nately, approximations of the velocity profile beyond first order yield disper-
sion relations in an implicit form, that can only be solved numerically, which 
in this application would require very significant computational resources. 

Considering a typical set of 300 × 300 wavenumber values, 20 initial populations for the genetic algorithm, and 
around 100 iterations before convergence, the dispersion relation needed to be calculated 1.8 × 10 8 times on aver-
age, for each run of the optimization algorithm. A single run of the analysis assuming a power-function profile 
was performed using the data set indicated as S11, which had an intermediate water depth and Froude number 

𝐴𝐴 𝖥𝖥 = 0.53 (see Table 1). Compared to the linear profile solution, this yielded a difference of 1.2% for the speed and 
of 7.4% for the depth. However, the analysis time required was more than 20 times longer than the time taken by 
the linear profile solution. In the context of using a few minutes of images to monitor the flow discharges during 
a flood event, such a slow analysis would be impractical.

4.2.  Estimation of the Velocity Index

Predicting the flow rate requires the estimation of two parameters. The first one is the velocity gradient m that 
defines the shape of the velocity profile and affects the relationship between the measured wave frequency and 
the unknown water depth and surface velocity through Equation 7. In principle, m could be treated like an addi-
tional unknown parameter and estimated in the same way as U0 and d. Unfortunately, our attempts to estimate 
all parameters at the same time based on the measured videos and without additional constraints gave uncertain 
results, which suggested a nonuniqueness of the inverse problem. Therefore, the value of m had to be assumed a 
priori. The second parameter is the velocity index α, that is, the ratio between the depth-averaged velocity and the 
surface velocity. α allows the discharge to be calculated based on the estimated surface velocity, following Equa-
tion 2. Although it is required by most noncontact measurement methods, the estimation of α is often the largest 
source of uncertainty for the discharge (Hauet et al., 2018; Welber et al., 2016). According to Hauet et al. (2018), 
unless the possible range of variation of the velocity index can be constrained based on additional information on 
the site, a minimum uncertainty of ±15% at 90% confidence levels should be assumed for α, and therefore for the 
discharge determined with noncontact methods.

In principle, m and α can be chosen independently. Since both parameters are related to the shape of the vertical 
profile of the streamwise velocity, it was decided to link them, expressing the velocity gradient m as a function 
of α. In fact, the ratio between depth-averaged velocity and surface velocity for the linear velocity profile of 
Equation 5 is

𝛼𝛼 =
1

𝑑𝑑𝑑𝑑0 ∫
𝑑𝑑

0

𝑈𝑈 (𝑧𝑧)d𝑧𝑧 = 1 −
𝑚𝑚

2
.� (15)

Therefore, it was assumed that m could be calculated as a function of α as

𝑚𝑚 = 2(1 − 𝛼𝛼).� (16)

Then, all flow parameters (water depth, surface velocity, and discharge) could be estimated by assuming a single 
parameter α.

Figure 4.  Schematic of the linear vertical profile of the streamwise velocity 
(black), compared to a power-function profile (red). The linear profile has 
m = 0.34. The power-function profile has η = 0.2048. Both profiles have a 
velocity index α = 0.83.
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The choice of the value of α was based on existing guidance for noncontact velocimetry (Hauet et al., 2018). Data 
collected in a large number of small rivers by Hauet et al. (2018) revealed typical values of α between 0.7 and 
0.95, with an average of 0.83, and with slightly higher values for deeper flows. Therefore, here α was set to 0.83, 
and consequently m = 0.34 (Figure 4). An attempt to link the value of α to the depth by means of existing relations 
(Le Coz et al., 2010; Welber et al., 2016) was carried out but the results did not show a significant improvement.

Figure 5 shows an example of how the estimates of U0 d and Q change with a change of α. The example is based 
on the analysis of actual data recorded in flow condition S11, and performed assuming different values of α 
between 0.7 and 1 (which correspond to 0.6 ≥ m ≥ 0). The reference for the change of the estimated parameters is 
α = 0.83 (m = 0.34). The variation of U0 and d is due to the change of m. The effect on U0 is relatively small, with 
variations <3% for α between 0.7 and 1. The sensitivity of d is larger, with variations between −4.4% and 37.7%, 
with the largest values when α > 0.9. Since the discharge depends on both U0 and d as well as on α, its sensitivity 
to the choice of α is larger. For the example shown in Figure 5, a ± 10% uncertainty of α yields a ± 1.9% uncer-
tainty of U0, a ± 9.4% uncertainty of d, and a ± 16.8% uncertainty of Q.

4.3.  Sensitivity to Flow Parameters

As shown in Figure 2, flow speed variations have a much larger impact on the wave frequency than depth vari-
ations, at least in conditions of typical shallow river flows. Here, the sensitivity to speed and depth variations 
is quantified in terms of the nondimensionalized partial derivatives of ΩGW, and expressed as a function of the 
nondimensional wavenumber kd, of the Froude number 𝐴𝐴 𝖥𝖥 = 𝑈𝑈0∕

√

𝑔𝑔𝑔𝑔 , of the Bond number 𝐴𝐴 𝖡𝖡 , and of the velocity 
gradient m. The resulting equations obtained by differentiating Equation 6 are complicated in their complete 
form, therefore they are presented in Appendix B. In the small-shear gravity-wave limit, m → 0 and 𝐴𝐴 𝖡𝖡 𝖡 ∞ , the 
nondimensional sensitivity factors (indicated as ξ(.), where (.) is the parameter being considered) have a simpler 
form, as follows:

𝜉𝜉𝑈𝑈0
=

√

𝑑𝑑

𝑔𝑔
𝑈𝑈0

(

𝜕𝜕ΩGW

𝜕𝜕𝜕𝜕0

)

≈ (𝐤𝐤𝑑𝑑) ⋅ 𝐅𝐅� (17)

𝜉𝜉𝑑𝑑 =

√

𝑑𝑑3

𝑔𝑔

(

𝜕𝜕ΩGW

𝜕𝜕𝜕𝜕

)

≈
𝑘𝑘𝑘𝑘

2cosh
2
(𝑘𝑘𝑘𝑘)

√

𝑘𝑘𝑘𝑘

tanh(𝑘𝑘𝑘𝑘)
� (18)

Figure 6 illustrates the behavior of 𝐴𝐴 𝐴𝐴𝑈𝑈
0

 and ξd as a function of 𝐴𝐴 𝖥𝖥 and kd. The factors have been calculated for 
𝐴𝐴 𝖡𝖡 𝖡 ∞ and m = 0.34, but a qualitatively similar behavior could be observed for different values of 𝐴𝐴 𝖡𝖡 and m. 

Figure 5.  Relative variation of the estimated flow parameters as a function of the assumed velocity index α. The relative changes are with respect to the estimations 
obtained with α = 0.83. Variations of the estimated depth and surface velocity (a) are due to the dependence of the velocity gradient m on α through Equation 16. 
Variations of the discharge (b) are due also to the direct dependence on α according to Equation 2.
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The sensitivity to flow velocity variations, 𝐴𝐴 𝐴𝐴𝑈𝑈
0

 , increases linearly with 𝐴𝐴 𝖥𝖥 and 
with kd, meaning that the measurements are expected to be more accurate 
when the surface waves are relatively short. The inner product in Equation 
17 means that the sensitivity is maximum for waves that propagate paral-
lel to the flow direction, while it would be impossible to estimate the flow 
velocity if all measured waves were propagating perpendicularly to the flow, 
since in this case k ⋅F = 0, and ΩA and ΩGW would both be independent by 
U0. The sensitivity to depth variations, ξd, increases almost linearly with kd 
when kd < 1, it reaches a maximum when kd ≈ 1, then it stabilizes to a lower 
constant value, which increases with 𝐴𝐴 𝖥𝖥 . This indicates that estimates of the 
flow depth are expected to be more accurate when the surface waves have a 
wavelength λ ∼ 2πd. If m = 0, then there is no Froude number influence (see 
Equation 18), and ξd tends to 0 at large kd.

5.  Data Collection
5.1.  Measurement Sites

Validation was performed on data from two sites: the River Sheaf, in Shef-
field, United Kingdom (Latitude: 53.373056° Longitude: −1.463913° (WGS 

84)), and the River Calder, in Todmorden, United Kingdom (Latitude: 53.716198° Longitude: −2.097028°). 
These sites were chosen because they were located upstream of high quality conventional flow rate measurement 
gauging stations that could provide a direct comparison with the proposed methodology. Both rivers had an 
approximately trapezoidal channel shape (homogeneous flow, velocity index within typical range). The channel 
flow width was constrained by fixed walls, but the channel bed was composed of natural gravels that were poten-
tially mobile.

The Sheaf is one of the main tributaries of the River Don with a catchment area of 49.1 km 2 (at the gauging 
station). The lower part of the catchment is highly urbanized. The reach was effectively straight with a channel 
width of around 9.25 m, a bed slope of approximately 0.011, and a “stable” coarse gravel bed. The measurement 
area was situated 25 m upstream of a river gauging station operated by the UK Environment Agency, where the 
stage was monitored continuously by means of a calibrated pressure transducer. Measurements of the water depth 
at the same time of the videos were obtained indirectly, converting the stage data by means of a linear stage-to-
depth relation. This relation was calibrated with direct measurements of the water depth performed in two sepa-
rate occasions at 25 locations distributed evenly across the measurement area, and with indirect estimates of the 
water level relative to a fixed reference visible in each video. All data are presented in terms of water depth. Gaug-
ing surveys had been performed manually by the UK Environment Agency in 87 occasions between 1993 and 
2019, with a standard propeller meter (1993–2011), and with an acoustic Doppler current profiler (ADCP) (since 
2011). The historical survey data were used to produce an empirical depth-discharge curve, which was used to 
compare with the estimates obtained with the proposed water surface wave method. The mean annual discharge at 
the monitoring station is 0.583 m 3/s (period of record: 1981–2018), the 5th flow percentile is 1.925 m 3/s and the 
95th flow percentile is 0.083 m 3/s (National River Flow Archive, 2020). The measurements in this study covered 
a range of discharge between 0.29 m 3/s and 5.14 m 3/s, corresponding to a width/depth ratio between 132 and 19, 
respectively.

The Calder is a predominantly urban river. The river monitoring station is located within the town of Todmorden, 
with a catchment area of 18.2 km 2. Here, the 5 m wide channel has a stable coarse gravel bed and has brick walls 
extending over 2.5 m in height. The reach is broadly straight with a 19° curve on the approach to the imaged 
section where the bed slope is approximately 0.013. The measurement area was situated 10 m upstream of a river 
gauging station operated by the UK Environment Agency, where the stage was monitored continuously by means 
of a calibrated pressure transducer. The discharge was measured every 15 min by means of a bed-mounted ADCP 
(SonTek-IQ). The width/depth ratio varied between 7 and 26 across all measurements.

5.2.  Video Acquisition and Processing

The videos of the River Sheaf were recorded using a camera (Hikvision DS-2CD2T42WD-I8 6 mm IP), oper-
ating at 20 fps at a resolution of 1,920×1,080 pixels. The camera was installed on the left bank channel wall, 

Figure 6.  Nondimensional sensitivity parameters, which indicate the 
sensitivity of the waves dispersion relation with respect to (solid) speed 
variations, 𝐴𝐴 𝐴𝐴𝑈𝑈

0

 , and (dashed) depth variations, ξd. Data are expressed as a 
function of the nondimensional wavenumber kd and Froude number 𝐴𝐴 𝖥𝖥 . An 
example calculated with m = 0.34, in the 𝐴𝐴 𝖡𝖡 𝖡 ∞ gravity waves limit.

 19447973, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
032829 by C

ochrane France, W
iley O

nline L
ibrary on [07/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

DOLCETTI ET AL.

10.1029/2022WR032829

11 of 23

approximately 4.5 m above the river bed, looking upstream with an angle of approximately 30° from the horizontal. 
The videos had a duration of 5 min. They were recorded daily at 1 p.m., and sent automatically to an online repos-
itory, from which they were accessed and analyzed. The analysis was based on 17 time series of images recorded 
between January 2019 and February 2020, which were selected in order to provide a range of flow conditions.

The videos of the River Calder were recorded using the same model of camera, but at a higher resolution of 
2,688 × 1,520 pixels. The camera was installed on the left bank channel wall, approximately 3.9 m above the river 
bed, looking upstream with an angle of approximately 16° from the horizontal. The videos used for the analysis 
were taken between 6 and 13 October 2020, during a period that saw three flow rate peaks. Each video had a 
duration of 30 s, and were recorded every 15 min. These videos experienced compression and frame rate issues 
resulting in the loss of a small number of frames. The analysis covered 12 time image series, which were selected 
based on the time of day (measurements distributed at different times, avoiding night time), weather conditions 
(with and without rain), number of skipped frames (videos with more than 2% of skipped frames were excluded), 
and flow conditions (to provide a range of conditions).

The images from both sites were rectified to remove lens and geometric distortions. Intrinsic parameters of the 
camera lens (i.e., radial and tangential distortion coefficients, camera focal length, and image center parameters), 
were determined using a 841 × 1,189 mm checkerboard pattern and the Camera Calibrator App within Matlab 
2017b. External parameters of the camera location were surveyed, while the view direction was optimized using 
surveyed ground control points within the camera field-of-view. Changes in water surface level over time were 
accounted for during the orthorectification process (Messerli & Grinsted, 2015). The rectified image was defined 
onto a spatial grid with size 0.02 × 0.02 m for the River Sheaf, and 0.01 × 0.01 m for the River Calder.

In order for the estimations of the flow parameters to be accurate, both short and long waves must be measurable 
with a reasonable accuracy. Therefore, the camera must have both a suitable resolution and a large field of view. 
The flow velocity estimates are based mainly on the dynamics of short waves (see Figure 6), therefore their 
accuracy is mostly affected by the image resolution (pixel size) and frame rate (Piotrowski & Dugan, 2002). The 
spectral resolution, instead, represents the smallest variation of the frequency and/or of the wavenumber that can 
be detected, which is inversely proportional to the temporal and spatial extent of the measurements, Δω = 2π/T 
and Δk = 2π/L. The spectral resolution should not be large compared to the sensitivity of the dispersion rela-
tion to depth and velocity variations (ξd and 𝐴𝐴 𝐴𝐴𝑈𝑈

0

 ), otherwise these variations cannot be detected (Piotrowski & 
Dugan, 2002; Smeltzer et al., 2019). This imposes some limits on the minimum size of the images and on the 
minimum recording duration, that is,

𝑘𝑘𝑘𝑘 𝑘 1, 𝜔𝜔𝜔𝜔 𝜔 1,� (19)

where k and ω are some representative wavenumber and frequency of the water surface fluctuations, respectively. 
Based on Figure 6, the sensitivity to depth variations is highest for kd ∼ 1, therefore the size of the image must be 
substantially larger than the water depth in order to obtain a reliable estimate of the flow depth.

In order to obtain a sufficient spectral resolution for a range of flow conditions the analysis was applied to a 
window size comparable to the width of each river. For the River Sheaf, the window was square with size of 
6 × 6 m, while the characteristic wavelength λ0 (Equation 8) varied between 0.06 m (0.01 L, condition S01) and 
1.3 m (0.2 L, condition S16). The River Calder appeared to be dominated by longer waves, and had a smaller 
width. The size of the window had to be limited to 4 × 3 m, which corresponded to a spectral resolution of 
1.6 × 2.1 rad/m. The characteristic wavelength was estimated between 0.5 m (0.13 L, condition C01) and 3.1 m 
(0.8 L, condition C12), according to Equation 8. For both rivers, the videos were split into segments of 10 s 
duration, and the spectra were averaged across the different segments. For the River Sheaf, the spectrum was the 
average of 29 independent measurements. For the River Calder, due to the short duration of the videos, it was only 
possible to obtain 10 segments, with 80% overlap.

5.3.  Water Surface Appearance and Fourier Spectra

An example of a single video snapshot on the River Sheaf in flow condition S16 (see Table 1) is shown in 
Figure  7a. Figure  7b shows the corresponding rectified image, while Figure  7c shows a rectified snapshot 
obtained for a different flow condition (S08). The red square in Figures 7a and 7b shows the border of the area 
that was used for analysis. Water surface deformations are clearly visible in the images, and their characteristic 
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scales seem to be different for the two flow conditions (shorter in Figure 7c). According to observations by 
Dolcetti et al. (2016) in a laboratory flume, the dominant horizontal scale of the water surface in shallow flows 
is represented by λ0, obtained from Equation 8. The scale λ0 has been shown in Figures 7b and 7c for both flow 
conditions, as a reference.

Examples of the measured average frequency-wavenumber spectra Ip,q,n calculated for flow condition S11 are 
shown in Figure 8. Each plot in Figures 8b–8d is a different section through the 3D spectrum, as illustrated in 
Figure 8a. Figure 8b shows the transverse spectrum (k1 = 0) at all frequencies, Figure 8c shows the streamwise 
spectrum (k2  =  0), while Figure  8d shows both components of the wavenumber at a constant frequency of 
ω = k0U0 = 11.5  rad/s. The green lines in Figures 8b–8d, indicate the theoretical dispersion relations of GC 
waves and of turbulence-generated structures. They have been calculated based on the values of the flow param-
eters estimated with the procedure described in Section 3. Both types of water surface waves are clearly visible.

Figure 9 shows some examples of images recorded on the River Calder, before rectification (Figure 9a, for flow 
conditions C08) and after rectification (Figures 9b and 9c, for flow conditions C08 and C02). Compared to the 

Figure 7.  (a) A snapshot of a video of the River Sheaf (flow condition S16). (b and c) Examples of orthorectified images recorded in flow condition (b) S16 and (c) 
S08. The red square indicates the borders of the area used for the analysis. λ0 is the characteristic wavelength estimated by Equation 8.
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River Sheaf, the characteristic wavelength of the water surface fluctuations seems larger relative to the river 
width. An example of the frequency-wavenumber spectrum recorded on the River Calder for flow condition C08 
is shown in Figure 10. Compared to the spectra of the River Sheaf shown in Figure 8, the spectra in Figure 10 
appear noisier. This was due in part to the shorter duration of the videos of the River Calder, with a small number 
of averages, and more limited spectral resolution due to the longer waves. The presence of both types of surface 
waves can be observed by comparison with the theoretical dispersion relations in Figure 10.

The actual characteristic scales of the water surface waves were quantified in terms of the spatial Fourier spec-
tra of the image intensities. These were obtained by integrating the frequency-wavenumber spectra along the 
frequency axis in order to obtain the directional 2D wavenumber spectra, transforming these in polar coordinates, 
and then averaging along the polar angle. The analysis was applied only to the conditions with λ0 < Lmin/2, where 
Lmin is the smaller dimension of the rectangular window, since for longer waves the transform to polar coordinates 
was deemed unreliable at small k. The resulting omnidirectional spectra represent the power spectral density of 
the image intensity as a function of the wavenumber modulus k, and are shown in Figure 11 for the data collected 
in both rivers.

For both data sets, the spectra appear to have a peak at approximately k = k0, which demonstrates that the domi-
nant scale is represented effectively by Equation 8. There is a sharp cut-off at lower wavenumbers, indicating 
that λ0 is also the longest wavelength at the water surface. Another cut-off is found at higher wavenumbers, 
corresponding to a wavelength of approximately 50 mm, which aligns with the image spatial resolution. In the 

Figure 8.  Normalized measured frequency-wavenumber spectra of a video of the River Sheaf (flow condition S11). (a) Schematic of the dispersion relation of 
gravity-capillary (GC) waves and turbulence-generated surface deformations. The colored planes indicate sections of the 3D spectrum shown in (b and c, and d). (b) 
Spectrum of transverse waves [k1 = 0 - Red plane in (a)]; (c) spectrum of waves with the crest perpendicular to the flow [k2 = 0 - yellow plane in (a)]; and (d), section 
at constant frequency ω = k0U0 (blue plane in (a)). (green dashed lines): dispersion relation of GC waves, Equation 6. (green dashed-dotted lines): dispersion relation of 
turbulence-generated deformations, Equation 3.
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intermediate range of wavenumbers, the spectra decay following roughly a power function k −c, with the exponent 
c that increases with the Froude number. A line proportional to k −1/4 is shown for reference in Figure 11.

5.4.  Measurement Uncertainties

As discussed in Section 4, the measurement uncertainty is governed by multiple factors. An attempt was made to 
estimate the uncertainty that relates to the measurement resolution. This was done a posteriori, with the aid of a 
numerical model that created synthetic images of the water surface, with a spectrum similar to the ones observed in 
Figure 11. The synthetic videos were built by a Fourier synthesis method (e.g., Dolcetti & Krynkin, 2017) applied 
to a simplified spectrum that followed ∼k −1/4, with cut-offs at the wavenumbers k0 and 2π/0.05 rad/m. The wave-
number spectrum was transformed into a frequency-wavenumber spectrum by means of the dispersion relations 
(Equations 3 and 6), using the estimated values of the flow parameters d and U0 (hence, a posteriori). Sequences 
of synthetic images were constructed by multiplying the theoretical spectrum at each wavenumber-frequency 
combination by a set of complex factors drawn from a normal distribution, and then applying an inverse Fourier 
transform in space and in time to the randomized spectrum. This procedure ensures that the average spectrum 

Figure 9.  (a) A snapshot of a video of the River Calder (flow condition C08). (b and c) Examples of orthorectified images recorded in flow condition (b) C08 and (c) 
C02. The red square indicates the borders of the area used for the analysis. λ0 is the characteristic wavelength estimated by Equation 8.
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of the synthetic surfaces coincides with the theoretical spectrum. The synthetic data were  sampled spatially and 
temporally like the real data, therefore they had the same spatial, temporal, 
and spectral resolution.

The synthetic data followed exactly the theoretical dispersion relations calcu-
lated for the input flow parameters. However, because of the uncertainties, the 
flow parameters estimated with the analysis differed from the input values. 
For each flow condition, 5 synthetic videos were created and analyzed, and 
the uncertainties were quantified in terms of a root-mean-squared deviation 
from the input values of the flow parameters. The deviations calculated in 
this way represent only the effects of limited measurement resolution, and of 
the limited sensitivity of the surface dynamics to changes in flow parameters. 
They represent a lower boundary of the actual measurement uncertainties.

The uncertainties estimated based on synthetic data varied greatly with the 
flow conditions, because of the different characteristic surface wavelength 
and period. The values are presented as dimensional uncertainties of the esti-
mated parameters in Tables 1 and 2 for the two data sets. For the River Sheaf, 
the rms-deviation based on synthetic data for both d and Q varied between 
2.2% (flow condition S05, with k0L = 204) and 13.5% (flow conditions S15, 

Figure 10.  Normalized measured frequency-wavenumber spectra of a video of the River Calder (flow condition C08). (a) Schematic of the dispersion relation of 
gravity-capillary (GC) waves and turbulence-generated surface deformations. The colored planes indicate sections of the 3D spectrum shown in (b, c, and d). (b), 
spectrum of transverse waves (k1 = 0 - red plane in (a)); (c), spectrum of waves with the crest perpendicular to the flow (k2 = 0 - yellow plane in (a)); and (d), section at 
constant frequency ω = k0U0 (blue plane in (a)). (Green dashed lines): Dispersion relation of GC waves, Equation 6. (green dashed-dotted lines): dispersion relation of 
turbulence-generated deformations, Equation 3.

Figure 11.  Omnidirectional spatial spectra of the image intensity. (dashed), 
River Sheaf and (solid), River Calder. k0 is the characteristic wavenumber 
according to Equation 8. Only the flow conditions with λ0 < Lmin/2 are shown.
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S16, and S17, with k0L ≈ 30). The rms-deviation of U0 was less than 0.3% for all flow conditions (not shown in 
Table 1).

The flow conditions at the River Calder were relatively deeper, the window size to wavelength ratio was smaller, 
and therefore the uncertainty due to the limited spectral resolution was larger. For one measurement (06 October 
2020, 12:00), the algorithm failed to find a maximum of the normalized scalar product within the search range, 
resulting in a very large uncertainty of the depth, ±90%. This flow condition was discarded from further analysis. 
For the remaining flow conditions, the rms-deviations of d and Q varied between 2.4% (condition C01, k0L = 49) 
and 24.7% (condition C12, k0L = 8), while the uncertainties of U0 were always less than 0.5%.

6.  Results
The measured and estimated water depths and flow rates are listed in Tables 1 and 2, for each analyzed video of 
the River Sheaf and River Calder, respectively. The uncertainties in the table were calculated a posteriori from 
synthetic data, as explained in Section 5.4. The relative differences between measured and estimated depth and 
discharge are indicated as errd and errQ, respectively. The comparison between measured and estimated water 
depth and discharge is also illustrated in Figures 12 and 13, respectively.

For the measurements of the River Sheaf, the difference between measured and estimated depth varied between 
0.5% (measurements S08, S12, and S13) and 34% (S05), with a root-mean-squared average across measurements 
of 16.3%. Larger deviations were observed at the deeper and at the shallower flows. For the River Calder, the 
relative difference between measured and estimated water depth was found to vary between 2% (measurement 
C12) and 38% (C05), with most values (except C08 and C05) below 15%, and with an rms difference across all 
measurements of 15.5%.

The difference between measured and estimated flow rates for the River Sheaf (Figure 13a) varied between 0.4% 
(S08) and 52.6% (S15), with a root-mean-squared average across measurements of 27.8%. In comparison, the 
expected rms uncertainty estimated with synthetic data was 6% for both d and Q. The rms difference between the 
gauged discharges and the ones predicted by the fitted rating curve was 9%. For the River Calder, the difference 

Measurement Measured Estimated Error

Name Date dmeas (m) Qmeas (m 3/s) dest (m) Qest (m 3/s) errd (%) errQ (%)𝐴𝐴 𝖥𝖥est (−) k0d (−) k0L (−)

S01 02 February 2019 0.07 0.29 0.07 ± 0.00 0.18 ± 0.01 4.1 −37.9 0.38 7.7 661

S02 24 January 2019 0.07 0.29 0.07 ± 0.00 0.18 ± 0.01 −4.2 −38.3 0.41 6.6 560

S03 11 January 2020 0.12 0.50 0.14 ± 0.00 0.67 ± 0.02 15.2 33.8 0.59 3.2 161

S04 22 January 2019 0.12 0.52 0.10 ± 0.00 0.35 ± 0.01 −20.2 −32.6 0.43 5.9 289

S05 17 June 2019 0.15 0.68 0.10 ± 0.00 0.42 ± 0.01 −33.9 −37.6 0.46 5.1 204

S06 21 March 2019 0.16 0.75 0.13 ± 0.00 0.57 ± 0.01 −19.8 −23.2 0.46 5.0 189

S07 08 March 2019 0.17 0.84 0.15 ± 0.00 0.68 ± 0.02 −15.8 −18.6 0.47 5.0 171

S08 10 February 2019 0.18 0.87 0.18 ± 0.01 0.87 ± 0.04 −0.5 0.4 0.49 4.6 155

S09 06 March 2019 0.22 1.20 0.23 ± 0.01 1.30 ± 0.03 3.3 8.5 0.51 4.2 114

S10 03 October 2019 0.22 1.24 0.30 ± 0.01 1.66 ± 0.07 33.2 33.1 0.49 4.6 122

S11 08 February 2019 0.26 1.59 0.27 ± 0.01 1.75 ± 0.06 3.5 9.9 0.53 3.9 90

S12 07 February 2019 0.31 2.12 0.30 ± 0.01 2.29 ± 0.07 −0.5 8.1 0.57 3.5 68

S13 12 June 2019 0.34 2.60 0.34 ± 0.02 2.72 ± 0.12 0.4 4.7 0.56 3.5 61

S14 16 March 2019 0.37 3.05 0.41 ± 0.04 3.75 ± 0.34 9.6 23.0 0.63 2.9 46

S15 20 February 2020 0.42 3.82 0.51 ± 0.04 5.83 ± 0.48 22.3 52.6 0.73 2.1 31

S16 12 March 2019 0.49 5.14 0.57 ± 0.08 6.67 ± 0.90 16.8 29.8 0.70 2.3 29

S17 14 March 2019 0.49 5.14 0.51 ± 0.05 5.88 ± 0.58 5.8 14.4 0.68 2.4 30

Table 1 
Measured and Estimated Flow Parameters, River Sheaf
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between measured and estimated discharge varied between 2.3% (C10) and 99% (C05), with most values below 
30% and an rms difference of 37.6%. The expected uncertainties calculated with synthetic data were higher 
compared to the River Sheaf (14.6% for both d and Q), mainly because of the lower spectral resolution. For both 
rivers, the relative difference between the measured and estimated flow rates was large, close to 30% in average. 
The fact that the flow rate differences were larger than the depth differences are thought to be due to errors in the 
surface velocity and/or of the velocity index.

Figures 14 and 15 show the timeline of the measured and estimated flow depth and discharge, for the River Sheaf 
and for the River Calder, respectively. For the River Sheaf, only the measurements performed between 13 January 
and 23 March 2019 are shown. The measurements for both rivers show multiple depth and discharge peaks. The 
estimates of d and Q based on the analysis of videos follow the same distribution in time, with larger uncertainties 

near the peaks (between 12 March 2019 and 16 March 2019). The two high-
est peaks recorded on the River Calder occurred at night and no videos were 
available. For the River Sheaf, the peak values of the depth and discharge 
were overestimated (measurements S16, S17, and S14), while for the River 
Calder the largest error occurred in between the second and the third peak, 
during a lower flow (measurement C05).

7.  Discussion
Based on the results in Section 6, uncertainty about the velocity index and 
the spectral resolution had the largest impact on the measurement accuracy. 
The velocity index is a source of uncertainty for all noncontact discharge 
measurements (Hauet et al., 2018; Welber et al., 2016). The spectral reso-
lution was a limitation for the present study due to the presence of waves 
with a wavelength comparable to the width of the river. The large window 
did not allow to consider transverse variations of the flow velocity and 
depth. This could explain the overestimation of the discharge especially 
at high flows, for both rivers. The estimations of the discharge were found 
to be more accurate for the flow conditions with a larger aspect ratio, in 
agreement with the conclusions of the uncertainty analysis reported in 
Section 4. In wider rivers where width is not constrained and where the 
size of the measurement area can be increased relative to the water depth, 

Measurement Measured Estimated Error

Name Date, Time dmeas (m) Qmeas (m 3/s) dest (m) Qest (m 3/s) errd (%) errQ (%)𝐴𝐴 𝖥𝖥est (−) k0d (−) k0L (−)

C01 13 October 2020, 14:30 0.19 0.56 0.19 ± 0.00 0.62 ± 0.01 4.7 12.0 0.71 2.3 49

C02 06 October 2020, 09:30 0.22 0.57 0.21 ± 0.01 0.75 ± 0.03 −2.8 30.2 0.74 2.1 39

C03 07 October 2020, 12:00 0.23 0.59 0.26 ± 0.02 0.98 ± 0.06 14.0 67.0 0.77 1.9 34

C04 11 October 2020, 12:15 0.24 0.76 0.22 ± 0.01 0.90 ± 0.04 −9.1 19.1 0.78 1.9 31

C05 09 October 2020, 12:00 0.27 0.79 0.37 ± 0.05 1.56 ± 0.20 38.0 98.6 0.78 1.9 28

C06 08 October 2020, 15:00 0.41 1.89 0.38 ± 0.03 2.26 ± 0.18 −6.5 19.8 0.89 1.4 14

C07 10 October 2020, 15:00 0.40 1.93 0.35 ± 0.07 2.00 ± 0.39 −13.8 3.7 0.87 1.5 15

C08 06 October 2020, 15:30 0.40 2.00 0.32 ± 0.03 1.81 ± 0.17 −20.9 −9.3 0.86 1.6 15

C09 08 October 2020, 12:30 0.49 2.89 0.55 ± 0.08 3.67 ± 0.54 12.9 27.0 0.92 1.3 11

C10 10 October 2020, 11:30 0.49 3.08 0.44 ± 0.09 3.01 ± 0.62 −10.9 −2.3 0.94 1.3 10

C11 10 October 2020, 09:30 0.60 3.75 0.52 ± 0.12 3.85 ± 0.91 −12.8 2.6 0.92 1.3 9

C12 08 October 2020, 09:00 0.69 4.71 0.67 ± 0.16 5.23 ± 1.29 −2.2 11.1 0.90 1.4 8

Table 2 
Measured and Estimated Flow Parameters, River Calder

Figure 12.  Water depth estimated from videos of the River Sheaf (red) and 
Calder (blue). The abscissa is the measured water depth, dmeas. The dashed line 
indicates dest = dmeas. The error bars represent the uncertainty estimated with 
synthetic data.
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the method should provide results with similar or lower uncertainties, provided the cameras have the required 
resolution and field of view.

The method described here is more suited to the monitoring of wide and shallow rivers and flows with finite 
Froude numbers. In principle, any water surface deformation observed in a river (including the patterns produced 
by the interaction with turbulence, and all types of GC waves including waves produced by wind or rain, 
wakes behind obstacles/vegetation, or stationary waves) will follow one of the dispersion relations presented in 
Section 2.2. Unlike other approaches such as large scale particle image velocimetry or surface Doppler velocime-

Figure 14.  Temporal evolution of the measured (black line) and estimated (red circles) water (a) depth and (b) discharge of the River Sheaf, between 13 January and 
23 March 2019. The measured discharge has been calculated by means of the fitted rating curve, as a function of the measured depth. The error bars represent the 
uncertainty estimated with synthetic data.

Figure 13.  Flow rate estimated from videos of the (a) River Sheaf and (b) Calder. The red circles are obtained from the analysis of the videos, with the uncertainty 
estimated with synthetic data. In (a), the black circles indicate historical gauging surveys performed with acoustic Doppler current profilers (ADCPs) or propeller 
meters, and the black dashed line is a fitted power-function stage-discharge curve based on historical gauging. In (b) the gray circles indicate historical gauging surveys 
performed with an up-looking ADCP. Green circles show the ADCP measurements recorded at the same time of the videos.
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try, the accuracy of the method proposed here is not reduced by the presence of GC waves (including stationary 
waves), but rather these waves enhance accuracy. Only the dispersion relation of GC waves depends on the water 
depth, therefore turbulence-generated patterns can only yield estimates of the flow velocity. Gravity waves can 
originate in the presence of wind, but they are also expected to occur without wind in a wide range of flow condi-
tions, which includes a large proportion of river flows (Brocchini & Peregrine, 2001; Muraro et al., 2021). Most 
existing experimental and field investigations of the water surface dynamics have been performed in conditions 
where the water surface is predominantly “wavy” or “scarified” (Muraro et al., 2021). In shallow flows over 
a rough bed, where they seem to arise predominantly from the interaction with the bed roughness, GC waves 
have been observed directly or indirectly at Froude numbers between 0.15 and 0.95 (Muraro et al., 2021). At 
very low Froude numbers, however, these waves could be too short to allow an accurate estimation of the water 
depth (see the increase of the relative depth and discharge errors at the shallowest flows, in Figures 12 and 13). 
At Froude numbers near or above critical, on the other hand, the waves could become very long, and it could 
become impossible to ensure adequate spectral resolution (see the larger uncertainties at the deepest flows in 
Figures 12 and 13). The amplitude of turbulence-generated waves could change with the flow conditions follow-
ing variations of the turbulence intensity (Valero, 2018; Valero & Bung, 2018). This would not be an issue since 
the proposed approach is able to clearly distinguish between turbulent waves and gravity-capillary waves because 
of their different dispersion behavior (Dolcetti et  al.,  2016). In the future, the link between the amplitude of 
turbulence-generated waves and the turbulence intensity in the flow could be used to improve the accuracy of the 
method or to gain additional information also about turbulence. There may also be cases where the shape of the 
bathymetry or some disturbance such as wind or vegetation causes a significant deviation of the velocity profile 
from the linear profile, or where localized and persistent large coherent turbulent structures modify the statistical 
behavior of the water surface. These cases would require the development of new dispersion relationships for 
water waves, which could be developed in the future.

It is useful to set some recommendation for the installation of the cameras, based on the experience obtained 
analyzing data for this work. First, any videos of the water surface must show some visible patterns that can 
be interpreted as an effect of deformations due to surface waves. Shadows from the river banks, bridges, trees, 
or other natural or man-made objects should be reduced, as well as direct sunlight reflection (sun-glint) which 
would saturate images. These optical effects can be mitigated by filtering and normalizing during preprocessing, 
but the overall quality of the analysis may still be affected. The camera should be stable, since camera move-
ment produces an additional Doppler shift to the spectra. Nadir-looking cameras should be avoided, since water 
reflectance is minimal and waves are less visible from directly above. Therefore, fixed cameras may be prefera-

Figure 15.  Temporal evolution of the measured (black line) and estimated (red circles) water (a) depth and (b) discharge of the River Calder, between 5 October and 13 
October 2020. The error bars represent the uncertainty estimated with synthetic data.
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ble to cameras mounted on drones, or airplanes. If the camera is too close above the water surface, perspective 
distortion is large, and large water surface deformations could affect the accuracy of the orthorectification. 
Therefore, camera placement and resolution in relation to GC waves at low Froude numbers is important.

8.  Conclusions
The aim of this work was to estimate river discharge using an entirely noncontact measurement technique, by 
exploiting the dependence of the water surface dynamics on the water depth and mean surface velocity. The imple-
mentation compares the spatiotemporal Fourier spectra of a sequence of rectified images of the water surface to 
a model of linear gravity-capillary waves and turbulence-generated surface deformations in a flow with a linear 
velocity profile. The approach is subject to a number of uncertainties, which depend on illumination conditions, 
resolution of the instrumentation, and validity of the model assumptions, and which were discussed in Section 4.

The applicability of the proposed method was tested on data collected in two rivers. The two sites represented field 
environments with conditions that should be consistent with the assumptions of the theoretical model used. The 
spectral analysis of the water surface revealed the simultaneous presence of gravity-capillary waves and surface 
deformations induced by turbulence, with a characteristic wavelength λ0 that matched the theoretical wavelength of 
stationary waves. These observations are in agreement with previous laboratory experiments (Dolcetti et al., 2016).

The comparison between the flow parameters (water depth and discharge) estimated from the analysis of videos, 
and those expected or measured directly with alternative methods, confirmed the validity of the proposed 
approach but also highlighted its limitations. The water depth was estimated with an rms-average error of approx-
imately ±16% at both sites, which is considered a good outcome having been obtained with inexpensive fully 
noncontact methods. Discharge errors were larger, at 28% and 38% for the two sites, which was attributed to the 
uncertainty about the velocity index and spanwise variations of the flow velocity. Two aspects of the field imple-
mentation negatively affected measure performance: the weak dependence of the water surface dynamics on the 
depth, which requires the presence of waves with a wavelength much longer than the water depth and the need 
of a measurement area that is wide compared to the water surface wavelength. These requirements strongly limit 
the spatial resolution that can be obtained with the proposed approach. The issue could be addressed in the future 
using a multi-scale approach, where only the velocities are estimated at multiple spanwise locations.

Despite a growing interest by the scientific community, the research on the interaction between a turbulent flow and 
its free surface is still a relatively young and largely unexplored topic (Muraro et al., 2021). This work has confirmed 
the existence of a link between the water surface dynamics and macroscopic flow parameters such as surface veloc-
ity and water depth at a field scale, and has demonstrated the potential to monitor river discharge entirely remotely, 
with a physics-based approach. The main advantages of the proposed approach are that it requires the collection of 
images of the water surface alone; it does not require any other measurements (depth) or practical measures such as 
seeding of the flow with particles, which are problematic at high flood flows. It does not need any previous survey 
of the site other than for the purpose of projecting the images onto physical coordinates. These factors make this 
approach appealing especially for discharge estimation at previously ungauged sites, or for measurements during 
flood events, where access is unsafe, or at river reaches affected by frequent variations of bed level.

Appendix A:  Fitting Algorithm
The Self-Adaptive Differential Evolution (SADE) algorithm (Qin & Suganthan, 2005) is a genetic optimization 
algorithm. The algorithm generates a number (for this work 20) of populations, or sets of parameters chosen 
randomly within a predetermined range. At each iteration, populations are modified according to different 
strategies, which are picked randomly with an initially identical probability. As the iterations progress, the prob-
ability to use each strategy changes according to the probability of success (i.e., the probability to increase the 
objective function) observed during the previous iterations. In this way, the algorithm is well suited for bringing 
to convergence even complex nonlinear problems with multiple parameters.

In order to give equal weight to the different types of waves that appear in the spectrum which have a relatively 
large dynamic range, the data were preprocessed as follows: The spectrum at each frequency Ip,q,n was divided by 
its sum over the wavenumber indices, ∑p ∑qIp,q,n, to compensate for the decay with frequency (normalization). 
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Then, the noise floor was removed by neglecting all elements of the matrix that were smaller than twice the aver-
age over the frequency index n of the normalized spectrum, <2 ⟨I�,�,�⟩� (de-noising).

The SADE algorithm requires the definition of a search region for each parameter. For this work, it was assumed 
that U1, U2 ∈ [−3, 3] m/s, d ∈ [0, 3] m. The optimization algorithm was initialized with a set of 10 populations, 
each with a random combination of the three target parameters. The calculation was stopped when all populations 
had converged to the same maximum value of the NSP, within 10 −5%. The whole procedure was repeated 5 times, 
and the best-fit solution was identified as the result of the run with the highest value of the NSP.

An example of convergence plot, calculated for one single run based on flow condition S11, is shown in Figure A1. 
The estimation of each of the two components of the flow velocity converged more rapidly, in about 30 iterations, 
while the estimation of the water depth converged after about 60 iterations. This was due to the lower sensitivity 
of the dispersion relations to depth variations, as discussed in Section 4.

Appendix B:  Sensitivity to Flow Speed and Depth Variations
The following equations represent the nondimensionalized sensitivity of the wave frequency with respect to the 
flow speed and depth, 𝐴𝐴 𝐴𝐴𝑈𝑈

0

 and ξd, respectively, calculated from Equation 6
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θ is the angle between k and F, and 𝐴𝐴
√

𝑔𝑔∕𝑑𝑑 is a characteristic frequency used for the nondimensionalization.

Figure A1.  Example of convergence plot, based on flow conditions S11. The margins of the colored areas indicate the 
maximum and minimum of d (light blue) and of the two components of U0 (dark blue), across all populations, at each 
iteration. The lines indicate the values of d (dashed dotted, blue) and of the two components of U0 (solid black is the x1 
component, dashed black is the x2 component) of the population with the highest Normalized Scalar Product at each iteration.
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Data Availability Statement
Data sets for this research are openly available at the following https://doi.org/10.5281/zenodo.6553739 (Perks 
et al., 2022).
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