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Abstract: The optical data transport system of the KM3NeT neutrino telescope at the bottom of the
Mediterranean Sea will provide each of the more than 6000 optical modules in the detector arrays
with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA
detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively; their
distance to the control stations is about 100 kilometers and 40 kilometers. The expected maximum
data rate is 200 Mbps per optical module. The implemented optical data transport system matches
the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient
use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied.
The performance of the optical system in terms of measured bit error rates, optical budget and the
next steps in the implementation of the system are presented.

Keywords: Optics, Cherenkov detectors, Large detector systems for particle and astroparticle
physics, Data Processing
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1 Introduction

KM3NeT is a network of neutrino telescopes in the Mediterranean Sea [1]. The main scientific
goals of KM3NeT are (i) neutrino astronomy, i.e. searching for cosmic neutrinos from distant
astrophysical sources like gamma ray bursts, supernovae or coalescent stars and (ii) the study of
oscillation patterns of atmospheric neutrinos to investigate the neutrino mass ordering. The first
objective will be pursued with the KM3NeT/ARCA telescope in construction offshore Capo Passero,
at about 3500 m under sea level, while the KM3NeT/ORCA detector, being installed at about 2500
m under sea level offshore the Toulon coast, in France, is mainly devoted to the second objective.
For the detection of neutrinos large three-dimensional arrays of about 2000 Digital Optical Modules
(DOMs) each are being installed in the deep sea to detect the Cherenkov light emitted along the path
of relativistic charged particles originating from the interaction of neutrinos with matter inside or
in the vicinity of the arrays. Each optical module is equipped with 31 photomultiplier tubes (PMTs)
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and calibration instrumentation together with all electronics for read-out and data acquisition [2].
The modules in the arrays are integrated in Detection Units (DUs)- vertical structures anchored to
the seabed; an electro-optical backbone cable running the full length (Fig. 1). At the anchor of a
detection unit a base module provides the interconnection with the seafloor electro-optical cable
network. The network connects the detection units with control stations onshore for data transfer
and detector control.

Figure 1. Layout of ARCA (left) and ORCA (right) detection unit showing the 18 optical modules on one
detection unit, the electro-optical cable guided along the full length of the unit, as well as the top buoys and
anchor frames [3].

1.1 The detectors

The configuration of the ARCA1 detector is optimised for the detection of cosmic neutrinos with
energies above about 1 TeV. When completed, it will consist of two blocks of 115 detection units
each. The ARCA detection unit has a height of about 700 m and supports 18 optical modules
(Fig. 1 left). The vertical distance between optical modules is about 36 m, the horizontal distance

1Astroparticle Research with Cosmics in the Abyss
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between detection units is about 90 m. The instrumented volume of ARCA will be about one cubic
kilometer. On the other hand, the configuration of the ORCA2 detector is optimised for the detection
of atmospheric neutrinos with energies in the range 1 GeV-1 TeV. Compared to ARCA, the ORCA
detector is relatively densely instrumented with optical modules and about a factor 100 smaller in
volume. It comprises one block of 115 DUs about 200 m high; the vertical distance between the
optical modules is about 9 m (Fig. 1 right). With a horizontal distance between the detection units
of about 20 m, the instrumented volume of ORCA correspond to about 7 megatonnes of sea water.

1.2 The networks

Data transmission and detector control of the arrays rely on networks of electro-optical cables and
junction boxes which connect the optical modules in the deep sea to the control stations onshore.

The detection units of ARCA will be connected to the deep-sea network infrastructure being
deployed about 100 kilometres off the coast of Sicily near Portopalo di Capo Passero in Italy (Fig. 2).
The network has a star configuration that provides the required horizontal distance of about 90 m
between the anchored detection units. The configuration minimises the complexity of the cabling
and eventually the cost of the detector installation. Up to twelve detection units are connected to
a hub, the junction box; junction boxes are then connected to the termination frame of the main
electro-optical cables and finally to the control station. Each detection unit has a vertical backbone
cable with 18 fibres for individual connection between each optical module and the base of the DU;
the cable connecting the base module of the detection unit to a junction box has two fibres; the
cable between a junction box and the main cable termination frame has four fibres; for historical
reasons the first main cable to shore has 20 optical fibres; the second one has 48 fibres. The ARCA
broadcast architecture foresees a total of three junction boxes for the first phase of KM3NeT.

In parallel, a network infrastructure is being deployed about 40 kilometres off the coast of
Toulon in France (Fig. 3) for the ORCA detector. Its design foresees groups of four detection
units connected to each other in daisy chain. Each daisy chain is connected to a hub - the node.
The horizontal distance between the detection units is about 20 m; up to 24 detection units can be
connected to each node. The nodes are then connected in daisy chain with the manifold at the end of
the main electro-optical cables to the control station onshore. A diverse number of fibres are used
in different sections of the network: the vertical backbone cable in a detection unit has 18 fibres; the
cable in the daisy chains connecting four base modules has 4 fibres; the cables of the daisy chain
of nodes comprise 36 optical fibres for the first main cable to the control station; the second cable
is the one used in the ANTARES telescope [4] has 48 fibres and will be used for the second phase
of construction of the ORCA telescope. (De)multiplexing the optical data transmission channels
and operating the various detector control channels of the fibre networks are the main tasks of the
optical data transmission system described in the next sections. Details of the physical layer of the
optical data transfer and detector control system are presented.

2 The KM3NeT optical data transfer system

Because of the large distances between the DUs and the control station and the expected average data
rate of 30 Mbps per optical module with a maximum of 200 Mbps [5], the data transmission system
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Figure 2. Layout of the ARCA network. Boxes represents the junction boxes; Dots indicates the detection
units connected to the junction boxes. The junction boxes are connected to the cable termination frames of
the Main Electro-Optical Cables (MEOCs) to shore (red lines to the pink boxes). The black lines reflect the
implementation of the network in the first phase of KM3NeT.
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Figure 3. Layout of the ORCA network. The node N1 and N2 are daisy-chained in the main electro-optical
cable and reflect the implementation of the network in the first phase of KM3NeT. Dots are detection units
daisy-chained to a node.

of KM3NeT has to rely on an optical fibre physical layer. To minimise the number of fibres in the
underwater electro-optical cables, Dense Wavelength Division Multiplexing (DWDM) is applied
in order to share the same fibre between several optical modules [6]. The vertical electro-optical
backbone cable in the DU routes a single fibre from each optical module to the base module, which
is located at the anchor of the DU. Each optical module is connected to the system of the control
station onshore through its own point-to-point optical link. In order to achieve this, a different
frequency is assigned to each optical module and allocated on a fixed grid with spacing of 200 GHz
between optical modules of the same detection unit. According to the frequency allocation, four
different channel group configurations for the detection units are defined, labeled A, B, C and D.
The frequency grids of DOMs hosted on neighbouring DUs in a chain of four have an offset of 50
GHz.

2.1 Multiplexing

A multi-stage multiplexing scheme is adopted offshore. The first stage is performed in the base
module of each detection unit, the second stage in the junction box in the case of ARCA or in the
first detection unit of a daisy chain for ORCA. With this scheme it is eventually possible to multiplex
the optical modules of four detection units with a total of 72 different frequency channels using
a single fibre, with a spectral spacing of 50 GHz [7]. Optical modules and base modules house
a Central Logic Board (CLB) [8] which collects all information produced by the PMTs and the
other instruments and transmits it to the control station through the assigned DWDM channel. The
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CLB hosted in the DOM collects also data from the ancillary instrumentation of the DOM: piezo
sensor, compass and nanobeacon. Clock information, slow control and detector control commands
are broadcasted by the data acquisition (DAQ) system in the control station and used to manage
subsystem functions inside the optical modules and the base modules. The electrical to optical
conversion of the various signals is implemented by means of Small Form-factor Pluggable (SFP)
optical transceiver modules [9] hosted in the CLB. The CLB in the base module also manages the
ancillary instrumentation of the detection unit: hydrophone and long base line acoustic beacon.

2.2 Bandwidth

The bandwidth usage is asymmetric: large in the upstream direction, from the DOMs to the onshore
DAQ system, and small in the downstream direction from the onshore DAQ system to the DOMs
and base modules. The main contributor to the optical module upstream data rate is the PMT signal
acquisition [10], which accounts for sustained rates between 20 and 100 Mbps, with seconds-long
bursts with rates up to five times higher. A further contribution comes from the piezo detectors
inside the optical modules used for acoustic positioning, accounting for 10 Mbps. All remaining
instrumentation together produces less than a few hundred of Kbps. The bandwidth asymmetry
is reflected in the design of the system. All serial streams have the same data rate of 1.25 Gbps
Ethernet. The downstream slow control and the detector control signals are broadcasted towards
all optical modules and base modules connected to each junction box or to a node – a point to
multi-point configuration. The Ethernet stream bandwidth is shared among various detection units.
Each optical module and base module exploits the full Ethernet bandwidth point to point for the
upstream communication.

2.3 Synchronisation

Since neutrino event reconstruction is based on the PMT signal time, a common timing reference
must be available to the CLBs to allow for detector wide synchronisation. The time offset between
each acquisition channel and the fixed reference must be known to compare signal times. In order
to facilitate the clock distribution, the White Rabbit (WR) protocol over Ethernet is used [11].
Synchronisation is achieved by communication between a WR master onshore, realized by means
of a specific WR switch (WRS) fabric, and a WR slave unit hosted on the CLB in the base module
offshore. This makes it possible to dynamically reconstruct a time offset between downstream and
upstream clocks. In this way, all the receivers are synchronised by design to the onshore time
reference, which is derived from a GPS station [12]. In particular, the above mentioned asymmetric
broadcast design implies a modification in the onshore WRS fabric with respect to the standard
implementation. The downstream communication is handled by the WRS called Broadcast. The
upstream reception is implemented in the WRS called Level 1 for the base channels of the DU and
in a standard switch fabric for the DOMs. The WRS called Bridge, connected to the GPS, acts as
the Grand Master and distributes the timing to the rest of the WRS fabric.

3 Implementation for ARCA

The ARCA optical system, shown in Fig. 4, matches the seafloor electro-optical infrastructure with
a star topology (Fig. 2). In the first phase of construction up to twelve DUs are connected to one
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junction box by means of two fibres per detection unit and each junction box is connected to shore
using four fibres of the main electro-optical cable. The ARCA optical system is composed of three
main optical paths:

- a channel for slow control (downstream) and a base module channel (upstream) for each
detection unit;

- three channels for the junction box control and command (downstream-upstream);
- a channel for each optical module data (upstream).
The slow and the base module channels share the same fibre bidirectionally with the channels

for junction box control and command. The DOM data channel uses a dedicated fibre; only in
the vertical electro-optical backbone cable in the detection unit fibres are shared with the slow
control channel and with the base modules. The slow control channel is broadcasted by the SFP
transceiver hosted in the WRS-Broadcast, and then multiplexed by add-drop filters with the primary
and secondary (backup) channels for junction box control and command and the junction box
instrumentation channel hosted in the WRS-Bridge. The four channels are routed to a booster
Erbium Doped Fiber Amplifier (EDFA, ED-T in Fig. 4) the output of which is routed to a circulator.
The circulator bidirectional port is then connected to the main electro-optical cable.

Figure 4. The ARCA optical system. The colored lines represent the different optical paths such as Digital
Optical Module (DOM), Slow Control (SC), Base Module (BM) and Junction Box (JB) data. Details are
described in the text. The red dots A, B and C indicate different measuring points that are explained in
section 5.

At the junction box, the channels for control and command, for instrumentation control and
the channel for slow control are demultiplexed. The junction box control and command channels
are routed to the monitor and control unit, the instrumentation control channel is routed to the
instrumentation control electronics boards, and the slow control channel is routed to an EDFA
module (ED-N in Fig. 4). The ED-N boosts the slow control channel before it is added again to
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the bidirectional fibre, split with a 1:16 ratio and eventually routed to each of the 12 detection units
connected to the junction box3. At the base module, the slow control channel is dropped by an
add-drop filter and then split: 60% is routed to the CLB of the base module and 40% amplified
again by an EDFA hosted in the base module (ED-O in Fig. 4). The base module data channels are
transmitted through SFP transceivers hosted in the CLBs of the base modules and added to the slow
and detector control segment by an add-drop filter. At the junction box, the same 1:16 ratio splitter
used for the slow control channel is used to combine up to 12 base module channels. The combo
of base module channels must be amplified at the junction box before being routed to the main
electro-optical cable. For this reason, the base module data channels are dropped and routed to an
EDFA module (ED-P in Fig. 4). After amplification, the base module channels are added again to
the bidirectional fibre and multiplexed with the channel for junction box control and command and
with the channel for instrumentation control. For each primary EDFA in the junction box a backup
EDFA is added to comply with the reliability studies carried out to maintain a life span of 20 years of
each junction box. An optical switchover logic board is introduced, which switches from the main
amplifier to its backup in case of a failure of a main EDFA. An optical switchover board is dedicated
to each amplifier pair (ED-N and ED-P in Fig. 4). The board is controlled remotely via the junction
box control and command channels. At the control station, a circulator separates the upstream and
downstream directions, followed by a cascade of add-drop filters which drop the channel for junction
box control and command and the channel for instrumentation control from the base module data
channels combo. The former are routed to the junction box control and command unit, the latter to
the WRS-Bridge. The remaining base module channels are amplified by an EDFA (ED-U in Fig. 4),
routed to a demultiplexer (MX 13ch) and eventually passed to Avalanche PhotoDiode (APD) SFP
receivers hosted in WRS-Level 1. The data acquired by the optical modules are transmitted via
SFP transceivers hosted in the CLBs of the modules and added by filters to the channel for slow
control and base module data. The optical module channels then share the vertical electro-optical
cable fibre with the slow control channel. At the base module of the detection unit they are dropped
by 18 add-drop filters and routed to an 18 channel multiplexer (MX 18ch). At the junction box
four sets of 18 channels, corresponding to the four detection unit configurations – labelled type A,
B, C and D – are routed to a 200-50 GHz interleaver. At the control station, the optical module
channels are routed to an EDFA S or a Raman two pumps amplifier (ED-S or RM-2 in Fig. 4), to
a 72 channel demultiplexer (MX 72ch) and eventually routed to APD SFP receivers hosted in the
optical module front-end switches (DFES in Fig. 4) of the optical modules. The choice of EDFA
amplifier or Raman amplifier is driven by market availability.

4 Implementation for ORCA

The ORCA system, shown in Fig. 5, is matched to the seafloor electro-optical cabling infrastructure
with a daisy chain topology: groups of four different detection units (type A, B, C and D, each
one using a set of 18 channels) are connected to a central hub called node. The node can provide
connectivity for up to 24 detection units and for this purpose requires six fibres of the main electro-
optical cable (two additional fibres are used as spare). Two nodes are then connected in cascade
exploiting the full main cable fibre capacity. The system is composed of three channels:

3Splitters with 1:16 ratio have been used as 1:12 ratio splitters are not available on the market

– 8 –



- one channel for the slow control (downstream);
- one channel for the base module data (downstream-upstream);
- one channel for the optical module data (upstream).

Figure 5. The ORCA optical system. The colored lines represent the different optical paths such as Digital
Optical Module (DOM), Slow Control (SC) and Base Module (BM) data. Details are described in the text.
The red dots A, B and C indicate different measuring points that are explained in section 5.

The ORCA daisy chain topology foresees in different splitter ratios between base modules
along the slow control and base module data optical layers in order to equalise the optical power
levels received by the base modules, as shown in Fig. 5. The first detection unit of the chain
(type A) houses the interleaver, which multiplexes the optical module data produced by the four
detection units in the daisy chain. The slow control and base module channels share the same fibre
bidirectionally. The optical module data channel uses a separate set of fibres, with the exception of
the vertical electro-optical cable fibres that are shared only with the slow control channel. The slow
control and base module channel interconnects the onshore DAQ system with the optical modules
and the base modules data. The slow control channel is broadcasted by the SFP transceiver hosted
in the WRS-Broadcast, and routed to the input port of the circulator. The circulator bidirectional
port is then connected to the main electro-optical cable. At the node, the slow control channel is
demultiplexed from the bidirectional fibre and routed to an EDFA module (ED-L in Fig. 5). The
ED-L boosts the slow control channel before it is added again to the bidirectional fibre, split with
a 1:8 ratio and eventually routed to each of the eight node outputs connected to six detection units
daisy chains (two out of eight are kept as spare). Inside the base modules of the detection units the
slow control channel is dropped by an add-drop filter and then split: 60% is routed to the CLB in
the base module and 40% is amplified by an EDFA module (ED-C in Fig. 5). The slow control
channel is routed to each of the 18 optical modules, by a combination of 1:16 and 1:2 ratio splitters.
The access to the vertical electro-optical cable fibres is implemented by add-drop filters housed
in the base module and in each DOM. The base module data channels are transmitted from the
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SFP transceivers hosted in the CLB of the base modules and added to the slow control and base
module channel through an add-drop filter. At the node, the 1:8 ratio splitter is used to combine
24 base module data channels which are amplified before being routed to the main cable. For this
reason, the base module data channels are routed to an EDFA module (ED-M in Fig. 5). After
amplification, the base module channels are added to the bidirectional fibre. Similarly to ARCA,
for each main EDFA in the node, a backup EDFA is added. In the case of ORCA, the redundancy
scheme is implemented exploiting the second input port of the 1:8 ratio splitter. The backup EDFAs
are enabled by manually connecting the shore end point to the spare node fibre. At the control
station onshore, the base module data channel is routed to the 26 channel demultiplexer (MX 26ch)
and eventually to the APD SFP receiver hosted in the WRS-Level 1. In contrast to ARCA, the
ORCA system node control and command does not share the same fibre of the slow control and base
module channel; instead it is routed via two separate fibres which are shared with the other nodes.
An additional set of two fibres in the main cable to shore is dedicated to instrumentation for research
in Earth and Sea sciences, which is part of the KM3NeT infrastructure. The data from the optical
module channels are transmitted by SFP transceivers hosted in the CLBs of the optical modules and
added to the slow control and base module data segment by one add-drop filter. At the base module
they are demultiplexed from the slow control and base module channel by 18 add-drop filters and
routed to an 18 channel multiplexer (MX 18ch). At the control station the DOMs channels are
routed to an EDFA (ED-D in Fig. 5), to an 72 channel demultiplexer (MX 72ch) and eventually to
the APD SFP receivers hosted in the front end switches (DFES in Fig. 5).

5 Performance of the system

In order to assess the optical performance of the ARCA and ORCA implementations, a key per-
formance indicator is the ratio of the number of bit errors over the total number of transferred bits
during a certain time window. This ratio is also known as Bit Error Rate (BER). A laboratory
testbed was setup to measure the BER at several locations in the optical networks.

5.1 The BER test setup

The designs of the optical networks of ARCA and ORCA in Fig. 4 and Fig. 5 respectively was
implemented in a laboratory test setup. Some parts of the network, such as optical fibres of the
vertical electro-optical cable, the main electro-optical cable and the seafloor cabling were emulated
by optical attenuators, allowing for a compact testbed. In the detector, the SFP transceivers are
hosted in the CLBs and DAQ switches onshore, while in the testbed they were driven at 1.25 Gbps
by one single Ethernet switch. The Ethernet switch hosted additional SFP transceivers to load the
system; these were not monitored in the BER measurements. The SFP transceivers used for the
BER measurement are hosted in several evaluation boards that drove them with a pseudo random
binary sequence of (215 − 1) bit using a non-return-to-zero line code. In order to measure the
BER of the optical channel under test, the received electrical signal produced by the evaluation
board was compared with the transmitted. The bit-to-bit comparison of the two serial streams
was implemented by the BER tester equipment. For each optical channel under test, several
measurements were performed. Starting from the typically expected received power, the signal
level was gradually lowered using a variable optical attenuator, placed in front of the receiver, until
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the level was so low that the link was lost (asserting the loss of signal flag). From that point onwards,
the optical signal level was increased again in small steps of 0.5 or 1 dB until the link was established
and the errors on the received bit stream were counted. Aim of the test was to check the quality of the
signals belonging to the optical module, slow control and base module data channels, with particular
focus on verifying the amount of possible crosstalk between them, especially in the bidirectional
segments of the optical system. To test the path of data from the DOMs, a dedicated configuration
was designed to optimise electronic hardware that could reproduce the optical network. Only some
channels belonging to a certain detection unit were investigated, and due to the port limitation of
the Ethernet switch not all the neighbouring channels were installed. The BER was measured for
the following channels in a detection unit (Fig. 6):

- channel 1: to check if there is a penalty (a degradation of the receiver sensitivity) due to the
edges of the EDFA passband;

- channel 4: the least powerful channel;
- channel 7: the most powerful channel;
- channel 8: a channel with several neighbouring channels 50 GHz apart;
- channel 18: to check if there is a penalty due to the edges of the EDFA passband.

Figure 6. Optical spectrum of detection unit channels (corresponding to each optical module) in the test
setup.

An example of the optical spectrum of the data channel from the optical modules is shown
in Fig. 6 where in addition to the DU channels, six continuous wave (CW) laser sources are
introduced. The CW laser sources, labelled loading Distributed FeedBack (DFB) are located at
the edges of the spectrum as neighbours of channel 1 and channel 18 with a separation of 50 GHz
(0.4 nm) from the channels. The power level of the CW laser sources is similar to the power
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level of the signals belonging to the other detection units not present in the spectrum, so that the
total optical power is equal to what is expected by the signals belonging to a set of A, B, C, D
type of detection units. Eighteen channels belonging to the detection unit B type frequency grid
are shown in Fig. 6, with channel 8 surrounded by channel 8 of type A, C and D detection units.
Using the testbed, the BER was measured for each optical segment in the ARCA and ORCA optical
systems. The SFP transceiver module used for the BER measurements was the OE Solution model
RDP12SZXSxxC/H, which has a declared sensitivity of −25 dBm at the beginning of life (−26
dBm at the end of life) and a minimum loss of signal assert level of −35 dBm. The measurements
show that the actual sensitivity of the SFP transceiver is better than −31 dBm for a BER of 10−12

in the worst case, due to the effect of the EDFA preamplifiers before the receivers input. Along
with the BER, the reliability of the measurement was tested by computing the 𝑝-value assuming a
binomial distribution of errors [13]:

𝑝−value = 1 −
𝑁−1∑︁
𝑘=0

(
𝑛!

𝑘!(𝑛 − 𝑘)!

)
𝑝𝑘ℎ (1 − 𝑝ℎ)𝑛−𝑘

where 𝑝ℎ is the value of BER, 𝑛 is the total number of bits transmitted during the measurement
window and 𝑁 is the total number of bit errors. The smallest 𝑝-value is larger than 90%, which
well certifies the compatibility of the measurement with the assumption.

6 Results

6.1 The slow control channel

The BER of the slow control channel was measured by the receiver at a location near the CLB
at point A in Fig. 4 and Fig. 5. The measurements were implemented with various combinations
of slow control signals with or without the detector control channel and with or without ED-T
amplification. In the ARCA testbed, ED-T operates at a 10 dB automatic gain mode. The resulting
BER curve in Fig. 7 show no differences for all considered cases indicating that the EDFA gain
does not lead to a degradation of the receiver sensitivity. In addition, the presence of the detector
control signal did not have any influence on the performance.

In the case of the ORCA architecture, the BER of the slow control link was measured with
and without DOM and base module data, as shown in Fig. 8. Aim of this measurement was to
determine if any crosstalk between the optical modules and slow control channel or base module
and slow control channel was present, since they share the same fibres in the vertical electro-optical
cable and in the fibre between the base module and the shore DAQ system respectively, as shown in
Fig. 4 and Fig. 5.

6.2 The base module data channel

For the base module data channel the BER was measured with the receiver in the shore station at
point C in Fig. 4 and Fig. 5. The results are shown in Fig. 9 and Fig. 10.

The influence of the DOM data channels was not considered in this case as these channels do
not share the base module fibre. For ARCA the bit error rate curve at the shore station receiver
with and without ED-T emission, is shown in Fig. 9. The data indicate that the addition of ED-U
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Figure 7. ARCA Bit Error Rate as function of
power level of the receiver for the slow control chan-
nel offshore. Black line is drawn just to guide the
eye.

Figure 8. ORCA Bit Error Rate as function of
power level of the receiver for the slow control chan-
nel offshore. Black line is drawn just to guide the
eye.

Figure 9. ARCA Bit Error Rate as function of
power level of the receiver for the base module chan-
nel onshore. Black line is drawn just to guide the
eye.

Figure 10. ORCA Bit Error Rate as function
of power level of the receiver for the base module
channel onshore. Black line is drawn just to guide
the eye.

amplification brings no signal degradation. The BER curve for the ORCA base module channel is
shown in Fig. 10. The curves show no influence of the slow control channel on the base module
channel even though they share the same optical path.

6.3 The optical module data channel

The optical path of data from the optical modules was measured onshore at point B in Fig. 4 and
Fig. 5. Random DOM channels were chosen for this test run. The results for ARCA are presented
in Fig. 11 and show that there is only a weak dependence of the BER curves on the optical module
channel. Therefore, for ORCA, only one channel is tested (Fig. 12).
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Figure 11. ARCA Bit Error Rate as function of
power level of the receiver for the optical module
data channel onshore. Black line is drawn just to
guide the eye.

Figure 12. ORCA Bit Error Rate as function of
power level of the receiver for the optical module
data channel onshore. Black line is drawn just to
guide the eye.

6.4 The optical budget

The optical budget calculations performed during the system design phase were confirmed in the
validation phase. The operational optical system margins for slow control, base module channel
and optical modules data paths are calculated as the difference of the optical levels measured in the
detector during the commissioning of the first deployed detection unit and the sensitivities shown in
Fig. 7 to Fig. 12. The levels measured during the commissioning include the gain provided by the
amplifiers, and are the optical power level at the beginning of life before starting the ageing process
and therefore the deterioration of the signal. For the ARCA system typical calculated margins are:

- about 20 dB for the slow control path;
- on average 20 dB for base module paths;
- on average 22 dB using RM-2 amplification and 28 dB using the ED-S amplification for the

optical module data path.
The typical calculated margins for ORCA are:

- about 20 dB for the slow control path;
- on average 9 dB for the base module paths.
- on average 20 dB for the optical module data path. The ORCA base module path margin is

lower than the ARCA base module path due to the bypass of ED-F in the deployed system;
Since it is not possible to have a perfect replica of the deployed system, the margins calculated
above might be overestimated by a few dBs. In addition, the measurements confirmed that, for
some optical paths, the amplifier stages could be removed or temporarily bypassed. For the ARCA
system, it was decided to remove the EDFA amplifier along the DOM data optical path in the junction
box, and consequently extend the input dynamic range of the onshore preamplifier. As a result of
the removal of the EDFA from the junction boxes the reliability of the offshore infrastructure of
the ARCA detector improved. For the ORCA system it was decided to bypass ED-F in the shore
station, since the beginning of life power levels before starting of the ageing process are well above
the measured sensitivity.
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7 Next steps

As described in the introduction, when completed, the ARCA detector will comprise 230 detection
units and ORCA will consist of 115 units. The implementation of the detectors has been subdivided
into two smaller projects in order to adapt to the time lines of funding sources and procurement
procedures and to allow for adaptation or replacement of obsolete technical parts. The first im-
plementation phase foresees the construction of 32 detection units for ARCA and 48 for ORCA.
The physical optical layer described in this paper is implemented in the detectors of the first phase
with more than 500 optical modules in ARCA and more than 800 optical modules in ORCA. For
the second phase a couple of adaptations are foreseen. The main reasons for the design change are
scalability, reliability and standardisation. In order to finalise the second phase of KM3NeT, with
three arrays of 115 detection units each, several technical requirements must be faced. The number
of fibres required in the ARCA and ORCA networks has to be compliant with what are the market
availability of standard underwater cables. The ratio between costs and number of fibres must be
optimised. Moreover, the KM3NeT collaboration is currently validating the use of a fully standard
White Rabbit technology for the communication between detector elements in the second phase
of the project [14]. This solution requires the installation of White Rabbit switches in the base
module of each detection unit. A high reliability switch board for offshore use was not available
at the start of the design and implementation of the first phase of KM3NeT. The standard White
Rabbit solution allows also for a minimisation of the number of fibers connecting the detection units
to shore by using a single fibre for bidirectional communication. The solution simplifies both the
network design and the time calibration procedures. With this new solution also the design of the
hardware components in the shore station is simplified, resulting in a better scalability of rack units
installed for each junction box in the control station.

8 Concluding remarks

Details have been presented of the KM3NeT optical data transport system, which connects hundreds
of optical modules and other components in the detector arrays in the deep sea with the control
stations onshore. To comply with the scientific goals of KM3NeT, accurate time calibration between
the many optical modules in the detector arrays is essential for the reconstruction of the neutrino
events. For the first time in a deep sea neutrino telescope the White Rabbit protocol over Ethernet is
used for the clock distribution. Downstream slow control and base module signals are broadcasted
to all optical modules in the detector array. Synchronisation is achieved by communication between
a White Rabbit master onshore and a White Rabbit slave unit inside the optical modules. Optical
modules in the detector arrays are connected to the control station onshore via optical fibres in
the detection unit and in the deep sea network. In order to verify the quality of the optical data
transport system, BER values have been measured at various relevant points in a testbed that mimics
the optical networks in the deep sea. Measured values indicate a high reliability of the networks.
Moreover, data taking with the first detection units resulting in science papers demonstrates the
good quality and reliability of the optical system [15] [16].
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