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HIGHER REGULATORS OF SIEGEL SIXFOLDS AND NON-CRITICAL

VALUES OF SPIN L-FUNCTIONS

ANTONIO CAUCHI, FRANCESCO LEMMA, AND JOAQUÍN RODRIGUES JACINTO

Abstract. We construct classes in the middle degree plus one motivic cohomology of
Siegel sixfolds and we compute their image by Beilinson higher regulator in terms of
Rankin-Selberg type automorphic integrals. Using results of Pollack and Shah, we relate
the integrals to non-critical special values of the degree 8 Spin L-functions. Along the way,
by defining and studying complexes of tempered currents on smooth projective complex
varieties endowed with a normal crossings divisor, we provide a new description of Deligne–
Beilinson cohomology for any Shimura variety. This is particularly useful for computations
of higher regulators and fills a gap in the literature on the subject.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Hodge structures on the cohomology of a smooth complex variety . . . . . . . . . . 4
1.3. Organisation of the article. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Classes in motivic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1. Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Shimura varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Motivic cohomology classes for GSp6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Cohomology of locally symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1. Representation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2. Lie algebra cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3. Discrete series L-packets and test vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4. Archimedean L-functions and Deligne cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. Deligne–Beilinson cohomology and tempered currents. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1. Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2. ∂-Poincaré lemma with growth conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3. The Bochner-Martinelli kernel and rapidly decreasing differential forms . . . . . 18
4.4. Tempered currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5. Application to DB-cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5. Archimedean regulators and non-critical values of the Spin L-function . . . . . . . . . . 28
5.1. Integral expression for the pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2. The adelic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3. The Spin L-function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4. The integral representation of the Spin L-function . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5. The regulator computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6. A remark on the non-vanishing of the regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2020 Mathematics Subject Classification. 19F27,14G35,11F67.
1

http://arxiv.org/abs/2204.05163v3


2 ANTONIO CAUCHI, FRANCESCO LEMMA, AND JOAQUÍN RODRIGUES JACINTO

1. Introduction

Beilinson conjectures are vast generalisations of the analytic class number formula. They
relate special values of L-functions of motives to motivic cohomology classes via higher reg-
ulators. Very few cases of these conjectures are known [2], [3], [13], [14], [43], [6], [29], [34],
and they remain one of the main open problems in arithmetic geometry.

The purpose of the present article is to construct classes in the middle degree plus one
motivic cohomology of Siegel sixfolds and to prove a formula relating their image under the
Beilinson regulator to certain adelic integrals of Rankin-Selberg type. These integrals are
known to compute non-critical special values of L-functions of automorphic forms for GSp6,
and hence our results give further evidence for Beilinson conjectures. The main technical
innovation of the present work, which is also of independent interest, is the introduction and
study of complexes of tempered currents on smooth projective complex varieties endowed
with a normal crossings divisor. Using these complexes, we give a new explicit description
of Deligne–Beilinson cohomology for an arbitrary Shimura variety. This is particularly use-
ful for computations and provides what we believe to be the natural setting for computing
higher regulators of Shimura varieties.

1.1. Main results. Let G = GSp6 be the symplectic similitude group of rank 3. Denote
by ShG the six dimensional Shimura variety associated to G. These Shimura varieties and
their cohomology play a prominent role in the study of arithmetic aspects of cuspidal auto-
morphic representations of G(A) and their associated Galois representations.

Fundamental objects used in most of the approaches to Beilinson conjectures are mod-
ular units. These are elements of the motivic cohomology groups H1

M(ShGL2 ,Q(1)) ∼=
O(ShGL2)

× ⊗ZQ of the modular curves ShGL2 , which can be seen as motivic realizations of
Eisenstein series. Indeed, by the second Kronecker limit formula, their logarithm is related
to limiting values of some real analytic Eisenstein series. Using these modular units, and
inspired by the work of Pollack and Shah [42], we construct natural cohomology classes

EisM ∈ H7
M(ShG(U),Q(4)),

where U ⊆ G(Af ) denotes an appropriate level structure. The construction goes as follows.
Let F denote a real étale quadratic Q-algebra, i.e. F is either a totally real quadratic
extension of Q or Q×Q. Denote by GL∗

2,F /Q the subgroup scheme of ResF/QGL2,F sitting
in the Cartesian diagram

GL∗
2,F

�

�

//

��

ResF/QGL2,F

det

��

Gm
�

�

// ResF/QGm,F .

Let H denote the group

H := GL2 ⊠GL∗
2,F = {(g1, g2) ∈ GL2 ×GL∗

2,F | det(g1) = det(g2)}.

Then one has an embedding ι : H →֒ G. This embedding induces a closed embedding

ι : ShH → ShG
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of codimension 3. Letting pr1 : H → GL2 denote the projection to the first factor, and
u ∈ H1

M(ShGL2 ,Q(1)) be a modular unit, one defines EisM := ι∗(pr∗1(u)).

Recall the existence of the Beilinson regulator map

rD : H7
M(ShG(U),Q(4)) → H7

D(ShG(U)/R,R(4)) ⊗R Q,

where H∗
D(ShG(U)/R,R(−)) denote the Deligne–Beilinson cohomology groups of ShG(U).

According to Beilinson conjectures, if the latter cohomology group is non-zero, one expects
to be able to construct non-zero motivic cohomology classes which are related to special
values of L-functions.

Now let π = π∞ ⊗ πf be a cuspidal automorphic representation of G(A) with trivial
central character, for which π∞ is a discrete series of Hodge type (3, 3) and such that πf
has a non-zero vector fixed by U . Associated to a cusp form Ψ = Ψ∞ ⊗ Ψf ∈ π∞ ⊗ πU

f

such that Ψ∞ is a highest weight vector of one minimal K∞-type of π∞, there is a harmonic
differential form ωΨ on ShG(U) of type (3, 3). Via a careful study of Deligne–Beilinson
cohomology, we define a natural pairing

〈 , ωΨ〉 : H7
D(ShG(U)/R,R(4)) ⊗R Q → C⊗Q Q.

The following is our first main result.

Theorem 1.1 (Theorem 5.3). We have

〈rD(EisM), ωΨ〉 = CU

∫

H(Q)ZG(A)\H(A)
E(h1, 0)(A.Ψ)(h)dh,

where E(h, s) is a real analytic Eisenstein series on GL2, the operator A is an element of
U(gC) (defined precisely in §5.2), the constant CU is a volume factor depending on U∩H(Af )
and dh is a fixed Haar measure on H(A).

The main theorem of [42] gives a Rankin-Selberg formula for the Spin L-function of certain
automorphic representations of G. As a consequence of this and Theorem 1.1, we get the
following result, verifying instances of Beilinson conjectures.

Theorem 1.2 (Theorem 5.17). Let π be a cuspidal automorphic representation of G(A)
with trivial central character such that π∞ is a discrete series of Hodge type (3, 3). Let Σ
be a finite set of primes containing ∞ and the bad primes for π. Let Ψ = Ψ∞ ⊗ Ψf be
a factorizable cusp form in π which is unramified outside Σ and which supports a certain
Fourier coefficient of type (4 2). Then

〈rD(EisM), ωΨ〉 = CU lim
s→0

(
IΣ(ΦΣ, A.ΨΣ, s)L

Σ(π,Spin, s)
)
,

where LΣ(π,Spin, s) =
∏

p 6∈Σ L(πp,Spin, s) and IΣ(ΦΣ, A.ΨΣ, s) is the integral over the finite

set of places Σ as defined in Equation (15).

Some remarks are in order.

Remark 1.3. One can show (cf. Corollary 5.18) that there exist a cusp form Ψ̃ = Ψ∞⊗Ψ̃f ∈
π, with Ψ and Ψ̃ coinciding outside Σ, and a Schwartz function defining the Eisenstein

series, such that the finite integral IΣ(ΦΣ, A.Ψ̃Σ, s) is equal to the archimedean integral
I∞(Φ∞, A.Ψ∞, s), implying that

〈rD(EisM), ωΨ̃〉 = CU lim
s→0

(
I∞(Φ∞, A.Ψ∞, s)LΣ(π,Spin, s)

)
.
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We expect the value lims→0

(
I∞(Φ∞, A.Ψ∞, s)LΣ(π,Spin, s)

)
to be equal, up to some non-

zero constant, to the leading term of the Taylor expansion of LΣ(π,Spin, s) at s = 0 (cf.
Remark 5.19 for a more detailed discussion). We would like to point out that, thanks to [16,
Proposition 12.1], this archimedean integral can be made non-zero at arbitrary s = s0 if one
has some freedom on the choice of Φ∞ and Ψ∞. This implies that the archimedean integral
does not vanish identically, however the main crux to improve our formula is to calculate it
when Ψ∞ is the highest weight vector in the minimal K∞-type of π∞.

Remark 1.4. The classes EisM were used in [10], where the first and third authors showed
that their étale realisations could be assembled into a norm-compatible tower of cohomology
classes for some p-level subgroups, giving rise to an element of the Iwasawa cohomology of
the local p-adic Galois representation associated to the automorphic representation of GSp6.
The above theorem shows that the p-adic L-functions constructed in [10] are indeed related
to special values of complex L-functions in the spirit of Perrin-Riou conjectures.

According to the taste of the reader, one could also be interested in the non-vanishing of
the motivic cohomology group in which our class lives.

Corollary 1.5 (Corollary 5.21). Let π be a cuspidal automorphic representation of G(A)
and Ψ a cuspidal form in π as in Theorem 1.2. Suppose that

lim
s→0

(
I∞(Φ∞, A.Ψ∞, s)LΣ(π,Spin, s)

)
6= 0.

Then H7
M(ShG(U),Q(4)) is non-zero.

Let us now make some remarks on and explain the strategy for proving Theorem 1.1. The
main difficulty in proving this result resides in the fact that the differential form ωΨ does not
necessarily (to our knowledge) extend by zero to the boundary of a smooth compactification
of ShG(U). This problem only appears when one works with automorphic representations
whose archimedean component is not the holomorphic discrete series. As it was pointed
out to us by A. Pollack and S. Shah, a first version of this manuscript contained a fatal
mistake. Essentially, the problem was coming from using a description of Deligne–Beilinson
cohomology in terms of currents (cf. [26] or [8]) on a smooth compactification of the open
Shimura variety, i.e. linear forms of differential forms which extend to the boundary. The key
idea was to approximate the rapidly decreasing differential form ωΨ by compactly supported
ones in order to apply these currents and, by using our hypothesis on the Hodge type of
ωΨ, get the desired integral formula. However the main problem of this approach is that
there is no control on the Hodge type of the compactly supported differential forms that
approximate ωΨ. Moreover, it turned out that a similar gap appears in other works on
complex regulators in different settings, such as [29], [33], [34], [41].

Our novel idea is to give a description of Deligne–Beilinson cohomology in terms of tem-
pered currents, i.e. sheaves of continuous linear forms on rapidly decreasing differential
forms. The basic ingredient of our result is the construction of various de Rham complexes
à la Deligne, formed by slowly increasing differential forms and tempered currents, that cal-
culate the Hodge structure of the cohomology of a smooth complex variety together with its
underlying real structure. We work this out in full generality because we believe it is of inde-
pendent interest and also because our methods are flexible enough and translate verbatim to
correct the aforementioned gap in the literature. Let us describe these results in more detail.

1.2. Hodge structures on the cohomology of a smooth complex variety. Let X be
a proper smooth complex variety, D ⊆ X be a normal crossing divisor and let X = X −D.
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In his seminal work [12], Deligne constructed a complex Ω∗
X
(log D) of differential forms

with logarithmic singularities along D, which is equipped with Hodge and weight filtrations
F and W and he showed that (Ω∗

X
(log D),W,F ) is a mixed Hodge complex inducing the

canonical mixed Hodge structure on the cohomology of X. The results of Deligne have
been consequently extended by Navarro [39] and Burgos Gil [7], who showed that the mixed
Hodge structure on the cohomology can be calculated by means of complexes of analytic and
smooth differential forms with logarithmic singularities at the boundary. We will denote by
A ∗

X
(log D) the complex of smooth differential forms with logarithmic singularities along D

constructed in [7]. This complex has also the advantage of capturing the underlying real
structure that is not seen in ΩX(log D), as well as to provide a resolution by fine sheaves,
as they admit partitions of unity.

In the study of the arithmetic of non-holomorphic automorphic forms, one is naturally
led to study various types of singularities along the boundary divisor to consider complexes
of differential forms which are slowly increasing or rapidly decreasing along the divisor D.
In the context of coherent cohomology, this has been extensively used by Harris-Phong [23],
Harris [21] and Harris-Zucker [24]. In this article, we show that one can calculate the Hodge
structure of the cohomology of such a variety using this kind of complexes.

We now describe our result in detail. Locally around any point, one can find a coordinate
system (z1, . . . , zk, zk+1, . . . zd) such that X is isomorphic to a polydisc ∆d

r of dimension d and
radius r > 0 and that the normal crossing divisor D is given by the equations z1 . . . zk = 0.
Slowly increasing (resp. rapidly decreasing) functions on X are then defined locally by
asking that

|f(z)| ≤ C

(
k∏

i=1

| log |zi||
)N

for some N ≥ 0 (resp. for all N ≤ 0) and some constant C, and similar conditions for certain
derivatives of f (cf. Definition 4.1). Then one defines in an analogous way (cf. Definition
4.3) complexes A ∗

si, resp. A ∗
rd, of sheaves on X of slowly increasing and rapidly decreasing

differential forms. These are complexes of fine sheaves equipped with a Hodge structure
(given as usual by the type of a differential form) and with a real structure (given by real
valued smooth differential forms). A new object introduced in this article is the complex D∗

of sheaves on X of tempered currents. Rapidly decreasing differential forms are naturally

equipped with a Fréchet topology and we define Dp,q as the sheaves U 7→ Γc(U,A
d−p,d−q
rd )∗

of continuous linear forms on compactly supported sections on U of rapidly decreasing
differential forms, where U ⊆ X is an open set. It is also a complex of fine sheaves and it is
equipped with a Hodge filtration as well as with a natural real structure.

Theorem 1.6 (Proposition 4.7, Proposition 4.8 and Theorem 4.20). The natural inclusions

(Ω∗
X
(log D), F ) → (A ∗

X
(log D), F ) → (A ∗

si, F ) → (D∗, F )

are filtered quasi-isomorphisms. Moreover, the last two quasi-isomorphisms are compatible
for the corresponding real structures.

The first quasi-isomorphism is one of the main results of [7]. The proof of the quasi-
isomorphism (Ω∗

X
(log D), F ) → (A ∗

si, F ) can be more or less extracted from the work of

Harris and Zucker [24] and Kato, Matsubara and Nakayama [28]. The last one does not
seem to have been yet considered in the literature and is the one that we will need for our
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calculations.

Immediately from Theorem 1.6 we obtain the following description of Deligne–Beilinson
cohomology. Denote by D∗(X) the complex of global sections of D∗, let D∗

R(p−1) be the

complex of sheaves of R(p− 1) = (2πi)p−1R-valued currents and denote by D∗
R(p−1)(X) the

corresponding complex of global sections.

Corollary 1.7 (Theorem 4.23). We have

R(p)D = cone
(
F p

D
∗(X) → D

∗
R(p−1)(X)

)
[−1].

In particular, we have

Hn
D(X,R(p)) =

{(S, T ) : dS = 0, dT = πp−1(S)}
d(S̃, T̃ )

,

where (S, T ) ∈ F pDn(X)⊕ D
n−1
R(p−1)(X) and d(S̃, T̃ ) = (dS, dT − πp−1(S)).

This explicit description has the pleasant property of being covariant with respect to
proper morphisms, which allows us to explicitly describe the image under the Gysin maps
of Siegel units as tempered currents, which can naturally be paired against the rapidly
decreasing differential form ωΨ. This, together with the second Kronecker’s limit formula,
allow us to conclude the proof of Theorem 1.1.

1.3. Organisation of the article. In Section 2 we introduce the relevant reductive groups
and the attached Shimura varieties and we explain the construction of the motivic coho-
mology classes. In Section 3 we recall some classical results on the cohomology of locally
symmetric spaces and we describe the construction of the harmonic differential form asso-
ciated to a cusp form on GSp6(A). Section 4 is the technical heart of the article and gives
an explicit description of the Deligne–Beilinson cohomology of a smooth variety in terms of
tempered currents. We also define natural pairings between elements in Deligne–Beilinson
cohomology and certain closed rapidly decreasing differential forms. Finally, in section 5, we
prove Theorem 1.1, expressing the value of this linear form on the archimedean realisation
of our motivic classes in terms of Rankin-Selberg type integrals and, using the main result
of [42], we relate these integrals to non-critical values of the Spin L-function of the fixed
cuspidal automorphic representation of GSp6(A).

1.4. Acknowledgements. It is a pleasure to thank the following people: Aaron Pollack
and Shrenik Shah for pointing out the mistake in our arguments in a first version of this
article as well as for various instructing discussions; José Ignacio Burgos Gil for his in-
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third named author would like to thank Pierre Colmez for his interest and suggestions on
this article and for his constant support. Finally, we thank Michael Harris, Régis De la
Bretèche, Taku Ishii, Tadashi Ochiai, Juan Esteban Rodríguez Camargo, Giovanni Rosso,
Benoit Stroh, Jun Su and Sarah Zerbes for useful correspondence or conversations related
to this article. The first named author was supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 682152). The third named author was financially supported by the
ERC-2018-COG-818856-HiCoShiVa.
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2. Classes in motivic cohomology

This first section is devoted to the construction of the classes in the motivic cohomology
groups of Siegel sixfolds which will be the main characters of the article.

2.1. Groups. Let GSp6 be the group scheme over Z whose R-points, for any commutative
ring R with identity, are described by

GSp6(R) = {A ∈ GL6(R) | tAJA = ν(A)J, ν(A) ∈ Gm(R)},
where J is the matrix

(
0 I3

−I3 0

)
, for I3 denoting the 3× 3 identity matrix.

2.1.1. Subgroups. Let F be a totally real étale quadratic Q-algebra. Denote by GL∗
2,F/Q

the subgroup scheme of ResF/QGL2,F sitting in the Cartesian diagram

GL∗
2,F

�

�

//

��

ResF/QGL2,F

det

��

Gm
�

�

// ResF/QGm,F .

For instance, when F = Q×Q, we have

GL∗
2,F = {(g1, g2) ∈ GL2 ×GL2 | det(g1) = det(g2)}.

Consider F 2 with its standard F -alternating form 〈 , 〉F . We fix the standard symplectic
F -basis {e1, f1} and define 〈 , 〉Q to be TrF/Q ◦ 〈 , 〉F . Then, by definition GL∗

2,F ⊂
GSp(〈 , 〉Q). The extensions F/Q are parametrised by a ∈ Q×

>0/(Q
×
>0)

2, and we identify

F = Q⊕Q
√
a, for a representative a of the corresponding class in Q×

>0/(Q
×
>0)

2. Fixing the

Q-basis of F 2 given by

{ 1
2
√
a
e1,

1
2e1,

√
af1, f1}

gives an isomorphism GSp(〈 , 〉Q) ≃ GSp4. Indeed, such a basis represents the alternating
form 〈 , 〉Q as given by J . Thus we have an embedding

GL∗
2,F →֒ GSp(〈 , 〉Q) ≃ GSp4. (1)

Let V3 be the standard representation of GSp6 with symplectic basis {e1, e2, e3, f1, f2, f3}.
We will consider the embedding

GL2 ⊠GSp4 →֒ GSp6 (2)

induced by the decomposition V3 = 〈e1, f1〉 ⊕ 〈e2, e3, f2, f3〉.
By composing the maps of (1) and (2), we construct the embedding

ι : H := GL2 ⊠GL∗
2,F →֒ G

2.2. Shimura varieties. Keep the notation of the previous section and denote by S =
ResC/RGm/C the Deligne torus. Denote by XH the H(R)-conjugacy class of

h : S −→ H/R, x+ iy 7→
(( x y

−y x

)
,
( x y
−y x

)
,
( x y
−y x

))
.

The pair (H,XH) defines a Shimura datum whose reflex field is Q. Denote by ShH the
corresponding Shimura variety of dimension 3. If U ⊆ H(Af ) is a fibre product (over the
similitude characters) U1 ×A

×

f
U2 of sufficiently small subgroups, we have

ShH(U) = ShGL2(U1)×Gm ShGL∗
2,F

(U2),
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where ×Gm denotes the fibre product over the zero dimensional Shimura variety of level
D = det(U1) = det(U2)

π0(ShGL2)(D) = Ẑ×/D.

We recall the reader that the complex points of ShH(V ) are given by

ShH(V )(C) = H(Q)\H(A)/ZH(R)KH,∞V,

where ZH denotes the center of H and KH,∞ ⊆ H(R) is the maximal compact defined as
the product U(1)×U(1) ×U(1).

Notice that the embedding ι : H → G induces another Shimura datum (G,XG) of
reflex field Q. For any neat open compact subgroup U of G(Af ), denote by ShG(U) the
associated Shimura variety of dimension 6. We also write ι : ShH(U ∩H) →֒ ShG(U) the
closed embedding of codimension 3 induced by the group homomorphism ι : H →֒ G.

2.3. Motivic cohomology classes for GSp6. We now define the cohomology classes we
want to study in this article.

2.3.1. Modular units and Eisenstein series. The input of our construction are the modular
units already considered by Beilinson and Kato, which are related to real analytic Eisenstein
series by the second Kronecker limit formula.

Let T2 denote the diagonal maximal torus of GL2 and let B2 denote the standard Borel.
Define the algebraic character λ : T2 → Gm by λ(diag(t1, t2)) = t1/t2. Let S(A2,Q) denote
the space of Q-valued Schwartz-Bruhat functions on A2. Given Φ ∈ S(A2,Q), denote by

f(g,Φ, s) := |det(g)|s
∫

GL1(A)
Φ((0, t)g)|t|2sd×t

the normalised Siegel section in Ind
GL2(A)
B2(A) (|λ|s) and define the associated Eisenstein series

E(g,Φ, s) :=
∑

γ∈B2(Q)\GL2(Q)

f(γg,Φ, s). (3)

Fix the Schwartz-Bruhat function Φ∞ on R2 defined by (x, y) 7→ e−π(x2+y2) and, for each Q-
valued function Φf ∈ S(A2

f ,Q), the smallest positive integer NΦf
such that Φf is constant

modulo NΦf
Ẑ2. Finally, denote S0(A

2
f ,Q) ⊂ S(A2

f ,Q) the space of elements Φf such that

Φf ((0, 0)) = 0. We now state the following (classical) result, which relates modular units to
values of the adelic Eisenstein series defined in (3).

Proposition 2.1. Let Φf ∈ S0(A
2
f ,Q) with NΦf

≥ 3, then there exists

u(Φf ) ∈ O(ShGL2(K(NΦf
)))× ⊗Q

such that for any g ∈ GL2(A) we have

E(g,Φ, s) = log|u(Φf )(g)| +O(s),

where Φ = Φ∞ ⊗ Φf .

Proof. This is the second statement of [41, Corollary 5.6], where ν1 is taken to be the trivial
character. �
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Example 2.2. When Φf = char((0, 1) + N Ẑ2) for N ≥ 4, the corresponding u(Φf ) ∈
O(ShGL2(K(N)))× ⊗Q is given by

∏
b∈(Z/NZ)× g

ϕ(N)
0,b/N , where g0,⋆/N is the Siegel unit as in

[27, §1.4]. Indeed, ShGL2(K(N)) is a disjoint union of connected components all isomorphic

to the modular curve Y (N), which are indexed by the class of [det(k)] ∈ Ẑ×/(1 +N Ẑ), for

k ∈ GL2(Ẑ). Choose a system of representatives given by the elements kd =
(
1
d

)
, as d

varies in Ẑ×/(1 +N Ẑ). Then, a point in ShGL2(K(N))(C) is represented by a pair (z, kd),
with z ∈ Y (N). By [41, Corollary 5.6], as function on ShGL2(K(N))(C),

u(Φf )(z, kd) =
∏

b∈(Z/NZ)×

g
ϕ(N)

(0,b/N)·k−1
d

(z) =
∏

b∈(Z/NZ)×

g
ϕ(N)
0,brd/N

(z),

where rd denotes the inverse of d modulo N , ϕ is Euler’s totient function, and g0,⋆/N is the

Siegel unit as in [27, §1.4]. Thus, u(Φf ) descends to an element of O(ShGL2(K1(N)))× ⊗Q,
as each g0,b/N does.

2.3.2. The construction. Let

u : S0(Af ,Q) → H1
M(ShGL2 ,Q(1)) ≃ O(ShGL2)

× ⊗Z Q

be the GL2(Af )-equivariant map defined by Φf 7→ u(Φf ), where H1
M(ShGL2 ,Q(1)) denotes

lim−→V H
1
M(ShGL2(V ),Q(1)) and O(ShGL2)

× ⊗Z Q denotes lim−→V (O(ShGL2(V ))× ⊗Z Q), the

limits being taken over all neat compact open subgroups V ⊂ GL2(Af ).
Let

V1 ⊂ GL2(Af ), V2 ⊂ GL∗
2,F (Af )

denote neat compact open subgroups such that the images of V1 and V2 by the similtude
characters are the same. Taking the fiber products over the similitude character, we obtain
a compact open subgroup V = V1 ×A

×

f
V2 of H(Af ). Let U ⊂ G(Af ) be a neat compact

open subgroup such that the embedding ι induces a closed embedding ShH(V ) →֒ ShG(U)
of codimension 3. As a consequence, we have an induced map on motivic cohomology

ι∗ : H
1
M
(
ShH(V ),Q(1)

)
→ H7

M
(
ShG(U),Q(4)

)
.

The projection on the first factor of ShH(V ) is a morphism p1 : ShH(V ) → ShGL2(V1).
Hence we have the sequence of morphisms

S0(Af ,Q)V1
u−−−−→ H1

M(ShGL2(V1),Q(1))
p∗1−−−−→ H1

M
(
ShH(V ),Q(1)

)

ι∗−−−−→ H7
M
(
ShG(U),Q(4)

)
.

Definition 2.3. We define EisM : S0(Af ,Q)V1 → H7
M
(
ShG(U),Q(4)

)
to be the composite

of these morphisms.

Remark 2.4. The notation EisM is slightly abusive as these morphisms depend also on U ,
V and the data entering in the definition of ι.

3. Cohomology of locally symmetric spaces

In this chapter, we recollect some classical general facts that will be used later or that
serve as motivation for our constructions. We also describe the construction of the differential
form ωΨ that will be used in the statement of the main result.
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3.1. Representation theory. We set the notations for the representation theory back-
ground needed to describe the component at infinity of the automorphic representations
under consideration.

3.1.1. Cartan decomposition. The maximal compact subgroup K∞ of Sp6(R) is described
as

K∞ = {
(

A B
−B A

)
| AAt +BBt = 1, ABt = BAt}.

It is isomorphic to U(3) via the map
(

A B
−B A

)
7→ A+ iB and its Lie algebra is

k = {
(

A B
−B A

)
| A = −At, B = Bt}.

Letting
p±C =

{(
A ±iA

±iA −A

)
∈ M(6,C) | A = At

}
,

one has a Cartan decomposition

sp6,C = kC ⊕ p+C ⊕ p−C.

3.1.2. Root system. For 1 ≤ j ≤ 3, let Dj be the square matrix of size 3 with entry 1 at
position (j, j) and 0 elsewhere. Define

Tj = −i
( 0 Dj

−Dj 0

)
.

Then h = ⊕jR · Tj is a compact Cartan subalgebra of sp6,C. We let (ej)j denote the basis
of h∗C dual to (Tj)j . A system of positive roots for (sp6,C, hC) is then given by

2ej , 1 ≤ j ≤ 3,

ej + ek, 1 ≤ j < k ≤ 3,

ej − ek, 1 ≤ j < k ≤ 3.

The simple roots are e1 − e2, e2 − e3, 2e3. We note that p+C is spanned by the root spaces
corresponding to the positive roots of type 2ej and ej+ek. We denote ∆ = {±2ej ,±(ej±ek)}
the set of all roots, ∆c = {±(ej − ek)} the set of compact roots and ∆nc = ∆ − ∆c the
non-compact roots. Finally, we note ∆+,∆+

c and ∆+
nc the set of positive, positive compact

and positive non-compact roots, respectively.
The corresponding root vectors for each root space are given as follows:

• For 1 ≤ j ≤ 3, the element X±2ej =
( Dj ±iDj

±iDj −Dj

)
spans the root space of ±2ej .

• For 1 ≤ j < k ≤ 3, letting Ejk be the matrix with entry 1 at positions (j, k) and

(k, j) and zeroes elsewhere, the elements X±(ej+ek) =
( Ejk ±iEjk

±iEjk −Ejk

)
spans the root

space for of ej + ek.
• Finally, for 1 ≤ j < k ≤ 3, letting Fj,k be the matrix with entry 1 at position (j, k),

−1 at position (k, j) and zeroes elsewhere, the element X±(ej−ek) =
(±Fjk −iEjk

iEjk ±Fjk

)

spans the root space of the compact root ±(ej − ek).

3.1.3. Weyl groups. Recall that the Weyl group of Sp6 is given by WSp6
= {±1}3⋊S3. The

reflection σj in the orthogonal hyperplane of 2ej simply reverses the sign of ej while leaving
the other ek fixed. The reflection σjk in the orthogonal hyperplane of ej − ek exchanges ej
and ek and leaves the remaining eℓ fixed. The Weyl group WK∞

of K∞ ∼= U(3) is isomorphic
to S3 and, via the embedding into G, identifies with the subgroup of WG generated by the
σjk. With the identification WSp6

= N(T )/Z(T ), an explicit description of WSp6
and WK∞

is given as follows. The matrices corresponding to the reflections σjk are
( Sjk 0

0 −Sjk

)
,
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where Sjk is the matrix with entry 1 at places (ℓ, ℓ), ℓ 6= j, k, (k, j) and (j, k) and zeroes
elsewhere. The matrices corresponding to the reflection σj in the hyperplane orthogonal to
2ej are of the form

( 0 Tj

−Tj 0

)
,

where Tj denotes the diagonal matrix with −1 at the place (j, j) and ones at the other
entries of the diagonal.

3.1.4. K∞-types. We previously defined the maximal compact subgroup K∞ ≃ U(3) of
Sp6(R), with Lie algebra k, and we considered the Cartan decomposition sp6,C = kC⊕ p+C⊕
p−C. Recall that p±C =

⊕
α∈∆+

nc
CX±α.

Denote by (k2, k2, k3) = k1e1 + k2e2 + k3e3, with ki ∈ Z the integral weights. Integral
weights are dominant for our choice of ∆+

c if k1 ≥ k2 ≥ k3. Recall that there is a bijection
between isomorphism classes of finite dimensional irreducible complex representations of
K∞ and dominant integral weights, given by assigning to the representation τ(k1,k2,k3) its
highest weight (k1, k2, k3).

3.2. Lie algebra cohomology. Let AG = R⋆
+ denote the identity component of the center

of G(R) and let KG = AGK∞ ⊂ G(R). The embedding sp6,C ⊂ gC induces an isomor-
phism sp6,C/k ≃ gC/(Lie(KG))C. By [5, II. Proposition 3.1], for any discrete series π∞
associated to the trivial representation (cf. §3.3 below), we have

H6(g,KG;π∞) = HomK∞
(

6∧
sp6,C/k, π∞).

By using the Cartan decomposition above, we get

6∧
sp6,C/k =

⊕

p+q=6

p∧
p+C ⊗C

q∧
p−C.

One can easily decompose each term of the sum above in its irreducible constituents (if
treated as a K∞-representation via the adjoint action). This will be helpful for writing
explicit elements in H6(g,KG;π∞) according to the minimal K∞-type of π∞. Indeed, p+C
(resp. p−C) is the six dimensional irreducible representation of K∞ of weight (2, 0, 0) (resp.
(0, 0,−2)). Using Sage package for Lie groups, one can see the following.
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Lemma 3.1. We have the following decompositions in ireducible components of the following
K∞-representations.

6∧
p+C = τ(4,4,4)

5∧
p+C ⊗C p−C = τ(4,2,2) ⊕ τ(4,3,1) ⊕ τ(4,4,0)

4∧
p+C ⊗C

2∧
p−C = τ(2,1,1) ⊕ τ(2,2,0) ⊕ 2τ(3,1,0) ⊕ 2τ(3,2,−1) ⊕ τ(3,3,−2) ⊕ τ(4,0,0)⊕

⊕ τ(4,1,−1) ⊕ τ(4,2,−2)

3∧
p+C ⊗C

3∧
p−C = 2τ(0,0,0) ⊕ τ(1,1,−2) ⊕ 2τ(1,0,−1) ⊕ τ(2,−1,−1) ⊕ τ(2,1,−3) ⊕ τ(2,2,−4)⊕

⊕ 4τ(2,0,−2) ⊕ τ(3,−1,−2) ⊕ 2τ(3,0,−3) ⊕ τ(4,−2,−2)

2∧
p+C ⊗C

4∧
p−C = τ(−1,−1,−2) ⊕ 2τ(1,−2,−3) ⊕ τ(1,−1,−4) ⊕ τ(2,−3,−3) ⊕ τ(2,−2,−4)⊕

⊕ τ(0,−2,−2) ⊕ 2τ(0,−1,−3) ⊕ τ(0,0,−4)

p+C ⊗C

5∧
p−C = τ(−2,−2,−4) ⊕ τ(−1,−3,−4) ⊕ τ(0,−4,−4)

6∧
p−C = τ(−4,−4,−4).

It will be useful to have some explicit description of the components τ(2,2,−4) and τ(4,−2,−2)

of
∧3

p+C ⊗C

∧3
p−C.

Lemma 3.2. The vector

X(2,2,−4) := (X2e1 ∧X2e2 ∧Xe1+e2)⊗ (X−e1−e3 ∧X−e2−e3 ∧X−2e3)

is a highest weight vector of τ(2,2,−4). Analogously, a highest weight vector of τ(4,−2,−2) ⊆
τ(4,1,1) ⊗ τ(0,−3,−3) is given by

X(4,−2,−2) := (X2e1 ∧Xe1+e2 ∧Xe1+e3)⊗ (X−e2−e3 ∧X−2e2 ∧X−2e3).

Proof. We have a decomposition of K∞ representations
∧3

p+C = τ(3,3,0) ⊕ τ(4,1,1),
∧3

p−C =
τ(−1,−1,−4) ⊕ τ(0,−3,−3). Since each of the four summands have multiplicity-free weights (i.e.
every weight space has dimension at most one), then one can easily check that the vector

X(2,2,−4) := (X2e1 ∧X2e2 ∧Xe1+e2)⊗ (X−e1−e3 ∧X−e2−e3 ∧X−2e3)

is a highest weight vector of τ(2,2,−4) ⊆ τ(3,3,0) ⊗ τ(−1,−1,−4). Indeed τ(2,2,−4) is the Cartan
component of the tensor product and each of the terms in the tensor product defining
X(2,2,−4) is a highest weight vector of its corresponding representation. Analogously, one
shows that X(4,−2,−2) is a highest weight vector of τ(4,−2,−2) ⊆ τ(4,1,1) ⊗ τ(0,−3,−3). Observe
finally that we can pass from τ(2,2,−4) to τ(4,−2,−2) by the action of the matrix inducing
complex conjugation. �

3.3. Discrete series L-packets and test vectors. We recall some standard facts on
discrete series. For any non-singular weight Λ ∈ ∆, define

∆+(Λ) := {α ∈ ∆ : 〈α,Λ〉 > 0}, ∆+
c (Λ) = ∆+(Λ) ∩∆c,

where 〈 , 〉 is the standard scalar product on R3. Let λ be a dominant weight for Sp6
(with respect to the complexification hC of the compact Cartan algebra h) and let ρ =
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1
2

∑
α∈∆+ α = (3, 2, 1). As |WSp6

/WK∞
| = 8, the set of equivalence classes of irreducible

discrete series representations of Sp6(R) with Harish-Chandra parameter λ + ρ contains
8 elements. More precisely, let us choose representatives {w1, . . . , w8} of WSp6/WK∞

of
increasing length and such that for any 1 ≤ i ≤ 8, the weight wi(λ+ρ) is dominant for K∞.
Then for any 1 ≤ i ≤ 8 there exists an irreducible discrete series πΛ

∞, where Λ = wi(λ+ ρ),
of Harish-Chandra parameter Λ and containing with multiplicity 1 the minimal K∞-type
with highest weight Λ + δSp6

− 2δK∞
where δSp6

, resp. δK∞
, is the half-sum of roots, resp.

of compact roots, which are positive with respect to the Weyl chamber in which Λ lies, i.e.,

2δSp6
:=

∑

α∈∆+(Λ)

α, 2δK∞
:=

∑

α∈∆+
c (Λ)

α.

Moreover, for i 6= j, Λ = wi(λ+ ρ), Λ′ = wj(λ+ ρ), the representations πΛ
∞ and πΛ′

∞ are not
equivalent and any discrete series of Sp6(R) is obtained in this way ([30, Theorem 9.20]). We
define the discrete series L-packet P (V λ) associated to λ to be the set of isomorphism classes
of discrete series of Sp6(R) whose Harish-Chandra parameter is of the form Λ = wi(λ+ ρ),
for some 1 ≤ i ≤ 8.

Lemma 3.3. There exist two irreducible discrete series representations π3,3
∞ and π3,3

∞ of
Sp6(R) with Harish-Chandra parameter (2, 1,−3) and (3,−1,−2), and trivial central char-
acter whose minimal K∞-types are τ(2,2,−4) and τ(4,−2,−2).

Proof. As explained in section 3.1.3, the reflections σi in the orthogonal hyperplane of the
long roots 2ei for 1 ≤ i ≤ 3 generate a system of representatives of WSp6

/WK∞
. But

these elements do not necessarily meet the condition that σiρ is dominant for K∞. In or-
der to find representatives satisfying this condition, we have to multiply these elements by
elements of WK∞

to put the coordinates of σiρ in decreasing order. We find the represen-
tatives defined by their action on ρ as follows: w1(3, 2, 1) = (3, 2, 1), w2(3, 2, 1) = (3, 2,−1),
w3(3, 2, 1) = (3, 1,−2), w4(3, 2, 1) = (2, 1,−3), w5(3, 2, 1) = (3,−1,−2), w6(3, 2, 1) =
(2,−1,−3), w7(3, 2, 1) = (1,−2,−3), w8(3, 2, 1) = (−1,−2,−3).

For each Λ = wiρ, 1 ≤ i ≤ 8, observe that δSp6
= wiρ and hence the minimal K∞-type of

the discrete series πΛ
∞ is given by the formula

Λ + δSp6
− 2δK∞

= 2wiρ− 2δK∞
.

Using this formula, one easily checks that the minimal K∞-types corresponding to each
of representative wi, i = 1, . . . , 8 described above are, respectively, τ1 = τ(4,4,4), τ2 =
τ(4,4,0), τ3 = τ(4,2,−2), τ4 = τ(2,2,−4), τ5 = τ(4,−2,−2), τ6 = τ(2,−2,−4), τ7 = τ(0,−4,−4) and
τ8 = τ(−4,−4,−4). The result follows by considering i = 4, 5. �

Lemma 3.4. Let π = π∞ ⊗ πf be a cuspidal automorphic representation of G(A) with

archimedean component π∞ the discrete series such that π∞|Sp6(R) ≃ π3,3
∞ ⊕ π3,3

∞ and such

that πU
f 6= 0. Let Ψ = Ψ∞ ⊗Ψf be a cusp form in the space of π such that Ψ∞ is a highest

weight vector of the minimal K∞-type τ(2,2,−4) of π3,3
∞ and Ψf is a non-zero vector in πU

f . Let

X(2,2,−4) be the highest weight vector in the K∞-type τ(2,2,−4) ⊂
∧3

p+C ⊗C

∧3
p−C of Lemma

3.2. Then there exists a unique non-zero harmonic (3, 3) differential form

ωΨ ∈ HomK∞

(
3∧
p+C ⊗C

3∧
p−C, π

3,3
∞

)
⊗ πU

f

on ShG(U) such that ωΨ(X(2,2,−4)) = Ψ.
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Proof. The results follows immediately from the fact that the minimal K∞-type τ(2,2,−4) of

π3,3
∞ appears with multiplicity one, cf. [5, Theorem II.5.3]. �

3.4. Archimedean L-functions and Deligne cohomology. We end up this chapter by
recalling some classical results on the relation between Deligne cohomology groups and
the L-function of a motive, which explains when one expects to have non-trivial motivic
cohomology. This section has only motivational interest and is not relevant to the main
calculations of this text.

3.4.1. Hodge decomposition. In this section, we describe the Hodge decomposition of the
"interior motive" M(πf ) defined from the πf -isotypical component of the interior cohomol-
ogy

M(πf )⊗ πf = H6
! (ShG,Q)[πf ],

which will allow us to describe Γ-factor of its L-function and its simple poles. Recall from
[15], [37] that M(πf ) is pure of weight 6. The Hodge weights of M(πf ) lie in the set of pairs

(0, 6), (1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 0).

When πf is sufficiently nice, more precisely stable at infinity, all the weights (p, q) appear.

3.4.2. Archimedean L-functions and Deligne cohomology. We recall now, following [46], the
definition of the Γ-factor of M(πf ). The simple poles of this factor indicate the set of Tate
twists of the motive M(πf ) for which the Deligne cohomology is of positive dimension. It
is precisely for these twists that one expects to construct non-trivial motivic cohomology
classes.

The Betti realisation of M(πf ) admits a Hodge decomposition

MB(πf )⊗C =
⊕

p+q=6

Hp,q

which is equipped with an involution σ such that σ(Hp,q) = Hq,p. Denote hp,q = dimCHp,q

the Betti numbers. For any p, write Hp,p = Hp,+ ⊕Hp,−, where Hp,± = {x ∈ Hp,p|σ(x) =
±(−1)px}, and let hp,±1 = dimCHp,±. Let ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2(2π)−sΓ(s)
be the real and complex Gamma factors, so that we have ΓC(s) = ΓR(s)ΓR(s + 1). The
archimedean factor of the L-function of M(πf ) is then defined as

Γ(M(πf ), s) =
∏

p<q

ΓC(s− p)h
p,q
∏

p

ΓR(s− p)h
p,+

ΓR(s− p+ 1)h
p,−

.

Since the Gamma function Γ(s) has simple poles at s = −n, n ∈ N, a simple calculation
shows that the order of the pole of Γ(M(πf ), s) at s = m, m ∈ Z, is given by

∑

m≤p<q

hp,q +

{
0 if m > 3

h3,(−1)m−3
otherwise

.

Immediately from this formula, we get:

Lemma 3.5. The function Γ(M(πf ), s) has a pole of order h3,+ at s = 3.

Finally, recall the following result:

Proposition 3.6 ([45, §2, Proposition] ). We have

dimRH1
D(M(πf )(7 −m)) =

{
ords=mL(M(πf ), s) if m < 3

ords=mL(M(πf ), s)− ords=m+1L(M(πf ), s) if m = 3.
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In this text, we are interested in the study of these Deligne cohomology groups for m = 3.
The crucial hypothesis of Lemma 3.4 and §5.1 on the existence of a non-trivial test vector of
the right Hodge type translates into asking that h3,+ 6= 0. Using the functional equation of
the completed L-function for M(πf ) and the fact that Γ(M(πf ), s) is non-zero at s = 3+1,
this translates into the equality

h3,+ = ords=3L(M(πf ), s)− ords=4L(M(πf ), s).

In view of Proposition 3.6, this in turn implies that H1
D(M(πf )(4)) is of positive dimension.

According to Beilinson conjectures (cf. [45, §5]), one then expects to construct non-trivial
motivic cohomology classes in H1(M(πf )(4)).

Thanks to the results of [42], we can relate the archimedean realisation of our motivic
class to a non-critical special value of the degree 8 Spin L-function. Indeed, under certain
technical hypotheses, the L-function of M(πf )(3) agrees with the (partial) Spin L-function
L(π,Spin, s) (cf. [31, Proposition 13.1]), which are both centered at s = 1/2. In this case,
Beilinson conjectures predict an isomorphism

(H7
M,!(ShG,Q(4)) ⊗R)⊕ (N3(ShG)⊗R)

(rD ,cB)−−−−−→ H7
D,!(ShG/R,R(4)),

where rD denotes the archimedean regulator, N3(ShG) is the space of codimension 3 cy-
cles (up to homological equivalence) in a smooth compactification ShG, and cB is the
(Betti) cycle class map. In this article, we focus our attention to the cuspidal automor-
phic forms which contribute to the motivic part of the conjecture, i.e. precisely those for
which h3,+1 = ords=0L(π,Spin, s) > 0. Our main result, Theorem 5.17, gives striking evi-
dence towards the conjecture for these automorphic forms. The forms which contribute to
the other term, in the spirit of Tate’s conjecture, are instead the ones of Hodge type (3, 3),
for which ords=1L(π,Spin, s) = −1. These automorphic forms are lifts from the split G2

under the exceptional theta correspondence (cf. [42, Theorem 1.3]). In [9], we address this
part of Beilinson conjecture.

4. Deligne–Beilinson cohomology and tempered currents

Let X denote a complex analytic variety which is smooth, quasi-projective and of pure
dimension d. Let X be a smooth compactification of X such that D = X −X is a simple
normal crossing divisor. We denote by j : X → X the open embedding. We will assume
that X is defined as the analytification of the base change to C of a smooth, quasi-projective
R-scheme. The complex conjugation F∞ is an antiholomorphic involution on X. For p ∈ Z,
let R(p) denote the subgroup (2πi)pR of C. We will denote by the same symbol the constant
sheaf with value R(p) on X.

We recall the definition of Deligne–Beilinson cohomology (DB-cohomology for short) of
X. Let Ω∗

X be the sheaf of holomorphic differential forms on X and let Ω∗
X
(logD) be the

sheaf of holomorphic differential forms on X with logarithmic poles along D (see [12, §3.1]).

The Hodge filtration on Ω∗
X
(logD) is defined as F pΩ∗

X
(logD) =

⊕
p′≥pΩ

p′

X
(logD). There

are natural quasi-isomorphisms of complexes Rj∗C → Rj∗Ω∗
X and Ω∗

X
(logD) → Rj∗Ω∗

X

(see [12] or [26] for the basic facts used here). For any p ∈ Z, the DB-cohomology groups
Hn

D(X,R(p)) of X with coefficients in R(p) are defined as the hypercohomology groups of
the complex

R(p)D := cone(Rj∗R(p)⊕ F pΩ∗
X
(logD) → Rj∗Ω

∗
X)[−1], (4)

where the arrow is given by the difference of the natural maps. Let F ∗∞ = F ∗
∞ ⊗ c be

the de Rham involution given by the action of the complex conjugation on X and on the
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coefficients. The real DB-cohomology groups are defined as

Hn
D(X/R,R(p)) = Hn

D(X,R(p))F
∗
∞=1.

The purpose of this chapter is to give some useful new explicit description of DB-
cohomology that will be suitable for the computations of the next chapter. In order to
do this, we will explain how the Hodge filtration and the real structure on the cohomology
groups of X are induced from Hodge complexes of differential forms with growth conditions
and tempered currents.

4.1. Function spaces. If r > 0, we denote by ∆∗
r = {z ∈ C : 0 < |z| ≤ r} the punctured

disc of of radius r and ∆r = {z ∈ C : 0 ≤ |z| ≤ r} its closure. If m,n ∈ N, we will denote
by z = (z1, . . . , zm, zm+1, . . . , zm+n) the coordinates of (∆∗

r)
m × (∆r)

n.

Definition 4.1 ([24, §2.2]). Let N ∈ N. A C∞-function f(z) on (∆∗
r)

m × (∆r)
n is said to

have logarithmic growth of degree N , resp. logarithmic decay of degree N , if

|f(z)| ≤ C

( m∏

j=1

∣∣ log |zj |
∣∣
)N

,

resp. if

|f(z)| ≤ C

( m∏

j=1

∣∣ log |zj |
∣∣
)−N

,

for some constant C > 0. We say that f is slowly increasing if, ∀a, b ∈ Nm, c, d ∈ Nn, the
function 


m∏

i=1

(
zi

∂

∂zi

)ai(zi
∂

∂zi

)bi
n+m∏

j=m+1

( ∂

∂zj

)cj( ∂

∂zj

)dj

 (f) (5)

is of logarithmic growth for some N ∈ N. The function f is uniformly slowly increasing if
the same N works for all. We say that f is rapidly decreasing if f and all the terms as in
(5) are of logarithmic decay N for all N ∈ N.

Remark 4.2. The condition (5) on the derivatives comes from asking that all the exterior
higher derivatives of f will satisfy the same growth conditions. This will assure in particular
that the complexes of differential forms defined below are well defined. We also point out
that a slowly increasing functions is equivalent to a smooth function on ∆m+n equipped
with the log structure given by the normal crossing divisor {z1 . . . zm = 0}, cf. [28, Lemma
3.4(2)]. We also point out that this is the usual condition for defining rapidly decreasing
functions taking into account the logarithmic change of variables on polar coordinates.

Let X be a smooth compact complex manifold, D ⊆ X a normal crossing divisor and
X = X −D. This means that each point x ∈ X has a coordinate neighbourhood U = ∆d

r

with coordinates (z1, . . . , zd) for which x = (0, . . . , 0) and such that there is an integer k,
0 ≤ k ≤ d, so that

X ∩ U = (∆∗
r)

k × (∆r)
d−k = {(z1, . . . , zd) | z1 . . . zk 6= 0}.

We note j : X → X the natural inclusion.
We denote by OX the structural sheaf of holomorphic functions on X and we denote by

Ω∗
X

the holomorphic de Rham complex on X. This is a complex of locally free OX -module

of finite type. Recall also that Ω∗
X
(log D) is defined to be the sub-OX -algebra of j∗Ω∗

X

locally generated by the sections dzi
zi

, 1 ≤ i ≤ k and dzi k < i ≤ d. We shall denote by A 0
X
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the sheaf of smooth functions on X and A ∗
X

the complex of sheaves of smooth differential

forms. The complex A ∗
X
(logD) of smooth differential forms on X with logarithmic growth

at D is defined (cf. [7, §2]) to be the AX-algebra subsheaf of j∗A ∗
X locally generated by the

sections
dzi
zi

,
dzi
zi

, log |zi| (1 ≤ i ≤ k),

dzi, dzi (k < i ≤ d).

Definition 4.3. We denote by A 0
si (resp. A 0

rd) the sheaf on X whose sections at U ⊆
X are given by complex valued functions on U ∩ X which are locally at each point of U
slowly increasing (resp. rapidly decreasing). We define the complex A ∗

si of sheaves of slowly
increasing differential forms to be the subcomplex of j∗A ∗

X of A 0
si-modules locally generated

by dzi
zi

, dzi
zi

for 1 ≤ i ≤ k and dzi, dzi for k < i ≤ d. The complex A ∗
rd of rapidly decreasing

differential forms is defined analogously.

Remark 4.4. Observe that, even if it is not reflected in the notation, the sheaves A ∗
si and

A ∗
rd depend a priori on the divisor D.

Precisely, for any open subset U ⊆ X, a differential form ω ∈ j∗A ∗
X(U) lies in A ∗

si(U)
(resp. A ∗

rd(U)) if it can locally be written as

ω =
∑

I,I′,J,J ′

αI,I′,J,J ′

dzI
zI

∧ dzJ ∧ dzI′

zI′
∧ dzJ ′ ,

where I, I ′ ⊆ {1, . . . , k}, J, J ′ ⊆ {k + 1, . . . , d} and αI,I′,J,J ′ is a function in A 0
si(U) (resp.

A 0
rd(U)) for every I, I ′, J, J ′, and where, for I = {i1, . . . , im} ⊆ {1, . . . , k}, we have used the

usual notation dzI
zI

=
dzi1
zi1

∧ . . . ∧ dzim
zim

, and idem for the other terms.

Observe that there are natural inclusions

A
∗
rd ⊆ A

∗
X
(logD) ⊆ A

∗
si ⊆ j∗A

∗
X .

They are all are complexes of fine sheaves since their terms are modules over A 0
X

and hence

admit partitions of unity. We denote by A∗
X
(logD), A ∗

rd(X) and A ∗
si(X) the corresponding

complexes of global sections. Moreover, the complex structure on X induces compatible
bigradings A n

rd =
⊕

p+q=n A
p,q
rd , A n

X
(log D) =

⊕
p+q=n A

p,q

X
(log D), A n

si =
⊕

p+q=n A
p,q
si ,

with corresponding Hodge filtrations F pA n
rd =

⊕
p′≥p A

p′,q
rd , etc. Finally, we denote by

A ∗
si,R ⊆ A ∗

si, A ∗
rd,R ⊆ A ∗

rd, A ∗
X,R

(log D) ⊆ A ∗
X
(log D) the subcomplexes of sheaves of R-

valued differential forms. The complex Ω∗
X
(log D) is endowed with a Hodge filtration F ∗

defined by

F pΩ∗
X
(log D) =

⊕

p′≥p

Ωp′

X
(log D).

Proposition 4.5 ([7, Corollary 2.2]). The natural map (Ω∗
X
(log D), F ) → (A ∗

X
(log D), F )

is a filtered quasi-isomorphism and Rj∗R → A ∗
X,R

(log D) is a quasi-isomorphism.

4.2. ∂-Poincaré lemma with growth conditions.

Lemma 4.6. There is a long exact sequence

0 → Ωp

X
(log D) → A

p,0
si

∂−→ A
p,1
si → . . . → A

p,d
si

∂−→ 0.
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Proof. One first reduces to the local situation with coordinates (z1, . . . , zd) ∈ (∆∗
r)

k×∆d−k
r .

Then, the exactness at the middle follows from [23, Lemme 1] (cf. also [21, (3.1.1) Lemma]
or [24, 2.1.3]), where they show, in the case of dimension 1, that if g ∈ A 0

si is a function which
has logarithmic growth of order N then there exists f ∈ A 0

si of logarithmic growth N + 1

such that ∂f = g(z)dzz . This implies that f is slowly increasing (resp. rapidly decreasing)
whenever g is. The proof for higher dimension is similar, but we also refer to [28, §3.7] for
a proof with complete details.

The exactness at the first term is [23, Lemme 2] and it is also shown in [28, 3.5]. We

recall the proof for commodity of the reader. Since A
p,q
si = A

0,q
si ⊗OX

Ωp

X
(log D), it suffices

to prove the result for p = 0. If f ∈ A
0,0
si is such that ∂f = 0, then f is holomorphic on X

and slowly increasing. It follows from definition that, locally around any point, the product

(
∏k

i=1 zi)f(z) is a holomorphic function on ∆d vanishing at the boundary D = {z1 . . . zk =

0}, and hence divisible by
∏k

i=1 zi, which shows that f is actually holomorphic on ∆d. This
implies that f ∈ OX . The case for rapidly decreasing forms is treated similarly. �

Proposition 4.7. There is a filtered quasi-isomorphism

(Ω∗
X
(log D), F ) → (A ∗

si, F ).

Proof. This is basically [24, Proposition 5.8]. In order to show that the natural inclusion
Ω∗
X
(log D) ⊆ A ∗

si induces a filtered quasi-isomorphism, one needs to check that it is a filtered
morphism and that the corresponding graded pieces of the complexes are quasi-isomorphic.
The first condition is satisfied by construction, since the Hodge filtration on A ∗

si induces
that of Ω∗

X
(log D). For the last assertion, we have

GrpFΩ
∗
X
(log D) = Ωp

X
(log D),

GrpFA
∗
si = [A p,0

si
∂−→ A

p,1
si

∂−→ . . .
∂−→ A

p,d
si ].

So the result follows from Lemma 4.6. �

Proposition 4.8. The natural inclusion (A ∗
X
(logD), F ) → (A ∗

si, F ) is a filtered quasi-
isomorphism compatible with the real structures.

Proof. The inclusion map obviously respects the Hodge filtration by construction. To show
that the map is a filtered quasi-isomorphism, it suffices to show that there is a quasi-
isomorphism

GrpF A
∗
X
(logD) ∼= GrpF A

∗
si.

By the proof of [7, Proposition 2.3], we know that

GrpF A
∗
X
(logD) ∼= Ωp

X
(log D).

The result follows then from the proof Proposition 4.7. �

Remark 4.9. Proposition 4.8 could also be deduced directly from Proposition 4.7 and [7,
Theorem 2.1].

4.3. The Bochner-Martinelli kernel and rapidly decreasing differential forms. We
now introduce the Bochner-Martinelli operator on rapidly decreasing differential forms which
will be used later to show the ∂-Poincaré lemma for tempered currents. Our calculations
are very much inspired in the work of Harris and Phong [23], where the case of dimension
1 is treated for showing that the complexes of rapidly decreasing and slowly increasing
differential forms calculate the cohomology of X. By standard arguments, one reduces to
working locally around a point of X , i.e. on a domain of the form (∆∗)m × ∆n, with
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∆ = ∆1/2. Since all the computations we will make in this section carry over in the same
way, we will assume n = 0 to simplify the exposition.

Let η be a smooth differential form on (∆∗)m = (∆∗
1/2)

m of type (0, q). Consider the

operator induced by the Bochner-Martinelli formula

(Kη)(z) =

∫

∆m

k(z, w) ∧ η(w),

where, if one sets

Φi(ζ) = (−1)i−1ζidζ1 ∧ . . . ∧ d̂ζi ∧ . . . ∧ dζd,

Φ(ζ) = dζ1 ∧ . . . ∧ dζd,

the kernel k(z, w) of the operator is given by

k(z, w) =
(m− 1)!

(2πi)m

∑m
i=1Φi(z − w) ∧ Φ(w)

|z − w|2m .

For generalities on this operator, we refer the reader to [19] and [32]. The Bochner-Martinelli
kernel is a locally integrable differential form on Cm ×Cm\{z = w} that decomposes as

k(z, w) =

m∑

q′=1

kq
′

(z, w),

where kq
′

(z, w) is of type (0, q′−1) on the variably z and of type (m,m− q′) on the variable
w. Then integral defining the operator K needs not converge but we will show that it does
whenever η is rapidly decreasing.

Let I ⊆ {1, . . . ,m} with |I| = q and let η(w) = f(w)dwI
wI

be a rapidly decreasing form of

type (0, q) on (∆∗)m. For every N ∈ N we have

|f(w)| ≤ Cη,N | log |w||−N (:= Cη,N

m∏

j=1

| log |wj ||−N ) (6)

for some constant Cη,N > 0 and the same estimate holds (with variable constant) for all
exterior derivatives of η (cf. Definition 4.1). We have by definition

(Kη)(z) =

∫

(∆∗)m
k(z, w) ∧ η(w) =

(m− 1)!

(2πi)m

m∑

i=1

∫

(∆∗)m

Φi(z − w) ∧Φ(w)

‖z − w‖2m ∧ η(w).

Observe that
∫
(∆∗)m

Φi(z−w)∧Φ(w)
‖z−w‖2m ∧ η(w) = 0 unless i ∈ I. Let i ∈ I, then

∫

(∆∗)m

Φi(z − w) ∧ Φ(w)

‖z −w‖2m ∧ η(w) =

(∫

(∆∗)m

(zi − wi)f(w)

‖z − w‖2mwI
dw ∧ dw

)
dzI−{i}.

Lemma 4.10. Then, for any z ∈ (∆∗)m, the integral

gi(z) :=

∫

(∆∗)m

(zi − wi)f(w)

‖z − w‖2mwI
dw ∧ dw

is absolutely convergent.

Proof. Let us fix z ∈ (∆∗)m. Write f = f1 + f2, where f1 is a smooth function which
is supported in a sufficiently small polydisc B(z, 2a) :=

∏m
j=1B(zj , 2a) around z and f2

vanishes identically on
∏m

j=1B(zj , a). Then we have
∫

(∆∗)m

|zi − wi||f2(w)|
‖z − w‖2m|wI |

dw ∧ dw

∣∣∣∣ ≤ C

∫

(∆∗)m

1

|w|dw ∧ dw < +∞,
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for some constant C > 0, where here we denote |wI | = |wI | =
∏

i∈I |wi| and |w| =∏m
i=1 |wi|.

On the other hand, we have
∫

(∆∗)m

∣∣∣∣
(zi −wi)f1(w)

‖z − w‖2mwI
dw ∧ dw

∣∣∣∣ ≤ C ′
∫

B(z,2a)

1

‖z − w‖2m−1
dw ∧ dw < +∞,

for some C ′ > 0 and where the last integral converges from the standard fact that
∫
Bn(0,1)

dx
‖x‖α

converges if α < n (Bn(0, 1) ⊆ Rn is the unit ball). �

Lemma 4.11. There exists a universal constant Cm,N , depending only on m and N , such
that for any z ∈ (∆∗)m we have

|gi(z)| ≤ Cm,NCη,N
| log |z||−N+1

|zI−{i}|
.

Proof. We have

|gi(z)| ≤
∫

(∆∗)m

|zi − wi||f(w)|
‖z − w‖2m|wI |

dw ∧ dw ≤ Cη,N

∫

(∆∗)m

|zi −wi|| log |w||−N

‖z − w‖2m|wI |
dw ∧ dw. (7)

We will show the inequality by induction on m. The base case m = 1 and I = {i} is the
one treated in [23, Lemme 1] 1 for which we give a proof for the commodity of the reader.
There are two cases for the reduction step of the induction, one for those variables j such
that j ∈ I and another one for those variables j not belonging to I. We treat both at the
same time using the same dévisage of the integral as the proof of the base case.

The base case : When m = 1 and I = {i} we have

g1(z) =

∫

∆∗

f(w)

(z − w)w
dw ∧ dw.

We let r := |z| and we decompose ∆∗ into three regions

∆∗ = D1 ∪D2 ∪D3,

where D1 = ∆∗
r/2 is the punctured disc of radius r/2, D2 = B(z, r/2)∩∆∗ is the intersection

of ∆∗ with the (punctured) disc around z of radius r/2 and D3 = ∆∗−(D1∪D2). For w ∈ D1,
we have |z−w| ≥ |z|/2 and |w| ≤ |z|/2 so that in particular | log |w||−N ≤ | log |z||−N . Hence

∫

D1

| log |w||−N

|z − w||w| dw ∧ dw ≤ 2
| log |z||−N

|z|

∫

D1

dw ∧ dw

|w| = 2π| log |z||−N ,

where the last integral is calculated using polar coordinates. When w ∈ D2, we have
|w| ≥ |z|/2 and also |w| ≤ 3

2 |z| so that that | log |w||−N ≤ | log(32 |z|)|−N . Hence

∫

D2

| log |w||−N

|z − w||w| dw ∧ dw ≤ 2
| log(32 |z|)|−N

|z|

∫

B(z,r/2)

dw ∧ dw

|z −w|

= 2
| log(32 |z|)|−N

|z|

∫

∆∗

r/2

dw ∧ dw

|w| = 2π| log(3
2
|z|)|−N

1Actually, in [23, Lemme 1] only the case of slowly increasing functions, i.e. when −N > 0 in our notation,
is treated. The arguments for the present case are commented in [21, Lemma 3.1.1] but there is a misprint
in the second term, where it should be 2r instead of r/2.
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Finally, when w ∈ D3, we use that |z − w| ≥ |w/3| and we get, for N 6= 1,
∫

D3

| log |w||−N

|z −w||w| dw ∧ dw ≤ 3

∫

D3

| log |w||−N

|w|2 dw ∧ dw ≤ 3

∫

D3∪D2

| log |w||−N

|w|2 dw ∧ dw

= 6π

∫ 1

r/2

| log ρ|−N

ρ
dρ =

6π

N − 1
| log(|z|/2)|−N+1 ≤ 6π

N − 1
| log(|z|)|−N+1,

where the last equality follows from the direct calculation
∫ 1
r/2

| log ρ|−N

ρ dρ = | log r/2|−N+1

N−1 for

N 6= 1. Putting all together we get

|g1(z)| ≤ Cη,N

(
2π| log |z||−N + 2π| log(3

2
|z|)|−N +

6π

N − 1
| log(|z|)|−N+1

)
.

We finally observe that | log(32 |z|)N ≤ 2N | log |z||N for all z ∈ ∆∗. This concludes the proof
of the base case.

The induction step : For any 1 ≤ j ≤ m, j 6= i, let rj := |zj | and decompose as before

(∆∗)m = D
(j)
1 ∪D

(j)
2 ∪D

(j)
3 ,

where D
(j)
1 (resp. D

(j)
2 , resp. D

(j)
3 ) is obtained by replacing the j−th term of (∆∗)m by

D1 = ∆∗
rj/2

(resp. D2 = B(zj, rj/2) ∩∆∗, resp. D3 = ∆∗ − (D1 ∪D2)).

(1) When wj ∈ D1, we have |zj −wj| ≥ rj/2 = |zj |/2. Letting z′ = (z1, · · · , ẑj , · · · , zm) ∈
(∆∗)m−1 and idem for w′, by the weighted AM-GM inequality we have

‖z − w‖2 = |zj − wj|2 + ‖z′ − w′‖2 ≥ m

(
|zj − wj |2

(‖z′ −w′‖2
m− 1

)m−1
)1/m

, (8)

so that 1/‖z − w‖2m ≤ 1
|zj−wj |2

1
‖z′−w′‖2(m−1) ≤ 4 1

|zj |2
1

‖z′−w′‖2(m−1) .

(a) When j ∈ I, using the above inequality we get
∫

D
(j)
1

|zi − wi|| log |w||−N

‖z − w‖2m|wI |
dw ∧ dw ≤

≤ 4
| log |zj ||−N

|zj |2



∫

∆∗

rj/2

dwj ∧ dwj

|wj |



(∫

(∆∗)m−1

|zi − wi|| log |w′||−N

‖z′ − w′‖2(m−1)|w′
I′ |

dw′ ∧ dw′
)

= 4π
| log |zj ||−N

|zj |

∫

(∆∗)m−1

|zi − wi|| log |w′||−N

‖z′ − w′‖2(m−1)|w′
I′ |

dw′ ∧ dw′,

where we have denoted I ′ = I − {j}.
(b) Assume now that j /∈ I. The same calculation shows that

∫

D
(j)
1

|zi − wi|| log |w||−N

‖z − w‖2m|wI |
dw ∧ dw ≤

≤ 4
| log |zj ||−N

|zj |2



∫

∆∗

rj/2

dwj ∧ dwj



(∫

(∆∗)m−1

|zi − wi|| log |w′||−N

‖z′ − w′‖2(m−1)|w′
I |
dw′ ∧ dw′

)

= 2π| log |zj ||−N

(∫

(∆∗)m−1

|zi − wi|| log |w′||−N

‖z′ − w′‖2(m−1)|w′
I |
dw′ ∧ dw′

)
,
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(2)(a) Let now wj ∈ D2 with j ∈ I. We have |wj | ≥ |zj |/2 and | log |wj ||−N ≤
| log(32 |zj |)|−N as in the base case. We calculate

∫

D
(j)
2

|zi − wi|| log |w||−N

‖z − w‖2m|wI |
dw ∧ dw

≤ 2
| log(32 |zj |)|−N

|zj |

∫

(∆∗)m−1

|zi −wi|| log |w′||−N

|w′
I′ |

(∫

D2

dwj ∧ dwj

‖z − w‖2m
)
dw′ ∧ dw′. (9)

Using polar coordinates we calculate
∫

D2

dwj ∧ dwj

‖z − w‖2m = 2π

∫ rj/2

0

ρj
(ρ2j + ‖z′ − w′‖2)m dρj

=
π

m− 1

(
1

‖z′ − w′‖2(m−1)
− 1

(r2j/2 + ‖z′ − w′‖2)m−1

)

≤ π

m− 1

1

‖z′ − w′‖2(m−1)
.

Hence (9) is majorated by

2π

m− 1

| log(32 |zj |)|−N

|zj |

(∫

(∆∗)m−1

|zi − wi|| log |w′||−N

‖z′ − w′‖2(m−1)|w′
I′ |

dw′ ∧ dw′
)
.

(2)(b) When j /∈ I, the first inequality becomes
∫

D
(j)
2

|zi − wi|| log |w||−N

‖z − w‖2m|wI |
dw∧dw ≤ | log(3

2
|zj |)|−N

∫

(∆∗)m−1

|zi − wi|| log |w′||−N

|w′

I |

(∫

D2

dwj ∧ dwj

‖z − w‖2m
)
dw′∧dw′,

and the same estimates explained in (a) give the result.
(3)(a) Let wj ∈ D3, with j ∈ I. Using again the AM-GM inequality we get

∫

D
(j)
3

|zi − wi|| log |w||−N

‖z − w‖2m|wI |
dw∧dw ≤ 4

(∫

D3

| log |wj ||−N

|zj − wj |2|wj |
dwj ∧ dwj

)(∫

(∆∗)m−1

|zi − wi|| log |w′||−N

‖z′ − w′‖2(m−1)|w′

I′ |
dw′ ∧ dw′

)
.

Since on D3 we have |zj − wj | ≥ |wj |/3 and we obtain
∫

D3

| log |wj ||−N

|zj − wj|2|wj |
dwj ∧ dwj ≤ 3

∫

D3∪D2

| log |wj ||−N

|wj |3
dwj ∧ dwj = 6π

∫ 1/2

rj/2

| log ρj|−N

ρ2j
dρj ,

≤ 12π
1

|zj |

∫ 1

rj/2

| log ρj |−N

ρj
dρj ≤

12π

N − 1

| log |zj ||−N+1

|zj |
.

(3)(b) Finally, we let wj ∈ D3, with j /∈ I. Using the same argument we get
∫

D
(j)
3

|zi − wi|| log |w||−N

‖z − w‖2m|wI |
dw∧dw ≤ 4

(∫

D3

| log |wj ||−N

|zj − wj |2
dwj ∧ dwj

)(∫

(∆∗)m−1

|zi − wi|| log |w′||−N

‖z′ − w′‖2(m−1)|w′

I |
dw′ ∧ dw′

)
.

Since on D3 we have |zj − wj | ≥ |wj |/3, we obtain
∫

D3

| log |wj ||−N

|zj − wj|2
dwj ∧ dwj ≤ 6π

∫ 1/2

rj/2

| log ρj|−N

ρj
dρj ≤ 6π| log |zj ||−N+1.

Putting (1), (2) and (3) together as in the base case, we deduce that, for j ∈ I,

|gi(z)| ≤ Cη,NC ′ | log |zj ||−N+1

|zj |

(∫

(∆∗)m−1

|zi − wi|| log |w′||−N

‖z′ − w′‖2(m−1)|w′
I′ |

dw′ ∧ dw′
)
,
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for some constant C ′ depending only on m and N (and the same with no |zj | on the
denominator when j /∈ I). This concludes the proof of the inductive step and hence the
proof of the lemma. �

Lemma 4.12. For any differential operator D, we have

D(Kη) = K(Dη).

Proof. By the change of variable u = z − w in the integral defining D(Kη) we have

D(Kη)(z) =
(m− 1)!

(2πi)m

m∑

i=1

D

(∫
Φi(u) ∧ Φ(z − u)

‖u‖2m ∧ η(z − u)

)

=
(m− 1)!

(2πi)m

m∑

i=1

∫
Φi(u) ∧Φ(z − u)

‖u‖2m ∧Dη(z − u)

= K(Dη).

In the above, we used differentiation under the integral because of absolute convergence
(Lemma 4.10), and the second equality follows from the fact that the coefficient function of
Φi(u)∧Φ(z−u)

‖u‖2m is independent of z. �

Before stating our main result, we recall the definition of the topology on the space of
rapidly decreasing differential forms.

Definition 4.13. The space of rapidly decreasing functions on (∆∗)m is equipped with the
Schwartz topology given be the family of semi-norms

pN,D(f) = sup
z

| log |z||N |Df(z)|,

where N ∈ N and D is as in definition 4.1. The space of rapidly decreasing differential
forms on (∆∗)m is a free module over rapidly decreasing functions as is equipped with the
induced topology.

We recall the reader that a sequence (ϕn)n∈N of rapidly decreasing functions converges
to 0 for the Schwartz topology if and only if, for all N and D, we have pN,D(ϕn) → 0 as
n → +∞.

Theorem 4.14. The Bochner-Martinelli formula induces a well defined continuous operator

K : A
0,q
rd → A

0,q−1
rd .

Moreover, if satisfies ∂K +K∂ = id.

Proof. To see that the operator is well defined, we need to prove that if η ∈ A
0,q
rd is a rapidly

decreasing form, then the integral defining Kη converges and gives a rapidly decreasing
differential form. First observe that one can restrict to the local situation and work on
(∆∗)m with coordinates (z1, . . . , zm). Let q > 0 and let η(z) =

∑
|I|=q fI(z)dzI be a rapidly

decreasing differential form of type (0, q). We have

(Kη)(z) =
∑

I

∑

i∈I

(∫

(∆∗)m

(zi − wi)f(w)

‖z − w‖2mwI
dw ∧ dw

)
dzI−{i}

It suffices to show that each differential form

ωi(z) =

(∫

(∆∗)m

(zi − wi)f(w)

‖z − w‖2mwI
dw ∧ dw

)
dzI−{i},
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is well defined and rapidly decreasing. Lemma 4.10 shows that all these integrals converge
absolutely. Lemma 4.11 shows that the first condition of rapidly decreasing (cf. Definition
4.1) is satisfied. Let D denote any differential operator as in Definition 4.1, then by Lemma
4.12 we know that

DωI =

(∫

(∆∗)m

(zi − wi)Df(w)

‖z − w‖2mwI
dw ∧ dw

)
dzI−{i},

and hence one can apply Lemma 4.11 to conclude that each ωi is rapidly decreasing. By
Lemma 4.11, the operator K is continuous for every semi-norm pN,D and hence is continuous
as an operator on the space of rapidly decreasing differential forms equiped with the Schwartz
topology. It follows from the Bochner-Martinelli-Koppelman formula ([32, Theorem 2.3])
that the identity ∂K + K∂ = id holds on the dense subspace of compactly supported
differential forms, and hence the result follows by continuity of the operator. �

4.4. Tempered currents. We now define sheaves of tempered currents by considering
continuous linear forms on rapidly decreasing forms and show that they are filtered quasi-
isomorphic to the cohomology of X.

Definition 4.15. For any 0 ≤ p, q ≤ d, we define the sheaf Dp,q of tempered currents to be
the sheaf on X assigning to any open set U ⊆ X the module Dp,q(U) of continuous complex

linear forms on the compactly supported sections Γc(U,A
d−p,d−q
rd ). Similarly we denote by

D∗
R as the dual of A ∗

si,R.

Remark 4.16. As in Definition 4.13. The space Γc(U,A
0
rd) of rapidly decreasing functions

on X is equipped with the usual Schwartz topology given be the family of semi-norms

pN,D(f) = sup
z

| log |z||N |Df(z)|,

where N ∈ N and D is as in definition 4.1.

Remark 4.17. Observe that the boundary D might intersect U and hence an element in
Γc(U,A

0
rd) is a function on U ∩X with growth conditions along D∩U . In particular, is has

compact support in U ⊆ X but not necessarily in X.

For any open subset U ⊆ X , let T ∈ Dp,q(U) and ω ∈ A
p′,q′

si (U). Since the product of
a slowly increasing differential form against a rapidly decreasing differential form is rapidly
decreasing, the formula

(ωT )(η) = T (ω ∧ η)

is a well defined element in Dp+p′,q+q′(U). This induces an A 0
si-bilinear map and hence a

map

A
p,q
si ⊗A 0

si
D

p′,q′ → D
p+p′,q+q′ ,

equipping D∗,∗ with a bigraded A
∗,∗
si -module.

Lemma 4.18. The map

A
p,q
si ⊗A 0

si
D

p′,q′ ∼= D
p+p′,q+q′

is an isomorphism.

Proof. To prove that this map is an isomorphism, we immediately reduce to the case where

p′ = q′ = 0. This map is injective since A
p,q
si is free over A 0

si. Let {dzI
zI

∧ dzJ ∧ dzI′
zI′

∧
dzJ ′}I,I′,J,J ′, where I, I ′ ⊆ {1, . . . , k}, J, J ′ ⊆ {k + 1, . . . , d} are such that |I| + |J | = p,
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|I ′| + |J ′| = q, be a basis of A
p,q
si (U) over A 0

si(U), where U ⊆ X is a sufficiently small
coordinate open subset. If T ∈ Dp,q(U), then, defining TI,J ∈ D0,0(U) by

TI,J(
dz[1,k]

z[1,k]
∧ dz[k+1,d] ∧

dz[1,k]

z[1,k]
∧ dz[k+1,d]) = T (

dzIc

zIc
∧ dzJc ∧ dzI′c

zI′c
∧ dzJ ′c),

where Ic = {1, . . . , k} − I, Jc = {k + 1, . . . , d} − J and idem for I ′c and J ′c, we have

T =
∑

I,J,I′,J ′

TI,J ⊗ (
dzI
zI

∧ dzJ ∧ zI′

zI′
∧ dzJ ′),

showing that the multiplication map is surjective. This finishes the proof. �

In fact, the proof of the lemma shows the following.

Corollary 4.19. The map

Ωp

X
(log D)⊗OX

D
0,q ∼= D

p,q

is an isomorphism.

By Lemma 4.18, for any coordinate open subset U ⊆ X, we can write any tempered
current T ∈ Dp,q(U) as a differential form with coefficients in tempered distributions:

T =
∑

I,I′,J,J ′

TI,J
dzI
zI

∧ dzJ ∧ zI′

zI′
∧ dzJ ′ ,

where TI,J ∈ Dd,d(U). The exterior derivative of smooth forms induces a differential d :
Dn → Dn+1 defined by

dT (ω) = (−1)n+1T (dω).

We have d = ∂+∂ with ∂ : Dp,q → Dp+1,q, ∂ : Dp,q → Dp,q+1 defined in the analogous way.
This defines complexes of sheaves of tempered currents D∗, D∗,∗ (with differentials d, ∂, ∂).
Since currents are modules over A 0

si all these complexes are complexes of fine sheaves. We

will denote by D∗,∗(X) the corresponding complexes of global sections. Moreover D∗ is
equipped with a Hodge filtration given by

F p
D

∗ =
⊕

p′≥p

D
p′,q.

For any open subset U ⊆ X , there is a natural way to associate to any form ω ∈ A
p,q
si (U) a

current Tω ∈ Dp,q(U) given by

Tω(η) =
1

(2πi)d

∫

U
ω ∧ η.

Using Lemma 4.18, the current Tω can also be described as the product of ω with the

normalised trace distribution in D0,0(U) defined by η ∈ A
d,d
rd (U) 7→ 1

(2πi)d

∫
U η. By Stokes

formula [4] we have dTω = Tdω, ∂Tω = T∂ω, etc., which implies that

A
∗
si → D

∗

is a filtered morphism of complexes.

Theorem 4.20. There is a filtered quasi-isomorphism

(A ∗
si, F ) → (D∗, F )

compatible with real structures.
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Proof. By Proposition 4.7, it suffices to show that there is a long exact sequence

0 → Ωp

X
(log D) → D

p,0 ∂−→ D
p,1 ∂−→ . . .

∂−→ D
p,d ∂−→ 0. (10)

We first reduce to the case p = 0. Assume that we have a long exact sequence

0 → OX → D
0,0 ∂−→ D

0,1 ∂−→ . . .
∂−→ D

0,d ∂−→ 0.

Since the sheaf Ωp

X
(log D) is a locally free OX -module of finite type, it is in particular flat

and we get a long exact sequence

0 → Ωp

X
(log D)⊗OX

OX → Ωp

X
(log D)⊗OX

D
0,0 ∂−→ . . .

∂−→ Ωp

X
(log D)⊗OX

D
0,d ∂−→ 0.

Hence the general case follows from Corollary 4.19.
Let us prove the case p = 0. By Theorem 4.14, we have a continuous operator

K : A
0,q
rd → A

0,q−1
rd .

The operator K induces an operator

K : D
0,q → D

0,q−1

defined via (KT )(ω) = T (Kω). This operator satisfies ∂K + K∂ = id, showing that the
complex of (10) is exact in the middle.

It remains to show that the kernel of ∂ : D0,0 ∂−→ D0,1 is precisely OX . It follows from the

regularity of the ∂-operator (cf. [19, p. 380]) that if T ∈ D0,0 is a current such that ∂T = 0,
then T = Tϕ for some holomorphic function ϕ on X. Since Tϕ is a tempered current, this

implies that ϕ is slowly increasing and hence holomorphic on the whole X by Lemma 4.6.
We illustrate this in the case of dimension one: the function ϕ is in fact holomorphic on X.
Indeed, arguing by contradiction, write ϕ(z) =

∑+∞
n=−∞ an(ϕ)z

n the Laurent expansion of ϕ
and assume without loss of generality that a−1(ϕ) 6= 0 and moreover that ϕ(z) = 1/z. Let
then ω = z dz

z ∧ dz
z . Then ω is a rapidly decreasing differential form but

∫

∆∗

1

z
ω =

∫

∆∗

dz ∧ dz

|z|2
does not converge, implying that T cannot be evaluated at the form ω. The case of higher
dimension reduces to the case of dimension 1. This finishes the proof of the proposition.

�

4.5. Application to DB-cohomology. We now apply the results obtained in the last
section to give some useful descriptions of DB-cohomology. We recall that DB-cohomology
is defined as

R(p)D := cone(Rj∗R(p)⊕ F pΩ∗
X
(logD) → Rj∗Ω

∗
X)[−1]. (11)

Let A ∗
si(X), resp. A ∗

si,R(p−1)(X), denote the global sections of the complex of sheaves A ∗
si,

resp. A ∗
si,R(p−1).

Proposition 4.21. There is a quasi-isomorphism

R(p)D ≃ cone(F p
A

∗
si(X) → A

∗
si,R(p−1)(X))[−1],

where the arrow is induced by the projection πp−1 : C → R(p − 1) defined by πp−1(z) =
z+(−1)p−1z

2 . In particular, we have canonical isomorphisms

Hn
D(X,R(p)) ≃

{(φ, φ′) ∈ F pA n
si (X)⊕ A

n−1
si,R(p−1)(X) | dφ = 0, dφ′ = πp−1(φ)}
d(φ̃, φ̃′)

, (12)
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Proof. This follows from Proposition 4.7 and Proposition 4.8. �

Remark 4.22. Let r1,1 : H1
M(X,Q(1)) → H1

D(X,R(1)) be Beilinson’s regulator. Recall the
canonical isomorphism O(X)× ⊗ Q ≃ H1

M(X,Q(1)). Then for u ∈ O(X)×, the Deligne

cohomology class r1,1(u⊗ 1) is represented by (d log(u), log |u|) ∈ F 1A 1
si(X)⊕ A 0

si,R(0)(X).

The following result is the key to the calculations of this article.

Theorem 4.23. We have

R(p)D = cone
(
F p

D
∗(X) → D

∗
R(p−1)(X)

)
[−1].

In particular, we have

Hn
D(X,R(p)) =

{(S, T ) : dS = 0, dT = πp−1(S)}
d(S̃, T̃ )

,

where (S, T ) ∈ F pDn(X)⊕ D
n−1
R(p−1)(X) and d(S̃, T̃ ) = (dS, dT − πp−1(S)).

Proof. This is a consequence of Proposition 4.7 and Theorem 4.20. �

In what follows, for (S, T ) ∈ F pDn(X)⊕D
n−1
R(p−1)(X) such that dS = 0 and dT = πp−1(S),

we will denote by [(S, T )] ∈ Hn
D(X,R(p)) the cohomology class of the pair (S, T ).

Proposition 4.24. Let x ∈ Hn
D(X/R,R(n)) be a Deligne–Beilinson cohomology class which

is represented, via the isomorphism of Proposition 4.21, by a pair (φ, φ′) of smooth slowly
increasing differential forms. Then via the isomorphism of Proposition 4.23, the class x is
represented by the pair of currents (Tφ, Tφ′).

Proof. This is immediate from Proposition 4.21 and the quasi-isomorphisms of Theorem
4.20. �

We also need to recall the functoriality of DB-cohomology for proper morphisms. Let
f : X ′ → X be a proper morphism of pure relative codimension c. Let X ′ denote a
smooth compactification of X ′ such that Y ′ = X ′ −X ′ is a simple normal crossing divisor.
Assume further that f extends to a morphism X ′ → X that we still denote by f and such
that f−1(Y ) = Y ′. By Poincaré duality between DB-cohomology [26, Theorem 1.15] and
homology and covariance of DB-homology by proper maps, one has a functorial map

f∗ : H
n
D(X

′,R(p)) → Hn+2c
D (X,R(p + c)).

If T is a tempered current on X
′
of type (p, q) then the formula

f∗T (ω) = T (f∗ω)

defines an element f∗T ∈ Dp+c,q+c(X).

Proposition 4.25. Via the isomorphism of Theorem 4.23, we have

f∗([(T, T
′)]) = [(f∗T, f∗T

′)].

Proof. The morphism f∗ on Betti cohomology coincides by construction with the usual
description of the pushforward given by Poincaré duality and covariance of Betti homology
for proper morphisms. The result then follows from [26] or [8, §5.5], precisely the discussion
after Corollary 5.49 of loc. cit.. �

We conclude with the construction of a linear form on DB-cohomology associated to
certain rapidly decreasing differential forms.
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Proposition 4.26. Let ω ∈ A n
rd(X) be a smooth closed rapidly decreasing differential form

of Hodge type components inside {(a, b) : a < p}. Then the assignment (S, T ) 7→ T (ω)
induces a map

〈−, ω〉 : Hn+1
D (X,R(p)) → C.

Proof. By Theorem 4.23 we have

Hn+1
D (X,R(p)) = {(S, T ) ∈ F p

D
n+1(X)⊕ D

n
R(p−1)(X)}/ ∼ .

In order to show that the linear form (S, T ) 7→ T (ω) is well defined at the level of cohomology,

we need to see that it vanishes at any coboundary. Let (S̃, T̃ ) ∈ F pDn+1(X)⊕Dn
R(p−1)(X).

We have d(S̃, T̃ ) = (dS̃, dT̃ − πp−1(S̃)) and we need to check that (dT̃ − πp−1(S̃))(ω) = 0.
We have

dT̃ (ω) = −T̃ (dω) = 0

since ω is closed. Moreover, S̃ ∈ F pDn+1(X), which implies that S̃ vanishes on forms of
type (a, b) with a < p, whence the result. �

5. Archimedean regulators and non-critical values of the Spin L-function

We now apply the general results of last section to the elements constructed in Definition
2.3. In this section, we fix neat levels U and V = H(Af )∩U and smooth toroidal compact-

ifications ShG(U) and ShH(V ) such that the boundaries are normal crossing divisors. By

[20, Proposition 3.4], it is possible to extend ι to a morphism ShH(V ) → ShG(U).

5.1. Integral expression for the pairing. Let

EisM : S0(Af ,Q)V1 → H7
M
(
ShG(U),Q(4)

)

denote the morphism defined in Definition 2.3. Recall that it is defined as the composite

S0(Af ,Q)V1
u−−−−→ H1

M(ShGL2(V1),Q(1))
p∗1,M−−−−→ H1

M
(
ShH(V ),Q(1)

)

ι∗,M−−−−→ H7
M
(
ShG(U),Q(4)

)
.

Let
rD : H7

M
(
ShG(U),Q(4)

)
→ H7

D
(
ShG(U),R(4)

)
⊗Q Q

denote Beilinson higher regulator.

Lemma 5.1. Let Φf ∈ S0(Af ,Q)V1 . Then, via the isomorphisms given by Theorem 4.23,
the cohomology class rD(EisM(Φf )) is represented by the pair of tempered currents

(ι∗Tp∗1 log |u(Φf )|, ι∗Tp∗1d log u(Φf )).

Proof. According to [26, §3.7], the regulator maps are morphisms between twisted Poincaré
duality theories. As a consequence, we have the commutative diagram

H1
M(ShGL2(V1),Q(1))

p∗1,M
−−−−−→ H1

M(ShH(V ),Q(1))
ι∗,M

−−−−−→ Hd+1
M

(ShG(U),Q(t))

rD





y

rD





y

rD





y

H1
D(ShGL2(V1)/R,R(1)) ⊗Q Q

p∗1,D
−−−−−→ H1

D(ShH(V )/R,R(1)) ⊗Q Q
ι∗,D

−−−−−→ Hd+1
D

(ShG(U)/R,R(t))⊗Q Q.

Via the isomorphism of Proposition 4.21, the morphism p∗1,D is induced by the pullback of
differential forms. The statement of the Lemma follows from Remark 4.22, Proposition 4.24
and Proposition 4.25. �



HIGHER REGULATORS OF SIEGEL SIXFOLDS 29

Let π = π∞ ⊗ πf be a cuspidal automorphic representation of G(A) with trivial central

character such that πU
f 6= 0. Writing π∞|G0(R) ≃ π1

∞ ⊕ π1
∞, we assume that

HomK∞

(
3∧
p+C ⊗C

3∧
p−C, π

1
∞

)
6= 0.

Following Lemma 3.4, we consider a cusp form Ψ = Ψ∞ ⊗ Ψf in the space of π such that
Ψ∞ is a highest weight vector of the minimal K∞-type τ1∞ of π1

∞ and such that Ψf is a

non-zero vector in πU
f and we let ωΨ be the associated harmonic cuspidal differential form.

Analogously we do it for π1
∞ at the place of π1

∞.

Theorem 5.2. Let Φf ∈ S0(Af ,Q)V1 . Then, we have

〈rD(EisM,n(Φ)), ωΨ〉 =
∫

ShH(V )
p∗1 log |u(Φf )|ι∗ωΨ.

Proof. According to Lemma 5.1, the DB-cohomology class rD(EisM,n(Φ)) ∈ H7
D(ShG(U),R(4))⊗

Q is represented by the pair of tempered currents (ι∗Tp∗1 log |u(Φf )|, ι∗Tp∗1d log u(Φf )). It follows

from [24, Proposition 2.6.1] that the differential form ωΨ is rapidly decreasing. As it is
moreover of Hodge type (3, 3), by Proposition 4.26 we have

〈rD(EisM,n(Φ)), ωΨ〉 = ι∗Tp∗1 log |u(Φf )|(ωΨ)

= Tp∗1 log |u(Φf )|(ι
∗ωΨ)

=

∫

ShH(V )
p∗1 log |u(Φf )|ι∗ωΨ.

This finishes the proof. �

5.2. The adelic integrals. We now use Kronecker limit formula to rewrite Theorem 5.2
in terms of values of adelic Eisenstein series. Throughout the section, we let π be a cuspidal
automorphic representation as in §5.1.

Fix the choice of a measure on H(A) as follows. For each finite place p of Q, we take
the Haar measure dhp on H(Qp) that assigns volume one to H(Zp). For the archimedean

place, we fix X0 := (X2e1 ∧ X2e2 ∧ X2e3) ⊗ (X−2e1 ∧ X−2e2 ∧ X−2e3) ∈ ∧6
hC/kH,C =

∧3p+H,C ⊗ ∧3p−H,C ⊆ ∧3p+C ⊗ ∧3p−C as the basis of the 1-dimensional subspace ∧6pH,C of

∧3p+C ⊗ ∧3p−C
2. Such a choice of basis induces an equivalence between top differential ω

forms on XH = H(R)/KH,∞ and invariant measures dωh∞ on H(R) assigning measure one
to KH,∞ (cf. [22, p. 83] for details). We then define dh = dωh∞

∏
p dhp.

Let A ∈ U(h) be the operator such that prτ(2,2,−4)
(X0) = A.X(2,2,−4), where prτ(2,2,−4)

:
∧3

p+C ⊗C

∧3
p−C → τ(2,2,−4) denotes the projector to the irreducible factor τ(2,2,−4) (cf.

Lemma 3.1). We give an explicit formula for A in Lemma 5.4 below.
After applying Proposition 2.1 and Lemma 5.1, Theorem 5.2 implies the following.

Theorem 5.3. Let Φf ∈ S0(A
2
f ,Q)V1 and let ωΨ be as in Theorem 5.2. We have

〈rD(EisM(Φf )), ωΨ〉 =
hV

vol(V )

∫

H(Q)ZG(A)\H(A)
E(h1,Φ, 0)(A.Ψ)(h)dh, (13)

where hV = 2−2|ZG(Q)\ZG(Af )/(ZG(Af ) ∩ V )|.
2by a slight abuse of language, we denote by X0 the vector in ∧

6pH,C as well as its image in ∧
3p+C⊗∧

3p−C
by ι, this should cause no confusion
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Proof. Recall that Theorem 5.2 gives

〈rD(EisM(Φf )), ωΨ〉 =
∫

ShH(V )
ξ ∧ ι∗ωΨ,

where, by Lemma 5.1 and Proposition 2.1, ξ = pr∗1 log |u(Φf )| = pr∗1E(g,Φ, 0). Thanks to
the equivalence between top differential forms on XH and invariant measures on H(R) ex-
plained above, we pass from integrating over ShH(V ) to integrating over H(Q)ZG(A)\H(A).
More precisely, we have

∫

ShH(V )
ξ ∧ ι∗ωΨ =

∫

H(Q)\H(A)/ZH(R)KH,∞V
E(h1,Φ, 0)ωΨ(X0)(h)dh

= hV

∫

H(Q)ZG(A)\H(A)/V
E(h1,Φ, 0)ωΨ(X0)(h)dh

=
hV

vol(V )

∫

H(Q)ZG(A)\H(A)
E(h1,Φ, 0)ωΨ(X0)(h)dh,

where we have used that |ZH(R)/(ZG ∩ H)(R)| = 22. Finally, note that ωΨ(X0)(h) =
(A.Ψ)(h) by definition of ωΨ. This proves the desired formula. �

We finish this section by giving an explicit formula for the projector A of the theorem.

Lemma 5.4. Up to renormalizing X0 by an explicit non-zero rational factor, the projections
of X0 to τ(2,2,−4) and τ(4,−2,−2) are given, respectively, by A.X(2,2,−4) and A′.X(4,−2,−2), where

A = Ad2Xe3−e2
◦Ad2Xe3−e1

, A′ = Ad2Xe2−e1
◦Ad2Xe3−e1

.

Proof. Recall that X0 is a weight (0, 0, 0)-vector (with respect to the action of hC) in ∧3p+C⊗
∧3p−C. Thus, we may write X0 = Y ⊕ αx(2,2,−4), where Y belongs to the complement of

τ(2,2,−4) in the decomposition of ∧3p+C⊗∧3p−C as the sum of its weight subspaces (cf. Example
3.1), the vector x(2,2,−4) is a generator of the one dimensional weight (0, 0, 0)-eigenspace of

τ(2,2,−4), and α is a scalar. We can assume x(2,2,−4) = Ad2Xe3−e2
◦Ad2Xe3−e1

(X(2,2,−4)), where

X(2,2,−4) = X2e1 ∧X2e2 ∧Xe1+e2 ⊗X−e1−e3 ∧X−e2−e3 ∧X−2e3 is a highest weight vector for

τ(2,2,−4). Since the the weight (2, 2,−4) has multiplicity one in ∧3p+C ⊗ ∧3p−C, we have that

Ad2Xe1−e3
◦Ad2Xe2−e3

(Y ) = 0 and hence

Ad2Xe1−e3
◦Ad2Xe2−e3

(X0) = αAd2Xe1−e3
◦Ad2Xe2−e3

◦Ad2Xe3−e2
◦Ad2Xe3−e1

(X(2,2,−4)).

A direct computation 3 shows that

• Ad2Xe1−e3
◦Ad2Xe2−e3

(X0) = 26X(2,2,−4),

• Ad2Xe1−e3
◦Ad2Xe2−e3

◦Ad2Xe3−e2
◦Ad2Xe3−e1

(X(2,2,−4)) = 2103252X(2,2,−4).

Therefore, the projection of X0 to τ(2,2,−4) is 1
3600x(2,2,−4). The other projection follows

(with the same coefficient) by applying the action of complex conjugation. This finishes the
proof of the Lemma. �

Finally, we use the main result of [42] to write the adelic integral calculating the archimedean
regulator in terms of a special value of a Spin L-function for GSp6.

3The authors have found Sage package for Lie groups very useful for these computations.
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5.3. The Spin L-function. Recall the following.

Definition 5.5. For a character χ of Q×
ℓ , define

L(χ, s) :=

{
(1− χ(ℓ)ℓ−s)−1 if χ|

Z
×

ℓ

= 1

1 otherwise.

Let χ0, χ1, χ2, χ3 be smooth characters of Q×
ℓ . They define an unramified character χ of

the Borel Bℓ = TℓUB,ℓ of G(Qℓ), which is trivial on the unipotent radical UB,ℓ, and on the
diagonal torus Tℓ is

d = diag(a, b, c, µa−1, µb−1, µc−1) 7→ χ(d) := χ1(a)χ2(b)χ3(c)χ0(µ).

The modular character of the Borel subgroup δBℓ
: Tℓ → C is given by

diag(a, b, c, µa−1, µb−1, µc−1) 7→ |a|6|b|4|c|2
|µ|6 .

Definition 5.6. The (normalized) principal series representation πℓ(χ) = πℓ(χ0, χ1, χ2, χ3)
is the representation of G(Qℓ) whose underlying vector space is the space of functions f :
G(Qℓ) → C satisfying

f (dng) = |a|3|b|2|c|
|µ|3 χ(d)f(g),

for every d = diag(a, b, c, µa−1, µb−1, µc−1) and u ∈ UB,ℓ, and where the action of G(Qℓ) is
given by right-translation.

Definition 5.7. Let πℓ = πℓ(χ) be an irreducible principal series. It’s Spin L-factor is
defined as

L(πℓ,Spin, s) := L(χ0, s)
3∏

k=1

∏

1≤i1<···<ik≤3

L(χ0χi1 · · ·χik , s).

Now let π = π∞⊗⊗′
ℓ πℓ be a cuspidal automorphic representation of G(A) and let Σ be

a finite set of primes containing all the bad finite primes for π.

Definition 5.8. The partial Spin L-function of π is defined as

LΣ(π,Spin, s) :=
∏

ℓ 6∈Σ
L(πℓ,Spin, s).

5.4. The integral representation of the Spin L-function. Let π be a cuspidal auto-
morphic representation of G(A) with trivial central character. Denote by I(Φ,Ψ, s) the
integral ∫

H(Q)ZG(A)\H(A)
E(h1,Φ, s)Ψ(h)dh,

where Φ ∈ S(A2) and Ψ is a cusp form in the space of π. Here, we assume that Φ and Ψ
are factorizable.

5.4.1. Fourier coefficients of type (4 2). Let O be the unipotent orbit of G associated to the
partition (4 2). To such O one can define a set of Fourier coefficients as follows. Denote by
hO the one-dimensional torus

t 7→ diag(t3, t, t, t−3, t−1, t−1)

attached to O (cf. [11, p. 82]). Given any positive root α (for the action of the diagonal
torus of G), there is a non-negative integer n such that

hO(t)xα(u)hO(t)
−1 = xα(t

nu),
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where xα denotes the one-parameter subgroup associated to α. Let U2(O) denote the sub-
group of the unipotent radical UB of the standard Borel B of G generated by the xα such
that n ≥ 2. If α 6= e′2 − e′3, then n ≥ 2, thus U2(O) coincides with the unipotent radical UP

of the standard parabolic P with Levi GL2
1 ×GL2, given by

{( a
g
µa−1

µtg−1

)
: a, µ ∈ GL1, g ∈ GL2

}
.

Let L = Q(
√
D) be an étale quadratic extension of Q and let χ : UP (Q)\UP (A) → C× be

the non-degenerate unitary character associated to L as in [42, §2.1].

Definition 5.9. Let Ψ be a cusp form in the space of π. Define the Fourier coefficient

Ψχ,UP
(g) :=

∫

UP (Q)\UP (A)
χ−1(u)Ψ(ug)du.

We say that π supports a Fourier coefficients of type (4 2) if Ψχ,UP
6= 0 for some choice of

Ψ and L. Our main results will concern automorphic cuspidal representations π supporting
a non-zero Fourier coefficient of type (4 2). The following lemma shows that, under some
mild assumptions, the cuspidal automorphic representations that we consider in this article
always support such a non-zero coefficient.

Lemma 5.10. Let π = π∞ ⊗ πf be an automorphic cuspidal representation of G(A) with

trivial central character and such that π∞ = π3,3
∞ ⊕ π3,3

∞ (cf. Lemma 3.3). Assume that π
does not admit a non-trivial cuspidal theta lift to the split orthogonal group SO12(A). Then
π admits a non-zero Fourier coefficient of type (4 2).

Proof. We first observe that, by [18, Theorem 2.7], π admits a non-zero Fourier coefficient of
type (6), (4 2) or (2 2 2). The former case corresponds to π being generic. We will show that,
according to our Hodge type and the assumption of the lemma, π cannot have a Fourier
coefficient of either type (6) or (2 2 2).

We first show that, since π∞ is of Hodge type (3, 3), it cannot be generic. Recall that,
after [47, Proposition 6.19], one can read the Hodge type of a discrete series representation
defined by an element w ∈ WSp6

/WK∞
(notations are as in §3.3) as follows. The element

w induces a reordering of the roots and the Hodge type of the discrete series representation
(and hence of the cuspidal form π) is (p, q), where p (resp. q) is the number of positive
(resp. negative) simple non-compact roots. Moreover, it is well known (cf. for instance [36,
Proposition 4.1]) that π is generic exactly when w = w3, w6 in the notation of the proof
of Lemma 3.3, which are of Hodge type (4, 2) and (2, 4). We conclude that π cannot be
generic, i.e. it does not support a Fourier coefficient of type (6).

Now, suppose that π admits a non-zero Fourier coefficient of type (2 2 2). By [17, Main
Theorem B], π lifts to a non-trivial cuspidal representation on SO12(A). This contradicts
our hypotheses, thus proving the result. �

Remark 5.11. Observe that [17, Main Theorem A] implies that, if π supports a Fourier
coefficient of type (4 2), then it admits a non-trivial theta lift to SO12(A), but this lift will
not be cuspidal.

5.4.2. The unfolding. Recall the following.

Proposition 5.12 ([16], Proposition 7.1). The integral I(Φ,Ψ, s) unfolds to∫

UBH
(A)ZG(A)\H(A)

f(h1,Φ, s)Ψχ,UP
(h)dh,
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where UBH
is the unipotent radical of the Borel BH of H and f(h1,Φ, s) is the normalised

section defined in §2.3.1.

As explained in [42], the Fourier coefficient Ψχ,UP
might not factorise in general, thus

Proposition 5.12 does not imply that I(Φ,Ψ, s) factors into an Euler product; however, in
[42], the authors define and study local integrals corresponding to this unfolded integral,
and use them to relate the global integral I(Φ,Ψ, s) to values of the Spin L-function of π,
as we now recall.

5.4.3. Connection with values of the Spin L-function. Recall that we have taken π = π∞ ⊗
(⊗pπp) to be a cuspidal automorphic representation of G(A) with trivial central character.
We further suppose that π supports a Fourier coefficient of type (4 2), i.e. that there is a
cusp form Ψ in the space of π such that Ψχ,UP

is not identically zero.
We now recall following [42] the definition of the local integrals corresponding to I(Φ,Ψ, s)

and their properties. We start with the following definition.

Definition 5.13. A (UP , χ)-model for πp is a linear functional Λ : πp → C such that

Λ(u · v) = χ(u)Λ(v),

for all v ∈ πp and u ∈ UP .

For a (UP , χ)-model Λ for πp, a vector v in the space of πp, and Φp ∈ S(Q2
p,C), define

Ip(Φp, v, s) :=

∫

UBH
(Qp)ZG(Qp)\H(Qp)

f(g1,Φp, s)Λ(g · v)dg,

where f(g,Φp, s) ∈ Ind
GL2(Qp)
BGL2

(Qp)
(δsBGL2

) denotes the function

|det(g)|s
∫

GL1(Qp)
Φp((0, t)g)|t|2sdt.

One has the following.

Proposition 5.14 ([42] Theorem 1.1, Proposition 5.1).

(1) If p is a finite odd prime and πp is unramified, let v0 ∈ πp be a spherical vector and
let Φp = char(Z2

p); then, for any (UP , χ)-model Λ for πp, we have

Ip(Φp, v0, s) = Λ(v0)L(πp,Spin, s).

(2) If πp is ramified and v0 is a vector in πp, then there exists a vector v in πp and a

function Φp ∈ S0(Q
2
p,Q) such that for all (UP , χ)-models Λ

Ip(Φp, v, s) = Λ(v0).

Remark 5.15. As explained in the proof of [42, Proposition 5.1], in the case of a finite bad
place p, one can choose Φp to be char((0, 1) + pnZp), with n a suitable positive integer
depending on v0.

Finally, consider the archimedean integral

I∞(Φ∞,Ψ, s) :=

∫

UBH
(R)ZG(R)\H(R)

f(h1,Φ∞, s)Ψχ,UP
(h)dh. (14)

This integral has been studied in [16], where it is shown that it can be made non-zero at
arbitrary s = s0 if one has some freedom on the choice of Φ∞ and Ψ∞.
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5.5. The regulator computation. We now state and prove one of the main results of this
manuscript.

Let π = π∞ ⊗ (⊗′

pπp) be a cuspidal automorphic representation of G(A) with trivial
central character, such that

(DS) π∞ is a discrete series whose restriction to Sp6(R) is π3,3
∞ ⊕ π̄3,3

∞ ,
(FC) there exists a factorizable cusp form Ψ = Ψ∞⊗Ψf in the space of π which admits a

non-zero Fourier coefficient of type (4 2) associated to a real étale quadratic extension

L/Q, and such that Ψ∞ is a highest weight vector of the minimal K∞-type of π3,3
∞ .

Remark 5.16. In view of Lemma 5.10, the existence of a Fourier coefficient of type (4 2) might
be partly replaced by asking that π lifts to a non-cuspidal automorphic representation of the
split SO12(A). Furthermore, notice that if π does not support such a Fourier coefficient,
the following results will still be true but all the terms will vanish.

Let us fix a neat open compact subgroup U =
∏

p Up of G(Af ), for which Ψf ∈ πU
f , and

Φf = ⊗pΦp ∈ S0(A
2
f ,Q)V1 , with V1 = pr1(U ∩H), which satisfy the following. Let Σ be a

finite set of primes containing ∞ and all the bad finite primes for π; for every prime p 6∈ Σ,
we set Up = G(Zp) and Φp = char(Z2

p). Then, we have the following.

Theorem 5.17. Assume (DS), (FC) and that Ψ is invariant under G(Zp) for every p 6∈ Σ.
Then we have

〈rD(EisM(Φf )), ωΨ〉 = CV lim
s→0

(
IΣ(ΦΣ, A.ΨΣ, s)L

Σ(π,Spin, s)
)
,

where LΣ(π,Spin, s) =
∏

p 6∈Σ L(πp,Spin, s), and

IΣ(Φ, A.Ψ, s) :=

∫

UBH
(AΣ)ZG(AΣ)\H(AΣ)

f(h1,ΦΣ, s)(A.Ψ)χ,UP
(h)dh,

the operator A is defined in Lemma 5.4 and CV = hV
vol(V ) are as in Theorem 5.3.

Proof. This follows from Theorem 5.3 and Proposition 5.14. For the sake of clarity, we give
a sketch of its proof, following [40].

Recall that, from Theorem 5.3 and Proposition 5.12, we have

〈rD(EisM(Φf )), ωΨ〉 = CV

∫

H(Q)ZG(A)\H(A)
E(h1,Φ, 0)Ψ

′(h)dh

= CV

∫

UBH
(A)ZG(A)\H(A)

f(h1,Φ, 0)Ψ
′
χ,UP

(h)dh

=: CV I(Φ,Ψ
′, 0),

where we denote CV = hV
vol(V ) and Ψ′ = A.Ψ.

We now study the quantity I(Φ,Ψ′, 0). Given a finite set of primes S containing Σ, define

IS(Φ,Ψ
′, s) :=

∫

UBH
(AS)ZG(AS)\H(AS )

f(h1,ΦS , s)Ψ
′
χ,UP

(h)dh, (15)

where ΦS =
∏

v∈S Φv. Then, in the range of convergence

I(Φ,Ψ′, s) = lim
Σ⊆S

IS(Φ,Ψ
′, s).

Notice that, by [42, Theorem 2.7], if p 6∈ S,

IS∪{p}(Φ,Ψ
′, s) = L(πp,Spin, s)IS(Φ,Ψ

′, s).



HIGHER REGULATORS OF SIEGEL SIXFOLDS 35

Indeed, IS∪{p}(Φ,Ψ
′, s) equals to

∫

UBH
(AS )ZG(AS)\H(AS )

f(h1,ΦS , s)

(∫

UBH
(Qp)ZG(Qp)\H(Qp)

f(h1,p,Φp, s)Ψ
′
χ,UP

(hph)dhp

)
dh.

As p 6∈ Σ, πp is unramified at p. Fix a spherical vector v0 for πp; as Ψ′ is invariant under the
action of G(Zp), there is a G(Zp)-equivariant map ϕp : πp → π sending v0 to Ψ′. Thus, for
a fixed h ∈ G(AS), the functional Λh : πp → C defined by Λh(v) := ϕp(v)χ,UP

(h) is clearly
a (UP , χ)-model and Λh(hp · v0) = Ψ′

χ,UP
(hph). Proposition 5.14(1) implies then

∫

UBH
(Qp)ZG(Qp)\H(Qp)

f(h1,p,Φp, s)Ψ
′
χ,UP

(hph)dhp

=

∫

UBH
(Qp)ZG(Qp)\H(Qp)

f(h1,p,Φp, s)Λh(hp · v0)dhp

= L(πp,Spin, s)Λh(v0)

= L(πp,Spin, s)Ψ
′
χ,UP

(h),

which implies the desired equality.
Taking the limit varying the set S ⊇ Σ, we get

I(Φ,Ψ′, 0) = lim
s→0

(
IΣ(Φ,Ψ

′, s)LΣ(π,Spin, s)
)
,

which implies the result. �

The following Corollary studies further the finite integral IΣ(Φ, A.Ψ, s). For this, we fix
the components at finite bad primes of our Schwartz function Φ and the level. If p ∈ Σ is a
finite place, we let Φp = char((0, 1) + pnZ2

p), and

Up = {g ∈ G(Zp) : g ≡ I ( mod pn)} ,
with n the positive integer given by Proposition 5.14(2) and Remark 5.15.

Corollary 5.18. Let Ψ and ωΨ be as in Theorem 5.17. Then, there exist Ψ̃ = Ψ∞ ⊗ Ψ̃f in

π, with Ψf and Ψ̃f coinciding outside Σ, such that

〈rD(EisM(Φf )), ωΨ̃〉 = CV lim
s→0

(
I∞(Φ∞, A.Ψ, s)LΣ(π,Spin, s)

)
,

where

I∞(Φ∞, A.Ψ, s) =

∫

UBH
(R)ZG(R)\H(R)

f(h1,Φ∞, s)(A.Ψ)χ,UP
(h)dh.

Proof. Let p ∈ Σ be a finite place. As Ψ is factorizable and πp irreducible, there exists a
G(Qp)-equivariant map ϕp : πp → π, which sends vp 7→ A.Ψ, where the vector vp ∈ πp
denotes the local component of A.Ψ. By the choice of Φp, Proposition 5.14 (2) produces a
vector ṽp in πp which depends on vp, such that for all (UP , χ)-models Λ of πp

Ip(Φp, ṽp, s) = Λ(vp).

For a fixed h ∈ G(AΣr{p}), define the functional Λh : πp → C as Λh(v) := ϕp(v)χ,UP
(h).

This is a (UP , χ)-model for πp and Λh(hp · v) = ϕp(v)χ,UP
(hph). We have that, for this

model Λh,∫

UBH
(Qp)ZG(Qp)\H(Qp)

f(h1,p,Φp, s)Λh(hp · ṽp)dhp = Λh(vp) = (A.Ψ)χ,UP
(h).
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Now one proceeds similarly to the proof of Theorem 5.17 to use this equality to show that

IΣ(Φ, A.Ψ̃, s) = I∞(Φ∞, A.Ψ, s),

where the cusp form Ψ̃ coincides with Ψ at ∞ and away from Σ, and has component ṽp at

each p ∈ Σ. Finally, since Ψ̃ and Ψ coincide almost everywhere as well as at ∞, the result
follows from Theorem 5.17.

�

We conclude with two remarks on the non-triviality of the limiting value

lim
s→0

(
I∞(Φ∞, A.Ψ, s)LΣ(π,Spin, s)

)
.

Remark 5.19. The archimedean integral I∞(Φ∞, A.Ψ, s) is expected to be equal to the
Gamma factor of the completed Spin L-function as predicted by the rule of Serre. This would
imply that it has a pole at s = 0 of order equal to the order of vanishing of LΣ(π,Spin, s)
at s = 0. The analogous expectation in the case of GSp4 was confirmed in the articles [35],
[38].

Remark 5.20. It follows from [16, Proposition 12.1] that the archimedean integral can be
made non-zero at arbitrary s = s0 if one has some freedom on the choice of Φ∞ and Ψ∞.
This shows that the archimedean integral does not vanish identically. However their result
is not enough for our purposes as Ψ∞ is fixed to be in the minimal K∞-type of π3,3

∞ .

5.6. A remark on the non-vanishing of the regulator. We have the following direct
consequence of Theorem 5.17 regarding the non-vanishing of motivic cohomology.

Let N denote the positive integer defined as the product of prime numbers ℓ such that
πℓ is ramified. The fact that π∞ is cohomological implies that there exists a number field
L whose ring of integers OL contains the eigenvalues of the spherical Hecke algebra Hsph,N

away from N and with coefficients in Z acting on
⊗′

ℓ∤N π
G(Zℓ)
ℓ . We let θπ : Hsph,N → L

denote the Hecke character of π and we let mπ := ker(θπ).

Corollary 5.21. We assume that there exists an automorphic representation π of G(A)
and a cusp form Ψ in π, which satisfy all the running assumptions of Theorem 5.17 and
such that

lim
s→0

(
I∞(Φ∞, A.Ψ, s)LΣ(π,Spin, s)

)
6= 0.

Then, the class EisM(Φf ) is non-trivial and thus the localisation H7
M(ShG(U),Q(4))mπ is

non-zero.

By assuming spin functoriality for π and by using a generalisation of the prime number
theorem due to Jacquet and Shalika [25], we can improve the corollary by establishing that
the non-vanishing of our pairing relies on the non-vanishing of the archimedean integral, as
we now explain.

Let Spin : LG → LGL8 denote the homomorphism between L-groups induced by the spin
representation Spin : GSpin7 → GL8. Roughly, Langlands’ functoriality would predict the
existence of a spin lift to GL8 for π, i.e. the existence of an automorphic representation Π of
GL8(A) whose L-parameter φΠv at each place v is obtained from composing the L-parameter
φπv of πv with Spin, thus implying that

L(π,Spin, s) = L(Π, s),

where the latter denotes the standard L-function associated to Π.
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Remark 5.22. In [31], a potential version of spin functoriality is discussed and proved. If we
further assume that π∞ is spin-regular (cf. [31]), the result [31, Theorem C], which builds
upon [1, Theorem A], produces a cuspidal automorphic representation Π of GL8(AF ), over
a finite totally real extension F/Q, with the desired properties. For instance, at each finite
place v of F above an odd prime p 6∈ Σ one has L(Πv , s) = L(πp,Spin, s).

Corollary 5.23. Let Ψ and ωΨ be as in Theorem 5.17. Suppose that there exists a cuspidal
spin lift Π to GL8 of π and that

I∞(Φ̂∞, A.Ψ, 1) 6= 0,

where Φ̂ denotes the Fourier transform of Φ. Then, the class EisM(Φf ) is non-zero and thus

the localisation H7
M(ShG(U),Q(4))mπ is non-zero.

Proof. Recall that the Eisenstein E(g,Φ, s) satisfies the functional equation

E(g,Φ, s) = E(g, Φ̂, 1− s).

This implies that

I(Φ,Ψ, s) = I(Φ̂,Ψ, 1 − s) = IΣ(Φ̂,Ψ, 1− s)LΣ(π,Spin, 1 − s).

Since LΣ(π,Spin, s) = LΣ(Π, s), by Corollary 5.18, we get that

〈rD(EisM(Φf )), ωΨ̃
〉 =

Q
× lim

s→1

(
I∞(Φ̂∞, A.Ψ, s)LΣ(Π, s)

)
.

We now claim that LΣ(Π, 1) 6= 0. In [25], it is shown that L(Π, s) 6= 0 for any s with
Re(s) = 1. Writing

LΣ(Π, s) = L(Π, s)
∏

p∈Σ
L(Πp, s)

−1,

our claim follows from the fact that each Euler factor L(Πp, s) has no pole in the region
Re(s) ≥ 1

2 (e.g. [44, p. 317]). The result follows. �
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