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JOINT UNMIXING AND DEMOSAICING METHODS FOR SNAPSHOT SPECTRAL IMAGES
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Univ. Littoral Côte d’Opale, LISIC – UR 4491, F-62219 Longuenesse, France

ABSTRACT

Recent technological advances in design and processing speed
have successfully demonstrated a new snapshot mosaic imaging sen-
sor architecture (SSI), allowing miniaturized platforms to efficiently
acquire the spatio-spectral content of the dynamic scenes from a sin-
gle exposure. However, SSI systems have a fundamental trade-off
between spatial and spectral resolution because they associate each
pixel with a specific spectral band. In this paper, we introduce the
problem of joint “demosaicing” and “unmixing” for the hyperspec-
tral images acquired by the SSI camera that we formulate as a low-
rank matrix factorization and completion problem. For that reason—
and in addition to a “naive” approach—we extend the “pure pixel”
framework to the SSI sensor patch level and propose a dedicated
method which (i) assumes the observed data to be locally rank-1
in some SSI “patches” to find, (ii) estimates endmembers in these
patches which are (iii) clustered to derive the actual spectra. The
abundances are then recovered using nonnegative least squares in
each patch. The experiments show that our proposed scheme pro-
vides a slightly better demosaicing performance than state-of-the-art
methods and a much higher unmixing enhancement.

Index Terms— Snapshot Spectral Imaging, Unmixing, Demo-
saicing, Low Rank Models,

1. INTRODUCTION

Recent Hyperspectral Imaging (HSI) architectures—known under
the name of Spectral Snapshot Imaging (SSI)—have been proposed
to allow HSI cameras to take images—or even videos—without re-
quiring a repetitive scanning of the scene, which is classically met
with standard HSI cameras [1]. To achieve this goal, SSI architec-
tures associate each spatial pixel with a specific spectral band, thus
introducing a critical trade-off between spatial and spectral resolu-
tion [2]. The SSI camera only acquires part of the HS data and then
seeks to estimate the missing data in the post-processing method
known as “demosaicing”, for which many approaches have been
proposed. Traditional methods use spatial and/or spectral correla-
tion—and are based on Weighted Bilinear interpolation (WB) [3],
Binary Tree-Based Generic Demosaicing (BTES) [4], Iterative Spec-
tral Difference (ItSD) [5], a pseudo-panchromatic image (PPID) [6],
structural and adaptive nonlocal optimization (SaND) [7], and graph-
regularized low-rank matrix completion (GRMR) [2]—while deep
learning methods were recently proposed [8–13].

On the other hand, hyperspectral unmixing is one of the essential
techniques in analyzing hyperspectral images, which decomposes a
mixed pixel into a collection of constituent materials weighted by
their proportions. To do this, many algorithms for hyperspectral un-
mixing have been designed involving two steps: endmember extrac-
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tion and mixed-pixel decomposition. The algorithms for identifying
endmembers include, e.g., Pixel Purity Index (PPI), N-FINDR, or
Vertex Component Analysis (VCA) [14]. Nonnegative matrix fac-
torization (NMF) [15] is also a frequently used method in unmix-
ing problems. It attempts to learn a part-based representation of the
data, which is in accordance with how the brain recognizes objects.
Lastly, Sparse Component Analysis (SCA) [16] is also a popular
family of unmixing methods which has been applied to HSI unmix-
ing in, e.g., [17, 18].

According to Tsagkatakis et al. [2], performing classification on
SSI images after demosaicing provides a poor classification perfor-
mance. For in situ mobile sensor calibration, it was found that cou-
pling low-rank matrix completion and factorization was far more ef-
ficient than a two-stage approach consisting of a low-rank matrix
completion followed by a matrix factorization [19]. In this work,
we investigate if such behaviour also appears for SSI and we design
a joint method for performing “demosaicing” and “unmixing” for
the hyperspectral images acquired by the SSI camera. In particu-
lar, in addition to a naive approach straightforwardly derived from
Weighted NMF (WNMF), we propose a novel approach which as-
sumes that the abundances are sparse in a few sensor “patches” to
find, so that a few of these patches to find are dominated by one
unique endmember (as it is met with SCA, except that we consider
partially observed data). Our proposed approach thus combines (i)
rank-1 WNMF computed in “patches”, (ii) a specific single-source
confidence measure, (iii) a clustering stage to derive the endmem-
bers, and (iv) a final estimation step of the abundances.

The remainder of the paper is organized as follows. We intro-
duce the joint unmixing and demosaicing problem in Section 2. Sec-
tion 3 introduces our proposed method whose performance is inves-
tigated in Section 4. We lastly conclude and introduce future work
direction in Section 5.

2. PROBLEM STATEMENT

In this section, we define the SSI acquisition system and the prob-
lem we aim to solve. The considered SSI technology is based on a
mosaic of Fabry-Perot filters [20, 21]. Each of these filters is pass-
band and only allows the light from a very limited spectral range to
propagate to a sensor cell. Conversely, it blocks the light outside
this range. Consequently, in an ideal case1, each pixel of the camera
only captures one unique narrow band of wavelengths. The filters
are organized in a mosaic pattern with the number of pixels equals
to the number of wavelengths supported by the sensor. This mosaic
pattern—aka sensor patch—is replicated over the active area of the
sensor surface. Recovering the whole spectrum from such limited

1In the real case, the Fabry-Perot filters generate additional harmonics
around each wavelength of interest. Taking into account these harmonics
can be done within the framework of the methods proposed in this paper.
However, due to space reasons, this is out of the scope of this paper.
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gies.

information may be revisited as a low-rank matrix completion prob-
lem [2] (see Fig. 1).

Formally, an SSI camera acquires a two-dimensional image of
m × n pixels, where m and n are the numbers of pixels in the hor-
izontal and vertical dimensions, respectively. Each spatial pixel out
of the m·n available ones is associated with a different spectral band
out of k bands which are supposed to be acquired by the camera.
More specifically, this implies that an SSI image is a 2D projection
of a 3D m× n× k theoretical datacube that we now model.

Following an unfolding strategy classically used in unmixing,
we rewrite the theoretical 3D datacube as an (m · n) × k matrix,
i.e., a matrix Y whose row indices correspond to a spatial position
while column indices are linked to wavelengths. As proposed in [2],
it is then possible to derive an (m · n)× k data matrix with missing
entries denoted X . Both matrices X and Y are linked through

W ◦X = W ◦ Y, (1)

where W denotes a binary weight matrix whose nonzero entries al-
low to select which wavelength is observed by the camera, and ◦
denotes the Hadamard product. Similarly, unfolding the m× n SSI
image as we did for the data cube Y leads to an (m · n) × 1 vector
z whose i-th entry is the non-null value of the i-th row of X . As
W is known, deriving X from z is straightforward and vice-versa.
We can thus assume that X is the original data matrix we get from
the SSI acquisition process. Recovering Y from X corresponds to
“demosaicing” the SSI image. In practice, it may be solved by, e.g.,
additionally assuming that Y is low-rank [2].

We further assume that each row of Y may be expressed as a lin-
ear mixture of the spectra of the materials observed by the camera—

a.k.a. endmembers—i.e.,

Y ≈ G · F, (2)

where F denotes the p × k matrix of endmembers, G denotes the
(m · n)× p abundance matrix, and p is the number of endmembers
which are present in the scene. Equation (2) is not only a very clas-
sical model met in hyperspectral unmixing [14] but also a low-rank
approximation model, provided p < min{(m · n), k}. Combining
Eqs. (1) and (2) provides the considered joint “demosaicing” and
“unmixing” model, i.e.,

W ◦X ≈W ◦ (G · F ). (3)

Indeed, if one may completely estimate G and F from the partially
observed matrix X , the product G · F is an estimation of Y and—
following a classical matrix completion framework—one may derive

Ŷ = W ◦X + (1(m·n)×k −W ) ◦ (G · F ), (4)

where 1(m·n)×k denotes the (m·n)×k matrix of ones. Furthermore,
the content of G and F may be useful for several applications, e.g.,
for spectral library learning—using F—or for land use / cover which
are derived from G. Let us stress again that we aim to compare the
performance between a 2-stage strategy—consisting of a demosaic-
ing step where Y is estimated followed by an unmixing one where
G and F are derived, i.e., the green framework in Fig. 1—and a joint
demosaicing and unmixing strategy shown in red in Fig. 1, for which
we propose a dedicated method in Section 3.

3. PROPOSED METHODS

We now introduce our proposed methods. We actually propose two
joint demosaicing and unmixing methods. More specifically, we first
introduce a “naive” approach which is derived from weighted NMF,
following the strategy in [19] for another application. We then pro-
pose a novel method specifically designed for SSI data.

3.1. Naive Method

We first introduce a naive method that is derived from Section 2.
Such a method should solve Eq. (3) which is an instance of Weighted
NMF (WNMF). WNMF can be solved using several strategies, i.e.,
(i) adding the weights in the update rules [22], (ii) considering an
Expectation-Maximization (EM) Framework [23], or (iii) applying a
stochastic gradient descent by selecting only the available data. The
second strategy was found in [23] to be much faster and more accu-
rate than the first one—especially when combined with a Nesterov
solver (NeNMF [24])—and more versatile than stochastic methods
only able to perform binary weights. Such a method is chosen as a
baseline for comparison with a dedicated method proposed hereafter.

3.2. Clustering and Rank-1-based Proposed Technique

We here introduce our proposed method. It finds its roots in the
most basic way to restore the datacube. Indeed, the image sensor is
divided as patches which are repeated over the sensor surface. Each
patch is of size

√
k ×
√
k (typically, k = 16 or 25, so that a patch

is of size 4 × 4 or 5 × 5). One may then assume that each patch
corresponds to a “super-pixel”, i.e., that each patch is linked with a
unique endmember. In practice, such an assumption is wrong, hence
the fact that many demosaicing methods have been proposed. How-
ever, this assumption may be valid for a few patches to find, where



one endmember is dominant over the others. This may be related to
the pure-pixel assumption [14] or abundance sparsity in SCA [16].
However, the main difference between our considered problem and
the one met with classical unmixing relies on the fact that we only
partially observe the datacube over a patch, and we aim to infer it
from a few available samples. This allows us to state our first as-
sumption.

Assumption 1 (Pure patch assumption) For each endmember,
there exists at least one sensor patch where only this endmember is
present.

Our proposed method reads as follows. We denote by Xi, Yi,
and Wi the k × k sub-matrices of X , Y and W , respectively, cor-
responding to Patch i. We derive a rank-1 approximation of Yi from
Xi using the above WNMF strategy, i.e.,

Wi ◦Xi ≈Wi ◦ (g
i
· fi), (5)

where g
i

denotes a column vector and fi denotes a row vector.

Algorithm 1 K-means (resp. K-medians) Patch-based Weighted
Non-negative Matrix Factorization (KPWNMF)
Input:
X is the unfolded SSI image of rank p weighted by W
Output:
Ŷ final the restored unfolded data cube
[G,F ] final abundances and endmembers matrices
Processing:

1: for i = 1 to nb patches do
2: Let the submatrices Xi and Wi linked to Patch i
3: Initialize g

i
and fi

4: for Counter1 = 1 to MaxouterIter do
5: XComp

i = Wi ◦Xi + (1k×k −Wi) ◦ (g
i
× fi)

6: for Counter2 = 1 to MaxinnerIter do
7: Update g

i
from XComp

i and fi using NeNMF

8: Update fi from XComp
i and g

i
using NeNMF

9: Append fi to the pool F pool

10: F = k-means(F pool, p) (resp. F = k-medians(F pool, p))
11: Derive Xcomp from the last estimates of XComp

i in each patch
12: Initialize G of size (m · n)× p
13: Update G from XComp and F using NeNMF
14: Compute Ŷ final using Eq. (4)

If only one endmember is present in the patch—i.e., if Assump-
tion 1 is satisfied—then the considered patch is rank-1, and the rank-
1 approximation from partial data in Xi allows to estimate the end-
member fi. However, if several endmembers are present in the patch,
we must not detect the patch as pure. This brings a second assump-
tion.

Assumption 2 In the patches where several endmembers are
present, their abundances significantly vary over each patch.

Assumption 2 is classically stated in SCA [16]. In practical scenar-
ios, the SSI camera should be close-enough to the scene that it is
observing, so that one may not expect multiple abundances to re-
main in constant proportions over a patch. As a consequence, if the
considered i-th patch is approximately pure, then

‖Wi ◦Xi −Wi ◦ (g
i
· fi)‖2F ≈ 0. (6)

On the contrary, if this patch is not pure, then

‖Wi ◦Xi −Wi ◦ (g
i
· fi)‖2F � 0. (7)

Such an error can thus be seen as a “single-source confidence mea-
sure” as those classically used in SCA. We thus derive from each
patch one noisy estimation of one “true” endmember. These esti-
mates are further assumed to be arranged as clusters of spectra dis-
tributed around the “true” source spectra. We thus can use any clus-
tering method—e.g., K-means or K-medians—to derive the actual
endmembers. A refined strategy consists of selecting the patches
where the above squared Frobenius norm is small-enough2. This
yields to a reduced set of spectra which are each closer to the “true”
ones. Such a strategy is similar to the Selective K-means or K-
medians methods proposed in [25] and was found to significantly im-
prove the unmixing and demosaicing performance of our proposed
approach in preliminary tests. We thus choose these methods in this
paper. Once the actual endmembers are derived and stored in the ma-
trix F , the abundance matrix G is re-estimated using NeNMF [24]
with the fixed matrix F , i.e., as a nonnegative least-square problem.
The whole strategy is provided in Algorithm 1.

4. EXPERIMENTS AND RESULTS

To assess the performance of the proposed method, we conduct ex-
periments on SSI simulations derived from synthetic images and the
CAVE dataset [26]. The former allows for the measurement of the
unmixing and demosaicing performance, while the latter is used to
measure the demosaicing performance. For the synthetic experi-
ment, we create one “simple” image and one “more complex” one.
Each one has 100 × 100 pixels with three endmembers, i.e., wa-
ter, metal, and concrete whose signatures are taken from [27]. Both
images simulate a scene observed from a short distance which im-
plies that many patches are pure. However, the complex image does
not satisfy Assumption 2. We thus expect the performance of the
proposed method to be significantly degraded with this image. We
consider 4 × 4 and 5 × 5 spectral filter patterns, Lastly, we test the
performance under different noise levels. For the CAVE dataset, we
use all the images in the dataset, and we simulate the 4×4 and 5×5
SSI images using the same strategy as in [2].

We compare the performance reached with the naive WNMF
method with our proposed approach—denoted KPWNMF for K-
means3 Patch-based WNMF—and five 2-step demosaicing-then-
unmixing methods. For the latter, we consider five SotA demosaic-
ing methods—i.e., GMRM [2], BTES [4], WB [3], PPID [6], and
ItSD [5]—while in the second step we unmix the restored datacube
Y using NeNMF [24].

To measure the performance of the tested methods, we investi-
gate their demosaicing enhancement—which consists of comparing
the estimated Y matrices to the true ones—that we measure us-
ing the Peak Signal-to-Noise Ratio (PSNR), while the unmixing
enhancement is observed using the Signal-to-Interference Ratio
(SIR) and the Spectral Angle Mapper (SAM) for endmember es-
timation and the Mixing Error Ratio (MER) for measuring the
quality of the abundance maps. Fig. 2 shows the demosaicing
performance—depicted by the PSNR values in dB—and the un-
mixing performance—depicted by the SAM and SIR values for the

2Estimating the threshold to decide weither a patch is pure or not is out of
the scope of this paper. In the experiments provided in Sect. 4, it is set as the
median of all the patch norm errors.

3We found K-means and K-medians to provide the same clustering perfor-
mance in these tests, and we do not show the former for space considerations.
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Fig. 2. From left to right: mean PSNR, SAM, SIR and MER—obtained for both images with 4× 4 and 5× 5 filters—relative to input SNR.
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Fig. 3. Estimated spectra in case of the synthetic image where As-
sumption 2 is violated, with Fabry-Perot filter of size 5× 5.

endmember estimation and by the MER values for the abundance
estimation—with respect to some input SNR. This figure shows the
proposed method to significantly outperform the other tested meth-
ods in unmixing while providing a similar demosaicing than PPID,
i.e., the best SotA demosaicing method in these tests.

Fig. 3 shows the true and estimated endmembers with the com-
plex synthetic image and the 5×5 patch. Let us recall that this image
satisfies Assumption 1 but not Assumption 2. As a consequence, the
reached performance with KPWNMF is lower than with the simple
image. Still, it provides better estimates than the 2-stage approach
using PPID which does not require any of these assumptions.

In order to validate the demosaicing merits of the proposed ap-
proach, we provide comparative results with the SoTA methods on
the CAVE dataset. Fig. 4 shows the “Cloth” image at one band after
demosaicing with the average PSNR of every method computed over
all the images in the CAVE dataset. As we can see from the figure,
the proposed approach surpasses all the SoTA approaches in aver-
age PSNR and in the ability to restore the tiny details of the shapes,
which shows the relevance of our work.

5. CONCLUSION AND DISCUSSION

In this paper, we proposed a novel joint unmixing and demosaicing
method for SSI images. It combines a patch-based rank-1 assump-
tion with a dedicated single-source confidence measure to estimate
the endmembers whose actual estimates are obtained using cluster-
ing. The abundances are then re-estimated using nonnegative least-
squares. In realistic simulations of SSI data, we found that our pro-
posed approach not only outperforms the unmixing performance of
two-step approaches—consisting of a demosaicing stage followed
by an unmixing one—but also provides a better or similar demosaic-
ing performance. It also outperforms a naive WNMF approach that
is straightforwardly derived from the problem statement. In future

(a) Ground truth (b) KPWNMF (PSNR=37.7dB)

(c) PPID (PSNR=37.1dB) (d) GRMR (PSNR=35.3dB)

(e) WB (PSNR=35.0dB) (f) BTES (PSNR=34.7dB)

(g) ItSD (PSNR=30.2dB) (h) Naive WNMF (PSNR=35.1dB)

Fig. 4. Demosaiced images obtained with KPWNMF and SotA
methods for the 4×4 patch, and PSNRs averaged over all the images.

work, we aim to investigate the use of our proposed method on real
SSI data. We also aim to extend it to the case when endmember
spectral variability is met in the acquisition process [28].
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[17] O. Berné, C. Joblin, A. Tielens, Y. Deville, M. Puigt,
R. Guidara, S. Hosseini, G. Mulas, and J. Cami, “Source sepa-
ration algorithms for the analysis of hyperspectral observations
of very small interstellar dust particles,” in Proc. IEEE WHIS-
PERS’09, 2009, pp. 1–4.

[18] M. S. Karoui, Y. Deville, S. Hosseini, and A. Ouamri,
“Blind spatial unmixing of multispectral images: New meth-
ods combining sparse component analysis, clustering and non-
negativity constraints,” Pattern Recognition, vol. 45, no. 12,
pp. 4263–4278, 2012.

[19] C. Dorffer, M. Puigt, G. Delmaire, and G. Roussel, “Informed
nonnegative matrix factorization methods for mobile sensor
network calibration,” IEEE Trans. Signal Inf. Process. Netw.,
vol. 4, no. 4, pp. 667–682, 2018.

[20] B. Geelen, N. Tack, and A. Lambrechts, “A compact snapshot
multispectral imager with a monolithically integrated per-pixel
filter mosaic,” in Advanced Fabrication Technologies for Mi-
cro/Nano Optics and Photonics VII, G. von Freymann, W. V.
Schoenfeld, and R. C. Rumpf, Eds. Mar. 2014, SPIE.

[21] B. Geelen, C. Blanch, P. Gonzalez, N. Tack, and A. Lam-
brechts, “A tiny VIS-NIR snapshot multispectral camera,”
in Advanced Fabrication Technologies for Micro/Nano Optics
and Photonics VIII, G. von Freymann, W. V. Schoenfeld, R. C.
Rumpf, and H. Helvajian, Eds. Mar. 2015, SPIE.

[22] N.-D. Ho, Non negative matrix factorization algorithms and
applications, Phd thesis, Université Catholique de Louvain,
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