
HAL Id: hal-03992007
https://hal.science/hal-03992007

Preprint submitted on 16 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-phase Branch & Cut for the Symmetric Weight
Matrix Knapsack polytope

Alexandre Heintzmann, Pascale Bendotti, Cécile Rottner

To cite this version:
Alexandre Heintzmann, Pascale Bendotti, Cécile Rottner. Two-phase Branch & Cut for the Symmetric
Weight Matrix Knapsack polytope. 2023. �hal-03992007�

https://hal.science/hal-03992007
https://hal.archives-ouvertes.fr

Abstract

In this paper, we define a new variant of the knapsack problem, the Symmetric Weight Matrix
Knapsack Problem (SMKP). The (SMKP) is the core structure of the Hydro Unit Commitment
being a production scheduling problem relative to hydroelectric units. The (SMKP) is proven to
be NP-hard. The main contribution is a polyedral study of the (SMKP) and a dedicated two-
phase Branch & Cut scheme. The polyedral study focuses on inequalities with 0-1 coefficients.
Necessary facet-defining conditions are described, through a new structure called pattern encoding
the symmetries of the (SMKP). A special case of patterns is identified where these conditions are
necessary and sufficient. A two-phase Branch & Cut scheme is defined to exploit the symmetries
on the pattern inequalities. As a pre-processing step, the first phase aims to produce patterns
verifying these conditions. The second phase separates the inequalities associated to the patterns
produced in the first phase at the nodes of a Branch & Cut tree. Experimental results demonstrate
the efficiency of the proposed scheme in particular with respect to default CPLEX.

1

Two-phase Branch & Cut for the Symmetric Weight Matrix

Knapsack polytope

Alexandre Heintzmann1,2, Pascale Bendotti1, and Cécile Rottner1

1EDF Lab Paris-Saclay, 7 Bd. Gaspard Monge, 91120 Palaiseau, France
{alexandre.heintzmann, pascale.bendotti, cecile.rottner@edf.fr}

2LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France
{alexandre.heintzmann@laas.fr}

February 16, 2023

1 Introduction

Consider N groups of M elements, where N and M are positive integers. Let item (i, j) be element
j of group i. Item (i, j) has weight wij and value vij , both non-negative. Within each group, order
constraints are such that any item (i, j) can be selected provided item (i, j − 1) is selected. Let C
be the maximum capacity. The Matrix Knapsack Problem (MKP) is to maximize the total value of
the selected items, while the order constraints are verified, and the total weight of the selected items
is less than or equal to C. The Symmetric Weight Matrix Knapsack Problem (SMKP) is a Matrix
Knapsack Problem where item (i, j) has weight wij = wj , i.e., the weight of item (i, j) does not depend
on the group index i. It means that items (i, j) and (i′, j) have the same weight, thus the knapsack
is symmetrically weighted with respect to the groups. We define (N,M,w, v, C) an instance of the
(SMKP).

Two well known formulations can be used for both the (MKP) and (SMKP), namely the so-called
incremental formulation and the multiple choice formulation. The former involves order constraints,
where the latter uses disjunctive constraints instead. Both formulations yield the same LP relax-
ation [4]. Note that in the incremental formulation, there is a particular precedence graph induced by
order constraints as depicted in Figure1(a). In the multiple choice formulation, it is a conflict graph
induced by disjunctive constraints, namely a graph with edges between any pair of items in the same
group. Figure 1(b) also shows the corresponding matrix representation that will be convenient in
the sequel to illustrate on examples some properties.

The motivation for (SMKP) is that it is the core structure of the Hydro Unit Commitment (HUC)
[8], which is a production scheduling problem relative to hydroelectric units.

The knapsack problem and its variants have been widely studied in the literature [9]. The (SMKP)
and the (MKP) have not been studied yet, but can be related to some variants of the knapsack problem
in the literature. As the order constraints are a special case of precedence constraints, the (MKP) is a
direct special case of the Precedence Knapsack Problem (PKP) [2]. Similarly as disjunctive constraints
can be used alternatively for the (MKP), the (MKP) is also a special case of the Disjunctive Knapsack
Problem (DKP) [14]. Both the (PKP) and the (DKP) are generalizations of the classical Binary
knapsack problem (BKP). Indeed, the (BKP) is a (PKP) without any precedence, as well as a (DKP)
without any disjunctive constraints. Interestingly, the (MKP) is also a generalization of the (BKP),
whereas the (SMKP) is not. Indeed, an (MKP) with exactly one item for each group does not have
any order constraints, which is exactly a (BKP). However, the (SMKP) is not a generalization of the

2

M

N

w1, v1,1

w2, v1,2

wM , v1,M

w1, v2,1

w2, v2,2

wM , v2,M

w1, vN,1

w2, vN,2

wM , vN,M

↔

..
.

..
.

..
.

. . .

. . .

. . .

M

N

w1, v1,1

w2, v1,2

wM , v1,M

w1, v2,1

w2, v2,2

wM , v2,M

w1, vN,1

w2, vN,2

wM , vN,M

..
.

..
.

..
.

. . .

. . .

. . .

Figure 1: Graphic representation of the (SMKP)

(BKP). Indeed, because of the symmetric weight, an (SMKP) with one item per group would be a
trivial (BKP), where each item has the exact same weight. Furthermore, the (SMKP) is not a Multiple
knapsack problem [7] despite the presence of multiple groups. Indeed, a capacity constraint is applied
on all groups simultaneously in the (SMKP), whereas it is applied for each group individually in the
Multiple knapsack problem.

In this paper, the (SMKP) is proven to be NP-hard. A compact formulation is defined with its
corresponding polytope. A literature review of facet-defining inequalities for problems related to the
(SMKP) is exposed. The main contributions are the polyhedral study of the (SMKP) and a two-phase
Branch & Cut (B&C) scheme. A new structure, called pattern, is defined, embedding the symmetries
of the (SMKP). New inequalities, associated to the patterns and covering all the facets of the (SMKP)
with 0-1 coefficients are introduced. Necessary facet-conditions are defined for these inequalities,
which are also proven to be sufficient for a special case. An algorithm to generate patterns verifying
these conditions is described and is used as pre-processing in the first phase of the B&C scheme. The
separation algorithms, involved in the second phase of the B&C scheme, reduces to solve a maximum
matching problem for the pool of the first phase generated patterns. To evaluate the efficiency of the
corresponding inequalities, a numerical comparison shows that pattern inequalities largely outperform
CPLEX generated cuts.

In Section 2 the complexity of the (SMKP) is stated and some polyhedral results from the
literature for variants of the KP are reported. In Section 3 the patterns are defined as well as
inequalities and facet-defining conditions are provided. In Section 4 the two-phase B&C scheme
is described. In Section 5 are presented the experimental results on the efficiency of the proposed
inequalities and compared to CPLEX. In Section 6, concluding remarks and perspectives for further
research are drawn.

2 The Symmetric Weight Matrix Knapsack problem

We first prove the NP-hardness of the (SMKP). A literature review of related problems is done, and
first polyhedral properties are provided.

3

2.1 Complexity

To state the complexity of the (SMKP), we introduce the Unbounded Integer knapsack problem
(UIKP), which is a knapsack problem where items can be selected an unlimited number of times. The
(UIKP) is NP-hard [15] and a reduction from this problem is considered.

Theorem 1. The (SMKP) is NP-hard

Proof. Let (M , w′, v′, C) be an instance of the (UIKP) with M items, with w′
j and v′j the weight and

the value of item j ≤M . The aim is to maximize the value of the selected items, each can be selected
multiple times, while satisfying the maximum knapsack capacity C.

Let (N , M , w, v, C) be an instance of the (SMKP). The aim is to maximize the value of the
selected items, verifying the order constraints within a group, and satisfying the maximum knapsack
capacity C.

We set the following relations, without loss of generality, between the weights and the value of
each knapsack: w′

j =
∑j

k=1 wj and v′j =
∑j

k=1 vi,k
As such, selecting once item j for (M , w′, v′, C) is equivalent to selecting elements 1 to j in a single

group for (N , M , w, v, C). In the following, we make the reduction in the case N > C/min(w′
j).

For a solution of (M , w′, v′, C) there is a solution of (N , M , w, v, C). Let pj be the number of
times item j is selected in a solution of (M , w′, v′, C). There is a solution of (N , M , w, v, C) that is
equivalent: for each element j, there are pj unique groups of (M , w′, v′, C) where only elements 1 to
j are selected.

Similarly, for a solution of (N , M , w, v, C) there is a solution of (M , w′, v′, C). Let pj be the
number of groups where only elements 1 to j are selected in a solution of (N , M , w, v, C). There is
a solution of (M , w′, v′, C) that is equivalent: each item j is selected exactly pj times.

Thus, the (UIKP) is a special case of the (SMKP) where N > C/min(w′
j), and because the (UIKP)

is NP-hard, the (SMKP) is NP-hard.

The (SMKP), and the (MKP), are generalizations of the Unbounded Integer Knapsack prob-
lem (UIKP). Consequently, the (MKP) is a generalization of both the (BKP) and the (UIKP). The
Bounded Integer Knapsack problem (BIKP)[3] is also a generalization of the (BKP) and the (UIKP).
Indeed, the (BKP) is a special case with upper bounds 1 on the number of repetition for each item, and
the (UIKP) is a special case with finite upper bound sufficiently large to not be restrictive. However,
the (BIKP) and the (SMKP) are not related. In fact, the (BIKP) considers a maximum number of
repetitions for each item, while the (SMKP) would be closer to an Integer Knapsack problem with a
shared upped bound on the total number of items, repetition included. This shared upper bound is
the number of groups N .

All connections between the knapsack problem variants are depicted in Figure 2 with a graph
in which each vertex represents a variant and each arc indicates that the variant at the tail is a
generalization of the variant at the head.

(PKP)

(DKP) (MKP)

(BIKP)

(SMKP)

(BKP)

(UIKP)

Figure 2: Generalization orders of some variants of the knapsack problem

4

2.2 The Symmetric Weight Matrix Knapsack polytope

Let xij be the binary variable such that xij = 1 if item (i, j) is selected in the solution. We denote
V the set of variables xij for the (SMKP). The total number of variables is n = N ×M . A compact
incremental formulation of the (SMKP) is the following.

max

N∑
i=1

M∑
j=1

xijvij

s.c.

N∑
i=1

M∑
j=1

xijwj ≤ C (1)

xij ≤ xij−1 ∀xij ∈ V, j ≥ 2 (2)

xij ∈ {0, 1} xij ∈ V

In this formulation, the objective function is to maximize the total value of the selected items. In-
equality (1) is the capacity constraint, inequalities (2) correspond to the order constraints within each
group. We define the polytope P(SMKP) the convex hull of the feasible solutions of the (SMKP):

P(SMKP) = conv
{
x ∈ {0, 1}n : x satifies (1)− (2)

}
Let zij be the binary variable such that zij = 1 if and only if items (i, 1) to (i, j) are selected

in the solution. We denote W the set of variables zij for the (SMKP). A compact multiple choice
formulation of the (SMKP) is the following.

max

N∑
i=1

M∑
j=1

zij

j∑
k=1

vik

s.c.

N∑
i=1

M∑
j=1

zij

j∑
k=1

wk ≤ C (3)

M∑
j=1

zij ≤ 1 ∀i ≤ N (4)

zij ∈ {0, 1} ∀zij ∈ W

The major difference is inequality (4), corresponding to the disjunctive constraints within each group.
Otherwise these formulations are equivalent with respect to the variable change.

Because of the symmetric weights, if a solution is valid, then any symmetric solution with respect to
the group indices is also valid. Moreover, the symmetries also appears in the facet-defining inequalities
of the (SMKP).

Property 1. If an inequality is facet-defining for the (SMKP), any of its symmetries is also facet-
defining for the (SMKP).

Proof. If an inequality is facet-defining for the (SMKP), there are n + 1 affinely independent valid
solutions verifying the inequality to equality. As the weights are symmetric with respect to the groups,
if a solution is valid, then any permutation of groups yields another valid solution. Hence, one can
prove any symmetry of a facet-defining inequality to also be facet-defining, as it suffices to deduce the
n+1 valid solutions following the same permutation of groups. These new n+1 points are necessarly
affinely independent as they all undergo the exact same permutation of groups.

5

Example 1. Let (4, 3, [3, 4, 2], v, 9) be an instance of the (SMKP). Besides trivial facets and
inequalities (2), the convex hull of the incremental formulation for (4, 3, [3, 4, 2], v, 9) contains 5
inequalities:

x12 + x22 + x32 + x41 ≤ 1 (i1)

x12 + x22 + x31 + x42 ≤ 1 (i2)

x12 + x21 + x32 + x42 ≤ 1 (i3)

x11 + x22 + x32 + x42 ≤ 1 (i4)

x11 + 2x12 + x21 + 2x22 + x31 + 2x32 + x41 + 2x42 ≤ 3 (i5)

Besides trivial facets and inequalities (4), the convex hull of the multiple choice formulation for
(4, 3, [3, 4, 2], v, 9) also contains 5 inequalities:

x12 + x13 + x22 + x23 + x32 + x33 + x41 + x42 + x43 ≤ 1 (m1)

x12 + x13 + x22 + x23 + x31 + x32 + x33 + x42 + x43 ≤ 1 (m2)

x12 + x13 + x21 + x22 + x23 + x32 + x33 + x42 + x43 ≤ 1 (m3)

x11 + x12 + x13 + x22 + x23 + x32 + x33 + x42 + x43 ≤ 1 (m4)

x11 + 3x12 + 3x13 + x21 + 3x22 + 3x23 + x31 + 3x32 + 3x33

+ x41 + 3x42 + 3x43 ≤ 3 (m5)

One can notice that the 4 inequalities with 0-1 coefficients are symmetries of one another with respect
to the group indices, for both formulations of the (SMKP). Also, each facet-defining inequality of one
formulation has an equivalent for the other formulation, which is consistent with the LP relaxation of
both formulations being the same [4].

Based on the convex hull of many small instances, we experimentally distinguished three types of
inequalities: the ones from the initial formulation, binary inequalities with 0-1 coefficients, and integer
inequalities, with non-negative integer coefficients. In the article, the polyhedral study focuses on the
binary inequalities, through a new structure to handle their symmetries.

2.3 Related knapsack polytopes

The (SMKP) is a knapsack variant. Indeed, it is a generalization of the (UIKP) [13], as shown in
Theorem 1. Thus, the facet-defining inequalities of the (UIKP) may not be facet-defining for the
(SMKP).

The (SMKP) is neither a generalization, nor a special case of both the (BIKP) and the (BKP).
Hence, the facet-defining inequalities of these problems may not be related to those of the (SMKP).
However, we introduce some concepts of the (BKP) as they have been extended to variants that are
related to the (SMKP).

Let V be a set of items, the (BKP) can be formulated as follows:

max
∑
j∈V

vjxj∑
j∈V

wjxj ≤ C

xj ∈ {0, 1} ∀j ∈ V

A cover U ⊆ V is a set of items such that
∑

j∈U wj > C. A minimal cover U ⊆ V is a cover such that
no subset of U is also a cover,

∑
j∈V \{i} wj ≤ C, ∀i ∈ U . The minimal cover inequalities containing

6

facet-defining inequalities of the (BKP), are as follows, with U a minimal cover:∑
j∈U

xj ≤ |U | − 1

The minimal cover and related inequalities have been extended to the (PKP), which is a generalization
of the (SMKP). The (PKP), defined as follows. Let (V,⪯) be a partial order set of items. Item j
covers item i if there is no k such that j ≺ k ≺ i. A compact formulation of the (PKP) is:

max
∑
j∈V

vjxj∑
j∈V

wjxj ≤ C

xj ≤ xi if j covers i

xj ∈ {0, 1} ∀j ∈ V

A lower-ideal is a set U ⊂ V such that if i ∈ U and i ≺ j, then j ∈ U . The minimal cover inequalities
have been extended to the case of the (PKP) with U a minimal cover as well as a lower-ideal:∑

j∈U

xj ≤ |U | − 1

Such inequalities cannot contain the binary facet-defining inequalities of the (SMKP), as most of
these inequalities are for variable sets that are not lower-ideals. When referring to the convex hull
of incremental formulation of Example 1, inequality (i1) is facet-defining for the (SMKP), for the
set of variables {x12, x22, x32, x41}. However, this set is not a lower ideal. In fact, it contains the
second variable of groups 1 to 3, without containing the first variable of these groups despite the order
constraints. The minimal cover inequalities have been enhanced in the literature with various liftings.
In [2] a lifting procedure is described, starting from a facet of a lower-dimensional polyhedron. The
lifting procedure provides valid inequalities that are not necessarily facet-defining for the (PKP).

The minimal cover can also be adapted to the (PKP) [12] [11] without the use of lower-ideals. The
corresponding inequalities are more likely to be facet-defining inequalities of the (SMKP), which cannot
be obtained with lower-ideals as previously mentioned. Let A be the arcs of the precedence graph. The
arc set A is modified such that if (i, j) ∈ A and (j, k) ∈ A then (i, k) ∈ A. An induced cover is a set
U ⊆ V , such that there is no arc between a pair of items in U and

∑
j∈U wj+

∑
(k,j)∈A,j∈V wk ≥ C. A

minimal induced cover is an induced cover U such that
∑

j∈U\{i} wj +
∑

(k,j)∈A,j∈V wk ≥ C, ∀i ∈ U .
The minimal induced cover inequalities are as follows, with U a minimal induced cover:∑

j∈U

xj ≤ |U | − 1

The minimal induced cover inequalities do not contain the facet-defining inequalities of the (SMKP).
Indeed, most facet-defining inequalities are for induced covers that are not minimum. When referring
to the convex hull of incremental formulation of Example 1, inequality (i1) is facet-defining for the
set of variables {x12, x22, x32, x41}. However, this set is not a minimal induced cover, as its subset
{x12, x41} is a minimal induced cover.

These minimal induced covers have been enhanced with a lifting [12]. The procedure described
uses items that have at least two successors in the precedence graph. For the (SMKP) instance
(4, 3, [3, 4, 2], v, 9), this lifting only considers variables for the last item of each group. As mentioned
previously, variable set {x12, x22, x32, x41} is not a minimal induced cover and it also excludes all
variables for the last item of each group. Consequently, the inequality corresponding to the variable

7

set {x12, x22, x32, x41} cannot be obtained through this lifting, and the lifting procedure described
cannot produce the facet-defining inequalities of the (SMKP). A sequential lifting procedure has also
been developed [11]. Consider U a minimal induced cover, with Up containing all variables i /∈ U such
that (i, j) ∈ A and j ∈ U , and with Ur = V \ (U ∪Up). The sequential lifting procedure computes the
coefficients αj , ∀j ∈ Up and βj , ∀j ∈ Ur, leading to a lifted inequality:∑

j∈U

xj

∑
j∈Up

αj(1− xj) +
∑
j∈Ur

βjxj ≤ |U | − 1

Referring to Example 1 with the (SMKP) instance (4, 3, [3, 4, 2], v, 9), the procedure described
can produce inequalities (i1) to (i4), but not (i5), meaning it could produce the binary inequality of
the (SMKP). However, this is not always the case as shown with Example 2.

Example 2. Let (4, 3, [6, 3, 2], v, 18) be an instance of the (SMKP). The following inequality is
facet-defining for the incremental formulation:

x11 + x13 + x22 + x32 + x42 ≤ 3 (i6)

The only minimal induced cover with the variables of (i6) are U1 = {x11, x22, x32}, U2 = {x13,
x22} or any of their symmetry with respect to the groups 2 to 4. The sequential lifting procedure could
produce inequality (i6) from neither U1 nor U2 with the lifting process. No variable in inequality (i6)
is in Up associated to U1, and |U1|− 1 = 2, the bound 3 cannot be obtained with the sequential lifting
procedure. Only one variable in (i6) is in Up associated to U2: x11. However, as |U2| − 1 = 1 and
x11 has coefficient 1, the bound 3 cannot be obtained with the sequential lifting procedure. Hence, no
variable set can lead to (i6) with the sequential procedure.

The (SMKP) can also be a special case of the (DKP) formulated as follows. Consider a disjunctive
graph with vertex set V and edge set E. A compact multiple choice formulation of the (DKP) is:

max
∑
j∈V

vjxj∑
j∈V

wjxj ≤ C

xj + xi ≤ 1 if (j, i) ∈ E

xj ∈ {0, 1} ∀j ∈ V

As for the precedence graph of the (SMKP), the corresponding disjunctive graph is very special.
Indeed, the only edges are between any pair of items in the same group. Consequently, every group
of items is a clique, and no item is adjacent to an item in another group. Five families of efficient
inequalities have been reported for the (DKP) [14]: the clique inequalities; the cover inequalities; odd-
cycle and hypergraph inequalities, the clique-cover inequalities; the clique-cover-partition inequalities.
The cover inequality for a set U ⊆ V is close to the one of the (PKP): instead of U being a lower-ideal,
U is such that there is no edge between two items of U in the disjunctive graph. Such inequalities
cannot contain the binary facet-defining inequalities of the (SMKP), as most of these inequalities are
for sets of variables with pairs of variables being neighbors in the disjunctive graph. When referring
to the convex hulls of the multiple choice formulation for (SMKP) instance (4, 3, [3, 4, 2], v, 9) (see
Example 1), the set of variables {x12, x13, x22, x23, x42, x43, x41, x42, x43} contains multiple items
in a same group, hence being neighbors in the disjunctive graph. Yet, this set yields a facet-defining
inequality of the (SMKP). Because of this specific disjunctive graphs, the cliques inequalities cannot
be adapted to the (SMKP), and similarly for the odd-cycle and hypergraph inequalities. As the clique-
cover and clique-cover-partition inequalities rely on the cliques, these inequalities cannot be adapted
to the (SMKP) either.

8

2.4 First polyhedral properties

Definition 1 (Full-dimensional condition (fd)). An (SMKP) verifies (fd) if any item (i, j), j < M
can be selected without item (i, j + 1) in at least one feasible solution, and any item (i,M) can be
selected in at least one feasible solution.

Let (N , M , w, v, C) be an instance of the (SMKP) where an item (i, j) cannot be selected in any
feasible solution, and (i, j − 1) can be selected in a feasible solution. Clearly, (N , M , w, v, C) does
not verify (fd). Because of the symmetric weights, item j cannot be selected in any group, therefore
xij′ = 0, ∀i ≤ N , ∀j′ ≥ j in any integer solution. It is possible to create another instance of the
(SMKP) (N, j − 1, w, v, C) with the exact same integer solutions. Because (i, j − 1) can be selected
in a feasible solution, and because of the symmetric weight, any item of (N, j − 1, w, v, C) can be
selected. Hence, (N, j − 1, w, v, C) verifies (fd).

As any instance of the (SMKP) can be transformed into an instance of the (SMKP) verifying (fd),
in the following we will only consider (SMKP) instances verifying (fd) without loss of generality.

Definition 2 (Solution XX). For a variable set X , solution XX is the solution with for any i ≤ N ,
xij = 1 if xij′ ∈ X and j ≤ j′ and xij = 0 otherwise.

We define the special case Xij if X = {xij}, and X∅ if X = ∅.
To ensure that the order constraints are taken into account while considering a solution XX , we

introduce the set weights associated to a set of variables X .

Definition 3 (Set weights). For a given set of variable X the set weights are

sij(X) =


0 if xij /∈ X∑j

k=j′+1 wk if xij ∈ X with j′ = max{j′|xt,j′ ∈ X , j′ < j}∑j
k=1 wk if xij ∈ X and xij′ /∈ X ,∀j′ < j

The coefficient sij(X) embed the order constraints. Indeed, if xij = 1, xij ∈ X , then all xij′ = 1,
j′ ≤ j, even for xij′ /∈ X . Thus, if xij = 1 then the weights of all variable xij′ /∈ X should be accounted
for, which is the purpose of coefficients sij(X).

For the sake of simplicity, we define Y as a k-intersection of X if Y contains k elements of X .

Definition 4 (k-intersection). Let X , Y be sets of variables. Variable set Y is a k-intersection of X
if |Y ∩ X | = k, ∀xij ∈ Y if xij′ ∈ X with j′ ≤ j, then xij′ ∈ Y and

∑
xij∈Y sij(Y) ≤ C.

If Y is k-intersection of X , the reverse can also be true. Consequently, a k-intersection is not
necessarily a subset.

Example 3. Let (3, 3, [1, 3, 2], v, 12) be an instance of the (SMKP). Let two variable sets X =
{x11, x13, x22, x31} and Y = {x11, x13, x21, x22}. In this case, Y is a 3-intersection of X . Indeed,
|X ∩ Y| = 3, s11(X) + s13(X) + s22(X) + s31(X) = 1 + 5 + 4 + 1 = 11 ≤ C = 12, and x12 /∈ X .
However, X is not a 3-intersection of Y. Indeed, |X ∩ Y| = 3 and s11(Y) + s13(Y) + s21(Y) +
s22(Y) = 1 + 5 + 1 + 3 = 10 ≤ C = 12, but there is x21 ∈ Y and x21 /∈ X even if x22 ∈ X .

Theorem 2. P(SMKP) is full dimensional.

Proof. As there are N items and M groups, solutions Xij and X∅ yield a total of N ×M +1 = n+1
different solutions, which are feasible, otherwise (fd) is not verified. For any i, solution XiM is the
only solution with xiM = 1, thus being affinely independent to other solutions. For any i, solution
Xij , j < M is the only solution with xij = 1 and xij+1 = 0, this being affinely independent to other
solutions. Clearly, X∅ is affinely independent to other solutions, which means that there are n + 1
affinely independent solutions.

With the dimensionality of P(SMKP) it becomes possible to characterize when order inequalities
and trivial inequalities with bounds at 0 are facet-defining.

9

Property 2. Inequalities xiM ≥ 0 and xij ≤ xij−1 are facet-defining for P(SMKP).

Proof. As there are N items and M groups, solutions Xij and X∅ yield a total of N ×M +1 = n+1
different solutions, which are feasible otherwise (fd) is not verified.

For a given i, besides solution XiM , every of the other n solutions verify xiM ≥ 0 to equality, and
are proven affinely independent. Inequalities xiM ≥ 0 are then facet-defining for P(SMKP).

Similarly, besides Xij−1, each of the n solutions verifies xij ≤ xij−1 to equality, and is proven to
be affinely independent. Inequalities xij ≤ xij−1 are then facet-defining for P(SMKP).

Contrary to trivial inequalities with bound at 0 and the order constraints which always contain
facet-defining inequalities, the bounds 1 require a minimum capacity C to contain facet-defining
inequalities.

Property 3. Inequalities xi1 ≤ 1 are facet-defining for P(SMKP) if C ≥
∑M

j=1 wj + w1.

Proof. Consider a group i′. For each item (i, j), consider a solution X ′
ij , similar to Xij , with xi′1 = 1

if i′ ̸= i. As there are N items and M groups, solutions X ′
ij yields a total of N ×M = n different

solutions, which are feasible if C ≥
∑M

j=1 wj+w1 and (fd) are verified. Each of the n solutions verifies
xi′1 ≤ 1 to equality, and is proven to be affinely independent in the same manner as solutions Xij .

Inequalities xi′1 ≤ 1 are then facet-defining for P(SMKP) if C ≥
∑M

j=1 wj + w1.

In the case where C <
∑M

j=1 wj + w1, clearly xiM + xi′1 ≤ 1 is valid, for any i ≤ N , i′ ≤ N and
i ̸= i′ because of the symmetric weights. In which case inequality xiM ≤ 1 is dominated and cannot
be facet-defining in this case.

Hence, inequalities xiM ≤ 1 are facet-defining if and only if C ≥
∑M

j=1 wj + w1.

3 Patterns inequalities

In this section we introduce new inequalities. We are interested in the faces defined by these inequali-
ties, i.e., the set of points of the polytope P(SMKP) verifying these inequalities to equality. To handle
the symmetries of the inequalities without the need to explicitly define all of them, we introduce a
new structure called pattern.

3.1 Definitions

Definition 5 (Pattern). A pattern P is a collection of N sets Si(P) ⊆ {1, ...,M}, i ≤ N .

A set Si(P) contains the indices j of the items in a same group. The sets of a pattern are not
ordered, meaning that a pattern represents any permutation of an item set of the (SMKP).

As the aim is to produce inequalities from the patterns, we define the variable sets associated to
a pattern.

Definition 6 (Variable set X associated to P). A variable set X ⊆ V is associated to pattern P and
a permutation π of {1, ..., N} if:
xij ∈ X ⇔ j ∈ Sπ(i)(P).

We denote χ(P) the set of all variable sets associated to P. Note that |χ(P)| is in general expo-
nential.

The cardinality of a pattern P is the cardinality of any variable set associated to P.

Definition 7 (card(P)). The cardinality of a pattern P is card(P) = |X | with X ∈ χ(P).

The rank of a pattern P is the valid upper bound for the sum of variables in any variable set
associated to P.

10

Definition 8 (rank(P)). The rank of a pattern P is

rank(P) = max
X∈χ(P)

{
max

∑
xij∈X

xij : satisfying (2)− (4)
}

The rank of a pattern can be computed with a shortest path algorithm [1] as described is Section
4.

With rank(P) and χ(P), we can define the inequalities of a pattern P as follows.

Definition 9 (Pattern inequalities). The pattern inequalities associated to a pattern P are the fol-
lowing, for any X ∈ χ(P): ∑

xij∈X
xij ≤ rank(P) (pi(X))

By definition of the rank, and because the weights are symmetric, the pattern inequalities are
valid. As for any set of variables there is a pattern, and vice-versa, these pattern inequalities cover
all the binary inequalities of the (SMKP). Also, because |χ(P)| can be exponential, each pattern is
associated up to an exponential number of pattern inequalities. As the number of patterns of an
(SMKP) is also exponential, we need to define the conditions for a pattern to lead to tight pattern
inequalities.

Definition 10 (Pattern-facet). A pattern P is a pattern-facet if ∀X ∈ χ(P), (pi(X)) is facet-defining.

3.2 Necessary facet defining conditions

In this section we define three necessary conditions for a pattern to be pattern-facet. The first one is
for a pattern to have at least one item in each if its sets.

Property 4 (Condition (i): no empty group). If a pattern P is pattern-facet, then P verifies condition
(i):
∀Si(P) ∈ P:

|Si(P)| ≥ 1 (i)

Proof. Let P be a pattern of rank k. Let X ∈ χ(P) with permutation πid. Suppose Si(P) does not
verify (i) for a given i, i.e., Si(P) = ∅. Let X ′ = X ∪ {xiM}. Because xiM is the only variable of X ′

for group i, siM (X ′) ≥ si′j′(X ′), ∀xi′j′ ∈ X ′. Then, the following inequality is valid:∑
xi′j′∈X

xi′j′ + xiM ≤ k

Indeed, when xiM = 0, this inequality is valid by the rank of P. When xiM = 1, there cannot
be k variables of X to 1. Otherwise as siM (X ′) ≥ si′j′(X ′), ∀xi′j′ ∈ X ′, one could set xiM to 0,
and any other variable of X ′ to 1. This would reduce the total weight, leading to another solution.
Such solution would have k + 1 variables of X to 1, which contradicts the rank of P. Therefore this
inequality is valid.

This inequality dominates (pi(X)). Indeed, one could sum it with −xiM ≤ 0 to obtain (pi(X)).
Thus a pattern P is pattern-facet only if P verifies condition (i).

The idea of the following condition is that for any X ∈ χ(P), there is a feasible solution with
(pi(X)) to equality, and xiM = 1 for any group i.

11

Property 5 (Condition (ii): selection of item M). Let k be the rank of P and X ∈ χ(P). If a pattern
P is pattern-facet, then P verifies condition (ii) :
∀i ≤ N , ∃Y ⊆ V a k-intersection of X with xiM ∈ Y.

Proof. Let P be a pattern of rank k, and X ∈ χ(P). Suppose there is an i ≤ N such that (ii) is not
verified for i. This means that there is no feasible solution with k variables of X to 1, with xiM = 1.
Therefore, the following inequality is valid:∑

xi′j′∈X
xi′j′ + xiM ≤ k

Indeed, when xiM = 0, the inequality is valid by the rank of P. When xiM = 1, the inequality is valid
as there cannot be more than k − 1 variables of X to 1, which sums to a total of at most k.

This inequality dominates the inequality (pi(X)). Indeed, one could sum it with −xiM ≤ 0 to
obtain (pi(X)).

Thus, a pattern P is pattern-facet only if P verifies condition (ii).

The following condition is quite similar to condition (ii), but for any variable xij−1 with xij ∈ X ,
instead of any variable xiM .

Property 6 (Condition (iii): independence of an item from its predecessor). Let k be the rank of P
and X ∈ χ(P). If a pattern P is pattern-facet, then P verifies condition (iii) :
∀xij ∈ X , ∃Y ⊆ V a k-intersection of X with xij−1 ∈ Y and xij′ /∈ Y ∀j′ ≥ j.

Proof. Let P be a pattern of rank k. Let X ∈ χ(P). Suppose for some (i, j), xij ∈ X does not verify
condition (iii). This means that there is no feasible solutions with a total of k variables of X to 1,
with xij−1 = 1 and xij = 0. Therefore, the following inequality is valid:∑

xi′j′∈X
xi′j′ + xij−1 − xij ≤ k

Indeed, when xij = xij−1 = 1 or xij = xij−1 = 0, this inequality is valid by the rank of P. When
xij−1 = 1 and xij = 0, the inequality is valid as there cannot be more than k − 1 variables of X to 1,
which sums to at most k.

This inequality dominates the inequality (pi(X)). Indeed, one could sum it with −xij−1 + xij ≤ 0
(equivalent to xij ≤ xij−1) to obtain (pi(X)).

Thus a pattern P is pattern-facet only if P verifies condition (iii).

For a given pattern P, conditions (i) can clearly be verified in linear time. Also, conditions (ii)
and (iii) can be verified in polynomial time. More precisely, it requires to solve the shortest path
algorithm described in Section 4 at most once for each variable. As these conditions are necessary,
we define a flexible pattern, which verifies all of these three conditions.

Definition 11 (Flexible pattern). A pattern P is a flexible pattern if it verifies conditions (i), (ii)
and (iii).

The conditions on a flexible pattern P are not sufficient for P to be pattern-facet. However, a
minimum dimension can be guaranteed for the flexible patterns inequalities.

12

3.3 Lower bound on the dimension of the flexible patterns inequalities

In this section, we consider a flexible pattern P and variable set X ∈ χ(P). The idea of the following
property is that for any xij there is a valid solution with xij = 1, xij+1 = 0 and (pi(X)) to equality.
In a sense it is a generalization of condition (ii) defined only for variables xiM and condition (iii)
defined only for variables xij such that xij+1 ∈ X .

Property 7 (Generalization of (ii) and (iii) for any item of the (SMKP)). Let P be a flexible pattern
and X ∈ χ(P). For any item (i, j), ∃Y ⊆ V a k-intersection of X with xij ∈ Y and xij′ /∈ Y, ∀j′ > j.

The complete proof is in A.1, as it merely extends the proofs for conditions (ii) and (iii).
Conditions (i), (ii) and (iii) are necessary for a pattern P to be pattern-facet. Moreover, with

X ∈ χ(P), the following theorem provides a lower bound on the number of linearly independent points
verifying inequalities (pi(X)) to equality when these three conditions are verified.

Theorem 3 (n − card(P) linearly independent points). Let P be a flexible pattern. Let n be the
number of variables of the (SMKP). There are at least n − card(P) linearly independent points that
verify the inequalities of P to equality.

Proof. Let P be a pattern of rank k, and X a variable set of P. Property 7 stipulates that if P
is a flexible pattern, then for any item (i, j) there is a set Yij ∈ V a k-intersection of X ; xij ∈ Yij ;
xij′ /∈ Yij , ∀j′ > j and XYij

is feasible. Consider XYij
∀xij /∈ X . Because card(P) = |X |, there are

n− card(P) solutions. We can prove that XYij
is the only solution with xij = 1 and xij+1 = 0. Let

two distinct variables xij /∈ X and xi′j′ /∈ X . We assumed without loss of generality in Property
7 that Yi′j′ \ {xi′j′} ⊆ X . As xij /∈ X , there would be a contradiction if XYi′j′ had xij = 1 and
xij+1 = 0.

Solutions XYij
∀xij /∈ X are linearly independent, and proven to be valid in Property 7. As Yij

is a k-intersection of X , all these solutions also verify (pi(X)) to equality. Hence, for a flexible pattern
P, there are n− card(P) linearly independent points verifying (pi(X)) to equality, ∀X ∈ P.

Theorem 3 provides a lower bound on the dimensions of the faces defined by flexible pattern
inequalities. Recall that for a pattern to be a flexible pattern it solely requires to verify conditions (i),
(ii) and (iii). It is shown in Section 4 that verifying if these three conditions hold for a given pattern
can be done in polynomial time, and Theorem 3 is used in the experimental results in Section 5.

The following section provides properties complementary to Theorem 3.

3.4 Properties of the lower sub-patterns

In this section, we consider a flexible pattern P of rank k and variable set X ∈ χ(P). We extend the
definition of a sub-set and a super-set to patterns.

Definition 12 (Sub-pattern). A pattern P ′ is sub-pattern of P if ∃π a permutation such that
Sπ(i)(P ′) ⊆ Si(P), ∀i ≤ N .

If P is sub-pattern of P ′, then P ′ is super-pattern of P.
We present a new set of sub-patterns for P. In the following, properties are presented to show

that these new patterns have large sub-patterns in common, inducing similarities. These similarities
will be convenient to provide linearly independent points in the polytope P(SMKP).

Definition 13 (Lower sub-patterns Qi). For a given i, the lower sub-pattern Qi of P is such that
Si(Qi) = Si(P), card(Qi) = k, minimizing the sum of the set weights s(Y) with Y ∈ χ(Qi).

Let Qi be a lower sub-pattern of P and Y ∈ χ(Qi) for the permutation π as X . By construction,
if xij ∈ Y, then ∀xij′ ∈ X with j′ ≤ j, xij′ ∈ Y, hence the name lower sub-patterns. Also, patterns
Qi can be obtained via a shortest path algorithm defined in Section 4.

13

Lemma 1. Y is a k-intersection of X .

Proof. Let X ∈ χ(P) and Y ∈ χ(Qi) with the permutation πid. For the sake of simplicity we consider
permutation πid but the proof can be done for any permutation π.

As P verifies condition (ii), there exists a variable set that is a k-intersection of X containing
xiM . By definition Qi minimizes the sum of its set weights and all variables of group i in X are in
Y. Hence, if condition (ii) for variable xiM cannot be verified with Y, there is a contradiction as Qi

cannot minimize the sum of its set weights.

Remark 1. Let X ∈ χ(P) and Y ∈ χ(Qi) with permutation πid. As Y ∪ {xiM} is a k-intersection of
X , then Y is also a k-intersection of X . Indeed, if xiM ∈ X then xiM ∈ Y by definition of Qi.

For the next properties, we consider for the sake of simplicity that the sets of P are ordered such
that |Si(P)| ≤ |Si+1(P)|. Therefore, S1(P) is the smallest set of P, and Q1 is the lower sub-pattern
of P associated to S1(P). We define U = |SN (P)| and V = |S1(P)|. Also, we define Si(P)(u) the uth

lowest index of Si(P) and Si(P)[u] the uth highest index of Si(P).

Example 4. Let a pattern P = {S1 = {4}, S2 = {2, 5}, S3 = {1, 2}, S4 = {1, 3, 4}}. In this case,
U = 3 and V = 1. Also, S4(P)(1) = 1, S4(P)(2) = 3 S4(P)(3) = 4, S4(P)[1] = 4, S4(P)[2] = 3 and
S4(P)[3] = 1.

The following property provides a lower bound on the size of each set of sub-pattern Q1 of P.

Property 8 (Minimum size on the sets of Q1). Lower sub-pattern Q1 is such that ∀i ≤ N , Si(Q1)
contains the |Si(P)| − V smallest indices of Si(P).

Remark 2. It is equivalent to say that Si(Q1) contains the |Si(P)|−V smallest indices of Si(P) and
Si(P)[V + 1] ∈ Si(Q1). In the following, the latter notation will be used.

The idea of the proof is illustrated by Example 5 and Figure 3. The complete proof is in A.2

Example 5. Let (4, 5, w, v, C) be an instance of the (SMKP). Let a flexible pattern P = {S1(P) = {3},
S2(P) = {2, 4}, S3(P) = {1, 2}, S4(P) = {1, 2, 3}} of rank 5. Let Q1 = {S1(Q1) = {3}, S2(Q1) = {2},
S3(Q1) = {1, 2}, S4(Q1) = {1}}. In this case, S4(P)[V + 1] = 2 /∈ S4(Q1), hence Q1 does not verify
Property 8. We show in the following that it leads to a contradiction with the rank of P.

Let X = {x13, x22, x24, x31, x32, x41, x42, x43} ∈ χ(P) and Y = {x13, x22, x31, x32, x41} ∈ χ(Q1)
as illustrated in Figure 3a and 3b. Let Y ′ = Y ∪ {x14} as illustrated in Figure 3c. From Lemma
1 solution XY′ is valid. One can create a set Y ′′ = Y ′ \{x13, x14}∪{x42, x43} as illustrated in Figure
3d. By removing {x13, x14}, there are no remaining variables in group 1, thus reducing the weight by
w1 +w2 +w3 +w4. And as x41 ∈ Y ′, adding {x42, x43} only increases the weight by w2 +w3. As the
weights are non-negative, clearly w2 +w3 ≤ w1 +w2 +w3 +w4, hence XY′′ is valid. However Y ′′ is a
k+1-intersection of X . Indeed, since Q1 does not verify Property 8, only V = 1 variable of Y ′ \ Y ′′

is in X , namely x13 and V +1 = 2 variables of Y ′′ \Y ′ are in X , namely x42 and x43. As XY′′ is valid,
there is a contradiction with the rank of P.

(a) Set X (b) Set Y (c) Set Y ′ (d) Set Y ′′

Figure 3: Illustration of Example 5

Property 9 provide dependencies between the indices of S1(P) and any set Si(P), based on
Property 8.

14

Property 9 (Minimum indices for the smallest set). Let i ∈ {2, ..., N}. ∀u ∈ [1, V], if |Si(P)| ≥ u+V
then S1(P)[u] ≥ Si(P)[u+ V].

Proof. The proof is divided in two possibles cases, each being supported by a lemma. In the case
Si(Q1) ⊆ Si(P) with Si(P)[u] ∈ Si(Q1), the proof is provided by Lemma 2. In the case Si(Q1) ⊂
Si(P) with Si(P)[u] /∈ Si(Q1), the proof is provided by Lemma 3. Hence, the property is always
verified. The two lemmas are in A.3.

The idea of Property 10 is to give a minimum size on the sets of any lower sub-pattern Qi

based on the results of Property 9. Note that, it is not a generalization of Property 8. Indeed,
Property 8 addresses only Q1 and not any Qi, but the minimum size provided is larger than the one
in Property 10.

Property 10 (Minimum size of the sets of any Qi). For every i ≤ N , the sub-pattern Qi of P is such
that ∀i′ ≤ N if |Si′(P)| ≥ 2V , Si′(P)[2V] ∈ Si′(Qi)

Proof. The proof is divided in three possible cases, each being supported by a lemma. In the case
|S1(Q1)|+|Si(Q1)| = |S1(Qi)|+|Si(Qi)|, the proof is provided by Lemma 4. In the case |S1(Qi)| = 0,
the proof is provided by Lemma 5. In the case |S1(Qi)| > 0, the proof is provided by Lemma 6.
Hence, the property is always verified. The three lemmas are in A.4

The previous conditions are valid for any pattern. However, in the special case where pattern P
is with |S1(P)| = 1, Property 10 indicates that Si′(P)[2] ∈ Si′(Qi′), ∀i′ ≤ N , ∀i ≤ N . Thus, the
shape of all patterns Qi is very restricted, as each set Si′(Qi) has at most one missing index set in
comparison to Si′(P).

Example 6. Let a flexible pattern P = {S1(P) = {3}, S2(P) = {1, 3, 4}, S3(P) = {1, 2, 4}, S4(P) =
{1, 2, 3, 4}}. Pattern P verifies Property 9, as S1(P)[1] = 3 is greater or equal to S2(P)[2] = 3,
S3(P)[2] = 2 and S4(P)[2] = 3. Consider rank(P) = 9.

Let the lower sub-pattern Q1 = {S1(Q1) = {3}, S2(Q1) = {1, 3, 4}, S3(Q1) = {1, 2}, S4(Q1) =
{1, 2, 3}}. Pattern Q1 verifies Property 8, as V = 1 and there is at most V = 1 missing index per
set compared to P.

Let the lower sub-pattern Q2 = {S1(Q2) = ∅, S2(Q2) = {1, 3, 4}, S3(Q2) = {1, 2, 3}, S4(Q2) =
{1, 2, 3}}. Pattern Q2 verifies Property 10, as V = 1 and there are at most 2V − 1 = 1 missing
index per set compared to P.

This restricted shape on the lower sub-pattern is used in the following section to prove necessary
and sufficient conditions for patterns containing a set of cardinality 1.

3.5 Necessary and sufficient conditions for patterns with a set a cardinality
1

In this section, we focus on patterns with at least one set of cardinality 1, hence we define for this
section P a flexible pattern of rank k and with V = 1. It is proven with Property 10 that for such
pattern P, its lower sub-patterns Qi have a restricted shape. Using this result, we will show that the
lower sub-patterns share many elements in common.

As mentioned in Lemma 4, for a given i, multiple lower sub-patterns Qi with the exact same set
weights can exist. From now on we only consider for each i ≤ N the unique Qi verifying the following
tie-break rule:

Definition 14 (Tie-break rule). For any two indices i′ < i′′ different than i, if

Si′ (P)[1]∑
j=Si′ (P)[2]+1

wj =

Si′′ (P)[1]∑
j=Si′′ (P)[2]+1

wj

15

then Si′′(P)[1] ∈ Si′′(Qi) only if Si′(P)[1] ∈ Si′(Qi).

From Property 10, at most one index is missing in a set of Qi compared to P. Hence, with such
rule there can only be one Qi for a given i.

Example 7. Let (4, 4, [2, 1, 1, 1], v, C) be an instance of the (SMKP). Let a flexible pattern P =
{S1(P) = {3}, S2(P) = {1, 3}, S3(P) = {2, 4}, S4(P) = {2, 4}} of rank 5. In this case, w2 +
w3=w3 + w4 = 2, meaning that there are 3 possible lower sub-pattern Q1 with the exact same
weight: {{3}, {1, 3}, {2}, {2}}; {{3}, {1}, {2, 4}, {2}}; {{3}, {1}, {2}, {2, 4}}. The rule stipulates that
4 ∈ S4(Q1) only if 4 ∈ S3(Q1) and 3 ∈ S2(Q1). Also, the rule stipulates that 4 ∈ S3(Q1) only if
3 ∈ S2(Q1). Only the first option for Q1 verifies the rule, and consequently is the only one considered.

To prove that the lower sub-patterns Qi share many elements, we provide a pattern C, sub-pattern
to all Qi. We then prove that C is of cardinality k − 1.

Definition 15 (Common sub-pattern C of all Qi). The pattern C is the largest cardinality pattern
that is sub-pattern to all the lower sub-patterns Qi of a pattern

Property 11 (Cardinality of C). The cardinality of C is card(C) = k − 1.

An example of Property 11 is provided in Example 8.

Proof. As P is a flexible pattern, Property 10 holds, hence ∀i, ∀i′, Si′(P)[2] ∈ Si′(Qi). In other
words, there is at most one element of Si′(P) not in Si′(Qi). Let k′ = k − (card(P) − N). Let
L be the set of the k′ indices i′ such that Si′(Qi) = Si′(P). By definition of Qi, i ∈ L. Because
Si′(P)[2] ∈ Si′(Qi), ∀i′, the k′ − 1 sets i′ ̸= i such that Si′(Qi) = Si′(P) are the ones minimizing:

Si′ (P)[1]∑
j=Si′ (P)[2]+1

wj

Consequently, L contains the k′ − 1 indices minimizing this sum. Indeed, either i is in these k′ − 1
indices, hence L contains the k′ indices minimizing this sum, or i is not in these k′− 1 indices, but by
construction L contains these k′ − 1 indices.

As such, all patterns Qi are all super-pattern of common pattern C, with card(C) = (card(P) −
N) + k′ − 1 = k − 1 .

Example 8. Let (3, 4, [2, 1, 3, 2], v, C) be an instance of the (SMKP). Let a flexible pattern P =
{S1(P) = {3}, S2(P) = {1, 2}, S3(P) = {1, 3}, S4(P) = {1, 3, 4}} of rank 6. First we identify
the lower sub-pattern Q1. By definition, S1(Q1) = S1(P) = {3}. From Property 10, as V = 1,
∀i ≤ 4, Si(P)[2] ∈ Si(Q1) . In this case, 1 ∈ S2(Q1), 1 ∈ S3(Q1) and 1, 3 ∈ S4(Q1). By definition,
card(Q1) = 6, but only five elements have been identified yet. As w2 = 1 < w4 = 2 < w2 + w3 = 4
and Q1 minimize the sum of the set weights of Y ∈ χ(Q1), then clearly 2 ∈ S2(Q1). In this case:
Q1 = {S1(Q1) = {3}, S2(Q1) = {1, 2}, S3(Q1) = {1}, S4(Q1) = {1, 3}}

With a similar process, we also deduce:
Q2 = {S1(Q2) = ∅, S2(Q2) = {1, 2}, S3(Q2) = {1}, S4(Q2) = {1, 3, 4}}
Q3 = {S1(Q3) = ∅, S2(Q3) = {1, 2}, S3(Q3) = {1, 3}, S4(Q3) = {1, 3}}
Q4 = {S1(Q4) = ∅, S2(Q4) = {1, 2}, S3(Q4) = {1}, S4(Q4) = {1, 3, 4}}
There is C = {{S1(C) = ∅, S2(C) = {1, 2}, S3(C) = {1}, S4(C) = {1, 3}} of cardinality 5 that is

sub-pattern to all the aforementioned lower sub-patterns Qi. Note that only S2(C) = S2(P), which is
because s22(X) < s44(X) < s33(X) < s13(X) and by definition the lower sub-patterns Qi minimize
the set weights of Y ∈ χ(Qi).

For the following results, we need to generalize the definition of lower sub-pattern.

16

Definition 16 (Generalized lower sub-patterns Qi(u)). For a given i ≤ N and u ∈ {0, ..., |Si(P)|},
the generalized lower sub-pattern Qi(u) of P is such that card(Qi(u)) = k and Si(Qi(u)) contains the
u smallest indices of Si(P), minimizing the sum of set weights s(Y) with Y ∈ χ(Qi(u)).

As for lower sub-patterns Qi, we can also find similarities between lower sub-patterns Qi(u).

Property 12 (Common elements between C and Qi(u)). For each i ≤ N and u ∈ {0, ..., |Si(P)|−1},
lower sub-pattern Qi(u) is such that ∀i′ ̸= i, Si′(C) ⊆ Si′(Qi(u)).

Proof. By definition card(Qi(u)) = k and |Si(Qi(u))| = u. From Property 11 card(C) = k − 1, and
from Property 10 ∀i′ ≤ N with |Si′(P)| ≥ 2, Si′(P)[2] ∈ Si′(C). Let K be the difference between
card(Qi(u) \ Si(Qi)(u)) and card(C \ Si(C)), i.e.,

K = card(Qi(u) \ Si(Qi)(u))− card(C \ Si(C))
= (k − u)− (k − 1− |Si(C)|) = 1 + |Si(C)| − u

Note that u ≤ |Si(C)|, meaning that K ≥ 1. Because ∀i′ ≤ N , Si′(P)[2] ∈ Si′(C), and both C and
Qi(u) are sub-patterns of P, then there are K sets where |Si′(Qi(u))| = |Si′(C)|+ 1 = |Si′(P)|.

Let i′ be one of these K sets. By definition, card(Qi′) = k and card(C) = k − 1, meaning that
card(Qi′ \ Si′(Qi′)) = card(C \ Si′(C)). By definition C is sub-pattern of Qi′ , hence Qi′ \ Si′(Qi′) =
C \ Si′(C). Consequently, Si(Qi′) = Si(C) and we deduce:

card(Qi(u) \ Si(Qi)(u))− card(Qi′ \ Si(Qi′))

=(k − u)−
(
card(Qi′)− |Si(Qi′)|

)
=(k − u)−

(
k − |Si(C)|

)
= K − 1

From Property 10 and because V = 1, there are K−1 sets of Qi(u) with one more element than
the respective set of Qi′ . However:

K − 1 = 1 + |Si(C)| − u− 1

= |Si(C)| − u

= |Si(Qi′)| − |Si(Qi(u))|

The difference between |Si(Qi′)| and |Si(Qi(u))| is exactly K − 1.
Consequently, for set i and the K − 1 sets where Qi(u) contains one more element than Qi′ ,

patterns Qi(u) and Qi′ have the same number of elements. As both patterns are of cardinality k,
then for the sets complementary to i and the K − 1 sets where Qi(u) contains one more element than
Qi′ , patterns Qi(u) and Qi′ have the same number of elements. As both lower sub-patterns minimize
their set weights, they are equal for these complementary sets.

Hence, for all sets besides i, Qi(u) contains all elements of Qi′ , which itself contains all elements
of C. Thus ∀i′ ̸= i, Si′(C) ⊆ Si′(Qi(u)).

With all lower sub-patterns Qi(u) defined, the following theorem shows that a flexible pattern
with a set of cardinality 1 is pattern-facet.

Theorem 4. P is pattern-facet if and only if P is flexible pattern.

Proof. Recall that without loss of generality, pattern sets can be ordered such that |Si(P)| ≤ |Si+1(P)|,
meaning |S1(P)| = 1. Let X ∈ χ(P) with permutation πid. Consider the following lower sub-patterns:
Q1, Qi ∀i ≤ N such that Si(P)[1] /∈ Si(Q1); Qi′(u) ∀i′ ≤ N , ∀u ∈ {0, .., |Si′(C)|−1}. For all mentioned
sub-patterns, we consider their respective variable set with permutation πid denoted X1; Xi; Xi′(u)
and their respective solution XX1

; XXi
; XXi′ (u)

. This results in a total of card(P) solutions. There is

17

one solution XX1
. As P is of rank k, there are card(P)− k solutions XXi

. As card(C) = k − 1, there
are k − 1 solutions XXi′ (u)

.
By definition of lower sub-patterns Qi and Qi(u) and from Property 7, all mentioned variable

sets are k-intersections of X . Hence, all mentioned solutions are feasible and verify (pi(X)) to equality.
Consider now the points associated to the afore-enumerated solutions. We can prove these points

to be linearly independent. Start by considering first the point associated to XX1
. As it is the only

point considered, it is necessarily linearly independent. From Property 11, C is sub-pattern to all
Qi and of cardinality k − 1. Consequently, Qi with Si(P)[1] /∈ Si(Q1) is the only lower sub-pattern,
excluding the generalized lower sub-patterns, with Si(P)[1] ∈ Si(Qi). It results that for each solution
XXi

, the associated point is the only one with xiSi(P)[1] = 1, thus they are linearly independent. For
each solution XXi′ (u)

, starting with large u, the associated point is the first one with xi′Si′ (P)[u] = 0,
thus being linearly independent.

The enumerated solutions yield card(P) linearly independent points. Moreover, from Theorem
3, ∀xij /∈ X , there is a feasible solution with xij = 1 and xij+1 = 0 that verifies (pi(X)) to equality.
Sequentially adding these points associated to their corresponding solutions to our pool of card(P)
points still keeps them linearly independent, as there are the only ones with xij = 1 and xij+1 = 0
with xij /∈ X . As there are n− card(P) of these new points, there is a total of n linearly independent
points.

Thus, a pattern P with a set of cardinality 1 is pattern-facet if and only if it is flexible pattern.

Recall that for a pattern to be flexible pattern it solely requires to verify conditions (i), (ii) and
(iii). Hence, a pattern with a set of cardinality 1 is pattern-facet if conditions (i), (ii) and (iii) hold.
It is shown in Section 4 that verifying if these three conditions hold for a given pattern can be done
in polynomial time. As for Theorem 3, the result of Theorem 4 is used for the experimental results
in Section 5, guaranteeing a flexible pattern to be pattern-facet if mini≤N |Si(P)| = 1, or a lower
bound on the dimensions of the faces defined by the pattern inequalities of P otherwise.

3.6 Conditions for any pattern

For a pattern P such that mini≤N |Si(P)| ≥ 2, the conditions (i), (ii) and (iii) are necessary but not
sufficient for P to be pattern-facet. This is because the lower sub-patterns Qi of P lose many of their
structural properties in the general case. In the following, we present three new conditions, that will
complement the aforementioned conditions. For this purpose, we present new patterns Ru that will
take the role of the lower sub-patterns Qi. The idea is to help constructing points with a common
coefficients, which is convenient to provide independent points.

In the following, we consider P a flexible pattern of rank k.

Definition 17 (Nested sub-patterns Ru). Pattern{Ru, 1 ≤ u ≤ U ′} are nested sub-patterns of P if
∀u, card(Ru) = k − u, Ru is a lower sub-pattern of P and Ru sub-pattern of Ru−1.

For the following, we define U ′ = minu≤k{maxi≤N{Si(P) − Si(Ru)} ≥ u}. We consider the
following subset of nested sub-patterns {Ru, 1 ≤ u ≤ U ′}. We also consider X ∈ χ(P) and Yu ∈
χ(Ru), ∀u ≤ U ′ with permutation πid.

In the following we define three new conditions. Condition (iv) indicates that there are k-
intersections of X with Yu and u variables in a same group. Condition (v) is similar, but with u
variables in at least two different groups. Condition (vi) is a more constrained version of condition
(iii), but only for variables in YU ′ .

Definition 18 (Condition (iv): selection of items in the same group). For any u ≤ U ′ and i ≤ N
such that |Si(P)−Si(Ru)| ≥ u, there is a variables set Z containing the u variables with the smallest
indices of group i in X \ Yu. The variable set Z ∪ Yu is a k-intersection of X .

18

Definition 19 (Condition (v): selection of items in different group). For any u ∈ {2, ..., U ′}, ∃Zu ⊂ X
of cardinality u such that Zu ∩ Y1 = ∅, Zu contains variables in at least two different groups and the
variable set Yu ∪ Zu is a k-intersection of X .
Definition 20 (Condition (vi): constrained independence of an item from its predecessor). For any
xij ∈ YU ′ , ∃Z ⊆ V a k-intersection of X such that ∀xi′j′ ∈ YU ′ , if i′ = i and j′ ≥ j, then xi′j′ /∈ Z,
otherwise xi′j′ ∈ Z.

Note that contrary to conditions (i), (ii) and (iii), conditions (iv), (v) and (vi) do not apply on
P but, instead, on the nested sub-patterns.

Example 9. Let (4, 4, [8, 4, 2, 3], v, 37) an instance of the (SMKP). Let P = {S1(P) = {1, 2}, S2(P) =
{2, 3}, S3(P) = {2, 4}, S4(P) = {2, 4}} of rank 4. Let the nested sub-patterns R1 = {S1(R1) = {1},
S2(R1) = {2, 3}, S3(R1) = ∅, S3(R1) = ∅} and R2 = {S1(R2) = {1}, S2(R2) = {2}, S3(R2) = ∅,
S3(R2) = ∅}. Let X = {x11, x12, x22, x23, x32, x34, x42, x44} , Y1 = {x11, x22, x23} and Y2 = {x11, x22}.

Condition (iv) is verified. For Y1 the following variable sets are 4-intersections of X : {x11, x12, x22,
x23}, {x11, x22, x23, x32}, {x11, x22, x23, x42}. For Y2 the following variable sets are 4-intersections
of X : {x11, x22, x32, x34}, {x11, x22, x42, x44}.

Condition (v) is verified. For Y2 the following variable set is a 4-intersection of X : {x11, x12, x22,
x32}, with x12 and x32 being in different groups, while not being in Y1.

Condition (vi) is verified. For Y2, the following variable sets are 4-intersections of X : {x11, x12,
x32, x34} and {x22, x23, x32, x34}. The first one contains all variables of Y2 but x22, and the second
one contains all variables of Y2 but x11.

In this example, the lower sub-pattern R1 is the unique one of cardinality 3 minimizing the set
weights of Y1. However, R2 is not the one of cardinality 2 minimizing the set weights of Y2. In fact,
R′

2 = {S1(R′
2) = {1, 2}, S2(R′

2) = ∅, S3(R′
2) = ∅, S3(R′

2) = ∅} is of cardinality 2 and minimizes the
set weights of Y ′

2 ∈ χ(R′
2). Because R′

2 is not sub-pattern to R1, they cannot be nested sub-patterns.

For a set of nested sub-patterns Ru, conditions (iv) can be verified in polynomial time. Indeed,
the k-intersection are explicitly defined, it only requires to compute the sum of its set weights. Also,
verifying conditions (v) and (vi) requires to find a k-intersection, as for conditions (ii) and (iii).
Hence, it can be verified in polynomial time, in a similar fashion as for conditions (ii) and (iii),
using a variant of the shortest path algorithm. However, conditions (iv), (v) and (vi) apply on a
set of nested sub-patterns, instead of on a single pattern P. As shown in Example 9, the lower
sub-patterns of P minimizing the sum of the set weights of their respective variable sets may not be
nested. Consequently, the difficulty is that one may need to enumerate all lower sub-patterns of P to
find a set of nested sub-patterns verifying conditions (iv), (v) and (vi).

The following theorem shows that conditions (i) to (vi) are sufficient to prove any pattern to be
pattern-facet.

Theorem 5 (Sufficient conditions for any pattern-facet). If nested sub-patterns {Ru, 1 ≤ u ≤ U ′} of
P verify conditions (iv), (v) and (vi), then P is pattern-facet.

The complete proof is in Appendix A.5, relying on Lemma 7 defined in the same appendix.
Even though conditions (iv) (v) and (vi) can provide pattern-facets, we will only be using flexible

patterns for the experimental results. The rationale behind is that as shown in Example: 9, one may
need to enumerate all sub-patterns of P to find nested patterns verifying conditions (iv), (v) and (vi).
Another reason is that from Theorems 3 and 4, a flexible pattern P is pattern-facet if it has a set of
cardinality one. Otherwise it has a lower bound on the dimensions of the faces defined by the pattern
inequalities of P. As shown in Section 5, using flexible pattern, with or without the cuts of CPLEX,
within a Branch and Cut framework can drastically reduce the number of nodes explored and the
computational time required to solve instances of the (SMKP). Furthermore, experimental results in
Section 5 show that for some instances, a few flexible patterns are generated. Consequently, adding
conditions (iv) (v) and (vi) would further reduce the number of patterns generated, making it more
difficult to measure their impact.

19

4 Algorithms

In this section, we define the two-phase B&C scheme. The first phase of this scheme generates flexible
patterns as a pre-processing. The second phase separates the associated pattern inequalities within a
B&C framework. The flexible-pattern generating algorithm is described in Section 4.2, based on two
algorithms defined in Section 4.1. The separation algorithm is described in Section 4.3, producing
the most violated inequality for a given pattern in polynomial time. The two-phase B&C scheme is
described in Section 4.4

4.1 Graph model associated to variable sets

The shortest path problem and many of its variants are known to be easy to solve [1] [5]. In the case
of the (SMKP), for a given pattern P, it is possible to define a graph associated to X ∈ χ(P), for
which solving a variant of the shortest path problem gives the rank of P. This graph will be used to
compute the rank of a pattern and to verify conditions (ii) and (iii). Such graph could also be used
to compute the sub-patterns Qi or to verify conditions (v) and (vi).

Consider a pattern P and a variable set X ∈ χ(P). Let G = (W,A) be the graph defined as follows.
The variable set X is associated to the vertex set W , a source vertex p and a sink vertex q are added
to W . For convenience purposes, each vertex in W is denoted by the corresponding variable in X and
the vertices associated to xij ∈ X are renumbered with the same order in a compact sequence in X .
More precisely consider the following renumbering, denoted by parentheses on the indices: For any
xij ∈ X , we consider x(i)(j) = xij with (i) = i and (j) the number of variables xij′ ∈ X with j′ ≤ j.
To each couple (x(i)(j), x(i)(j+1)) ∈ X 2 corresponds an arc in A. To each x(i)(j) ∈ X corresponds an
arc in A from x(i)(j) to x(i′)(1), i

′ > i. To each x(i)(1) ∈ X corresponds an arc from source vertex p
to x(i)(1) in A. Similarly, for each vertex x(i)(j), it corresponds an arc from x(i)(j) to sink vertex q.
Finally the weight of an arc heading to x(i)(j) is sij(X) and to sink vertex q is 0.

Example 10. Let (3, 3, [3, 2, 2], v, C) be an instance of the (SMKP). For X = {x11, x12, x21, x22, x23,
x31, x33}, the vertex set is W = {p, q, x(1)(1), x(1)(2), x(2)(1), x(2)(2), x(2)(3), x(3)(1), x(3)(2)}. Figure
4 illustrates the graph G associated to X .

With graph G defined with respect to X , the following property makes the link between a path in
G and a variable set Y ⊆ X .

Property 13. Finding a shortest path in G featuring exactly k + 1 arcs is equivalent to finding
Y ⊂ X , with Y featuring the following properties: 1) |Y| = k, 2) ∀xij ∈ Y, if xij′ ∈ X , and j′ < j,
then xij′ ∈ Y 3) Y minimizes its set weights sij(Y).

Proof. 1) The path between p and q with exactly k + 1 arcs is a path with k + 2 vertices. Note that
such path necessarily exists with k ∈ {1, ..., card(P)}. Indeed, by construction of G, there is a path
going through all nodes x(i)(j) and there is an arc from any x(i)(j) to q. Also any arc (x(i)(j),x(i′)(j′))
is with (i′) ≥ i or (j′) > (j), thus there are no cycles in G. Hence, the k + 2 vertices are necessarily
different. As p and q do not correspond to any variables of X , a path with exactly k+1 arcs represents
a set Y with exactly k variables of X

2) By construction of G, the only arc towards x(i)(j) is from x(i)(j−1) with (j) > 1. Consequently,
∀xij ∈ Y, if xij′ ∈ X , and j′ < j, then xij′ ∈ Y.

3) By construction of G, for each xij ∈ X , every arc towards xij has a weight sij(X). As such,
the weight of a path with a set Y ⊆ X of variables, has a weight equal to

∑
xij∈Y sij(X). Hence, set

Y corresponds to a shortest path minimizing the sum of its set weights.

Computing the rank Clearly, if the sum of the set weights of Y is smaller than or equal to C,
then Y is a k-intersection of X . By definition, if a k-intersection of X exists, then there is a feasible
solution with k variables of X to 1. Hence, the idea to compute the rank of a pattern P is to find a

20

p

x(1)(1)

x(1)(2)

x(2)(1)

x(2)(2)

x(2)(3)

x(3)(1)

x(3)(3)

q

3

3

3

2

3

3

0

3 3

0

2
3

0

2

3
0

3

0

4

0

0

Figure 4: G for Example 10

maximum cardinality path in G associated to X ∈ χ(P), with its total weight being smaller than or
equal to C. From Property 13, if the maximum cardinality path found is with k + 1 arcs, then the
rank of P is k. Such rank computing algorithm is described in Algorithm 1.

The procedure computeRank(P) in Algorithm 1 returns the rank of P. Indeed, this algorithm
is similar to the Bellman-Ford algorithm [1], but with a different stopping condition. Because all
weights are non-negative, if Algorithm 1 stops for a given nbArcs, then there cannot be a path of
nbArcs arcs with a total weight smaller than or equal to C. Hence, the maximum cardinality path
found is with nbArcs − 1 arcs, containing nbArcs − 2 vertices different than p and q. Consequently,
the rank of P is k = nbArcs− 2.

Verifying conditions (ii) and (iii) Let P be a pattern of rank k and X ∈ χ(P) with permutation
πid. To verify if condition (ii) holds for a group i, one need to find a set Y, a k-intersection of X with
xiM ∈ Y. To verify if condition (iii) holds for xij , one need to find a set Y, a k-intersection of X with
xij−1 ∈ Y and xij /∈ Y. Let u be the number of variables xij′ ∈ X , with j′ ≤ M for condition (ii),
and with j′ < j for condition (iii). Finding such k-intersection is to find a shortest path of length
k − u+ 1 in G, without any variable of group i. To do so, one can use a variant of the shortest path
algorithm as described in Algorithm 2.

The procedure verifyCondition(P, i, j) in Algorithm 2, in the case j = M + 1, returns true
only if (ii) is verified for i, and in the case j ∈ Si(P), returns true only if (iii) is verified for i and
j. Indeed, this algorithm is similar to the Bellman-Ford algorithm [1], but with a different stopping
condition. The path found is a shortest path with k − u + 1 arcs, thus with k − u + 2 vertices and
with k−u vertices different than p and q. By construction of X ′, this path is without any variables of
group i. Consequently if the total weight of the generated shortest path plus

∑j−1
j′=1 wj′ is smaller than

or equal to C, then there is a k-intersection of X , containing all variables in the generated shortest
path and the variables xij′ ∈ V, j′ < j. In the case j ≤M , then the resulting k-intersection contains

21

Algorithm 1 Computing the rank of a pattern

procedure computeRank(pattern P):
build G = (W,A) associated to X ∈ χ(P) for a permutation π
dist[p]← 0
dist[w]← +∞, ∀w ∈W \ {p}
nbArcs← 0
while min(dist) ≤ C do

nDist[w]←∞, ∀w ∈W
for a ∈ A do

nDist[a.head]← min(nDist[a.head], dist[a.tail] + a.weight)
end for
dist← nDist
nbArcs← nbArcs+ 1

end while
k ← nbArcs− 2
return k

end procedure

the variable xij−1 but not xij , which corresponds to condition (iii). In the case j = M + 1, then the
resulting k-intersection contains xiM , which corresponds to the condition (ii).

Remark 3. Both algorithms described run in polynomial time with respect to |W |, with |W | =
card(P) + 2 in Algorithm 1, and |W | = card(P) + 2 − |Si(P)| in Algorithm 2. In the case of
Algorithm 1, the while loop can occur |W | time, and in the case of Algorithm 2, the while loop
can occur rank(P) ≤ |W | time. In both cases, in the while loop we iterate over the arcs of A, meaning
|A| ≤ |W |2 operations. Hence, both algorithms have a worst case time complexity of O(|W |3). It is
worth mentioning that because of the structure of G, |A| is usually much smaller than |W |2, and the
while loop rarely iterates |W | times. Hence, these algorithms usually requires much less than |W |3
operations.

Theorem 6. Verifying condition (i), (ii) and (iii) is in polynomial time.

Proof. Condition (i) requires to verify if each set is non-empty, which is linear with respect to the
number of sets N .

Condition (ii) requires to run Algorithm 2 for each xiM , i ≤ N , which is an algorithm of
complexity O(|W |3), |W | ≤ n a total of N ≤ n times. Condition (ii) can be verified in O(n4) time.

Condition (iii) requires to run Algorithm 2 for each xij ∈ X , which is an algorithm of complexity
O(|W |3), |W | ≤ n a total of |X | ≤ n times. Condition (iii) can be verified in O(n4) time.

Remark 4. It is worth mentioning that the time complexity O(n4) is rarely reached. Indeed, only one
pattern has a cardinality equals to n: the one containing N times the set {1, ...,M}. All other patterns
have a smaller cardinality, which reduces the required time to verify (ii) and (iii) in two ways. The
first one is that Algorithm 2 is needed card(P) times for (iii), and N ≤ card(P) times for (ii). The
second one is that the complexity of Algorithm 2 depends on |W |, which is card(P) + 2 − |Si(P)|
as mentioned in Remark 3. Then likewise Algorithm 2 usually requires much less than |W |3
operations.

Algorithm 2 can also be extended to gather further information on a pattern as described in the
following. These extensions are not used for the experimental results in Section 5. Only Algorithm
1 and Algorithm 2 are required to apply Theorem 3 and Theorem 4

22

Algorithm 2 Verifying conditions (ii) and (iii)

procedure verifyCondition(pattern P, i ∈ [1;N], j ∈ [1;M + 1]):
▷ j ≤M for condition (ii), j = M + 1 for condition (iii)

u← |{j′ ∈ Si(P) : j′ < j}|
X ← set in χ(P) for permutation πid

X ′ ← X \ {xij′ : j
′ ∈ Si(P)}

build G = (W,A) associated to X ′

dist[p]← 0
dist[w]← +∞, ∀w ∈W \ {p}
nbArcs← 0
while nbArcs ≤ rank(P)− u do

nDist[w]←∞, ∀w ∈W
for a ∈ A do

nDist[a.head]← min(nDist[a.head], dist[a.tail] + a.weight)
end for
dist← nDist
nbArcs← nbArcs+ 1

end while
return dist[q] +

∑j−1
j′=1 wj′ ≤ C

end procedure

Computing generalized lower sub-patterns Qi(u) To find a flexible pattern, there is no need
to compute the lower sub-patterns Qi(u). However, it is worth mentioning that finding Qi(u) can also
be done with a variant of the shortest path algorithm. More precisely, finding Qi(u) can be obtained
via Algorithm 2, for xij+1 with j = Si(Qi(u))(u). The only modification is to add an extra step to
memorize the paths, and to return the path to node q.

Verifying conditions (v) and (vi) Let P be a pattern and {Ru, 1 ≤ u ≤ U ′} the nested sub-
patterns of P. To verify if conditions (v) or (vi) hold for its nested sub-patterns Ru, one needs to find
k-intersections. Finding a k-intersection is also what is required to verify conditions (ii) and (iii).
Hence, a similar algorithm as Algorithm 2 can be used to verify these conditions.

4.2 Pattern generation

The pattern generation procedure heavily relies on conditions (ii) and (iii) and also on the rank. The
complete procedure is described in Algorithm 3, using Algorithm 1 and Algorithm 2.

In Algorithm 3, the lower bound on k ensures that the rank is high enough to create a flexible
pattern. Indeed, because of condition (i), too small of a rank will lead to patterns that cannot be
flexible patterns. The algorithm starts by initializing a pattern P containing N times the set {M}.
By construction, P has at least one index per set, hence condition (i) is verified. In order for the
pattern inequalities of P not to be trivial, it requires card(P) > rank(P). As the P is initialized
with cardinality N , in the case rank(P) ≥ N one need to add elements to P. For the purpose of this
algorithm, we start with elements of higher indices. To do so, we select a random i and add j − 1 to
Si(P), with j = Si(P)(1) the smallest index in Si(P). The sets are randomly selected in order to make
it possible to generate different patterns for a same k. The core of the procedure is to modify P so that
it verifies condition (ii) and (iii). We randomly select i and j such that j /∈ Si(P) and j + 1 ∈ Si(P)
or j = M and call the procedure verifyCondition(P, i, j). If verifyCondition(P, i, j) returns
false, then in the case j < M we replace j + 1 by j in Si(P), and in the case j = M we add M to
Si(P). The elements are also chosen randomly, so that two same patterns for the same rank k can

23

Algorithm 3 Generating a flexible pattern

procedure generatePattern(instance (N,M,w, v, C) of the (SMKP))

lowerBound ← ⌈C/
∑M

j=1 wj⌉
k ← random integer in [lowerBound;n]
P ← N sets {M}
while card(P) < k do

i← random integer in [1;N] such that |Si(P)| < M
j ← Si(P)(1)
Si(P) ← Si(P) ∪ {j − 1}

end while
while (ii) and (iii) not verified for P do
X ← set in χ(P) for permutation πid

xij ← variable chosen randomly in X such that xij+1 ∈ X or j = M
if j = M and !verifyCondition(P, i, j) then ▷ (see Algorithm 2)

Si(P) = Si(P) ∪ {M}
end if
if j < M and !verifyCondition(P, i, j) then ▷ (see Algorithm 2)

Si(P) = Si(P) ∪ {j} \ {j + 1}
end if

end while
if computeRank(P)=k then ▷ (see Algorithm 1)

return P
else

pattern discarded
end if

end procedure

24

yield two different flexible patterns through this procedure. Finally, because of the modifications of
P, it is possible for it to have rank(P) > k, hence we need to compute it. If the rank is different than
k, then P may not be flexible pattern, as verifying the conditions (ii) and (iii) depends on the rank k.
One would need to restart the whole procedure to verify if (ii) and (iii) indeed hold for P. We chose
to discard P in this case, in order to avoid to long computational time for each call to the procedure
generatePattern((N,M,w, v, C)).

Procedure generatePattern((N,M,w, v, C)) only returns a pattern if it is a flexible pattern.
As P is discarded if rank(P) ̸= k, it ensures the rank of P to be exactly k. Similarly, pattern P
verifies conditions (ii) and (iii). Indeed, condition (ii) is verified ∀i ∈ {1, ..., N} and (iii) is verified
∀i ∈ {1, ..., N} and j ∈ Si(P). Also, if a condition (ii) is verified for a given i, it is still verified if P
is modified during the core of procedure generatePattern((N,M,w, v, C)). Similarly, if condition
(iii) is verified for a given i and j ∈ Si(P), it is still verified if P is modified during the core of
procedure generatePattern((N,M,w, v, C)). Indeed, as either one element is added, or an index
j′ is replaced by j′ − 1 in a set Si′(P), then the same k-intersection satisfying (ii) or (iii) can be
found, or a k-intersection with lighter total set weights. As P is initialized with one element per set,
and no element can be removed, condition (i) is clearly verified.

Note that generatePattern((N,M,w, v, C)) only needs the instance, more precisely the knap-
sack bound and the item weight from the instance, hence it can be only used in pre-processing. Indeed,
only the constraints are needed to compute a pattern verifying (i), (ii) and (iii). Also, procedure
generatePattern((N,M,w, v, C)) returns at most a single pattern, which may not be enough to
make a large difference in a B&C framework. Consequently, we call this procedure multiple times
as the pre-processing step of the two phase scheme, in order to generate various patterns. Note that
each call is independent to the previous ones, meaning that multiple calls can be done in parallel
on different threads. The set of patterns obtained with this procedure is then used within a B&C
framework, with the separation algorithm described in the following section.

4.3 Separation algorithm for the (SMKP)

For the separation algorithm, we have two pieces of information: the fractional point X̃ and the set of
generated patterns. Recall that for a given pattern P, variables sets X ∈ χ(P), and their associated
inequalities (pi(X)) exist for any permutation π. The aim of the separation algorithm is to find,
for a given pattern, the permutation π maximizing the left hand side of (pi(X)) for X ∈ χ(P) with
permutation π. However, the number of pattern-inequalities is exponential, as any permutation of
groups is possible (see Section 3). Given a pattern P, in order to find the best permutation π, we
can solve a Maximum Matching Problem (MMP).

Definition 21 (Maximum Matching Problem). Let H be a weighted bipartite graph. The (MMP)
is to find the set of edges E, such that at most one edge of E is incident to each vertex of H, while
maximizing the sum of the weight of E.

Property 14. Finding a permutation π maximizing the violation of (pi(X)) with X ∈ χ(P) for
permutation π is equivalent to solving the (MMP).

Proof. The aim is to find the permutation π of the sets of P, maximizing the left hand side of the
inequality (pi(X)) with X ∈ χ(P). To do so, we can build a bipartite graph H = (H1,H2, E). Each

vertex in H1 corresponds to a group i ∈ {1, ..., N} of solution X̃ and each vertex in H2 corresponds
to a set Si′(P), i′ ∈ {1, ..., N}. In the set of edges E there is an edge (i, i′) for each i ∈ H1, i

′ ∈ H2.
The edge (i, i′) has a weight equal to

∑
j∈Si′ (P) x̃ij .

Solving this (MMP) to optimality yields a matching maximizing the weight of the considered edges.
One can deduce a permutation from this matching: π(i) = i′ if edge (i, i′) is in the matching. As the
(MMP) is solved to optimality, permuation π is such that the left hand side of (pi(X)) is maximized
with X ∈ χ(P).

25

Example 11. Let (4, 4, w, v, C) be an instance of the (SMKP). Let X̃ = [[1, 1, 0, 0], [1, 0.7, 0.7, 0],
[0.6, 0, 0, 0], [1, 0, 0, 0]] be a fractional point and let P = {S1(P) = {1, 3}, S2(P) = {1, 2}, S3(P) = {1},
S4(P) = {1}} be a pattern with rank(P) = 5. Table 1 represents the weight matrix of H, with
X̃[i] ∈ H1 the vertex corresponding to the group i of X̃. In this example, the optimal solution to

X̃[1] X̃[2] X̃[3] X̃[4]
S1(P) 1 1.7 0.6 1
S2(P) 2 1.7 0.6 1
S3(P) 1 1 0.6 1
S4(P) 1 1 0.6 1

Table 1: Weight matrix

the (MMP) is: (X̃[1], S2(P)), (X̃[2], S1(P)), (X̃[3], S3(P)), (X̃[4], S4(P)). This solution has a value
2 + 1.7 + 0.6 + 1 = 5.3. The inequality with X ∈ χ(P), ordered with respect to the permutation
corresponding to the solution of the (MMP) is:

x11 + x12 + x21 + x23 + x31 + x41 ≤ 5

This inequality cuts the fractional point X̃ as the left hand side of the inequality equals 5.3.

To solve the (MMP), one can use the Hungarian algorithm [10]. Initially the complexity of this
algorithm was O((|H1|+ |H2|)4), and a more recent version [6] is of complexity O((|H1|+ |H2|)3). In
the scope of the separation algorithm, |H1| = |H2| = N . Thus, the separation algorithm is polynomial
for a pattern, as it is of complexity O((2N)3). However the number of patterns can be very large.
As the Hungarian algorithm solves the (MMP) to optimality, the inequality built for a given P is the
one with the permutation of the groups maximizing the left hand side of the inequality. Hence, for a
given P, solving the (MMP) produces the most violated inequality associated to P if such inequality
exists.

4.4 Two-phase B&C scheme

The first phase is to generate flexible patterns using Algorithm 3 as pre-processing. Because of
the symmetries of the (SMKP), each flexible pattern encodes an exponential number of pattern in-
equalities. From Theorem 3, there is a lower bound on the dimensions of the faces defined by these
inequalities, and they are facet-defining in the case of a flexible pattern with a set of cardinality 1.

The second phase is to use inequalities associated to generated patterns within a B&C framework.
However, adding all these inequalities would be counter-productive, as only enumerating them would
take too long, hence the need of a separation algorithm. As the patterns have already been generated,
the separation algorithm only requires to find the permutation π leading to the most violated inequality
for each pattern. Such permutation can be found for a given pattern by solving the (MMP), with a
polynomial time algorithm.

5 Experimental results

Results are computed on a single thread of an Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz
(Cascade Lake) processor, with 2 CPUs of 24 cores, with Linux as operating system. All algorithms
are developed with C++. Version 12.8 of CPLEX is used.

26

5.1 Instance description

A set of 15 (SMKP) instances are as follows: instances 1 to 5 with N = 20 M = 5; instances 6 to
10 with N = 30 M = 5; instances 11 to 15 with N = 20 M = 10. These 15 instances are selected
amongst a pool of hundreds of instances as difficult enough to see the impact of the cuts. The selection
criteria is for these instances to take at least 60 seconds to be solved by CPLEX, with all the default
options of CPLEX enabled but the cuts. As such, there is enough room in terms of time and number
of nodes to see the impact of the pattern inequalities and the CPLEX cuts.

5.2 Pattern generation

As the pattern generating process is random based, for each instance, 10 sets of patterns (Pi for
i ∈ {0, ..., 9}) are generated with different seeds, with a time limit of 60 seconds for each generation.
Also, an eleventh set P10 is generated with a time limit of 3600 seconds. Pattern sets P0 to P9
represent a more practical case, where a limited time is attributed to the pattern generation. Pattern
set P10 represents an ideal case, where a larger number of patterns are generated, to have more room
to see the effects of the pattern inequalities to solve the (SMKP). Even if the pattern generation
procedure could be parallelized, we used a single thread.

The following metrics are used in Table 2 to compare the pattern generations for each instance:

• #iter : the number of iterations of the generation process
• #find : the number of iteration where a flexible pattern is found
• #patt : the number of different flexible patterns found
• %facet : the proportion of them guaranteed to be pattern-facet, i.e., with a set of cardinality 1

Firstly, one can see that the generation becomes slower on larger instances, thus with the same time
limit, fewer iterations can be performed, namely thousands of iterations for instances 1 to 5, whereas
around one thousand for instances 6 to 10, and around 300 for instances 11 to 15. Consequently,
fewer patterns are found for larger instances. Note that many iterations of the pattern generation
procedure fail to produce a flexible pattern in a majority of cases. Indeed, for instances 4, 7, 9, 11,
12, 13, 14 and 15, the ratio #find/#iter is very small. In fact, around 90% of the iterations do not
generate a flexible pattern. Generally speaking, the larger the instances, the higher the proportion of
failed iterations.

Moreover, when #find is large, most of the flexible patterns are generated multiple times, as #patt
is much smaller, namely for instances 1, 2, 3, 5, 6 and 8. As the procedure is random based, when
#find is large, there is a higher chance to generate duplicates. It is especially visible as P10 rarely
generated more than 10 times the number of patterns compared to P0 to P9, even if the total time
allocated to P10 is 60 times longer.

Results in the following show that %facet does not seem to be related to the computational time or
the number of pattern cuts. In the case where the pattern cuts lead to a short computational time, it
could mean that many of the flexible patterns without a set of cardinality 1 are also pattern-facet. In
the case where pattern cuts do not reduce the computational time, it could mean that only inequalities
with integer coefficients would be efficient.

5.3 Separation of the pattern inequalities

The separation of the (SMKP) is done within a user cut callback from CPLEX. For a given pattern
set Pi, it solves the (MMP) for each pattern in Pi (see Section 4.3), hence creating one inequality
per pattern, and retains the most violated inequality. Preliminary results shows that this strategy is,
on average, more efficient than retaining the first violated inequality, or all the violated inequalities.
In the separation, we only consider the inequalities that are violated by at least 0.4 by the fractional
point. As shown in the next section, the pattern inequalities are very tight. Hence, this violation

27

inst set #iter #find #patt %facet inst set #iter #find #patt %facet inst set #iter #find #patt %facet

1

P0 5099 3308 263 13

6

P0 1095 515 94 18

11

P0 336 35 25 68
P1 4075 2591 245 13 P1 1049 480 104 17 P1 330 23 17 59
P2 3490 2218 210 13 P2 1116 531 110 15 P2 329 20 16 50
P3 3723 2341 231 15 P3 1131 519 103 19 P3 333 24 17 76
P4 3655 2379 229 14 P4 1057 508 103 16 P4 324 30 23 65
P5 3711 2353 234 13 P5 1103 516 98 19 P5 321 15 14 86
P6 3701 2348 213 15 P6 1071 522 108 15 P6 339 27 19 84
P7 3628 2337 233 14 P7 1083 531 109 17 P7 316 13 11 90
P8 3524 2277 225 14 P8 1117 510 108 16 P8 322 28 21 71
P9 3524 2244 221 14 P9 1102 538 117 17 P9 307 21 17 76
P10 264935 169772 540 15 P10 55745 26346 278 16 P10 18201 1397 265 47

2

P0 8101 4240 46 85

7

P0 899 23 6 100

12

P0 338 16 11 91
P1 7877 4117 44 36 P1 890 22 9 100 P1 305 20 16 87
P2 7999 4250 45 38 P2 858 20 5 100 P2 296 13 8 87
P3 7812 4081 45 33 P3 880 16 7 100 P3 319 15 10 90
P4 7674 3978 44 39 P4 851 15 5 100 P4 338 11 7 96
P5 7664 4025 52 37 P5 883 29 8 100 P5 318 11 6 67
P6 7658 4046 47 36 P6 870 12 3 100 P6 326 12 11 91
P7 7643 3911 44 36 P7 875 19 8 100 P7 301 16 11 100
P8 7641 4004 47 36 P8 925 23 6 100 P8 281 14 10 100
P9 7681 4053 47 36 P9 894 20 6 100 P9 277 12 6 100
P10 486567 253969 69 37 P10 51518 1174 33 94 P10 17520 755 146 79

3

P0 8437 7513 52 15

8

P0 1160 824 185 10

13

P0 321 21 14 71
P1 7951 7041 53 17 P1 1176 845 178 11 P1 318 15 11 64
P2 8075 7162 53 15 P2 1165 830 185 12 P2 321 20 10 90
P3 7710 6850 51 16 P3 1133 828 175 11 P3 319 22 17 71
P4 7946 6990 51 16 P4 1152 829 181 10 P4 323 19 16 62
P5 7736 6841 52 17 P5 1183 861 181 12 P5 345 21 18 83
P6 7797 6855 53 15 P6 1169 840 185 11 P6 290 14 11 73
P7 7766 6896 52 17 P7 1194 857 176 11 P7 277 13 11 73
P8 7739 6874 54 19 P8 1154 834 174 10 P8 310 22 17 82
P9 7547 6647 51 18 P9 1174 873 171 13 P9 341 26 19 68
P10 497691 440097 71 20 P10 60280 43425 521 8 P10 17754 1063 187 54

4

P0 4065 374 71 85

9

P0 806 82 38 100

14

P0 329 10 9 89
P1 3892 358 69 85 P1 808 77 42 98 P1 334 12 11 100
P2 4009 391 67 90 P2 771 67 31 97 P2 311 9 7 100
P3 4074 387 72 85 P3 780 60 26 100 P3 334 6 5 100
P4 4083 391 72 85 P4 844 90 35 97 P4 349 12 9 100
P5 4028 363 75 92 P5 795 61 34 91 P5 323 10 7 100
P6 3941 360 76 87 P6 810 58 37 95 P6 325 10 9 89
P7 3974 365 76 83 P7 808 68 34 94 P7 311 10 8 75
P8 4013 370 69 91 P8 796 61 35 97 P8 348 8 8 87
P9 4071 351 67 91 P9 794 58 32 94 P9 334 12 12 100
P10 215019 19706 312 69 P10 41518 3368 251 83 P10 18661 609 114 86

5

P0 4327 1222 215 23

10

P0 809 88 51 88

15

P0 308 16 14 79
P1 3397 950 194 26 P1 781 91 46 91 P1 309 14 12 83
P2 3212 903 177 32 P2 755 81 46 93 P2 293 13 12 100
P3 3246 936 202 26 P3 772 89 46 96 P3 288 14 10 90
P4 4288 1262 220 27 P4 754 82 41 95 P4 317 17 14 100
P5 3743 1095 211 26 P5 769 101 56 98 P5 304 16 14 79
P6 3111 897 175 26 P6 791 84 47 94 P6 314 10 10 70
P7 3160 901 184 30 P7 750 74 46 93 P7 292 17 13 77
P8 3227 872 191 28 P8 780 99 50 92 P8 292 17 14 83
P9 3213 876 194 31 P9 775 88 44 91 P9 296 7 7 86
P10 197506 55493 868 18 P10 40633 4825 430 84 P10 17376 763 147 73

Table 2: Patterns generations

bound serves to filter the less efficient violated inequalities. A too high violation bound would be
to selective, and a too small number of inequalities would be added despite the dedicated time to
generate them.

This process is repeated at each node, as long as a violated inequality is found. This means that
the separation of the (SMKP) is made at least once per node. Recall that it solves a (MMP) for each
pattern, and from Table 2 the number of patterns can reach hundreds. This results to the separation
taking up to 90% of the total computational time. To avoid such cases, we only use the separation
algorithm while less than 1000 cuts have been added, or less than 10,000 nodes have been explored.
These limits cover the case where lots of violated inequalities are found, but also the opposite case

28

where very little inequalities are found.

5.4 Resolution of the (SMKP)

The B&C framework is limited to a single thread, and a maximum of 3600 seconds of computational
time. Multiple combinations are considered in order to compare the introduced inequalities. For this
purpose, we define default CPLEX, CPLEX with all default options enabled, and no-cut CPLEX,
which is default CPLEX with the cuts disabled. Three combinations are considered:

• Cplx: default CPLEX
• Psep: no-cut CPLEX with pattern inequalities separation.
• Cplx+Psep: default CPLEX with pattern inequalities separation.

As P10 is always outperformed by P0 to P9, results for P10 are not included in the following.
This is due to the fact that P10 contains to many patterns, which increases the number of time the
(MMP) is solved, without necessarily producing more efficient cuts. For all these combinations, the
results for pattern sets P0 to P9 are quite similar. Hence, the following metrics, used in the Table 3
to compare the aforementioned combinations, are averaged for P0 to P9 besides #s.

• #s: the number of pattern sets for which the instance is solved with respect to the total number
of pattern sets

• C-cuts: the number of CPLEX cuts added
• P-cuts: the number of pattern cuts added
• Pvv : the average violation value of the pattern cuts added
• r-value: the linear relaxation value at the root node
• user-time: the proportion of the computational time dedicated to the separation
• #nodes-s: the number of nodes explored when the instance is solved
• #nodes-us: the number of nodes explored when the instance is unsolved
• gap: the gap when the instance is not solved
• time: the total computational time

The relaxation value r-value resulting from using Psep is often higher than the one obtained using
Cplx, instances 1 and 3 being the only two exceptions. This could mean that the pattern inequalities
are the most efficient when some branching have already occurred.

Besides instances 8 and 9, using Psep instead of Cplx leads to much smaller computational times.
For instance 1, only 77 nodes are 2 seconds are required with Psep, while Cplx needs 580 seconds and
3.6 million nodes. The difference is even more visible for instance 3, where Psep solves the (SMKP)
in 0 seconds at the root node, while Cplx needs 275 seconds and 1.8 million nodes. In general, Psep is
very efficient because of the violation value of the added cuts. Indeed, metric Pvv is very high, over
0.5 in most case, and over 0.9 for instances 3 and 7.

For instances 10 and 13, Psep yields smaller computational times than Cplx even if no inequality
is added. This means that the cuts added by CPLEX for these instances are slowing down the LP
without significantly cutting the fractional points. This is visible on the number of nodes developed,
Psep explores 28.5 million nodes in 2400 seconds, while Cplx explores 8 million nodes in 3600 seconds.

For the majority of the instances, Cplx+Psep is the second best combination. For instance 1,
Cplex+Psep requires 124 nodes and 2.5 seconds, while Psep requires 77 nodes and 2.0 seconds,
and Cplex requires 3.6 nodes and 580 seconds. It is worth mentioning that for instances 6 and
11, Cplex+Psep seems to be complementary, as they yield the smallest computational time. More
specifically, for instance 6 Cplex+Psep can solve the instance at the root node in 0 seconds, with
only 4 CPLEX cuts and 1 patern cut, while Cplx did not solve the instance in 3600 seconds with 600
CPLEX cuts, and Psep required 73 seconds with 700 pattern cuts. Also, Cplx+Psep always leads
to the smallest root node relaxation value r-value. These results show that the pattern cuts added
are different than the CPLEX cuts, and in addition the pattern cuts can help CPLEX finding more
efficient inequalities.

29

inst cut type #s C-cuts P-cuts Pvv r-value user-time #nodes-s #nodes-us gap time

1
Cplx 1/1 345 - - 8125.4 - 3625008 - - 583.7

Cplx+Psep 10/10 3 147 0.81 8067.1 96.3% 124 - - 2.5
Psep 10/10 0 155 0.83 8087.8 96.3% 77 - - 2.0

2
Cplx 1/1 305 - - 8498.9 - 1048228 - - 221.6

Cplx+Psep 10/10 3 1000 0.56 8426.7 59.0% 9522 - - 14.9
Psep 10/10 0 1000 0.55 8502.4 64.1% 5730 - - 12.8

3
Cplx 1/1 405 - - 5234.6 - 1849854 - - 275.6

Cplx+Psep 10/10 5 3 0.76 4795.7 13.9% 0 - - 0.0
Psep 10/10 0 7 0.94 4829.7 27.7% 0 - - 0.0

4
Cplx 1/1 405 - - 6575.9 - 5442220 - - 2287.3

Cplx+Psep 10/10 43 782 0.60 6572.3 2.2% 3367226 - - 1529.7
Psep 10/10 0 698 0.63 6576.2 2.8% 3858694 - - 1563.4

5
Cplx 1/1 405 - - 14288.9 - 1816805 - - 468.2

Cplx+Psep 10/10 63 567 0.60 14282.0 18.9% 1246269 - - 560.6
Psep 10/10 0 369 0.58 14302.3 35.8% 1360370 - - 456.3

6
Cplx 0/1 605 - - 6672.8 - - 6230692 0.18% -

Cplx+Psep 10/10 4 1 0.66 6597.6 42.4% 0 - - 0.0
Psep 10/10 0 698 0.57 6677.3 78.0% 15041 - - 73.3

7
Cplx 1/1 605 - - 42275.2 - 1791840 - - 1495.0

Cplx+Psep 10/10 337 26 0.59 42273.4 1.2% 1052887 - - 671.8
Psep 10/10 0 30 0.93 42301.2 4.3% 1131631 - - 151.3

8
Cplx 1/1 227 - - 7961.6 - 31200 - - 7.1

Cplx+Psep 10/10 31 943 0.50 7961.6 4.9% 3116656 - - 2169.9
Psep 0/10 0 459 0.46 8051.7 4.4% - 10232105 0.52% -

9
Cplx 1/1 218 - - 28987.0 - 67547 - - 15.9

Cplx+Psep 10/10 363 0 - 28987.0 6.8% 2256372 - - 822.4
Psep 10/10 0 0 - 29030.7 13.3% 4911185 - - 406.9

10
Cplx 0/1 605 - - 28438.1 - - 7965193 0.21% -

Cplx+Psep 0/10 363 0 - 28438.1 2.4% - 8530504 0.26% -
Psep 10/10 0 0 - 28456.6 4.0% 28518001 - - 2407.1

11
Cplx 1/1 905 - - 39387.8 - 1147464 - - 1323.3

Cplx+Psep 10/10 362 240 0.53 39281.3 30.3% 129380 - - 139.0
Psep 10/10 0 430 0.63 39391.8 4.5% 1028021 - - 377.6

12
Cplx 0/1 770 - - 43984.0 - - 3217619 0.05% -

Cplx+Psep 10/10 540 3 0.49 43984.0 0.6% 3154490 - - 2374.2
Psep 10/10 0 2 0.71 44055.1 3.0% 4509387 - - 424.0

13
Cplx 1/1 605 - - 35842.2 - 2358605 - - 1231.4

Cplx+Psep 10/10 363 0 - 35842.2 1.6% 2086498 - - 1030.5
Psep 10/10 0 0 - 35856.8 6.0% 2173793 - - 240.4

14
Cplx 0/1 560 - - 27403.7 - - 7614965 0.13% -

Cplx+Psep 0/10 352 11 0.43 27403.7 0.7% - 9892733 0.12% -
Psep 10/10 0 31 0.41 27411.0 1.5% 15305740 - - 1485.3

15
Cplx 1/1 519 - - 41001.8 - 760888 - - 490.7

Cplx+Psep 10/10 205 638 0.54 41001.7 1.8% 804107 - - 631.2
Psep 10/10 0 602 0.55 41003.1 4.5% 792874 - - 289.5

Table 3: Resolution of the instances 1 to 15 of the (SMKP)

6 Conclusion

In this paper, the (SMKP) is considered as a new variant of the knapsack problem. Two main
contributions, namely the polyedral study and the two-phase B&C scheme, are proposed, revolving
around the patterns. We derived pattern inequalities as a new class of valid inequalities embedding
symmetries with respect to the groups. Necessary facet-defining conditions are defined for these
inequalities, which are also sufficient in the case of a pattern with a set of cardinality 1. An algorithm
is presented to generate a set of patterns verifying such conditions as pre-processing and first phase
of the scheme. A separation algorithm based on the generated patterns is presented and reduces to

30

match the patterns with the fractional point in order to produce a violated inequality. This algorithm
is used within a B&C framework in the second phase of the scheme. Experimental results demonstrate
the efficiency of the inequalities and algorithms presented, as they significantly speed up the solving
process of difficult instances compared to default CPLEX.

An extension of this work would be to study the integer inequalities for the (SMKP). The proposed
patterns can also be extended to other problems, such as the use case of the Hydro Unit Commitment
problem whose core structure corresponds to the (SMKP). A promising perspective would be to see
how a two phase B&C scheme could be generalized to other problems facing numerous symmetries.

31

References

[1] Richard Bellman. “On a routing problem”. In: Quarterly of applied mathematics 16.1 (1958),
pp. 87–90.

[2] E.Andrew Boyd. “Polyhedral results for the precedence-constrained knapsack problem”. In:
Discrete Applied Mathematics 41.3 (1993), pp. 185–201. issn: 0166-218X.

[3] Sebastian Ceria et al. “Cutting planes for integer programs with general integer variables”. In:
Mathematical programming 81.2 (1998), pp. 201–214.

[4] Keely L Croxton, Bernard Gendron, and Thomas L Magnanti. “A comparison of mixed-integer
programming models for nonconvex piecewise linear cost minimization problems”. In: Manage-
ment Science 49.9 (2003), pp. 1268–1273.

[5] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische math-
ematik 1.1 (1959), pp. 269–271.

[6] Jack Edmonds and Richard M Karp. “Theoretical improvements in algorithmic efficiency for
network flow problems”. In: Journal of the ACM (JACM) 19.2 (1972), pp. 248–264.

[7] Carlos E Ferreira, Alexander Martin, and Robert Weismantel. “Solving multiple knapsack prob-
lems by cutting planes”. In: SIAM Journal on Optimization 6.3 (1996), pp. 858–877.

[8] Grace Hechme-Doukopoulos et al. “The short-term electricity production management problem
at EDF”. In: Optima Newsletter 84 (Oct. 2010), pp. 2–6.

[9] Christopher Hojny et al. “Knapsack polytopes: a survey”. In: Annals of Operations Research
292.1 (2020), pp. 469–517.

[10] Harold W Kuhn. “The Hungarian method for the assignment problem”. In: Naval research
logistics quarterly 2.1-2 (1955), pp. 83–97.

[11] Robert LMJ van de Leensel, CPM Van Hoesel, and JJ Van de Klundert. “Lifting valid inequal-
ities for the precedence constrained knapsack problem”. In: Mathematical programming 86.1
(1999), pp. 161–185.

[12] Kyungchul Park and Sungsoo Park. “Lifting cover inequalities for the precedence-constrained
knapsack problem”. In: Discrete Applied Mathematics 72.3 (1997), pp. 219–241.

[13] Yves Pochet and Laurence A Wolsey. “Integer knapsack and flow covers with divisible coeffi-
cients: polyhedra, optimization and separation”. In: Discrete Applied Mathematics 59.1 (1995),
pp. 57–74.

[14] Mariem Ben Salem et al. “Optimization algorithms for the disjunctively constrained knapsack
problem”. In: Soft Computing 22.6 (2018), pp. 2025–2043.

[15] Moshe Zukerman et al. “A polynomially solvable special case of the unbounded knapsack prob-
lem”. In: Operations Research Letters 29.1 (2001), pp. 13–16.

32

A Proofs and lemmas

A.1 Proof of Property 7

Proof. Let (i, j) be an item such that ∃j′ > j, xij′ ∈ X . Assume without loss of generality that j′

is such that there are no xij′′ ∈ X , j < j′′ < j′. As P is pattern-facet, condition (iii) holds and
the property is verified for item (i, j′ − 1). Let Y ′ be the set of variable verifying condition (iii)
for item (i, j′ − 1). Let Z be the subset of Y ′ with all variables xij′′ ∈ Y ′, j′′ ≥ j. One can build
Y = Y ′ \ Z ∪ {xij}. We can prove that the set of variable Y verifies the property for item (i, j). By
construction, xij ∈ Y and xij′′ /∈ Y, ∀j′′ > j. As there are no xij′′ ∈ X , j < j′′ < j′ and Y ′ is a
k-intersection of X by condition (iii), then |Y ∩ X | = k. Also, as the weights are non-negative, and
solution XY′ is valid by condition (iii), then XY is also valid. Consequently, Y is a k-intersection of
X and the property is verified for xij .

Let (i, j) be an item such that ∀j′ > j, xij′ /∈ X . As P is pattern-facet, condition (ii) hold and
the property is verified for item (i,M). The proof is the same as in the first case, with Y ′ the set of
variable verifying condition (ii) for item (i,M).

Thus, for any (i, j), there exist a feasible solution with xij = 1, xij+1 = 0 and a total of k variables
of X to 1.

A.2 Proof of Property 8

Proof of Property 8. Let P be a flexible pattern. Suppose that there is i ≤ N such that Si(Q1)
does not contain the |Si(P)| − V smallest indices of Si(P). By definition of Q1, S1(Q1) = S1(P),
meaning the property is trivially verified for i = 1. In the following we consider i > 1. Let X ∈ χ(P)
with permutation πid. Let Y ∈ χ(Q1) with permutation πid, to which we add x1M if x1M /∈ X . The
solution XY is valid as proven in Lemma 1. Let Y ′ be the variables set Y to which we remove all
variables of group 1, and to which we add all variables of group i in X \Y. Because of the symmetric
weights, selecting every item (1, j), j ≤M is at least as heavy as selecting items (i, j), j ≤ max(Si(P)).
Consequently: ∑

xi′j′∈Y′

si′j′(Y ′) ≤
∑

xi′j′∈Y
si′j′(Y)

As solution XY is valid, solution XY′ must also be valid. By construction, there are V variables of
group 1 in Y \ Y ′. Also, as |Si(Q1)| < |Si(P)| − V by hypothesis, there are at least V +1 variables of
group i in Y ′ \ Y. Besides groups 1 and i, sets Y and Y ′ and identical, hence |Y ′| > |Y|. As Y is a
k-intersection of X , then Y ′ is at least a k + 1-intersection of X , which contradicts the rank k of P.

Thus, Q1 must contain the |Si(P)| − V smallest indices of Si(P), ∀i ≤ N .

A.3 Lemmas for Property 9

Lemma 2. Let P be a flexible pattern. Let i ∈ {2, ..., N}. For any u ∈ [1, V], if Si(P)[u] ∈ Si(Q1)
and |Si(P)| ≥ u+ V then S1(P)[u] ≥ Si(P)[u+ V].

The idea of the following proof is illustrated by Example 12 and Figure 5.

Example 12. Let (4, 5, w, v, C) be an instance of the (SMKP). Let a flexible pattern P = {S1(P) =
{1, 2}, S2(P) = {1, 3}, S3(P) = {1, 2, 3}, S4(P) = {2, 3, 4, 5}} of rank 7 and with V = 2. Suppose
Q1 = {{1, 2}, {1}, ∅, {2, 3, 4, 5}}. In this case P does not follow Lemma 2. Indeed, with u = 2, there
is S1(P)[2] = 1 < S4(P)[2 + 2] = 2.

Let X = {x11, x12, x21, x23, x31, x32, x33, x42, x43, x44, x45} ∈ χ(P) as represented in Figure
5a and Y = {x11, x12, x31, x42, x43, x44, x45} ∈ χ(Q1). As P is a flexible pattern, Lemma 1 proves
that solution XY∪{x15}, as represented in Figure 5b, is valid. Let Z = {x21, x32}, by construction

33

|Z| = u = 2. Clearly, solution XY\{x12}∪Z , as represented in Figure 5c, is unfeasible by the rank of
P. Hence, w2 + w1 > w2 + w3 + w4 + w5.

As P is pattern-facet, P verifies Property 7. Hence there is a set Y ′ such that x41 ∈ Y ′, x4j /∈ Y ′

∀j ∈ [2, .., 5] and |Y ′ ∪ X | = 7 and XY′ is a valid solution. Suppose in this example Y ′ = {x11, x12,
x21, x23, x31, x32, x33, x41} represented in Figure 5d.

Note that S4(P)[u+V]−1 = S4(P)[4]−1 = 1, and by construction, x4j /∈ Y ′ ∀j ∈ [2, .., 5]. Hence,
there are u+V = 4 variables, namely x21, x23, x32, x33, in Y ′ \Y. Property 8 indicates that ∀i ≤ N ,
Si(P)[V + 1] ∈ Si(Q1). Thus, these 4 variables in Y ′ \ Y are splitted into a set O2 ⊂ X of 1 to V = 2
variables in a group, and a set O1 ⊂ X of u = 2 to u + V − 1 = 3 variables in the other groups.
In this case, we arbitrary chose O2 = {x32, x33} and O1 = {x21, x23}. Because both Z and O1 are
subsets of X \ Y and |Z| ≤ |O1|, then w1 + w2 + w3 ≥ w1 + w2 > w2 + w3 + w4 + w5. Hence, with
Y ′′ = Y ′ \ O1 ∪ {x42, x43, x44, x45} represented in Figure 5e, as solution XX ′ is valid, then solution
XY′′ is also valid. However Y ′′ is an 8-intersection of X , which contradicts the rank of P.

(a) Set X (b) Set Y ∪ x45 (c) Non feasible set (d) Set Y ′ (e) Set Y ′′

Figure 5: Illustration of Example 12

Proof. Let P be a flexible pattern of rank k. Suppose that there is u ≤ V and i > 1 such that
S1(P)[u] ∈ Si(Q1) and |Si(P)| ≥ u+ V but S1(P)[u] < Si(P)[u+ V].

Let X ∈ χ(P) (resp. Y ∈ χ(Q1)) with permutation πid. By definition of Q1, solution XY∪{x1M} is
feasible. However, for a variable set Z, Z ⊆ X \Y, it is not possible to create a feasible solution from
XY by setting every variable of Z to 1, and |Z| − 1 variables of Y to 0. Otherwise there would be
k + 1 variables of X to 1, which contradicts the rank of P. With |Z| = u, as XY∪{x1M} is a feasible
solution, we deduce the following: ∑

xi′j′∈Z
si′j′(X) >

M∑
j=S1(P)[u]+1

wj

Because P is flexible, Property 7 stands, it is possible for j = Si(P)[u + V] to have a set Y ′ ∈ V a
k-intersection of X with xij−1 ∈ Y ′ and xij′ /∈ Y ′, j′ ≥ j, such that XY′ is valid.

In the case Si(Q1) = Si(P), clearly there are u+ V more variables of group i in Y \ Y ′. However,
as |Y| = |Y ′| = k, there are u+V variables of groups different than i in Y ′ \Y. Property 8 indicates
that ∀i′ ≤ N , |Si′(Q1)| ≥ |Si′(P)| − V . Thus, these u + V variables in Y ′ \ Y are splitted into a set
O2 ⊂ X of 1 to V variables in a group, and a set O1 ⊂ X of u to u + V − 1 variables in the other
groups.

In the case Si(Q1) ⊂ Si(P) with Si(P)[u] ∈ Si(Q1) there are between V +1 and u+V −1 variables
of group i in Y \Y ′ and reciprocally between V +1 and u+ V − 1 variables of groups different than i
in Y ′ \ Y. In this case we consider O1 ⊂ X to be the set of V +1 to u+ V − 1 variables if Y ′ \ Y, and
O2 = ∅.

We know that Z ∈ X and Z ∪ Y = ∅ and similarly, O1 ∈ X and O1 ∪ Y = ∅. Also, we know that
|O1| ≥ u = |Z|. We deduce that:∑

xi′j′∈O1

si′j′(X) ≥
∑

xi′j′∈Z
si′j′(X) >

M∑
j=S1(P)[u]+1

wj

34

By construction, Si(P)[1] ≤M and by hypothesis, Si(P)[u+ V] > S1(P)[u], which means that:

∑
j∈Si(P):j≥Si(P)[u+V]

sij(X) =
Si(P)[1]∑

j=Sj(P)[u+V]

wj ≤
M∑

j=S1(P)[u]+1

wj

The u+ V variables of group i that are in Y but not in Y ′ are lighter than the ones in Z, thus lighter
than variables of O1. Hence we build Y ′′ = Y ′ \O1 to which we add all the u+V variables of group i
in X \ Y ′. As XY′ is valid, then XY′′ is also valid. However |O1| ≤ u+ V − 1, meaning that the new
solution has at least k + 1 variables of X to 1, which contradicts the rank of P.

Lemma 3. Let P be a flexible pattern. Let i ∈ {2, ..., N}. For any u ∈ [1, V], if Si(P)[u] /∈ Si(Q1)
and |Si(P)| ≥ u+ V then S1(P)[u] ≥ Si(P)[u+ V].

Proof. Suppose that there is u ≤ V and i > 1 such that Si(P)[u] /∈ Si(Q1) and |Si(P)| ≥ u + V but
S1(P)[u] < Si(P)[u+ V].

Let X ∈ χ(P) (resp. Y ∈ χ(Q1)) with permutation πid. Because P is flexible, Lemma 1 proves
that solution XY∪{x1M} is valid. By construction, Si(P)[1] ≤M and Si(P)[V +1] ≥ Si(P)[u+V] and
by hypothesis Si(P)[u+ V] > S1(P)[u], which means that:

Si(P)[1]∑
j=Si(P)[V+1]+1

wj ≤
M∑

j=S1(P)[u]+1

wj

Hence, one can build Y ′ = Y ∪ {x1M} to which we remove all variables x1j ∈ X , j > S1(P)[u] and
to which we add all variables for group i: xij ∈ X \ Y, with solution XY′ being valid. However,
there are u − 1 variables x1j ∈ X such that j > S1(P)[u], and at least u variables xij ∈ X \ Y as
Si(P)[u] /∈ Si(Q1). As Y is a k-intersection of X , then Y ′ is at least a k + 1-intersection of X which
contradicts the rank of P.

A.4 Lemmas for Property 10

Lemma 4. Let P be a flexible pattern of rank k. Let Qi be a lower sub-patterns of P with i > 1. If
|S1(Q1)|+ |Si(Q1)| = |S1(Qi)|+ |Si(Qi)| and |Si(P)| ≥ 2V , then it is possible for Qi to be such that
∀i′ ≤ N with |Si′(P)| ≥ 2V , Si′(P)[2V] ∈ Si′(Qi)

Proof. We are in the case |S1(Q1)| + |Si(Q1)| = |S1(Qi)| + |Si(Qi)|. Let L = {1, .., N} \ {1, i}. By
definition, card(Q1) = card(Qi) = k hence we deduce the following equation:∑

i′∈L
|Si′(Q1)| =

∑
i′∈L
|Si′(Qi)|

By definition Q1 and Qi minimize the weight of their respective variable sets. Hence they have both
the exact same weight for their variables sets restricted to indices in L, otherwise it is clear that one
of them do not minimize the weight of its variable sets. Consequently, one can modify the sets of
index in L in Qi by the ones in Q1.

Property 8 indicates that Si′(P)[V + 1] ∈ Si′(Q1). As P is flexible pattern, V ≥ 1 by condition
(i), and V + 1 ≥ 2V . Clearly the Lemma is verified for Q1.

As Si′(Q1) = Si′(Qi) for any i′ ∈ L, the Lemma is also verified for any Si′(Qi) with i′ ∈ L. By
definition of Qi, Si(Qi) = Si(P), trivially verifying the Lemma. As |S1(P)| = V < 2V , the Lemma
does not concern S1(Qi). Thus, the Lemma is verified for any set Si′(Qi) for which |Si′(Qi)| ≥ 2V .

Lemma 5. Let P be a flexible pattern of rank k. Let Qi be a lower sub-patterns of P with i > 1. If
|S1(Qi)| = 0, then ∀i′ ≤ N with |Si′(P)| ≥ 2V , Si′(P)[2V] ∈ Si′(Qi)

35

The idea of the following proof is illustrated by Example 13 and Figure 6.

Example 13. Let (5, 3, w, v, C) be an instance of the (SMKP). Let a flexible pattern P = {S1 = {3},
S2 = {1, 2, 3}, S3 = {1, 2, 3}, S4 = {1, 2, 3}, S5 = {1, 2, 3}} of rank 10. The smallest set of P is S1(P)
hence V = 1. Suppose Q1 = {S1 = {3}, S2 = {1, 2, 3}, S3 = {1, 2}, S4 = {1, 2}, S5 = {1, 2}} and
Q2 = {S1 = ∅, S2 = {1, 2, 3}, S3 = {1}, S4 = {1, 2, 3}, S5 = {1, 2, 3}}. We are in the case of Lemma 5
as |S1(Q2)| = 0, but not in the case of Lemma 4, as |S1(Q1)|+|S2(Q1)| = 4 ̸= |S1(Q2)|+|S2(Q2)| = 3.
However, Lemma 5 is not verified, as S3(P)[2V] = S3(P)[2] = 2 /∈ S3(Q2).

Let Y = {x13, x21, x22, x23, x31, x32, x41, x42, x51, x52} ∈ χ(Q1) and Y ′ = {x21, x22, x23, x31, x41,
x42, x43, x51, x52, x53} ∈ χ(Q2). As P is pattern-flexible, Lemma 1 proves that solution XY∪{x14}}
is valid. Also, Q2 minimizes the sum of the weights, {x43, x53} ∈ Y ′ and {x32, x33} /∈ Y ′ hence
w3 +w3 ≤ w2 +w3. Clearly, w3 +w3 ≤ w2 +w3 ≤ w1 +w2 +w3 +w4. With O = Y ′ \Y = {x43, x53},
the set Y ′′ = Y ∪{x14} \ {x13, x14}∪O yields a feasible solution XY′′ . However, Y ′′ is a 9-intersection
of X , which contradicts the rank of P.

(a) Set Y (b) Set Y ′ (c) Set Y ∪ {x14} (d) Set Y ′′

Figure 6: Illustration of Example 13

Proof. Because of the shape of Q1 (see Property 8), |S1(Q1)| = V meaning that if |Si(Q1)| =
|Si(P)| − V , then |Si(Q1)| + |S1(Q1)| = |Si(P)|. Because we are in the case |S1(Qi)| = 0, then
|Si(Qi)|+ |S1(Qi)| = |Si(Q1)|+ |S1(Q1)| which is verified by Lemma 4.

Hence, we consider |Si(Q1)| ≥ |Si(P)| − V + 1. Consequently, |Si(Q1)| + |S1(Q1)| ≥ |Si(Qi)| +
|S1(Qi)|+1. Suppose there is i′ ̸= 1, i′ ̸= i such that Si′(P)[2V] /∈ Si′(Qi). With v ∈ [0, |Si′(P)|−2V],
we have |Si′(Qi)| = |Si′(P)|−2V −v, i.e., Si′(P)[2V +v] /∈ Si′(Qi). We know by the shape of Q1 that
|Si′(Q1)| ≥ |Si′(P)| − V and thus |Si′(Q1)| ≥ |Si′(Qi)|+ V + v. This leads to the following result:

|S1(Q1)|+ |Si(Q1)|+ |Si′(Q1)| − |S1(Qi)| − |Si(Qi)| − |Si′(Qi)| ≥ V + v + 1

There must be a set of groups L, 1 /∈ L, i /∈ L, i′ /∈ L such that:

V + v + 1 ≤
∑
l∈L

|Sl(Qi)| − |Sl(Q1)| ≤ 2V + v

If not, then there is a set l such that |Sl(Qi)| − |Sl(Q1)| > V + 1, which contradicts the shape of Q1

(see Property 8) which is that |Sl(Q1)| ≥ |Sl(P)| − V .
Let X ∈ χ(P) (resp. Y ∈ χ(Q1), Y ′ ∈ χ(Qi)) with permutation πid. Let O be the set of variables

xlj ∈ Y ′ \ Y with l ∈ L. Note that V + v + 1 ≤ |O| ≤ 2V + v. Also, Si′(P)[2V + v] /∈ Si′(Qi), O is
sub-pattern of Qi and by definition Qi minimizes the sum of the weights and O is a sub-pattern of
Qi, hence we deduce:

∑
xlj∈O

slj ≤
Si′ (P)[1]∑

j=Si′ (P)[2V+v+1]+1

wj ≤
M∑

j=Si′ (P)[2V+v+1]+1

wj ≤
M∑
j=1

wj

As P is flexible pattern, Lemma 1 provides a feasible solution XY∪{x1M}. One could create a new
feasible solution from XY∪{x1M} by setting all variables of group 1 to 0, and all variables of O to one,
creating a lighter solution, thus valid. However, |O| ≥ V + v + 1 ≥ V + 1 > |S1(Q1)| = V . The new
solution has at least k + 1 variables of X to 1, which contradicts the rank of P.

36

Lemma 6. Let P be a flexible pattern of rank k. Let Qi be a lower sub-patterns of P with i > 1. If
|S1(Qi)| > 0, then ∀i′ ≤ N with |Si′(P)| ≥ 2V , Si′(P)[2V] ∈ Si′(Qi)

Proof. We consider the case where |S1(Q1)|+ |Si(Q1)| ≠ |S1(Qi)|+ |Si(Qi)|, as otherwise it is the case
of Lemma 4. Suppose there is i′ ̸= 1, i′ ̸= i such that Si′(P)[2V] /∈ Si′(Qi). Let v ∈ [0, |Si′(P)|−2V]
such that |Si′(Qi)| = |Si′(P)| − 2V − v. Let u be the smallest value such that S1(P)[u] ∈ S1(Qi), i.e.,
u = V − |S1(Qi)|+ 1. Let X (resp. Y) be the set of variables of P (resp. Qi) with permutation πid.
We know that XY is a feasible solution. We also know by Property 9 that a flexible pattern P is
such that S1(P)[u] ≥ Si′(P)[u+ V], which means that:∑

j′≤Si′ (P)[u+V]

si′j′(X) ≤
∑

j≤S1(P)[u]

s1j(X)

Hence, one can build Y ′ = Y from which we remove all variables x1j ∈ Y and to which we add all
xi′j′ ∈ X , j′ ≤ Si′(P)[u+ V]. Clearly, as XY is a valid solution, so is XY′ . In group i′, by hypothesis
there are |Si′(P)| − 2V − v variables in Y, and by construction |Si′(P)| − (V + u) + 1 in Y ′ Hence in
group i′, there are V + v − u + 1 variables in Y ′ \ Y. In group 1, by hypothesis there are V − u + 1
variables in Y, and by construction 0 variables in Y ′. For groups different than i′ and 1 variables sets
Y and Y ′ are identical by construction. We deduce |Y ′| − |Y| = V + v − u+ 1− (V − u+ 1) = v ≥ 0.

In the case v ≥ 1, as Y is a k-intersection of X , then Y ′ is at least a k+1-intersection of X , which
contradicts the rank of P.

In the case v = 0, by construction Y and Y ′ contain the same variables for group i. Also by
construction, the weight of Y ′ is lighter or equals the weight of Y. Clearly, there is a Q′

i such that
Y ′ ∈ χ(Q′

i). However, by construction S1(Qi′) is empty, which cannot be possible as proven by
Lemma 5.

A.5 Proof of Theorem 5

The following Lemma aims to use condition (iv) to provide feasible solutions for any variable in
X ∈ χ(P). The idea is for these solutions to have at least all variables of YU ′ to 1, with YU ′ ∈ χ(RU ′).
As these solutions have many variables to 1 in common, this will be convenient to prove them to be
linearly independent in Theorem 5.

Lemma 7. If the nested sub-patterns {Ru, 1 ≤ u ≤ U ′} verify (iv), then for any xij ∈ X \Y1, ∃u ≤ U ′

such that there is a set Z containing u variables xij′ ∈ X \ Yu, j′ ≤ j and Z ∪ Yu is a k-intersection
of X .

Proof. Let P be a pattern verifying (iv). Let X ∈ χ(P) and Yu ∈ χ(Ru), ∀u ≤ U ′.
Firstly, by definition of R1, there is a feasible solution with all variables of Y1 to 1, and xij = 1,

with xij ∈ X \ Yu, xij′ /∈ X \ Yu, j′ < j. Hence the Lemma is verified ∀xij ∈ X \ Y1 such that
xij′ /∈ X \ Y1, j′ < j.

Secondly, we can define a recursive rule. Let xij be a variable such that xij ∈ X \Y1. Suppose for
xij′ the Lemma is verified for Ru, with j′ such that xij′′ /∈ X , j′ < j′′ < j. In other word, there is
a feasible solution with xij′ to 1 and all variables of Yu to 1. Note that xij = 0 in this solution. By
definition of the nested sub-pattern Ru+1, there is a feasible solution with all variables of Yu+1 and
the u+ 1 variables xij′ ∈ X \ Yu, j′ ≤ j. We distinguish two cases:

The first case is |Si(Ru+1)| = |Si(Ru)|. By hypothesis, there is a Z containing u variables of
group i from X \ Yu, with xij′ ∈ Z, xij /∈ Z such that Z ∪ Yu is a k-intersection of X . As (iv) holds,
then clearly there is Z ′ containing u + 1 variables of group i from X \ Yu+1, such that Z ′ ∪ Yu+1 is
a k-intersection of X . As xij′′ /∈ X , j′ < j′′ < j, then xij ∈ Z ′ and xij′′ /∈ Z with j′′ ≥ j. Hence the
Lemma is verified for xij .

The second case is |Si(Ru+1)| = |Si(Ru)| − 1. In which case, with Z ′ containing u+1 variables of
group i from X \ Yu+1, Z ∪ Yu = Z ′ ∪ Yu+1. Consequently xij /∈ Z.

37

From these two cases, we deduce that if the Lemma is verified for xij , it is verified ∀xij′ ∈ X \Y1,
with j′ ≤ j.

Finaly, by definition of RU ′ , there is at most U ′ variables in Si(P) \ Si(RU ′). Hence this Lemma
is necessarily verified ∀xij ∈ X such that xij′ /∈ X , j′ > j.

Because of the initialisation with Y1, the recursive rule between Yu and Yu+1, and because ∀xij ∈
X , xij′ /∈ X , j′ > j the Lemma is verified, then the Lemma is verified ∀xij ∈ X \ R1.

Proof. Proof of Theorem 5 Let X ∈ χ(P) and Yu ∈ χ(Ru) with permutation πid.
The points will be enumerated iteratively.
First, from Lemma 7, we know that ∀xij ∈ X \ Y1, xij′ /∈ X \ Y1, j′ < j, there is a feasible

solution with xij = 1 and with xij+1 = 0, with all variables of Y1 to 1. These solutions are all linearly
independent, as for each xij considered, it is the only solution with xij = 1.

As condition (v) holds, there is a feasible solution with all variables of Y2 to 1, and two variables
xij , xi′j′ /∈ Y1, i ̸= i′ to 1. This solution is linearly independent to the previously mentioned, as it is
the only one with a variable of Y1 to 0.

From Lemma 7, we know that there is a feasible solution with Y2 and two variables xij , xij′ ∈
X \ Y2, j′ ̸= j. For each solution where both xij and xij′ are not in Y1 is linearly independent to the
others, as it is the only one with xij′ = 1.

One can keep enumerating points with the same process. With Lemma 7, |X | − |Y1| linearly
independent points are generated. With condition (v), one linearly independent point is generated
∀2 ≤ u < U ′, which is a total of U ′ − 1 linearly independent points.

With condition (vi), for each xij ∈ YU ′ , there is a set Z containing all variables xij′ ∈ YU ′ , j′ < j
and all variables xi′j′ ∈ YU ′ , i′ ̸= i, without xij and with Z being a k-intersection of X . Hence,
starting with greater j, each new solution is the first one with xij = 0, being linearly independent to
the others. With condition (vi), one new feasible solution is created ∀xij ∈ YU ′ , meaning |YU ′ | new
linearly independent points.

A total of |X |−|Y1|+U ′−1+|YU ′ | = card(P)−(k−1)+U ′−1+(k−U ′) linearly independent points
are generated, i.e., card(P) linearly independent points. Moreover, from Theorem 3, ∀xij /∈ X , there
is a feasible solution with xij = 1 and xij+1 = 0 that verifies (pi(X)) to equality. Sequentially adding
these points associated to their corresponding solutions to our pool of card(P) points still keeps them
linearly independent, as there are the only ones with xij = 1 and xij+1 = 0 with xij /∈ X . As there
are n− card(P) of these new points, there is a total of n linearly independent points.

38

