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ALGEBRAIC CYCLES AND FUNCTORIAL LIFTS FROM G2 TO PGSp6

ANTONIO CAUCHI, FRANCESCO LEMMA AND JOAQUÍN RODRIGUES JACINTO

Abstract. We establish instances of Beilinson–Tate conjectures for automorphic repre-
sentations of PGSp6 whose Spin L-function has a pole at s = 1. Using the exceptional
theta correspondence between the split group of type G2 and PGSp6 and assuming the
non-vanishing of a certain archimedean integral, this allows us to confirm a conjecture of
Gross and Savin on rank 7 motives of type G2.
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1. Introduction

In this paper we establish a connection between algebraic cycles in Siegel sixfolds and the
residue at s = 1 of Spin L-functions of automorphic representations of GSp6, as predicted by
conjectures of Beilinson and Tate. Moreover, we exploit an exceptional theta correspondence
between the split group of type G2 and PGSp6 to answer a question of Gross and Savin.

1.1. Motivation. Let π = π∞⊗πf be a cohomological cuspidal automorphic representation
of PGSp6(A), let M(πf ) denote the Spin Chow motive with coefficients in a number field
L conjecturally attached to π and let L(s,M(πf )(3)) be its Hasse-Weil L-function. Let

rH : H1
M(M(πf )(4)) ⊕N(M(πf )(3)) → H1

H(M(πf )(4))

denote Beilinson-Deligne regulator. Here H1
M(M(πf )(4)) denotes the first motivic cohomol-

ogy group of M(πf )(4), the group N(M(πf )(3)) denotes algebraic cycles in M(πf )(3) up to
homological equivalence and H1

H(M(πf )(4)) denotes the first absolute Hodge cohomology
group of M(πf )(4).

Conjecture 1.1. (Beilinson–Tate)

(1) The map rH induces an isomorphism

(H1
M(M(πf )(4)) ⊕N(M(πf )(3))) ⊗Q R → H1

H(M(πf )(4)),

(2) ords=0L(s,M(πf )(3)) = dimLH
1
M(M(πf )(4)),

1
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(3) −ords=1L(s,M(πf )(3)) = dimLN(M(πf )(3))

(4) det(Im rH) = L∗(1,M(πf )(3))D(M(πf )(4)), where D(M(πf )(4)) denotes the Deligne
L-structure of det(H1

H(M(πf )(4)).

In [9], we studied the contribution of the motivic cohomology to this conjecture. This
corresponds to the case where L(s,M(πf )(3)) does not have a pole at s = 1. In this arti-
cle, we focus on the contribution of algebraic cycles, which corresponds to the case where
L(s,M(πf )(3)) has a simple pole at s = 1.

The ℓ-adic étale realization Mℓ(πf ) of M(πf ) is expected to be a GL8(Qℓ)-valued Galois

representation factoring through the Spin representation Spin : Spin7(Qℓ) → GL8(Qℓ). If
L(s,M(πf )(3)) has a pole at s = 1, Conjecture 1.1 (3) implies the existence of an invari-

ant vector in this 8-dimensional Galois representation. As the stabilizer in Spin7(Qℓ) of a
generic vector in the Spin representation is the exceptional group G2(Qℓ), by Langlands
reciprocity principle, π should be a functorial lift from a group G of type G2. In fact, we
have Spin|G2

= Std⊕1, where Std denotes the standard representation of G2 and 1 denotes

the trivial representation. Then, if σ is a cuspidal automorphic representation of G(A) lift-
ing to π, Gross and Savin [27] conjectured that the motive M(πf ) decomposes as the direct
sum of the rank 7 motive M(σf ) attached to σ and the rank 1 trivial motive generated by
the class given in Conjecture 1.1. Moreover, inspired by local calculations, they conjectured
that this class should arise from a Hilbert modular threefold.

1.2. Main results. Let F denote a real étale quadratic Q-algebra, i.e., F is either a
quadratic extension of Q or Q × Q. Associated to the totally real étale cubic algebra
E = Q × F of Q there is a Hilbert modular threefold ShH/Q, with underlying reductive
group H = {g ∈ ResE/QGL2,E | det(g) ∈ Gm}. The group H embeds naturally into
G = GSp6 and one has a closed embedding ι : ShH →֒ ShG of codimension 3 in the Shimura
variety attached to G, which is the Siegel variety of dimension 6. For any irreducible al-
gebraic representation V of G such that ι∗V contains the trivial representation of H, the
cycle ShH of ShG induces a class

ZH,M ∈ H6
M(ShG,VM(3)),

where VM is the Chow local system associated to V and H6
M(ShG,VM(3)) is the motivic co-

homology group of ShG with coefficients in VM(3). We denote by ZH,H ∈ H7
H(ShG,VH(4)),

resp. ZH,B ∈ H6
B(ShG,VB(3)) the image of ZH,M in absolute Hodge cohomology, resp.

Betti cohomology (see Definition 3.11 for the definition of ZH,H). Let π be a cuspidal auto-
morphic representation of PGSp6(A) whose archimedean component belongs to the discrete
series L-packet of V and has Hodge type (3, 3). For a cusp form Ψ in the space of π, whose
archimedean component is in the minimal K-type of π∞, we have a vector valued harmonic
differential form ωΨ whose cohomology class [ωΨ] is an element of H6

dR,c(ShG,VdR). Poincaré
duality induces maps

〈·, [ωΨ]〉B : H6
B(ShG,VB(3)) → C,

〈·, [ωΨ]〉H : H7
H(ShG,VH(4)) → C.

The pairings 〈ZH,B , [ωΨ]〉B and 〈ZH,H, [ωΨ]〉H are computed in terms of the residue of a
certain adelic integral of Rankin-Selberg type considered in [48]. In loc. cit. it is shown that,
if π supports certain Fourier coefficient associated to F , then the local factors at unramified
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places v of this integral represent the degree 8 local spin L-function L(s, πv,Spin) of πv. The
following result gives evidence for Conjecture 1.1 for the motive associated to π.

Theorem 1.2 (Theorem 5.12). Let π = π∞ ⊗ πf be a cuspidal automorphic representation
of PGSp6(A) such that π∞ is a discrete series of Hodge type (3, 3) in the discrete series
L-packet of V . If the integral IS(Φ,Ψ, 1) defined in Theorem 5.8 is non-zero for some
Schwartz-Bruhat function Φ, then

〈ZH,B , [ωΨ]〉B = 〈ZH,H, [ωΨ]〉H = C ·Ress=1L
S(s, π,Spin),

where C is a non-zero constant.

Remark 1.3. We point out that, according to [17, Proposition 12.1] there exist a Schwartz-
Bruhat function Φ and a vector Ψ ∈ Vπ such that IS(Φ,Ψ, 1) is non-zero. However we do
not know if this holds for Ψ∞ in the minimal K-type of π∞.

As a corollary of this theorem, one can deduce, under the additional assumption that π is
the Steinberg representation at a finite place, a weak version of Conjecture 1.1(1) (Theorem
8.4) and Conjecture 1.1(3) (Corollary 5.13).

When Ress=1L
S(s, π,Spin) is non-zero then (cf. [48, Theorem 1.3]) π is a weak functorial

lift of a cuspidal automorphic representation σ of G2(A), where G2 is the split form of the
exceptional group of type G2. Moreover (cf. Proposition 8.1), we have

Ress=1L
S(s, π,Spin) = LS(1, σ,Std)Ress=1ζ

S(s).

Hence the theorem above gives a cohomological formula for the critical value LS(1, σ,Std).

Our second main theorem concerns the program of Gross and Savin on rank seven motives
of Galois type G2. The first step towards the conjecture of Gross and Savin was done by Kret
and Shin in [41], where they more generally constructed GSpin-valued Galois representations
associated to cohomological cuspidal automorphic forms of symplectic groups. Moreover,
based on the calculations of [27], they verified ([41, Theorem 11.1]) that, for suitable au-
tomorphic representations of PGSp6 in the image of the exceptional theta correspondence
from the compact form Gc2 of type G2, the image of their Galois representation lies actually
in G2(Qℓ). More precisely, let ρπ be the Spin7(Qℓ)-valued Galois representation attached
to π. Assuming that π is a theta lift of σ, we have

Spin ◦ ρπ = Std ◦ ρσ ⊕ 1 (1)

where Std ◦ ρσ is the standard Galois representation attached to σ. We obtain a similar de-
composition using the exceptional theta correspondence from the split form G2 (cf. Theorem
8.8).

Theorem 1.4 (Theorem 8.11). Let σ =
⊗′

v σv be an irreducible cuspidal automorphic
representation of G2(A) such that:

• σ∞ is a quaternionic discrete series,
• σp is the Steinberg representation for some prime number p.

Let π be a theta lift of σ to PGSp6(A). Assume that the integral IS(Φ,Ψ, 1) is non-zero for
some Φ and Ψ as above. Then, the trivial representation 1 in (1) is generated by the étale
realization of ZH,M.

We conclude this introduction explaining a result used as an intermediate step in the
proof of Theorem 1.4 which has its own interest. By a result of Gan [15, Theorem 3.1], every
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cuspidal automorphic representation σ of G2(A) supports a Fourier coefficient associated to
an étale cubic algebra E.

Theorem 1.5 (Theorem 7.2, Proposition 7.13). Let σ be a cuspidal automorphic represen-
tation of G2(A). Assume that

• σ is not globally generic;
• σp is generic at some finite place p.

Then the big theta lift Θ(σ) is cuspidal. Moreover, σ supports a Fourier coefficient associated
to Q×F , for some étale quadratic algebra F , if and only if Θ(σ) supports a rank 2 Fourier
coefficient associated to F .

Remark 1.6. The assumptions of Theorem 1.5 are implied by the ones of Theorem 1.4 as
the quaternionic discrete series are not generic, while the Steinberg representation is.

1.3. Overview of the proofs. The main difficulty for calculating the pairing of Theorem
1.2 between the motivic class and the cohomology class [ωΨ] resides on the fact that the first
class is constructed from the decomposition into irreducible components of the restriction of
V to the subgroup H, while the test vector is constructed from its restriction to the maximal
compact subgroup U(3) of G(R). One needs to carefully study the relationship between
these two different decompositions (Theorem 4.2). As a consequence we get a formula for
the pairing in terms of a period integral (Proposition 4.8 and Proposition 4.10). These
adelic integrals are in turn related to the residue of the partial Spin L-function of π by
means of the work of Pollack and Shah (Proposition 5.10), which allows to conclude the
proof. Theorem 1.4 follows basically from Theorem 1.2 and 1.5. The proof of Theorem 1.5
goes as follows. We first prove (Theorem 7.2 and Corollary 7.3) that σ lifts to a cuspidal
representation using the tower of exceptional correspondences for G2 studied in [23], which
reduces the problem to the vanishing of certain automorphic period integrals. Finally, we
establish (Proposition 7.13) a correspondence between Fourier coefficients of σ and its theta
lift, which in particular implies the non-vanishing of the latter.

1.4. Structure of the manuscript. In section 2 we fix notation, conventions, and basic
results that will be useful in the body of the article. In particular, we prove that, under some
mild assumptions, the localization at a maximal ideal of the Hecke algebra of the cohomology
of the Siegel sixfold is cuspidal and concentrated in the middle degree. We also introduce
Absolute Hodge cohomology and compute the dimension of its πf -isotypical component. In
section 3 we explain the construction of the motivic class ZM and its realizations. In Section
4 we construct the harmonic differential form ωΨ associated to a suitable cuspidal form Ψ
in the space of π and we prove our first main result concerning the calculation of the pairing
between the motivic class and the cohomology class [ωΨ]. In Section 5, we use the results
of Pollack and Shah to relate the pairing to the residue of the Spin L-function. Sections
6 and 7 are devoted to the study of the exceptional theta correspondence between G2 and
PGSp6 and contain the proof of Theorem 1.5. Finally, in Section 8 we relate the pairing to
a critical value of the standard L-function of G2. We also deduce from the work of Kret and
Shin the existence of Galois representations attached to certain cuspidal representations of
G2 and we conclude with a proof of Theorem 1.4.

1.5. Acknowledgements. We would like to heartily thank David Ginzburg for sharing
with us the proof of Lemma 7.1. We also thank Nadir Matringe and Aaron Pollack for
fruitful exchanges. We thank Marc-Hubert Nicole and Vincent Pilloni for comments on
an earlier draft of the article. The first named author was supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
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programme (grant agreement No. 682152). The third named author was supported by the
ERC-2018-COG-818856-HiCoShiVa.

2. Preliminaries

2.1. Algebraic groups and algebraic representations. Let ψ denote an antisymmetric
non-degenerate bilinear form on a finite dimensional Q-vector space V . The symplectic
group GSp(V, ψ) is the Q-group scheme defined by

GSp(V, ψ) = {g ∈ GL(V ) | ∀v,w ∈ V, ψ(gv, gw) = ν(g)ψ(v,w), ν(g) ∈ Gm}
Then ν : GSp(V, ψ) → Gm is a character. Let In denote the identity matrix of size n. When

V is the Q-vector space Q2n endowed with the bilinear form whose matrix is J =
(

0 In
−In 0

)
,

we let GSp2n denote GSp(Q2n, J) and we let Sp2n denote ker ν. In this paper, we are mainly
interested in the case n = 3. Hence we will denote by G the group GSp6 and by G0 the
group Sp6. Let T ⊂ G denote the maximal diagonal torus and B ⊂ G denote the standard
Borel. We have

T =
{
diag(α1, α2, α3, α

−1
1 ν, α−1

2 ν, α−1
3 ν), α1, α2, α3, ν ∈ Gm

}
.

We associate to any 4-uple (λ1, λ2, λ3, c) ∈ Z4 such that c ≡ λ1 + λ2 + λ3 (mod 2) the
algebraic character λ(λ1, λ2, λ3, c) of T defined by

λ(λ1, λ2, λ3, c) : diag(α1, α2, α3, α
−1
1 ν, α−1

2 ν, α−1
3 ν) 7→ αλ11 α

λ2
2 α

λ3
3 ν

c−λ1−λ2−λ3
2 .

This defines an isomorphism between the group of 4-uples (λ1, λ2, λ3, c) ∈ Z4 such that
c ≡ λ1+λ2+λ3 (mod 2) and the group of algebraic characters of T. Let ρ1 = λ(1,−1, 0, 0)
and ρ2 = λ(0, 1,−1, 0) denote the short simple roots and let ρ3 = λ(0, 0, 2, 0) denote the
long simple root. The set of roots of T in G is R = R+ ∪R− where

R+ = {ρ1, ρ2, ρ1 + ρ2, ρ2 + ρ3, ρ1 + ρ2 + ρ3, ρ1 + 2ρ2 + ρ3, 2ρ1 + 2ρ2 + ρ3, 2ρ2 + ρ3, ρ3}
is the set of positive roots with respect to B and R− = −R+. A weight λ = λ(λ1, λ2, λ3, c)
is dominant for B if λ1 ≥ λ2 ≥ λ3 ≥ 0. For any such λ, there exists a unique (up to
isomorphism) irreducible algebraic representation V λ of G of highest weight λ and every
irreducible algebraic representation of G is obtained in this way (up to isomorphism). Sim-
ilarly, irreducible algebraic representations of GSp4 are classified by their highest weight
which is a character of the shape λ(λ1, λ2, c) with λ1 ≥ λ2 ≥ 0 and λ1 + λ2 ≡ c (mod 2)
(see for example [44, §2.3] for more details). We will also use the classification of irreducible
algebraic representations of the groups G0 = Sp6 and Sp4. Hence let us recall that the
diagonal maximal torus T0 = T ∩G0 of G0 is

T0 =
{
diag(α1, α2, α3, α

−1
1 , α−1

2 , α−1
3 ), α1, α2, α3 ∈ Gm

}
.

and that its group of algebraic characters is isomorphic to Z3 via (λ1, λ2, λ3) 7→ λ(λ1, λ2, λ3)
where

λ(λ1, λ2, λ3) : diag(α1, α2, α3, α
−1
1 , α−1

2 , α−1
3 ) 7→ αλ11 α

λ2
2 α

λ3
3 . (2)

A weight λ = λ(λ1, λ2, λ3) is dominant with respect to the standard Borel B0 = B ∩
G0 if λ1 ≥ λ2 ≥ λ3 ≥ 0 and for any such λ there exists a unique (up to isomorphism)
irreducible algebraic representation V λ of G0 of highest weight λ and every irreducible
algebraic representation of G0 is obtained in this way (up to isomorphism). Similarly,
irreducible algebraic representations of Sp4 are classified by characters λ(λ1, λ2) with λ1 ≥
λ2, with obvious notation.



6 ANTONIO CAUCHI, FRANCESCO LEMMA AND JOAQUÍN RODRIGUES JACINTO

2.2. Compact Lie groups and representations. Let U(n) = {g ∈ GLn(C) | tgg = In}
denote the unitary group and let K∞ ⊂ G0(R) be the subgroup defined as

K∞ =
{(

A B
−B A

)
| AAt +BBt = 1, ABt = BAt

}
.

We have an isomorphism κ : U(3) ≃ K∞ defined by A + iB 7→
(
A B
−B A

)
. In fact K∞ is a

maximal compact subgroup of G0(R). Let T∞ ⊂ K∞ denote {κ(diag(z1, z2, z3)), z1, z2, z3 ∈
U(1)}. Then T∞ is Cartan subgroup of K∞. Its group of algebraic characters is isomorphic
to Z3 via (λ1, λ2, λ3) 7→ λ′(λ1, λ2, λ3), where

λ′(λ1, λ2, λ3) : κ(diag(z1, z2, z3)) 7→ zλ11 zλ22 zλ33 .

An algebraic character is dominant if λ1 ≥ λ2 ≥ λ3. For any dominant integral weight
λ′, there exists a unique (up to isomorphism) irreducible representation τλ′ of K∞ in a
finite dimensional C-vector space and every irreducible representation of K∞ is obtained
in this way (up to isomorphism). In what follows, we will simply denote the irreducible
representation of highest weight λ′(λ1, λ2, λ3) by τ(λ1,λ2,λ3). Let us explain the connection
between the weights λ of T0 defined by equation (2) in the previous section and the weights

λ′ defined above. Let J ∈ G0(C) denote the matrix J = 1√
2

(
I3 iI3
iI3 I3

)
. Then we have

J−1κ(diag(z1, z2, z3))J = diag(z1, z2, z3)

and so, for any (λ1, λ2, λ3) ∈ Z3, we have

λ(λ1, λ2, λ3)(J
−1κ(z1, z2, z3)J) = λ′(λ1, λ2, λ3)(diag(z1, z2, z3)).

In brief, the character λ′(λ1, λ2, λ3) of T∞ is conjugated to the restriction of λ(λ1, λ2, λ3) to
U(1)3 ⊂ C× ×C× ×C× = T0(C).

2.3. Lie algebras. Let g0, resp. k, denote the Lie algebra of G0(R), resp. K∞, and let
g0,C, resp. kC, denote its complexification. Then

g0 =
{(

A B
C D

)
∈M6(R) | B = Bt, C = Ct, A = −Dt, B = Bt

}
,

k =
{(

A B
−B A

)
∈M6(R) | A = −At, B = Bt

}
.

The Lie algebra k is the 1-eigenspace for the Cartan involution θ(X) = −Xt. The (−1)-
eigenspace is p =

{(
A B
B −A

)
∈M6(R) | A = At, B = Bt

}
. Letting

p±C =
{(

A ±iA
±iA −A

)
∈M6(C) | A = At

}
,

we have pC = p+C ⊕ p−C and one has the Cartan decomposition

g0,C = kC ⊕ p+C ⊕ p−C.

For 1 ≤ j ≤ 3, let Dj ∈M3(C) be the matrix with entry 1 at position (j, j) and 0 elsewhere.

Define Tj =
( 0 Dj

−Dj 0

)
. Then the Lie algebra h of T∞ is h = R · T1 ⊕ R · T2 ⊕ R · T3.

This is a compact Cartan subalgebra of g0. Let (e1, e2, e3) denote the basis of h∗C dual to
(−iT1,−iT2,−iT3). A system of positive roots for (g0,C, hC) is then given by

{e1 ± e2, e1 ± e3, e2 ± e3, 2e1, 2e2, 2e3}.
The simple roots are e1−e2, e2−e3 and 2e3. We note that p+C is spanned by the root spaces
corresponding to the positive roots of type 2ej and ej+ek. We denote ∆ = {±2ej ,±(ej±ek)}
the set of all roots, ∆c = {±(ej − ek)} the set of compact roots and ∆nc = ∆ − ∆c the
non-compact roots. Finally, we note ∆+,∆+

c and ∆+
nc the set of positive, positive compact

and positive non-compact roots, respectively.
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2.4. Weyl groups. Recall that the Weyl group of G0 is given by WG0 = {±1}3⋊S3. The
reflection σj in the hyperplane orthogonal to 2ej simply reverses the sign of ej while leaving
the other ek fixed. The reflection σjk in the hyperplane orthogonal to ej − ek exchanges ej
and ek and leaves the remaining eℓ fixed. The Weyl group WK∞ of K∞ ∼= U(3) is isomorphic
to S3 and, via the embedding into G, identifies with the subgroup of WG0 generated by
the σjk. With the identification WG0 = N(T0)/Z(T0), an explicit description of WG0 and

WK∞ is given as follows. The matrices corresponding to the reflections σjk are
( Sjk 0

0 −Sjk

)
,

where Sjk is the matrix with entry 1 at places (ℓ, ℓ), ℓ 6= j, k, (k, j) and (j, k) and zeroes
elsewhere. The matrices corresponding to the reflection σj in the hyperplane orthogonal to

2ej are of the form
( 0 Uj

−Uj 0

)
, where Uj denotes the diagonal matrix with −1 at the place

(j, j) and ones at the other entries of the diagonal. This gives an explicit description of the
elements of WK∞ and their length:

WK∞ = {1, σ12, σ13, σ23, σ12σ13, σ12σ23}
ℓ(•)−−→ {0, 1, 1, 1, 2, 2}.

2.5. Discrete series. We recall standard facts on discrete series for G0(R) = Sp6(R) and
for PGSp6(R). For any non-singular weight Λ define

∆+(Λ) := {α ∈ ∆ | 〈α,Λ〉 > 0}, ∆+
c (Λ) = ∆+(Λ) ∩∆c,

where 〈 , 〉 is the standard scalar product on R3. Let λ = (λ1, λ2, λ3) be a weight of T∞
such that λ1 ≥ λ2 ≥ λ3 ≥ 0 and let ρ = 1

2

∑
α∈∆+ α = (3, 2, 1). As |WG0/WK∞ | = 8, by [39,

Theorem 9.20], the set of equivalence classes of irreducible discrete series representations of
G0(R) with Harish-Chandra parameter λ + ρ contains 8 elements. More precisely, choose
representatives {w1, . . . , w8} of WG0/WK∞ of increasing length and such that for any 1 ≤
i ≤ 8, then the weight wi(λ + ρ) is dominant for K∞. The representatives, defined by
their action on ρ, are w1(3, 2, 1) = (3, 2, 1), w2(3, 2, 1) = (3, 2,−1), w3(3, 2, 1) = (3, 1,−2),
w4(3, 2, 1) = (2, 1,−3), w5(3, 2, 1) = (3,−1,−2), w6(3, 2, 1) = (2,−1,−3), w7(3, 2, 1) =
(1,−2,−3), w8(3, 2, 1) = (−1,−2,−3). Then, for any 1 ≤ i ≤ 8, there exists an irreducible
discrete series πΛ∞, where Λ = wi(λ + ρ), of Harish-Chandra parameter Λ and containing
with multiplicity 1 the minimal K∞-type with highest weight Λ + δG0 − 2δK∞ where δG0 ,
resp. δK∞ , is the half-sum of roots, resp. of compact roots, which are positive with respect
to the Weyl chamber in which Λ lies, i.e., 2δG0 :=

∑
α∈∆+(Λ) α, 2δK∞ :=

∑
α∈∆+

c (Λ) α.

Moreover, for i 6= j, Λ = wi(λ+ ρ), Λ = wj(λ+ ρ), the representations πΛ∞ and πΛ∞ are not

equivalent and any discrete series of G0 is obtained in this way. Let V λ be the irreducible
algebraic representation of G0 of highest weight λ = (λ1, λ2, λ3) (for T0).

Definition 2.1. The discrete series L-packet P (V λ) associated to λ is the set of isomorphism
classes of discrete series of G0(R) whose Harish-Chandra parameter is of the form Λ =
wi(λ+ ρ) as i varies.

By [7, Theorem II.5.3], for each πΛ∞ ∈ P (V λ), the space

HomK∞

(
6∧
g0,C/kC ⊗ V λ, πΛ∞

)

has dimension 1. This is a consequence of the fact (cf. the proof of [7, Theorem II.5.3])

that the minimal K∞-type of πΛ∞ appears uniquely in
∧6

g0,C/kC ⊗ V λ. Using the Cartan
decomposition, we get

6∧
g0,C/kC =

⊕

p+q=6

p∧
p+C ⊗C

q∧
p−C.
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Hence, there exists a unique pair (p, q) such that HomK∞

(∧p
p+C ⊗∧q

p−C ⊗ V λ, πΛ∞
)

is non-

zero and hence of dimension one. We call such a pair (p, q) the Hodge type of πΛ∞.

Lemma 2.2. There exist two elements π3,3∞,1 and π3,3∞,1 in P (V λ) of Hodge type (3, 3).
They are characterized by having Harish-Chandra parameters (λ2 + 2, λ3 + 1,−λ1 − 3) and
(λ1+3,−λ3− 1,−λ2− 2) and minimal K∞-types τ(λ2+2,λ3+2,−λ1−4) and τ(λ1+4,−λ3−2,−λ2−2)

respectively.

Proof. The discrete series π3,3∞,1 and π3,3∞,1 correspond to the Weyl representatives w4 and

w5. Since w4λ = (λ2, λ3,−λ1) and w5λ = (λ1,−λ3,−λ2), the Harish-Chandra parameters

of π3,3∞,1 and π3,3∞,1 are as desired. When Λ = w4(λ+ ρ) (resp. Λ = w5(λ+ ρ)), observe that

δG0 equals to (2, 1,−3) (resp. (3,−1,−2)), while δK∞ = (1, 0,−1) in both cases. Hence,

using the formula above, the minimal K∞-types of π3,3∞,1 and π3,3∞,1 are τ(λ2+2,λ3+2,−λ1−4) and
τ(λ1+4,−λ3−2,−λ2−2) respectively.

Recall that, after [56, Proposition 6.19], the Hodge type of a discrete series representation
of Harish-Chandra parameter Λ is (p, q), where p (resp. q) is the number of positive non-
compact roots in ∆+(Λ) (resp. ∆−(Λ)). Using this, one easily checks that the Hodge type

of π3,3∞,1 and π3,3∞,1 is (3, 3).
�

The picture for PGSp6(R) is similar, but the set of its Harish-Chandra parameters changes
slightly. This is due to the fact that, since its maximal compact subgroup has two connected
components, the set of parameters has to be considered up to the action of WK∞ and
of w8, as the latter, which is the anti-diagonal matrix with all entries −1, now belongs
to the connected component away from the identity of the maximal compact subgroup.
Concretely, any parameter µ = (µ1, µ2, µ3) has to be identified with w8µ = (−µ3,−µ2,−µ1).
If λ = (λ1, λ2, λ3) is such that λ1 ≥ λ2 ≥ λ3 ≥ 0 and

∑
i λi ≡ 0 (mod 2), then the irreducible

algebraic G-representation V (λ,0) of highest weight λ(λ1, λ2, λ3, 0) defines a representation
of PGSp6. The corresponding discrete series L-packet P (V (λ,0)) for PGSp6(R) has thus four

elements. Any element π∞ ∈ P (V (λ,0)) of Harish-Chandra parameter µ, viewed as a G(R)-
representation, decomposes when restricted to G0(R) as the direct sum of two discrete series
in P (V λ) of Harish-Chandra parameters µ and w8µ. As a consequence, for any such π∞,
the space

H6
(
g,KG;π∞ ⊗ V (λ,0)

)
= HomKG

(
6∧
gC/Lie(KG)C, π∞ ⊗ V (λ,0)

)
,

where g = Lie(G), gC is its complexification and KG = R×
+K∞, is 2-dimensional. The

discussion above implies the following.

Lemma 2.3. Let λ = (λ1, λ2, λ3) be a dominant weight for G0 such that
∑

i λi ≡ 0 (mod 2).
Then there exists a unique discrete series π3,3∞ ∈ P (V (λ,0)) of PGSp6(R), with Harish-
Chandra parameter (λ2 + 2, λ3 + 1,−λ1 − 3), such that

π3,3∞ |G0(R)
= π3,3∞,1 ⊕ π3,3∞,1.

We will refer to π3,3∞ as the discrete series of PGSp6(R) in P (V (λ,0)) of Hodge type (3, 3).

2.6. Shimura varieties. Let F denote a real étale quadratic Q-algebra, i.e. F is either a
totally real quadratic extension of Q or Q ×Q. Denote by GL∗

2,F /Q the subgroup scheme
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of ResF/QGL2,F sitting in the Cartesian diagram

GL∗
2,F

� � //

��

ResF/QGL2,F

det

��
Gm

� � // ResF/QGm,F .

For instance, when F = Q×Q, we have

GL∗
2,F = {(g1, g2) ∈ GL2 ×GL2 | det(g1) = det(g2)}.

Let H denote the group

H = GL2 ⊠GL∗
2,F = {(g1, g2) ∈ GL2 ×GL∗

2,F | det(g1) = det(g2)}. (3)

We embed H into G as follows. Let us consider the Q× F -module

V := Qe1 ⊕ Fe2 ⊕Qf1 ⊕ Ff2,

where V1 := Qe1 ⊕Qf1 and V2 := Fe2 ⊕ Ff2 are respectively the standard representations
of GL2 and GL∗

2,F . We equip V with the Q×F -valued alternating form ψ′ : V ×V → Q×F,
such that ψ′(e1, f1) = (1, 0), ψ′(e2, f2) = (0, 12) and V1 is orthogonal to V2. The group H

acts naturally on V and preserves ψ′ up to a scalar. We can regard V as a 6-dimensional
Q-vector space with Q-valued symplectic form ψ := tr(Q×F )/Q ◦ ψ′. Explicitly, we have

ψ(ae1 + αe2, bf1 + βf2) = ab+ 1
2 trF/Q(αβ).

This identification defines an embedding H →֒ GSp(V, ψ). We now identify GSp(V, ψ) with
G by choosing a suitable Q-basis of V . Recall that the set of real quadratic Q-algebras
is parametrized by D ∈ Q×

>0/(Q
×
>0)

2, via D 7→ F = Q ⊕Q
√
D. Using the decomposition

F = Q⊕Q
√
D, we consider the Q-basis of V given by

{e1, e2, e3, f1, f2, f3} :=
{
e1, e2,

√
De2, f1, f2,

1√
D
f2

}
.

In this basis, ψ is represented by the matrix J =
(

0 In
−In 0

)
, thus we obtain and isomorphism

GSp(V, ψ) ≃ G and the embedding

ι : H →֒ G.

Note that the group

H′ := GL2 ⊠GSp4 := {(g1, g2) ∈ GL2 ×GSp4 | det(g1) = ν(g2)},
is also naturally embedded in G and ι factors through H′.

Recall from [9, §2.2] that there is a 3-dimensional Shimura variety ShH associated to the
H(R)-conjugacy class of

h : S −→ H/R, x+ iy 7→
(( x y

−y x
)
,
( x y
−y x

)
,
( x y
−y x

))
,

where S = ResC/RGm/C is the Deligne torus. The associated Shimura datum has reflex
field is Q and the Shimura variety ShH can be described as follows. If V ⊆ H(Af ) is a fibre
product (over the similitude characters) V1 ×A×

f
V2 of sufficiently small subgroups, we have

ShH(V ) = ShGL2(V1)×Gm ShGL∗
2,F

(V2),

where ×Gm denotes the fibre product over the zero dimensional Shimura variety of level
W = det(V1) = det(V2). The connected components are given by

π0(ShH(V )(C)) = Ẑ×/W.
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Hence, ShH can be thought as the fibre product of a modular curve and a Hilbert-Blumenthal
modular surface. We also recall that the complex points of ShH(V ) are given by

ShH(V )(C) = H(Q)\H(A)/ZH(R)KH,∞V,

where ZH denotes the center of H and KH,∞ ⊆ H(R) is the maximal compact defined as
the product U(1)×U(1) ×U(1).

The embedding ι : H →֒ G induces a Shimura datum for G whose reflex field is Q.
For any sufficiently small compact open subgroup U of G(Af ), denote by ShG(U) the
associated Shimura variety of dimension 6. We also write ι : ShH(U ∩H) →֒ ShG(U) the
closed embedding of codimension 3 induced by the group homomorphism ι : H →֒ G.

2.7. Cohomology of Siegel sixfolds. Let π be a cuspidal automorphic representation
of G(A) having non-zero fixed vectors by a neat compact open group U ⊆ G(Af ). We
assume that π has trivial central character and hence we regard it as a cuspidal automorphic
representation of PGSp6(A). Our purpose is to establish that, under mild assumptions,
suitable localizations at π of cuspidal, L2, inner Betti and Betti cohomologies coincide and
are concentrated in the middle degree. The assumptions are the following.

(DS) the archimedean component π∞ is a discrete series representation of PGSp6(R),
(St) at a finite place p the component πp is the Steinberg representation of PGSp6(Qp).

Let us fix for the rest of this section λ = (λ1, λ2, λ3) ∈ Z3 satisfying λ1 ≥ λ2 ≥ λ3 ≥ 0 and∑
λi ≡ 0 (mod 2). We will denote by V , without mentioning λ anymore, the irreducible

algebraic representation of G of highest weight (λ, 0). As V has trivial central character,
it will be considered as an irreducible representation of PGSp6. Then π∞ belongs to the
discrete series L-packet P (V ). As a consequence

H6(g,KG;π∞ ⊗ V ) = HomKG

(
6∧
gC/Lie(KG)C;π∞ ⊗ V

)
6= 0,

where KG = R×
+K∞.

There are natural inclusions of spaces of C-valued functions

C∞
cusp(G(Q)\G(A)) ⊆ C∞

rd (G(Q)\G(A)) ⊆ C∞
(2)(G(Q)\G(A)) ⊆ C∞(G(Q)\G(A)),

where these spaces denote, respectively, the space of cuspidal square-integrable functions,
rapidly decreasing functions, square-integrable functions and smooth functions, and

C∞
c/center(G(Q)\G(A)) ⊆ C∞

rd (G(Q)\G(A)),

where the first space is the space of compactly supported modulo the center functions (for
the precise definition of these spaces, we refer to [6]). Tensoring by V the inclusions above
and applying the (g,KG)-cohomology functor, we obtain the natural maps

H•
cusp(ShG(U),VC) // H•

rd(ShG(U),VC) // H•
(2)(ShG(U),VC) // H•(ShG(U),VC),

H•
c (ShG(U),VC)

OO

where VC is the C-local system associated to V . Let H•
! (ShG(U),VC) denote the image

of H•
c (ShG(U),VC) in H•(ShG(U),VC). Let N denote the positive integer defined as the

product of prime numbers ℓ such that πℓ is ramified. The fact that π∞ is cohomological
implies that there exists a number field L whose ring of integers OL contains the eigenvalues
of the spherical Hecke algebra Hsph,N away from N and with coefficients in Z acting on
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⊗′
ℓ∤N π

G(Zℓ)
ℓ . Let Hsph,N

L denote the spherical Hecke algebra away from N with coefficients

in L, let θπ : Hsph,N
L → L denote the Hecke character of π and let mπ := ker(θπ). Considering

the localization at mπ of the above cohomology groups, we have the following result.

Proposition 2.4. Let π satisfy the hypothesis (DS) and (St) above. Then

H•
cusp(ShG(U),VC)mπ = H•

(2)(ShG(U),VC)mπ = H•
! (ShG(U),VC)mπ = H•(ShG(U),VC)mπ .

Proof. By [6, Theorem 5.3 & Corollary 5.5], the compositions of the horizontal maps

H•
cusp(ShG(U),VC) →֒ H•

∗ (ShG(U),VC),

for ∗ ∈ {rd, (2), ∅}, are injections. By [6, Theorem 5.2], one has an isomorphism

H•
c (ShG(U),VC) ∼= H•

rd(ShG(U),VC).

Hence, if the equality H•
cusp(ShG(U),VC)mπ = H•

(2)(ShG(U),VC)mπ holds, we have

H•
cusp(ShG(U),VC)mπ = H•

(2)(ShG(U),VC)mπ = H•
! (ShG(U),VC)mπ .

We show the former equality as follows. By [5, §4],

H•
(2)(ShG(U),VC) =

⊕

σ⊂L2
d

σUf ⊗H•(g,KG;σ∞ ⊗ V )m(σ), (4)

where σ runs over the set of isomorphism classes of automorphic representations appearing
in the discrete spectrum L2

d of L2(Z(A)G(Q)\G(A)). Similarly,

H•
cusp(ShG(U),VC) =

⊕

σ⊂L2
0

σUf ⊗H•(g,KG;σ∞ ⊗ V )m0(σ),

where σ runs over the set of isomorphism classes of automorphic representations in the
cuspidal spectrum L2

0 ⊂ L2
d. From (4), we can write

H•
(2)(ShG(U),VC)mπ =

⊕

σ=σ∞⊗σf
σUf ⊗H•(g,KG;σ∞ ⊗ V )m(σ),

where σ ∈ L2
d is such that σ

G(Zℓ)
ℓ ≃ π

G(Zℓ)
ℓ 6= 0 at all ℓ ∤ N . Notice that the latter implies

that σNf ≃ πNf , where for any automorphic representation τ we have denoted τNf = ⊗ℓ∤Nτℓ.

By [41, Lemma 8.1(2)], the Steinberg condition implies that the representation πℓ is tempered
and unitary at each ℓ ∤ N (as π has trivial central character). Thus, if σ contributes
non-trivially to the above sum, its local component at a finite place ℓ ∤ N is tempered.
This implies that σ is necessarily cuspidal and thus appears in H•

cusp(ShG,VC)mπ with
multiplicity m0(σ) = m(σ). This last statement follows from the fact that any non-cuspidal
automorphic representation appearing in L2

d is obtained as a residue of an Eisenstein series
and in particular it is non-tempered at every place (cf. [42, Proposition 4.5.4]). We are left
to show that

H•
(2)(ShG(U),VC)mπ = H•(ShG(U),VC)mπ .

Recall that Franke’s decreasing filtration on the space of automorphic forms for G(A) (cf.
[57, §4.7]) yields a spectral sequence Ep,q1 ⇒ Hp+q(ShG(U),VC), where

Ep,q1 =
⊕

(w,P )∈B(p)
ℓ(w)≤p+q

⊕

σ=σ∞⊗σf
(Ind

G(Af )

P (Af )
σf )

U ⊗Hp+q−ℓ(w)(m,KM ;σ∞ ⊗Ww(λ+ρ)−ρ),

where, for all p ∈ Z≥0, B(p) denotes a certain subset depending on p of elements (w,P ) (cf.

[57, §4.8]), with w ∈ WG and P =M ·UP a standard parabolic subgroup of G, Ww(λ+ρ)−ρ
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denotes the irreducible algebraic representation of M of highest weight w(λ+ ρ)− ρ, and
σ runs over the set of isomorphism classes of automorphic representations appearing in the
discrete spectrum of L2(ZM (A)M(Q)\M(A)). By the proof of [41, Lemma 8.1(1)], we
have that Ep,q1,mπ

are zero unless when (w,P ) = (1,G), in which case there exists a unique
p0 ∈ Z≥0, for which

Ep,q1,mπ
=

{
Hp+q

(2)
(ShG(U),VC)mπ if p = p0,

0 otherwise.

Thus, the spectral sequence for the localization degenerates at the first page and gives

Hp0+•
(2) (ShG(U),VC)mπ = Ep0,•1,mπ

= Hp0+•(ShG(U),VC)mπ .

�

Proposition 2.5. Let π satisfy the hypothesis (DS) and (St) above. Then, we have

H•(ShG(U),VC)mπ = H6(ShG(U),VC)mπ 6= 0.

Proof. Suppose that τf contributes to H i(ShG(U),VC)mπ . As we noted in the proof of
Proposition 2.4, this implies that, for every ℓ ∤ N , τℓ ≃ πℓ is tempered and unitary (cf.
[41, Lemma 8.1(2)]). Let us fix ℓ ∤ N ; the action of the Frobenius correspondence on
intersection cohomology Frobℓ on IH i(ShG(U),VC)[τf ] and thus on H i(ShG(U),VC)[τf ] is

pure of weight i, i.e. its eigenvalues all have absolute value ℓi/2 (cf. [46, Remark 7.2.5]). On
the other hand, by the congruence relation conjectured in [4, §6] and verified in [59], Frobℓ
is a root of the Hecke polynomial

Hℓ(T ) := det(T − ℓ3spin(Frℓ ⋉ ĝ)),

which is a polynomial in T whose coefficients are elements in the coordinate ring of the set

of Frℓ-conjugacy classes of semisimple elements of Ĝ(C) = GSpin7(C), for Frℓ a Frobenius
element in the Weil group of Qℓ. By the untwisted Satake isomorphism, we can see Hℓ(T )
as a polynomial with coefficients in the spherical Hecke algebra H(G(Qℓ)//G(Zℓ),Q) (cf.
[59, (2.2.1) & Corollary (2.8)]) and thus we can denote by Hℓ(T ; τℓ) the specialization of
Hℓ(T ) to τℓ, i.e.

Hℓ(T ; τℓ) = det(T − ℓ3spin(φτℓ(Frℓ))),

where φτℓ is the unramified Langlands parameter of τℓ. The congruence relation gives that
Hℓ(Frobℓ; τℓ) = 0 on IH•(ShG(U),VC)[τf ], which implies that the eigenvalues of Frobℓ on
IH•(ShG(U),VC)[τf ] are a subset of the ones of ℓ3spin(φτℓ(Frobℓ)). As τℓ is tempered, all
the eigenvalues of spin(φτℓ(Frℓ)) have absolute value equal to 1 (cf. [25, §6]). Hence the
eigenvalues of ℓ3spin(φτℓ(Frℓ)), and thus of Frobℓ, have all absolute value equal to ℓ3. In par-
ticular, H i(ShG(U),VC)[τf ] is zero unless i = 6. Finally, notice that H6(ShG(U),VC)mπ 6= 0
as the assumption (DS) implies H6(ShG(U),VC)[πf ] 6= 0. �

Remark 2.6. The proof of Proposition 2.5 is similar to the one of [41, Proposition 8.2], where
the proof is carried on with a trace formula argument.

2.8. Hodge theory. We keep the same notation as §2.7. In particular, π = π∞ ⊗ πf is a
cuspidal automorphic representation of G with trivial central character which satisfies (DS)
and (St), with π∞ ∈ P (V ) for some irreducible algebraic representation V of G as above.

Let V denote the Q-local system on ShG(U) attached to V . We can take the πf -isotypic
component H6

B,∗[πf ] of H6
∗ (ShG(U),VC), where ∗ ∈ {∅, !} and where VC denotes V ⊗Q C.

Propositions 2.4 and 2.5 imply

H•
B[πf ] = H•

B,![πf ] = H6
B,![πf ] 6= 0. (5)
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By [4, (2.3.1)] (see also [53, Proposition 2.15]), if L is a sufficiently large number field, H6
B[πf ]

appears as a sub-quotient of H6
! (ShG(U),VL), where VL denotes V ⊗Q L. In particular, we

have a projection

prπ : H6(ShG(U),VL)mπ(n) ։ H6
B[πf ](n).

Since H6
! (ShG(U),VL) is a pure L-Hodge structure of weight 6, we have

H6
B[πf ] = πUf (L)⊗MB(πf ),

with πUf (L) a realization of πUf over L and MB(πf ) a pure L-Hodge structure of weight 6.
Thus we have a decomposition

MB(πf )⊗C =
⊕

p+q=6

Hp,q(πf ).

Lemma 2.7. Under the hypothesis (DS) and (St)

dimCH
p,q(πf ) =

{
1 if p 6= 3,

2 if p = 3.

In particular, we have dimLMB(πf ) = 8.

Proof. Thanks to (5), we have that

H6
B[πf ]⊗C = H6

B,![πf ]⊗C = H6
B,cusp[πf ]⊗C,

hence

H6
B[πf ]⊗C = πUf ⊗

⊕

σ∞

H6(g,KG;σ∞ ⊗ V )m(σ),

where σ∞ runs over the elements of the discrete series L-packet P (V ) of PGSp6(R) and
m(σ) denotes the multiplicity of σ = σ∞ ⊗ πf . Notice that H6(g,KG;σ∞ ⊗ V ) equals

HomK∞

(
6∧
g0/k, σ

1
∞ ⊗ V

)
⊕HomK∞

(
6∧
g0/k, σ̄

1
∞ ⊗ V

)
(6)

where we have denoted σ∞|G0(R)
= σ1∞ ⊕ σ̄1∞. According to [7, Theorem II.5.3 b)], each

space in the decomposition above is 1-dimensional. Moreover there exists a unique pair of
integers (rσ∞ , sσ∞) satisfying rσ∞ + sσ∞ = 6 such that (6) equals

HomK∞

(
rσ∞∧

p+C ⊗
sσ∞∧

p−C, σ
1
∞ ⊗ V

)
⊕HomK∞

(
sσ∞∧

p+C ⊗
rσ∞∧

p−C, σ̄
1
∞ ⊗ V

)
.

As we remarked in §2.5, the set P (V ) has four elements and is in bijection with the set of
Hodge types up to conjugation. Since the Hodge structure in H6

B,cusp[πf ] is induced by this
splitting, we deduce that

dimCH
rσ∞ ,sσ∞ (πf ) =

{
m(σ) if rσ∞ 6= 3,

2m(σ) if rσ∞ = 3.

By [41, Theorem 12.1], the multiplicity of σ is either 0 or 1, while thanks to [41, Corollary
8.4 & Corollary 12.4] the dimension of MB(πf ) equals 8. Hence m(σ) = 1 for all σ∞ ∈ P (V ),
which concludes the proof. �
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2.9. Absolute Hodge cohomology. Let us first recall some definitions from [3]. A mixed
R-Hodge structure consists of a finite dimensional R-vector space MR equipped with an
increasing finite filtration W∗ called the weight filtration and a decreasing finite filtration F ∗

onMC =MR⊗RC called the Hodge filtration, such that each pair (GrWn MR, (GrWn MC, F
∗))

is a pure R-Hodge structure of weight n ([12, Définition 2.1.10]). The category of mixed
R-Hodge structures is an abelian category [12, Téorème (2.3.5)] and we denote it by MHSR.

Definition 2.8. A real mixed R-Hodge structure is given by a mixed R-Hodge structure
such that MR is equipped with an involution F ∗

∞ stabilizing the weight filtration and whose
C-antilinear complexification F ∗∞ = F ∗

∞⊗c, where c denotes the complex conjugation, defines
an involution on MC stabilizing the Hodge filtration.

We will refer to F ∗
∞ as the real Frobenius and to F ∗∞ as the de Rham involution. We

denote by MHS+R the abelian category of real mixed Hodge A-structures. For any pair of

objects M,N ∈ D(MHS+R), one has RHomMHS+
R
(M,N) = RHomMHSR(M,N)F

∗
∞ , since we

are assuming that A is a field and hence taking invariants by F ∗∞ is an exact functor.

Definition 2.9. If M = (MR, F
∗
∞) ∈ C(MHS+R) is a complex of real mixed R-Hodge struc-

ture, its absolute Hodge cohomology is defined as

RΓH(M) = RHomMHSR(R(0),MR).

Its real absolute Hodge cohomology is defined as

RΓH/R(M) := RHomMHS+
R
(R(0),M)) = RΓH(MR)

F ∗
∞ .

The cohomology groups H i
B(ShG(U),VR), where VR = V ⊗QR, are equipped with a real

Frobenius F ∗
∞ acting as the complex conjugation on (the complex points) ShG(U) and on

VR, define real mixed R-Hodge structures. This can be deduced directly from [12] since
the cohomology with coefficients is a direct factor of the cohomology of a fiber product
of the universal abelian variety of ShG(U), or from the theory of mixed Hodge modules
of [51]. We let M ∈ C(MHS+R) be the complex of real mixed R-Hodge structures given

by (
⊕

i∈NH i
B(ShG(U),VR)[−i], F ∗

∞) and we define the absolute real Hodge cohomology

H7
H(ShG(U)/R,VR(4)) of ShG(U) and coefficients in VR(4) to be H1(RΓH/R(M(4))). Then

we have the short exact sequence

0 → Ext1
MHS+

R

(R(0),H6
B(ShG(U),VR(4))) →

H7
H(ShG(U)/R,VR(4)) → HomMHS+

R
(R(0),H7

B(ShG(U),VR(4))) → 0

If π = π∞ ⊗ πf is as above, we denote by

H1
H(M(πf )R(4)) :=

(
H7

H(ShG(U)/R,VR(4)) ⊗ L
)
[πf ]

the πf -isotypical component.

Lemma 2.10. Under the hypothesis (DS) and (St), we have a canonical short exact se-
quence of finite rank free R⊗Q L-modules

0 → F 4H6
dR[πf ] → H6

B[πf ]
F ⋆
∞=−1(3) → H1

H(M(πf )R(4)) → 0.

Moreover, we have

dimR⊗QLH
1
H(M(πf )R(4)) = dimC π

U
f .



ALGEBRAIC CYCLES AND FUNCTORIAL LIFTS FROM G2 TO PGSp6 15

Proof. It follows from the existence of the short exact sequence above and from Proposition
2.5 that we have a canonical isomorphism

H1
H(M(πf )R(4)) ≃ Ext1

MHS+
R

(R(0),H6
B(ShG(U),VR(4))[πf ]).

Hence, the first statement of the Lemma follows as in [44, Lemma 4.11]. In particular, the
map F 4H6

dR[πf ] → H6
B[πf ]

F ⋆
∞=−1(3) is defined by the composition of

F 4H6
dR[πf ] → H6

dR[πf ]⊗C ≃ H6
B(ShG(U),VC)[πf ],

of the projection to H6
B(ShG(U),VC)[πf ]

F ∗
∞=1, where F ∗∞ is the complexification F ∗

∞ ⊗ c,
with c denoting the complex conjugation, and of the projection

H6
B(ShG(U),VC)[πf ]

F ∗
∞=1 = H6

B[πf ]
F ⋆
∞=−1(3)⊕H6

B[πf ]
F ⋆
∞=1(4) → H6

B[πf ]
F ⋆
∞=−1(3).

Finally, by Lemma 2.7, we have that

dimR⊗QL F
4H6

dR[πf ] = 3dimL π
U
f (L) = 3dimC π

U
f .

On the other hand,

dimR⊗QLH
6
B[πf ]

F ⋆
∞=−1(3) = (3 + h3,+)dimC π

U
f ,

where h3,+ is the dimension of the C-vector space {x ∈ H3,3(πf ) : F ∗
∞(x) = −x} (cf. [9,

§3.4.2]). By the proof of Lemma 2.7, we have h3,+ = 1, which implies the result. �

3. Construction of the motivic class

3.1. Cartan product. Before starting, we briefly recall some properties of the Cartan
product of irreducible representations that will be needed (cf. [54, §2.5] for more details).
Let A denote either a connected compact Lie group or a semisimple algebraic group. Fix a
Cartan subgroup of A and an orientation of the roots. Irreducible algebraic representations
of A are parametrized by dominant weights. If λ and σ are two dominant weights with
corresponding representations V λ and V σ, then the representation V λ+σ appears in V λ⊗V σ

with multiplicity one. We denote it by V λ · V σ and we call it the Cartan component of
V λ⊗V σ. Clearly, the tensor product of two highest weight vectors maps to a corresponding
highest weight vector. We denote by v ⊗ w 7→ v · w the projection from V λ ⊗ V σ to its
Cartan component V λ · V σ.

Lemma 3.1. [54, Lemma 2.12] Every non-zero pure tensor in V λ⊗V σ projects non trivially
to the Cartan component.

3.2. Branching laws. In what follows, we fix a totally real field F over which H splits.
Since H is split over F , its finite dimensional irreducible representations are determined by
the highest weight theory and we can thus use the branching laws for algebraic representa-
tions from G to H established in [10].

Lemma 3.2. The G-representation V λ over F of highest weight λ = (λ1, λ2, λ3, c) contains
the trivial H-representation if and only if c = 0 and λ1 = λ2 + λ3. When this holds the
trivial representation of H appears in (V λ)|H with multiplicity λ2 − λ3 + 1.

Proof. From [10, Lemma 2.10], the sum of all irreducible sub-H-representations of V λ iso-

morphic (up to a twist) to Sym(k,0,0) for some k ≥ 0 is given by

λ1−λ2+λ3⊕

k=|λ1−λ2−λ3|
k≡|λ| (mod 2)

r · Sym(k,0,0)⊗det
|λ|−k

2 ,
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for r = λ2−λ3+1. From this we deduce that V λ contains the trivial H-representation with
multiplicity r = λ2 − λ3 + 1 if and only if λ1 − λ2 − λ3 = 0. �

It will be useful to construct explicitly generators of the trivial H-representations inside
V λ given by the branching laws. We achieve this by constructing some vectors in the
representations V (1,1,0,0) and V (2,1,1,0) and then by taking their Cartan product. From now
on, all the representations are defined over F . Moreover, since the branching laws are
determined by the restriction to the derived subgroups, in the following we work with the
groups

H0 := SL2 × SL2 × SL2 →֒ H′
0 := SL2 × Sp4 →֒ G0 = Sp6.

Recall that we associate to any λ = (λ1, λ2) ∈ Z2 such that λ1 ≥ λ2 ≥ 0, the irreducible
Sp4-representation with highest weight λ. Applying the branching laws [10, Proposition
2.8], we get the following decompositions of representations of H′

0:

V (1,1,0) = (Sym0
⊠V (0,0))⊕ (Sym0

⊠V (1,1))⊕ (Sym1
⊠V (1,0)),

V (2,1,1) = (Sym0
⊠V (1,1))⊕ (Sym0

⊠V (2,0))⊕ (Sym1
⊠V (1,0))⊕ (Sym1

⊠V (2,1))

⊕ (Sym2
⊠V (1,1)).

By Lemma 3.2, V (1,1,0) contains two copies of the trivial H0-representation, each of which
lies resp. in Sym0

⊠V (0,0) and Sym0
⊠V (1,1), while V (2,1,1) contains a unique trivial H0-

representation appearing in Sym0
⊠V (1,1). Using these facts, we can explicitly define gener-

ators of these three trivial representations of H0.
Let V be the standard representation of G0 with its symplectic basis 〈e1, e2, e3, f1, f2, f3〉

given in §2.6. According to our choice of embedding H′
0 →֒ G0, 〈e1, f1〉, resp. 〈e2, e3, f2, f3〉,

defines a basis of the standard representation of SL2, resp. Sp4. We first recall how one
can realize the representations V (1,1,0) and V (1,1,1). As explained in [14, §17.1], V (1,1,0)

is realized inside
∧2 V as the complement of the G0-invariant subspace generated by the

vector e1 ∧ f1 + e2 ∧ f2 + e3 ∧ f3 corresponding to the symplectic form or, in other words,
as the kernel of the map

∧2 V → V sending v1 ∧ v2 to ψ(v1, v2). By [14, Theorem 17.5],

the irreducible representation V (1,1,1) is identified with the kernel of the map ϕ :
∧3 V →

V, v1 ∧ v2 ∧ v3 7→
∑

i<j,k 6=i,j ψ(vi, vj)(−1)i−j+1vk.

Lemma 3.3. Let F (0) denote the trivial H0-representation. We have the following

v := e2 ∧ f2 − e3 ∧ f3 ∈ F (0) ⊆ Sym0
⊠V (1,1) ⊆ V (1,1,0),

w := e2 ∧ f2 + e3 ∧ f3 − 2e1 ∧ f1 ∈ F (0) ⊆ Sym0
⊠V (0,0) ⊆ V (1,1,0),

z := z1 − z2 ∈ F (0) ⊆ Sym0
⊠V (1,1) ⊆ V (2,1,1),

where
z1 := e1 · (f1 ∧ e2 ∧ f2 − f1 ∧ e3 ∧ f3),
z2 := f1 · (e1 ∧ e2 ∧ f2 − e1 ∧ e3 ∧ f3),

and · denotes the Cartan product.

Proof. The vector v is obtained from the highest weight vector e1∧e2 in V (1,1,0) by applying
the composition X(0,1,−1) ◦ X(0,−2,0) ◦ X(−1,0,1), where X(−1,0,1),X(0,−2,0),X(0,1,−1) ∈ sp6
denote the weight vectors for λ(−1, 0, 1), λ(0,−2, 0), and λ(0, 1,−1) respectively (cf. [14,
§16.1] for the precise description). Moreover, the vector X(−1,0,1)(e1 ∧ e2) = −e2 ∧ e3 is of

weight (0, 1, 1), which appears only in the component Sym0
⊠V (1,1), andX(0,1,−1),X(0,−2,0) ∈
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sp4 ⊆ sp6 so v still lies inside Sym0
⊠ V (1,1). The vector w is H′

0-invariant and therefore it

generates the only trivial H′
0-representation in V (1,1,0). We now explain the definition of z.

Note that e1 ∈ V (1,0,0) and f1 ∧ e2 ∧ f2 − f1 ∧ e3 ∧ f3 ∈ V (1,1,1). Thus, by the properties of
the Cartan product

V (1,0,0) ⊗ V (1,1,1) = V (1,1,0) ⊕ V (2,1,1) → V (2,1,1), v1 ⊗ v2 7→ v1 · v2,
z1 is a non-zero vector in V (2,1,1) by Lemma 3.1. The vector z1 is fixed by {I2} × SL2

2, but
not by SL2 × {I2} × {I2}, however, as it is easy to verify, we have that

z = z1 + h · z1 = z1 − z2 ∈ F (0) ⊂ V (2,1,1), with h =
((

1
−1

)
, I2, I2

)
,

generates the unique trivial H0-representation of V (2,1,1). �

Lemma 3.4. Let λ = (λ2 + λ3, λ2, λ3, 0) with λ2 ≥ λ3 ≥ 0. For each λ2 ≥ µ ≥ λ3, the
vector

v[λ,µ] := vλ2−µ · wµ−λ3 · zλ3 ∈ F (0) ⊆ (V λ)|H

realizes a distinct copy of the trivial representation F (0) of H inside (V λ)|H .

Proof. For p, q, r ∈ N, we have

vp · wq · zr ∈ F (0) ⊆ Sym0
⊠V (p+r,p+r) ⊆ V (p+q+2r,p+q+r,r).

The vectors v,w, z are H-highest weight vectors, thus v[λ,µ] is such one too. We are left to
show that each of the vectors is different. This follows from the fact that each v[λ,µ] lies in
Sym0

⊠V (λ2+λ3−µ,λ2+λ3−µ)⊗νµ−λ2−λ3 and these representations are all different as µ varies.
�

3.3. The motivic class. As in the section above, we fix a totally real field F such that H

splits over F . For a smooth quasi-projective scheme S over a field of characteristic zero, let
CHML(S) denote the tensor category of relative Chow motives over S with coefficients in a
number field L and denote by M : Var/S → CHML(S) the contravariant functor from the
category of smooth projective schemes over S to the category of relative Chow motives over
S (cf. [1, §2.1]). By [13, Corollary 3.2], if A/S is an abelian scheme of relative dimension g,

there is a decomposition M(A) =
⊕2g

i=1 h
i(A) in CHML(S). Let G temporarily denote one

of the groups H or G, and denote by RepF (G) the category of finite dimensional algebraic
representations of G defined over F . In [1], Ancona constructs an additive functor

µGU : RepF (G) −→ CHMF (ShG(U)),

where U is a sufficiently small open compact subgroup of G(Af ). We recall some of its
properties.

Proposition 3.5 ([1, Théorème 8.6]). The functor µGU respects duals, tensor products and
satisfies the following properties.

(1) If V is the standard representation of G, then µGU (V ) = h1(AG), where AG is the
universal abelian scheme over ShG(U).

(2) If ν : G→ Gm is the multiplier, then µGU (ν) is the Lefschetz motive F (−1).
(3) For a G-representation V defined over F , the Betti realization of µGU (V ) is the local

system VF associated to the vector bundle

G(Q)\(XG × V × (G(Af )/U)) → ShG(U)(C).
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(4) For any prime v of F above ℓ and G-representation V , the v-adic étale realization
Vv of µGU (V ) is the étale sheaf associated to V ⊗F Fv, with U acting on the left via
U →֒ G(Af ) → G(Qℓ).

Definition 3.6. Let V λ be the finite dimensional irreducible algebraic representation over Q

of G of highest weight λ. We denote by V λ
F the relative Chow motive associated to V λ ⊗F .

Let U ⊂ G(Af ) be a sufficiently small compact open subgroup and let U ′ = U ∩H(Af ).
Recall that we have a closed embedding ι : ShH(U ′) →֒ ShG(U) which is of codimension 3.
Let V λ the algebraic representation of G (over F ) of highest weight λ = (λ1, λ2, λ3, c) such
that λ1 = λ2 + λ3 and c = 0. Using the branching laws of Lemma 3.2 and [55, Theorem
1.2], we get the following (cf. [10, Proposition 2.17]).

Proposition 3.7. For any λ2 ≥ µ ≥ λ3, we have a Gysin morphism

ι
[λ,µ]
∗ : H0

M(ShH(U ′), F (0)) → H6
M(ShG(U),V λ

F (3)),

corresponding to the embedding of F (0) ⊂ ι∗V λ given by the H-trivial vector v[λ,µ] of Lemma
3.4.

Definition 3.8. We let Z [λ,µ]
H,M ∈ H6

M(ShG(U),V λ
F (3)) be the image by ι[λ,µ]∗ of

1ShH(U ′) ∈ CH0(ShH(U ′))F = H0
M(ShH(U ′), F (0)).

3.4. Realizations.

3.4.1. Étale realization. Let l be a prime of F above ℓ. We have an étale cycle class map

clét : H
6
M(ShG(U),V λ

F (3)) → H6
ét(ShG(U),Vλl (3)) → H6

ét(ShG(U)Q,Vλl (3))GQ ,

where the last arrow is the natural map obtained from the Hochschild-Serre spectral se-
quence. We define the following.

Definition 3.9. We let Z [λ,µ]
H,ét := clét(Z [λ,µ]

H,M) ∈ H6
ét
(ShG(U)Q,Vλl (3))GQ .

Remark 3.10.
• Notice that Z [λ,µ]

H,ét equals to the image of 1 ∈ H0
ét(ShH(U ′)Q, Fl(0)) via the étale

Gysin map

ι
[λ,µ]
ét,∗ : H0

ét(ShH(U ′)Q, Fl(0)) → H0
ét(ShH(U ′)Q, ι

∗Vλl ) → H6
ét(ShG(U)Q,Vλl (3)).

• As the representation V λ is self dual, we have a Galois equivariant perfect pairing

H6
ét,c(ShG(U)Q,Vλl (3)) ×H6

ét(ShG(U)Q,Vλl (3)) → Fl(0).

Hence, by duality Z [λ,µ]
H,ét determines a map

H6
ét,c(ShG(U)

Q
,Vλl (3)) → Fl(0).

3.4.2. Betti realizations. As in the previous subsection, we define the class

Z [λ,µ]
H,B ∈ H6

B(ShG(U)(C),VλF (3))

as the image of Z [λ,µ]
H,M via the Betti cycle class map

clB : H6
M(ShG(U),V λ

F (3)) → H6
B(ShG(U)(C),VλF(3)).

Note that, as F is totally real, the image

Im(clB) ⊂ H6
B(ShG(U)(C),VλR(3))F

⋆
∞=1,
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where F ∗
∞ denotes the composition of the map induced by complex conjugation on the

C-points of ShG(U) with complex conjugation on the coefficients.

3.4.3. Absolute Hodge realizations. Let H6
M(ShG(U),V λ

F (3))0 = ker(clB) denote the sub-

group of homologically trivial classes and let H6
M(ShG(U),V λ

F (3))hom denote the quotient

H6
M(ShG(U),V λ

F (3))/H6
M(ShG(U),V λ

F (3))0. Note that when λ2 = λ3 = 0, i.e. the repre-

sentation V λ is the trivial representation, thenH6
M(ShG(U),V λ

F (3)) = H6
M(ShG(U), F (3)) =

CH3(ShG(U))F is the usual Chow group of 3-codimensional cycles modulo rational equiva-
lence and the spaceH6

M(ShG(U),V λ
F (3))hom = N3(ShG(U))F is the space of 3-codimensional

cycles modulo homological equivalence, with coefficients in F . In this section, we define a
natural injective map

H6
M(ShG(U),V λ

F (3))hom → H7
H(ShG(U),VλR(4)). (7)

The definition is similar to the one for smooth projective varieties (see [52, §5]) and we recall
it for the convenience of the reader. The cycle class map is an injection

clB : H6
M(ShG(U),V λ

F (3))hom → H6
B(ShG(U),VF (3))F

∗
∞=1 ∩H6

B(ShG(U),VλC(3))0,0

where H6
B(ShG(U),VλC(3))0,0 denotes the subspace of

W0H
6
B(ShG(U),VλC(3)) = GrW0 H

6
B(ShG(U),VλC(3))

of vectors which have Hodge type (0, 0). The composite of the inclusions

H6
B(ShG(U),VF (3))F

∗
∞=1 ∩H6

B(ShG(U),VλC(3))0,0 →֒ W0H
6
dR(ShG(U),VR(3))

→֒ W2H
6
dR(ShG(U),VR(3))

= W0H
6
dR(ShG(U),VR(4))

and of the projection
W0H

6
dR(ShG(U),VR(4)) →

W0H
6
B(ShG(U),VR(4))

+\W0H
6
dR(ShG(U),VR(4))/F

0W0H
6
dR(ShG(U),VR(4))

is injective. As the last space above is canonically isomorphic to

Ext1
MHS+

R

(R(0),H6
B(ShG(U),VR(4))),

we obtain a natural injective map

H6
M(ShG(U),V λ

F (3))hom → Ext1
MHS+

R

(R(0),H6
B(ShG(U),VR(4))).

Composing this map with the canonical injection

Ext1
MHS+

R

(R(0),H6
B(ShG(U),VR(4))) → H7

H(ShG(U),VλR(4))

we obtain the map (7). We denote by clH : H6
M(ShG(U),V λ

F (3)) → H7
H(ShG(U),VλR(4)) the

composition of the map (7) with the projectionH6
M(ShG(U),V λ

F (3)) → H6
M(ShG(U),V λ

F (3))hom.

Definition 3.11. We define

Z [λ,µ]
H,H := clH(Z [λ,µ]

H,M) ∈ H7
H(ShG(U),VλR(4)).

Remark 3.12. Let π be a cuspidal automorphic representation of PGSp6(A) which satisfies
the hypotheses of Lemma 2.10 and let S be a finite set of places containing the ramified
places of πf and ∞. By the conjectures of Beilinson and Tate and the local calculations of

Gross and Savin in [27], the family of cycles Z [λ,µ]
H,H obtained by varying the cubic étale algebra

E/Q defining H, and their Hecke translates are expected to generate H1
H(M(πf )R(4)) when

ords=1L
S(s, π,Spin) = −1. One of our main results will confirm this expectation.
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4. Construction of the differential form and pairing with the motivic

class

The purpose of this chapter is to study the Betti and Hodge realizations of the cycle
constructed in §3.3 by relating their pairing with a suitable cuspidal harmonic differential
form to an automorphic period.

4.1. Test vectors. Recall that the discrete series L-packets for PGSp6(R) have four ele-
ments, each indexed by a Hodge type (and its conjugate). Let π denote a cuspidal automor-
phic representation of PGSp6(A) for which π∞ is the discrete series of Hodge type (3,3) in
the L-packet of V λ where λ = (λ1, λ2, λ3, 0) and λ1 = λ2 + λ3. This translates into saying
that π is a cuspidal automorphic representation of G(A) with trivial central character for
which

H6(g,KG;π∞ ⊗ V λ) 6= 0,

and such that π∞|G0(R) = π3,3∞,1⊕π3,3∞,1 is the direct sum of the discrete series representations

of respective Harish Chandra parameters (λ2 + 2, λ3 + 1,−λ1 − 3) and (λ1 + 3,−λ3 −
1,−λ2 − 2). Recall that these discrete series contain with multiplicity one their minimal
K∞-types τ(λ2+2,λ3+2,−λ1−4) and τ(λ1+4,−λ3−2,−λ2−2) respectively. On the other hand, as
K∞-representations we have

6∧
pC ⊇

3∧
p+C ⊗

3∧
p−C =

⊕

i

τi ⊇ τ(2,2,−4) ⊕ τ(4,−2,−2),

where the equality expresses the decomposition of the tensor product into irreducible K∞-
representations. This fact will be useful to construct an element in

H6(g,KG;π∞ ⊗ V λ) = HomK∞

(
6∧
pC, π∞ ⊗ V λ

)
≃ HomK∞

(
6∧
pC ⊗ V λ, π∞

)
,

where the last equality follows from the fact that V λ is self-dual. Before stating the next
result, let us fix the following data.

• A highest weight vector Ψ∞, resp. Ψ∞, of the minimal K∞-type τ(λ2+2,λ3+2,−λ1−4),

resp. τ(λ1+4,−λ3−2,−λ2−2) of π3,3∞,1, resp. π3,3∞,1.
• A highest weight vector X(2,2,−4), resp. X(4,−2,−2), of τ(2,2,−4), resp. τ(4,−2,−2).

• A highest weight vector vλ
′
, resp. vλ

′

, of τλ′ ⊆ V λ, resp. τ
λ
′ ⊆ V λ, where τλ′

and τ
λ
′ denote the irreducible algebraic K∞-representations of highest weight λ′ =

(λ2, λ3,−λ1) and λ
′
= (λ1,−λ3,−λ2) respectively.

Lemma 4.1. The spaces HomK∞(
∧6

pC⊗V λ, π3,3∞,1) and HomK∞(
∧6

pC⊗V λ, π3,3∞,1) are of
dimension one and the elements

ωΨ∞ ∈ HomK∞(∧6pC ⊗ V λ, π3,3∞,1), ωΨ∞
∈ HomK∞(∧6pC ⊗ V λ, π3,3∞,1)

defined by

ωΨ∞(X(2,2,−4) ⊗ vλ
′
) = Ψ∞

ωΨ∞
(X(4,−2,−2) ⊗ vλ

′

) = Ψ∞

are generators of these spaces.

Proof. This is a consequence of [7, Theorem II.5.3 b)] and its proof. �
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4.2. Restriction to H. Let λ = (λ1, λ2, λ3, 0), with λ1 = λ2 + λ3 and let V λ be as above.
Let h, resp. kH denote the Lie algebra of H(R), resp. the maximal compact modulo the
center KH. Observe that via the embedding ι : H(R) →֒ G(R), the group KH is isomorphic
to T∞. One has a Cartan decomposition hC = kH,C ⊕ pH,C, where pH,C is 6-dimensional
and is spanned by the non-compact root spaces. We fix once and for all a generator X0 of
the 1-dimensional C-vector space

∧6
pH,C ⊆ ∧6

pC as in [9, §4.4]. The main result of this
section is the following.

Theorem 4.2. Let ωΨ∞ and ωΨ∞
be the elements of HomK∞

(∧6
pC ⊗ V λ, π∞

)
defined in

Lemma 4.1. Let X0 be as above and let v be any H-invariant vector in V λ. Then

ωΨ∞ (X0 ⊗ v) 6= 0,

ωΨ∞
(X0 ⊗ v) 6= 0.

The proof of Theorem 4.2 will be constructive and occupies the rest of this section. We
start by recalling the following result.

Lemma 4.3 ([9, Lemma 4.21]). Let X0 be as above. Then the image of X0 by

6∧
pH,C →

6∧
pC →

3∧
p+C ⊗

3∧
p−C → τ(2,2,−4),

where the first map is induced by the embedding H → G and the second and the third maps
are the natural projections, is non zero.

We next study the interaction between the branching laws of V λ to the subgroup H of
G and to its maximal compact subgroup. More precisely, we show that the H-invariant
vectors constructed in Lemma 3.4 project non-trivially to τλ′ and τ

λ
′ and moreover that

their projections form a basis of the corresponding (0, 0, 0)-weight spaces for the action of
T∞.

Lemma 4.4. Let τλ′ and τ
λ
′ be the irreducible algebraic sub-K∞-representations of V λ of

highest weight λ′ = (λ2, λ3,−λ1) and λ
′
= (λ1,−λ3,−λ2). Then the weight (0, 0, 0) appears

in both τλ′ and τ
λ
′ with multiplicity λ2 − λ3 + 1.

Proof. Let n0(λ
′) denote the multiplicity of the weight (0, 0, 0) in τλ′ . Kostant multiplicity

formula reads as

n0(λ
′) =

∑

w∈WK∞

(−1)ℓ(w)P (w(λ′ + ρK∞)− ρK∞),

where ρK∞ = 1
2

∑
α∈∆+

c
α = (1, 0,−1) and the function µ 7→ P (µ) calculates the number of

ways for which the weight µ can be expressed as a linear combination

α(e1 − e2) + β(e1 − e3) + γ(e2 − e3),

with α, β, γ ∈ Z≥0 (cf. [14]). Using this formula, it is a tedious but straightforward calcu-

lation to verify that n0(λ
′) = λ2 − λ3 + 1 and the same for λ

′
= w8λ

′.
�

According to Lemma 4.4, there are λ2 − λ3 + 1 linearly independent vectors of weight
(0, 0, 0) in τλ′ . We now show that these weight vectors correspond one to one to the H-
invariant vectors of Lemma 3.2.
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Lemma 4.5. Let v,w be the vectors of V (1,1,0) and let z be the vector of V (2,1,1) defined in
Lemma 3.3. The irreducible algebraic representation τ(1,0,−1), resp. τ(1,1,−2) and τ(2,−1,−1),
appear in the restriction of V (1,1,0), resp. of V (1,1,1), to K∞ with multiplicity 1. Moreover,
we have v,w ∈ τ(1,0,−1) ⊆ V (1,1,0), and z ∈ τ(1,1,−2) ⊕ τ(2,−1,−1) ⊆ V (1,1,1), with z projecting
non-trivially to each factor of this decomposition.

Proof. First observe that v,w ∈ V (1,1,0) and z ∈ V (2,1,1) are vectors of weight (0, 0, 0) both
for the split and the compact tori of G0(R). Indeed these vectors are fixed (up to a constant)
by the matrix J sending the non-compact torus T0 to the compact torus T∞ defined in §2.2.
Using branching laws from G0(R) to K∞, we have a decomposition of K∞-representations

V (1,1,0) = τ(1,1,0) ⊕ τ(1,0,−1) ⊕ τ(0,−1,−1).

The weight (0, 0, 0) appears only in τ(1,0,−1) and with multiplicity 2. Since it has also

multiplicity 2 in V (1,1,0), we deduce that {v,w} forms a basis for the (0, 0, 0)-eigenspace of
τ(1,0,−1). On the other hand, we have

V (2,1,1) = τ(−1,−1,−2) ⊕ τ(1,−1,−2) ⊕ τ(1,1,0) ⊕ τ(1,1,−2)

⊕ τ(1,0,−1) ⊕ τ(2,−1,−1) ⊕ τ(2,1,−1) ⊕ τ(2,1,1) ⊕ τ(0,−1,−1).

The weight (0, 0, 0) only appears in τ(1,1,−2) ⊕ τ(1,0,−1) ⊕ τ(2,−1,−1), which implies that

z ∈ τ(1,1,−2) ⊕ τ(1,0,−1) ⊕ τ(2,−1,−1).

Notice that the decomposition of the standard representation of G0

V = τ(1,0,0) ⊕ τ(0,0,−1)

of K∞-representations can be realized by picking the basis {v1, v2, v3, w1, w2, w3}, where
vr := er + ifr and wr := ier + fr. The set {vr}1≤r≤3, resp. {wr}1≤r≤3, defines a basis for
τ(1,0,0), resp. τ(0,0,−1). We now write z in terms of this basis. By using the relations

er =
1
2vr − i

2wr,

fr =
1
2wr − i

2vr,

we have that

e1 ⊗ f1 ∧ (e2 ∧ f2 − e3 ∧ f3)− f1 ⊗ e1 ∧ (e2 ∧ f2 − e3 ∧ f3)
equals to

1

4
(v1 ⊗ w1 ∧ (v2 ∧ w2 − v3 ∧ w3)− w1 ⊗ v1 ∧ (v2 ∧ w2 − v3 ∧ w3)) .

Thus,

z = z1 − z2 =
1

4
(v1 · w1 ∧ (v2 ∧ w2 − v3 ∧w3)− w1 · v1 ∧ (v2 ∧ w2 − v3 ∧ w3)) .

Notice that the vector w1∧ (v2∧w2− v3∧w3) ∈ V (1,1,1) is of weight (−1, 0, 0) for T∞, while

v1 ∧ (v2 ∧w2 − v3 ∧ w3) ∈ V (1,1,1) is of weight (1, 0, 0) for T∞. As

V (1,1,1) = τ(1,1,1) ⊕ τ(1,−1,−1) ⊕ τ(1,1,−1) ⊕ τ(−1,−1,−1),

and the fact that the weight (−1, 0, 0) appears only in τ(1,−1,−1) and (1, 0, 0) only in τ(1,1,−1),
we have that

w1 ∧ (v2 ∧w2 − v3 ∧ w3) ∈ τ(1,−1,−1)

v1 ∧ (v2 ∧w2 − v3 ∧ w3) ∈ τ(1,1,−1)
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By the properties of the Cartan product, the vector s1 := v1 · w1 ∧ (v2 ∧ w2 − v3 ∧ w3) is
non-zero in τ(2,−1,−1), while s2 := w1 · v1 ∧ (v2 ∧ w2 − v3 ∧ w3) is non-zero in τ(1,1,−2). This

shows that the vector z ∈ V (2,1,1) lives in τ(2,−1,−1) ⊕ τ(1,1,−2), thus finishing the proof. �

Proposition 4.6. The set {prτλ′ (v
[λ,µ])}µ, resp. {prτ

λ
′
(v[λ,µ])}µ, forms a basis of the weight

(0, 0, 0)-eigenspace of τλ′ ⊂ V λ, resp. τ
λ
′ ⊂ V λ.

Proof. Recall that we have defined

v[λ,µ] := vλ2−µ · wµ−λ3 · zλ3 ∈ F (0) ⊆ (V λ)|H .

By Lemma 4.5, we have that v,w ∈ τ(1,0,−1) ⊆ V (1,1,0) so that, for any λ3 ≤ µ ≤ λ2,

we have vλ2−µ ⊗ wµ−λ3 ∈ τ⊗λ2−λ3(1,0,−1) and we deduce that the projection of vλ2−µ · wµ−λ3 ∈
V (λ2−λ3,λ2−λ3,0) to τ(λ2−λ3,0,λ3−λ2) coincides with their Cartan product with respect to K∞.
Moreover, each of these projections is non-zero because of Lemma 3.1. Since the vectors

vλ2−µ · wµ−λ3 ∈ τ(λ2−λ3,0,λ3−λ2)

are all different as they live in different H′
0 sub-representations (cf. the proof of Lemma

3.4), we conclude that they span the λ2 − λ3 + 1-dimensional weight (0, 0, 0)-eigenspace
of τ(λ2−λ3,0,λ3−λ2). We now show that zλ3 projects non-trivially to both τ(2λ3,−λ3,−λ3) and
τ(λ3,λ3,−2λ3). Notice that, as the weights (2λ3,−λ3,−λ3) and (λ3, λ3,−2λ3) are extremal in

V (2λ3,λ3,λ3) and appear uniquely, we have a commutative diagram

(V (2,1,1))⊗λ3
· // //

(pr1,pr
′
1) ����

V (2λ3,λ3,λ3)

pr2
����

(τ(2,−1,−1))
⊗λ3 ⊕ (τ(1,1,−2))

⊗λ3 · // // τ(2λ3,−λ3,−λ3) ⊕ τ(λ3,λ3,−2λ3),

where the horizontal arrows are the Cartan projections and the vertical arrows are the
natural projections given by the decomposition of V (2r,r,r) as K∞-representations. Thanks
to the commutativity of the diagram, we know that the vector z⊗λ3 ∈ (V (2,1,1))⊗λ3 maps to

pr2(z
λ3) = pr1(z)

λ3 + pr′1(z)
λ3 = sλ31 + sλ32 ,

where s1, s2 are as in Lemma 4.5. This shows, again by Lemma 3.1, that each v[λ,µ] projects
non-trivially to both τλ′ and τ

λ
′ and that each of these projections are different by Lemma

3.4. Indeed,

prτλ′ (v
[λ,µ]) = vλ2−µ · wµ−λ3 · sλ31 ,

prτ
λ
′
(v[λ,µ]) = vλ2−µ · wµ−λ3 · sλ32 .

By Lemma 4.4, this means that {prτλ′ (v
[λ,µ])}µ (resp. {prτ

λ
′
(v[λ,µ])}µ) defines a basis of the

weight (0, 0, 0)-eigenspace of τλ′ , resp. τ
λ
′ . This finishes the proof. �

We are now in condition of finishing the proof of Theorem 4.2

Proof of Theorem 4.2. By construction, the map ωΨ∞ factors through τλ′+(2,2,−4) ⊆ τ(2,2,−4)⊗
τλ′ . Lemma 4.3 shows that the projection of X0 to τ(2,2,−4) is non-zero, while Proposition 4.6

shows that prτλ′ (v
[λ,µ]) is non-zero. Since τλ′+(2,2,−4) is the Cartan product of τ(2,2,−4) and

τλ′ , we deduce from Lemma 3.1 that the image of the pure tensor prτ(2,2,−4)
(X0)⊗prτλ′ (v

[λ,µ])

is non-zero.
�
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4.3. The pairing. Let π denote a cuspidal automorphic representation of PGSp6(A) for
which π∞ is the discrete series of Hodge type (3,3) in the L-packet of V λ with λ = (λ2 +
λ3, λ2, λ3, 0). Let Ψ = Ψ∞ ⊗ Ψf denote a cusp form in π = π∞ ⊗ πf . We assume that
Ψ∞ is a highest weight vector of the minimal K∞-type τ(λ2+2,λ3+2,−λ1−4) of π∞|G0(R). We

let [ωΨ∞ ] ∈ H6(g,KG;π∞ ⊗ V λ) be the cohomology class of the harmonic differential form
ωΨ∞ defined in Lemma 4.1. We also assume that Ψf ∈ Vπf is U -invariant. Then we have

[ωΨ] := [ωΨ∞ ⊗Ψf ] ∈ H6(g,KG;πU ⊗ V λ).

Lemma 4.7. There is a Hecke-equivariant inclusion

H6(g,KG;πU ⊗ V λ) ⊂ H6
dR,c(ShG(U),VλC).

Moreover, if πw is the Steinberg representation for some finite palce w, such inclusion is
unique.

Proof. Let C∞
rd(G(Q)\G(A)/U, V λ) denote the space of V λ-valued C∞-functions on the

double quotient G(Q)\G(A)/U which, together with all their right U(gC)-derivatives, are
rapidly decreasing in the sense of [30]. As π is cuspidal and cusp forms are rapidly decreas-

ing, we have H6(g,KG;π∞ ⊗ V λ
C)

m(π) ⊗ πUf ⊂ H6(g,KG; C∞
rd(G(Q)\G(A)/U, V λ)). Thus

the result follows from the fact that, according to [6, Theorem 5.2] (see also [30, Theo-
rem 1.4.1]), there exists a canonical Hecke equivariant isomorphism H6

dR,c(ShG(U),Vλ) ≃
H6(g,KG; C∞

rd (G(Q)\G(A)/U, V λ)). Finally, if πw is Steinberg at a finite place w, we have,
as in Lemma 2.7, that m(π) = 1. �

4.3.1. The pairing in Betti cohomology. Poincaré duality is a perfect pairing

〈 , 〉 : H6
B(ShG(U),VλF (3)) ×H6

B,c(ShG(U),VλF ) → F (−3),

which is a morphism of mixed F -Hodge structures. Fix the choice of a measure dh on H(A)
as follows. For each finite place p, we take the Haar measure dhp on H(Qp) that assigns

volume 1 to H(Zp). For the archimedean place, we let X0 ∈ ∧6 pH,C be the generator
fixed at the beginning of section 4.2. The choice of X0 induces an equivalence between top
differential forms on XH = H(R)/KH,∞ and invariant measures dh∞ on H(R) assigning
measure one to KH,∞ (cf. [31, p. 83] for details). We let dh∞ denote the measure associated

in this way to the pullback of ι[λ,µ]∗ωΨ to XH and we then define dh = dh∞
∏
p dhp.

Proposition 4.8. We have

〈Z [λ,µ]
H,B , [ωΨ]〉 =

hU ′

(2πi)3 · vol(U ′)

∫

H(Q)ZG(A)\H(A)
A[λ,µ] ·Ψ(h)dh,

where hU ′ = 4−1|ZG(Q)\ZG(Af )/(ZG(Af ) ∩ U ′)| and A[λ,µ] ∈ U(kC) is an element for
which A[λ,µ] ·Ψ∞ = ωΨ∞(X0 ⊗ v[λ,µ]).

Proof. By [6, Corollary 5.5], there exists a Vλ-valued rapidly decreasing differential form η
of degree five on ShG(U) such that ωc := ωΨ + dη is compactly supported. We have

〈Z [λ,µ]
H,B , [ωΨ]〉 = 〈clB(ι[λ,µ]∗ 1ShH(U ′)), [ωc]〉

= 〈ι[λ,µ]∗ clB(1ShH(U ′)), [ωc]〉
= 〈clB(1ShH(U ′)), ι

[λ,µ]∗[ωc]〉

=
1

(2πi)3

∫

ShH(U ′)
ι[λ,µ]∗ωc,
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where ι[λ,µ]∗ : ι∗V λ → F (0) is the H-equivariant projection dual to the inclusion ι[λ,µ] :

F (0) → ι∗V λ defined by 1 7→ v[λ,µ] ∈ V λ, where v[λ,µ] is the vector defined in Lemma 3.4.
According to [6, §5.6], we have

∫

ShH(U ′)
ι[λ,µ]∗dη = 0.

Hence, using Theorem 4.2 we have

〈Z [λ,µ]
H,B , [ωΨ]〉 =

1

(2πi)3

∫

ShH(U ′)
ι[λ,µ]∗ωΨ

=
1

(2πi)3

∫

ShH(U ′)
ωΨ

(
X0 ⊗ v[λ,µ]

)
(h)dh

=
1

(2πi)3

∫

H(Q)\H(A)/ZH(R)KH,∞U ′

A[λ,µ] ·Ψ(h)dh

=
hU ′

(2πi)3

∫

H(Q)ZG(A)\H(A)/U ′

A[λ,µ] ·Ψ(h)dh

=
hU ′

(2πi)3 · vol(U ′)

∫

H(Q)ZG(A)\H(A)
A[λ,µ] ·Ψ(h)dh,

where the third equality follows from Theorem 4.2 as ωΨ∞(X0 ⊗ v[λ,µ]) is non-zero and thus

it is of the form A[λ,µ] ·Ψ∞, for some A[λ,µ] ∈ U(kC), because Ψ∞ is the highest weight vector
of the minimal K∞-type τ(λ2+2,λ3+2,−λ1−4). Moreover, the fourth equality follows from the
fact that Ψ is fixed by the center of G, whence, using that |ZH(R)/(ZG ∩H)(R)| = 4, the
constant hU ′ is equal to 4−1|ZG(Q)\ZG(Af )/(ZG(Af ) ∩ U ′)|. �

Remark 4.9. In view of Proposition 4.8, we immediately notice that if π is not H-distinguished,
namely ∫

H(Q)ZG(A)\H(A)
ϕπ(h)dh = 0,

for any cusp form ϕπ in the space of π, we have that prπ∨Z [λ,µ]
H,B = 0. As we discuss later in

§8, the H-distinguishability is related to the property of π being a (functorial) lift from G2,
which is (conjecturally) equivalent to the fact that the Spin L-function of π has a pole at
s = 1.

4.3.2. The pairing in absolute Hodge cohomology. Let

〈 , 〉H : H7
H(ShG(U)/R,VR(4))×H6

H,c(ShG(U)/R,VR(3)) → R

be the natural pairing between absolute Hodge cohomology and compactly supported coho-
mology as constructed in [3, §4.2]. In order to ease notations, we will denote by H∗

B(i) and
H∗
B,c(i) the cohomology groups H∗

B,c(ShG(U),VF (i)) and H∗
B(ShG(U),VF (i)), respectively.

Recall from §2.9 that absolute Hodge cohomology and compactly supported cohomology live
in exact sequences

0 → Ext1MHSR
(R(0),H6

B(4)) → H7
H(ShG(U),VR(4)) → HomMHSR(R(0),H7

B(4)) → 0, (8)

0 → Ext1MHSR(R(0),H5
B,c(3)) → H6

H,c(ShG(U),VR(3)) → HomMHSR(R(0),H6
B,c(3)) → 0,

(9)
which are deduced from the description of absolute Hodge cohomology as a cone of a di-
agram of complexes of Hodge structures. Let [ωΨ] ∈ H6

B,c(ShG(U),VλR(3)) be the com-
pactly supported cohomology class of the harmonic differential form ωΨ. This class is of
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Hodge type (3, 3) and hence, since W0H
6
B,c(3) = H6

B,c(3), it naturally lives in the space

HomMHSR(R(0),H6
B,c(3)) = W0HB,c(3) ∩ F 0HB,c(3)C. Denote by [̃ωΨ] any lift of [ωΨ] in

H6
H,c(ShG(U),VR(3)) via the surjection of the exact sequence (9).

Proposition 4.10. The pairing 〈Z [λ,µ]
H,H , [̃ωΨ]〉H depends only on [ωΨ] and not on the choice

of lift. We denote this value by 〈Z [λ,µ]
H,H , [ωΨ]〉H. Moreover, the pairing is given by the natural

Poincaré duality pairing. In particular, we have

〈Z [λ,µ]
H,H , [ωΨ]〉H =

hU ′

(2πi)3 · vol(U ′)

∫

H(Q)ZG(A)\H(A)
A[λ,µ] ·Ψ(h)dh.

Proof. We give a sketch of the proof and we refer to [3] or to [8, §5.1] for the facts used
here. It follows from the description of the pairing between absolute Hodge cohomology and

compactly supported cohomology given in [3, §4.2] that, since our cycle class Z [λ,µ]
H,H lives in

the subspace Ext1MHSR
(R(0),H6

B(4)) of H7
H(ShG(U),VR(4)), the map

〈[Z [λ,µ]
H,H ],−〉 : H6

H,c(ShG(U),VR(3)) → R

factors through HomMHSR(R(0),H6
B,c(3)) and coincides with the natural Poincaré duality

pairing

Ext1MHSR
(R(0),H6

B(4))⊗HomMHSR(R(0),H6
B,c(3)) → Ext1MHSR

(R(0),H6
B(4)⊗H6

B,c(3))

∪−→ Ext1MHSR
(R(0),H12

B,c(7))

Tr−→ Ext1MHSR
(R(0),R(1)) = R,

This shows the first two assertions. The last formula follows from Proposition 4.8. �

5. The integral representation of Pollack-Shah and the residue of the

Spin L-function

In this section, we explain the precise connection between the period integral appearing
in the statement of Proposition 4.8 and the residue of the spin L-function of π in the case
where the cubic totally real étale algebra over Q defining H is of the form Q×F , with F a
quadratic real étale algebra over Q. We start by recalling well known analytic properties of
some Eisenstein series for GL2.

5.1. Eisenstein series for GL2. Let T2 denote the maximal diagonal torus of GL2 and
let B2 = T2U2 denote the standard Borel. We denote by δ the character of T2 defined by
diag(t1, t2) 7→ t1/t2 and we regard δ as a character of B2 by extending it trivially to the
unipotent radical. Let Φ ∈ S(A2) be a Schwartz-Bruhat function. Following Jacquet, for

any s ∈ C, we attach to Φ the function fΦ ∈ Ind
GL2(A)
B2(A) δ

s defined by

fΦ(h, s) = |det(h)|s
∫

A×

Φ((0, t)h)|t|2sd×t

and the Eisenstein series

EΦ(h, s) =
∑

γ∈B2(Q)\GL2(Q)

fΦ(γh, s).

In the statement of the following Lemma, we denote by Φ̂(0) =
∫
A2 Φ(x, y)dxdy the value

at 0 of the Fourier transform of Φ.
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Lemma 5.1.

(1) [36, Proposition 19.2]. The Eisenstein series EΦ(h, s) is absolutely convergent for
Re(s) big enough and has a meromorphic continuation to C.

(2) [38, Lemma (4.2)]. There exists a constant c > 0 such that

EΦ(h, s) =
c|det(h)|s−1Φ̂(0)

s− 1
− c|det(h)|sΦ(0)

s
+R(h, s)

where R(h, s) is an entire function in s for any h ∈ GL2(A).

5.2. Fourier coefficients. Here we discuss the definition and basic properties of some
Fourier coefficients for cusp forms for G, which appear in the integral representation of the
Spin L-function of [48].

5.2.1. The Siegel parabolic. We let Q = L3U3 denote the standard Siegel parabolic subgroup
of G, with Levi L3 ≃ GL3 ×GL1. Explicitly,

L3 =
{
m(g, µ) =

(
g
µtg−1

)
| g ∈ GL3, µ ∈ GL1

}
,

U3 =
{
n(u) =

(
I3 u
I3

)
, u ∈M3 | ut = u

}
.

Denote Sym(3) = {α ∈ M3 | αt = α}. To each α ∈ Sym(3)(Q), we associate the unitary
character ψα : U3(Q)\U3(A) → C× by n(u) ∈ U3(A) 7→ e(Tr(αu)) where e : Q\A → C× is
the additive character with e∞(x) := e2πix for x ∈ R, and conductor 1 at the finite places.
For each α ∈ Sym(3)(Q), we define a Fourier coefficient along U3 for a cuspidal automorphic
representation π of G(A) as follows.

Definition 5.2. Let Ψ be a cusp form in the space of π. Define

ΨU3,ψα
(g) :=

∫

U3(Q)\U3(A)
ψ−1
α (u)Ψ(ug)du.

We let L3(Q) acts on Sym(3)(Q) via the right action α ·m(g, µ) = µ−1gtαg.

Lemma 5.3. Let α, β ∈ Sym(3)(Q). If there exists m ∈ L3(Q) such that β = α ·m, then

ΨU3,ψβ
(g) = ΨU3,ψα

(mg)

Proof. Suppose that β = α ·m with m = m(g, µ). The result follows from the equality

ψβ(n(u)) = e(Tr(µ−1gtαgu)) = e(Tr(αguµ−1gt)) = ψα(mn(u)m
−1).

�

In this manuscript, we are interested in Fourier coefficients associated to the set of rank
two elements of Sym(3)(Q), which we denote by Symrk2(3)(Q). Let D ∈ Q× and let F

denote the étale quadratic extension Q(
√
D) of Q. If D is not a square then F is a field,

else F = Q×Q.

Definition 5.4. We let ψD : U3(Q)\U3(A) → C× be the unitary character

ψD : n(u) 7→ e(Tr(αDu)) = e(u33 −Du22)

associated to αD =
(

0
−D

1

)
∈ Symrk2(3)(Q).

We have the following:

Lemma 5.5. A set of representatives of Symrk2(3)(Q)/∼M3(Q) is given by

{αD : D ∈ Q×/(Q×)2}.
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In view of these two lemmas, the set of Fourier coefficients associated to the Siegel para-
bolic and a rank 2 symmetric matrix is parametrized by the set of étale quadratic algebras
of Q.

5.2.2. Fourier coefficients of type (4 2). We now turn our attention to Fourier coefficients
associated to the unipotent orbit of G associated to the partition (4 2). The corresponding
unipotent subgroup is the unipotent radical subgroup of the non-maximal standard parabolic
P = LP · UP , which arises as the intersection of the Siegel parabolic Q with the Klingen
parabolic. Notice that P has Levi LP = GL2 ×GL2

1, given by
{( a

g
µa−1

µtg−1

)
: a, µ ∈ GL1, g ∈ GL2

}
.

Following [48, §2.1], we define a unitary character which we still denote ψD : UP (Q)\UP (A) →
C× as follows. Every element of UP /[UP , UP ] can be expressed as the product of n(v)ñ(u),
where

n(v) =




1 v1 v2
1

1
1

−v1 1
−v2 1


 ∈ G, ñ(u) =




1
1 u22 u23
1 u23 u33
1

1
1


 ∈ U3.

We will denote by Nv (resp. Nu) the set of the n(v)’s (resp. ñ(u)’s). If n ≡ n(v)ñ(u)
modulo [UP , UP ], define

ψD(n) := e(v1 + u33 −Du22) = e(v1)ψD(n(u)).

Let π be a cuspidal automorphic representation of G(A). We define the following Fourier
coefficients.

Definition 5.6. Let Ψ be a cusp form in the space of π. Define

ΨUP ,ψD
(g) :=

∫

UP (Q)\UP (A)
ψ−1
D (u)Ψ(ug)du.

In the following proposition, we relate these Fourier coefficients to the ones for the Siegel
parabolic associated to rank 2 symmetric matrices.

Proposition 5.7. For a cusp form Ψ in the space of π, the following two conditions are
equivalent.

(1) ΨUP ,ψD
(g) 6≡ 0.

(2) There exists α ∈ Symrk2(3)(Q) with α ∼L(Q) αD such that ΨU3,α(g) 6≡ 0.

Proof. Fourier expand ΨU3,ψD
(g) over Nv to get

ΨU3,ψD
(g) =

∫

(Q\A)2
ΨU3,ψD

(n(v)g)dv +
∑

γ∈StabL(ψD)(Q)\L(Q)

ΨUP ,ψD
(γg).

The term∫

(Q\A)2
ΨU3,ψD

(n(v)g)dv =

∫

Nu(Q)\Nu(A)
ψ−1
D (ñ(u))

∫

UK(Q)\UK (A)
Ψ(nkñ(u)g)dnkdñ(u)

and the inner integral vanishes because of cuspidality of Ψ along the unipotent radical UK
of the Klingen parabolic. Thus

ΨU3,ψD
(g) =

∑

γ

ΨUP ,ψD
(γg).
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This relation implies the result as follows. If ΨU3,ψD
(g) 6≡ 0, the Fourier coefficient ΨUP ,ψD

(g)
does not vanish identically. Viceversa, if ΨUP ,ψD

(g) 6≡ 0 then there is a character ψ′ in the
L(Q)-orbit of ψD such that ΨU3,ψ′(g) 6≡ 0. �

5.3. The Spin L-function and its residue at s = 1. Let π denote any cuspidal au-
tomorphic representation of G(A) with trivial central character. Let S denote a finite
set of places of Q containing the ones where π is ramified and the archimedean place. If
Spin : Spin7(C) → GL(V8) denotes the 8-dimensional spin representation, the partial Spin
L-function of π is defined to be

LS(s, π,Spin) :=
∏

ℓ 6∈S

1

det(1− ℓ−sSpin(sπℓ))
,

where sπℓ denotes the Satake parameter of the unramified local component πℓ. Let H be

the group (3) associated to the étale cubic algebra Q × F , where F = Q(
√
D) with either

D 6≡ 1 ∈ Q×
>0/(Q

×)2, in which case F is a real quadratic field, or D ≡ 1 mod (Q×)2, in
which case F = Q × Q. For any cusp form Ψ ∈ Vπ, Pollack-Shah [48] give an integral
representation

I(Φ,Ψ, s) =
∫

Z(A)H(Q)\H(A)
EΦ(h1, s)Ψ(h)dh.

of LS(s, π,Spin). For any Φ and Ψ, the integral I(Φ,Ψ, s) is absolutely convergent for Re(s)
big enough and has a meromorphic continuation to C. According to [17, Proposition 7.1],
for Re(s) big enough we have the unfolding

I(Φ,Ψ, s) =
∫

UBH
(A)Z(A)\H(A)

fΦ(h1, s)ΨUP ,ψD
(h)dh

where UBH
is the unipotent radical of the upper triangular Borel subgroup BH of H and

ΨUP ,ψD
is the Fourier coefficient of Definition 5.6.

Theorem 5.8 ([48]). For a set Σ of places of Q, denote

IΣ(Φ,Ψ, s) =
∫

UBH(QΣ)ZG(QΣ)\H(QΣ)
f(h1,ΦΣ, s)ΨUP ,ψD

(h)dh.

Let Ψ be a cusp form in the space of π. Then, for any factorizable Schwartz-Bruhat function
Φ on A2 and up to enlarging S, we have

I(Φ,Ψ, s) = IS(Φ,Ψ, s)LS(s, π,Spin).

Moreover, there exists a cusp form Ψ̃ in the space of π and a factorizable Schwartz-Bruhat
function Φ on A2 such that

I(Φ, Ψ̃, s) = I∞(Φ,Ψ, s)LS(s, π,Spin).

Note that if π does not support a rank two Fourier coefficient (for the Siegel parabolic Q)
and thus, by Proposition 5.7, a Fourier coefficient for P , the integral I(Φ,Ψ, s) is identically
zero.

Corollary 5.9 ([48]). Suppose that π supports a rank two Fourier coefficient. Then, the
partial Spin L-function LS(s, π,Spin) has meromorphic continuation in s, is holomorphic
outside s = 1, and has at worst a simple pole at s = 1.
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As we explain in the later sections, using results of Gan and Gan-Gurevich, they further
prove that when LS(s, π,Spin) has a simple pole at s = 1, π lifts to the split G2 under
the exceptional theta correspondence. This observation is based on the following key re-
lation between the residue at s = 1 of LS(s, π,Spin) and the automorphic period we have
introduced in §4.3.

Proposition 5.10. For any factorizable Schwartz-Bruhat function Φ on A2, we have

c · Φ̂(0) ·
∫

Z(A)H(Q)\H(A)
Ψ(h)dh = Ress=1

(
IS(Φ,Ψ, s)LS(s, π,Spin)

)
,

where c > 0 is the constant of Lemma 5.1.

Proof. Thanks to Lemma 5.1, the residue at s = 1 of I(Φ,Ψ, s) equals

c · Φ̂(0) ·
∫

Z(A)H(Q)\H(A)
Ψ(h)dh.

The result then follows from Theorem 5.8. �

The following characterization is implicit in the work [48] and has been proved in [17] for
certain CAP representations.

Proposition 5.11. Suppose that π is a cuspidal automorphic representation of PGSp6(A)
which supports a Fourier coefficient of type (4 2) associated to a quadratic étale Q-algebra
F . Then LS(s, π,Spin) has a simple pole at s = 1 if and only if π is H-distinguished, with
H = GL2 ⊠GL∗

2,F , i.e. if there exists a cusp form Ψ in π such that
∫

Z(A)H(Q)\H(A)
Ψ(h)dh 6= 0.

Proof. By [48, Theorem 2.7] (cf. Theorem 5.8), given a cusp form Ψ in π, there exists a

cusp form Ψ̃ and a Schwartz-Bruhat function Φ such that

I(Φ, Ψ̃, s) = I∞(Φ,Ψ, s)LS(s, π,Spin)

By Proposition 5.10, taking residues at s = 1 on both sides we have

c · Φ̂(0) ·
∫

Z(A)H(Q)\H(A)
Ψ̃(h)dh = Ress=1

(
I∞(Φ,Ψ, s)LS(s, π,Spin)

)
,

where c > 0 is the constant of Lemma 5.1. We now use [17, Proposition 12.1] to deduce
that there exists local data Φ∞ and Ψ∞ such that I∞(Φ,Ψ, 1) 6= 0. Hence, up to modifying
Ψ and Φ at ∞, we obtain

Φ̂(0) ·
∫

Z(A)H(Q)\H(A)
Ψ̃(h)dh = C · Ress=1L

S(s, π,Spin),

with C a certain non-zero constant in C. Note finally that we have the freedom to choose

Φ such that Φ̂(0) 6= 0. This follows from the fact that, given the two non-zero linear maps

l1 : S(A2) → C,Φ 7→ I∞(Φ,Ψ, 1) and l2 : S(A2) → C,Φ 7→ Φ̂(0), ker(l1)∪ker(l2) 6= S(A2),
hence the result follows. �

We now state our first main result. Let Z [λ,µ]
H,B ,Z

[λ,µ]
H,H , and ωΨ be as in §3.4 and §4.3.

Theorem 5.12. If IS(Φ,Ψ[λ,µ], 1) 6= 0, then

〈Z [λ,µ]
H,H , [ωΨ]〉H = 〈Z [λ,µ]

H,B , [ωΨ]〉 = C · Ress=1L
S(s, π,Spin),

where C is a non-zero constant.
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Proof. By Proposition 4.8 and Proposition 4.10, we have that

〈Z [λ,µ]
H,H , [ωΨ]〉H = 〈Z [λ,µ]

H,B , [ωΨ]〉 =
hU ′

(2πi)3 · vol(U ′)

∫

H(Q)ZG(A)\H(A)
Ψ[λ,µ](h)dh,

where U ′ = U ∩H(Af ) and hU ′ = 4−1|ZG(Q)\ZG(Af )/(ZG(Af ) ∩ U ′)|. Let Φ denote a

factorizable Schwartz-Bruhat function on A2, for which Φ̂(0) 6= 0. By Proposition 5.10, we
have

〈Z [λ,µ]
H,B , [ωΨ]〉 =

c · Φ̂(0)hU ′

(2πi)3 · vol(U ′)
Ress=1

(
IS(Φ,Ψ[λ,µ], s)LS(s, π,Spin)

)

= C · Ress=1L
S(s, π,Spin)

where

C =
c · Φ̂(0)hU ′

(2πi)3 · vol(U ′)
IS(Φ,Ψ[λ,µ], 1) 6= 0.

This finishes the proof. �

Let H6
M(ShG(U),V λ

F (3))hom denote the F -vector space defined in section 3.4.3 and let

H6
M(ShG(U),V λ

F (3))hom[π
∨
f ] denote its π∨f -isotypical component. This is a finite dimensional

L-vector space, where L is the number field introduced in § 2.8. Tate conjecture for the
motive attached to π (see Conjecture 1.1 (3)) predicts the equality

−ords=1L(s, π,Spin) = dimLH
6
M(ShG(U),V λ

F (3))hom[π
∨
f ].

Corollary 5.13. If IS(Φ,Ψ[λ,µ], 1) 6= 0, then we have

−ords=1L
S(s, π,Spin) ≤ dimLH

6
M(ShG(U),V λ

F (3))hom[π
∨
f ].

Proof. If LS(s, π,Spin) does not have a pole at s = 1, there is nothing to prove. Else we have
−ords=1L

S(s, π,Spin) = 1 by [48, Theorem 1.3]. As a consequence Ress=1L
S(s, π,Spin) 6=

0. By Theorem 5.12, under the assumption that IS(Φ,Ψ[λ,µ], 1) 6= 0 this implies that

〈Z [λ,µ]
H,B , [ωΨ]〉 6= 0. In particular, the projection of Z [λ,µ]

H,B to the π∨f -isotypical component is
non-zero. This implies the statement. �

6. Exceptional theta lifts from G2 to PGSp6

In this section, we discuss the exceptional theta correspondence for the dual reductive
pair (G2,PGSp6) and describe the set of Fourier coefficients associated to the Heisenberg
parabolic for cuspidal automorphic forms of G2(A). It has as its solely purpose to fix nota-
tions and to recall some well known results that will be used later so that the knowledgeable
reader might skip it.

6.1. Split G2 and E7. In this section we will follow the exposition of the Appendix of [32]
by Savin.

6.1.1. The group G2. Let H be the algebra of Hamilton quaternions over Q with the usual
basis {1, i, j, k}. The conjugate ā of an element a = α0 + α1i + α2j + α3k ∈ H is ā =
α0 − α1i− α2j − α3k. The split octonion algebra over Q is O = H⊕H with multiplication

(a, b) · (c, d) = (ac+ db̄, ād+ cb).

Then O is a non-commutative, non-associative Q-algebra. However it is alternative, which
means that for any x, y ∈ O we have x · (x · y) = (x · x) · y and (x · y) · y = x · (y · y) (see
[35]). If x = (a, b), let x = (a,−b). Then x 7→ x is a Q-linear involution on O satisfying
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x · y = y · x. The norm N : O → Q is the quadratic form defined by x 7→ x · x = x · x. The
trace Tr : O → Q is defined by x 7→ x+ x. For any x, y, z ∈ O, the properties

N(x · y) = N(x)N(y),

Tr(x · y) = Tr(y · x),
Tr(x · (y · z)) = Tr((x · y) · z)

are satisfied. For x, y ∈ O, we write y ∈ x⊥ if y is orthogonal to x with respect to the
bilinear form (x, y) 7→ Tr(x · y), which means that x · y + y · x = 0.

Let l = (0, 1) ∈ O so that {1, i, j, k, l, li, lj, lk} is a basis of O. From this, one constructs
another useful basis {s1, s2, s3, s4, t1, t2, t3, t4}, where

s1 =
1

2
(i+ li), s2 =

1

2
(j + lj), s3 =

1

2
(k + lk), s4 =

1

2
(1 + l),

t1 =
1

2
(i− li), t2 =

1

2
(j − lj), t3 =

1

2
(k − lk), t4 =

1

2
(1− l).

The following multiplication table for this basis is given in Table 1 of the Appendix of [32].

s1 s2 s3 t1 t2 t3 s4 t4
s1 0 −t3 t2 s4 0 0 0 s1
s2 t3 0 −t1 0 s4 0 0 s2
s3 −t2 t1 0 0 0 s4 0 s3

t1 t4 0 0 0 s3 −s2 t1 0
t2 0 t4 0 −s3 0 s1 t2 0
t3 0 0 t4 s2 −s1 0 t3 0

s4 s1 s2 s3 0 0 0 s4 0
t4 0 0 0 t1 t2 t3 0 t4

We define

G2 := {g ∈ GL(O) | g(x · y) = (gx) · (gy),∀x, y ∈ O}.
to be the group of automorphisms of O. We note that G2 acts transitively on non-zero
elements of trace zero and norm zero. We will denote the set of trace zero octonions by
either O0 or V7, where the latter notation emphasises that this set defines the standard
irreducible 7-dimensional representation of G2 and induces an embedding

G2 →֒ SO7.

6.1.2. The dual reductive pair. We consider the Albert algebra J over Q, which is the set
of matrices

A =



d z y
z e x
y x f




where d, e, f ∈ Q and x, y, z ∈ O. The algebra J is equipped with a cubic form, called the
determinant, which is given by

det(A) = def − dN(x)− eN(y)− fN(z) + Tr(xyz).
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The group of isogenies of this form is a group of type E6 and its orbits on J are classified
by the rank. We will need to consider the set Ω of rank 1 elements A ∈ J , i.e. those A 6= 0
such that A2 = Tr(A) · A. This condition means that the entries of A satisfy the equalities

N(x) = ef, N(y) = df, N(z) = de,

dx = y · z, ey = z · x, fz = x · y.
Let G denote the split adjoint group of type E7, which is constructed from J by the Koecher-
Tits construction (see Section 3 of [40]). The group G has a maximal parabolic P = MN
and its opposite P̄ = MN̄ , with N ≃ J and such that the action under conjugation of the
Levi M on N gives an isomorphism of M and the group of similitudes of the cubic form on
J

M ∼= {g ∈ GL(J) |det(gA) = λdet(A) for some λ ∈ Gm and ∀A ∈ J}.
The group G2 can be realized as a subgroup of M via its action on J by the rule

g ·



d z y
z e x
y x f


 =



d gz gy
gz e gx
gy gx f


 .

This action has fixed points J3, the Jordan algebra of symmetric 3× 3 matrices with entries
in Q. Note that the left action of GL3 on J3 ∼= N given by

g ·A = det(g)−1gAgt (10)

extends to an action on J preserving the determinant form up to scalar, thus defining an
embedding of GL3 into M . Then GL3 is the centraliser of G2 in M and Q = GL3U3 (which
is the Siegel parabolic of PGSp6) is the centralizer of G2 in P . Similarly, the opposite Q is
the centralizer of G2 in P . This gives the dual reductive pair (G2,PGSp6) in G.

6.2. Fourier coefficients for G2.

6.2.1. Root system and the Heisenberg parabolic. Let T be a (rank 2) maximal split torus
over Q in G2 and let ∆, resp. ∆+ ⊂ ∆, be the set of roots, resp. a subset of positive roots,
for G2. Let a, resp. b, denote the long, resp. short, simple root in ∆+. Then

∆+ = {a, b, a + b, a+ 2b, a+ 3b, 2a + 3b}.
We let B = TU denote the Borel subgroup of G2 associated to ∆+. Other than B, there
are two proper standard parabolic subgroups Pa and Pb of G2, such that Pa ∩ Pb = B.
They are characterized by the following. For any α ∈ ∆+, denote by xα : Ga →֒ U the
one parameter unipotent subgroup associated to α. Then, for each r ∈ {a, b}, the Levi Lr
of Pr is isomorphic to GL2 and contains xr. We fix an isomorphism GL2 ≃ Lr such that(
1 u
1

)
7→ xr(u). We denote by H := Pb the so-called Heisenberg parabolic and let LHUH

denote its Levi decomposition. The unipotent radical UH is of dimension 5 and admits the
filtration

1 ⊆ [UH , UH ] ⊆ UH ,

with UH/[UH , UH ] being the four dimensional abelian unipotent group generated by

{xa, xa+b, xa+2b, xa+3b},
while [UH , UH ] is isomorphic to the one parameter unipotent subgroup x2a+3b. We now
give a more detailed description of UH and LH which will be useful later. First describe
an embedding of SL3 into G2. The group G2 acts transitively on the set O0 of trace zero
octonions. In particular, it acts transitively on the set

Γc := {x ∈ O0 |N(x) = −c}.
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By [35, Theorem 4], the stabilizer of an element y0 ∈ Γ1 is isomorphic to SL3. Choose y0
such that the unipotent radical USL3 of the upper triangular Borel of SL3 is generated by
the one-parameter subgroups

{xa, xa+3b, x2a+3b}.
In terms of the basis chosen in §6.1.1, this is achieved by choosing y0 = s4 − t4. In this
case, one shows (cf. [49, Lemma 2]) that the stabilizer of y0 leaves invariant the subspace
〈s1, s2, s3〉 and is identified with SL3 = SL(〈s1, s2, s3〉).
6.2.2. The Lie algebra of G2. The multiplication map on O induces a map V7 ⊗ V7 → V7
given by x ⊗ y 7→ xy−yx

2 . This map is alternating, hence it induces a G2-equivariant map

∧2V7 → V7 which is surjective. Then the Lie algebra g2 of G2 can be identified with the
kernel of this map. Under this identification, one has an explicit description of the action of
g2 on V7, namely

(w ∧ x) · v = 〈x, v〉w − 〈w, v〉x.
We will also need (cf. [14, §22.2]) the decomposition

g2 = sl3 ⊕ Std3 ⊕ Std∗3, (11)

where Std3 is the standard representation of SL3 with basis {v1, v2, v3} and Std∗3 is its dual
with basis {δ1, δ2, δ3} and where we denote by Eij , 1 ≤ i < j ≤ 3 the standard basis vectors
of sl3. The identification between the two descriptions (cf. [47, §2.2]) of g2 is given by
Eij = tj ∧si, 1 ≤ i < j ≤ 3, vi = (s4− t4)∧si+ ti+1∧ ti+2 and δi = (s4− t4)∧ ti+si+1∧si+2,
1 ≤ i ≤ 3, where indices are taken modulo 3. Moreover, the component sl3 is the Lie algebra
of the copy of SL3 embedded into G2 as above. In particular, E12, E13 and E23 are root
vectors for the roots a, 2a + 3b and a+ 3b respectively. Moreover, the vectors v1, v2 and δ3
are root vectors for the roots a+ b, b and a+ 2b, respectively. Via (11), the Lie algebra uH
of UH is

uH = uSL3 ⊕Qv1 ⊕Qδ3, (12)

Under (11) the Lie algebra lH of the Levi LH is generated by the Cartan subalgebra and
the root vectors v2, δ2.

6.2.3. Fourier coefficients. We now describe the Fourier coefficients for G2 associated to the
Heisenberg parabolic. We closely follow [47] and refer to it for more details. In order to de-
scribe the Fourier coefficients associated toH, we need to study the LH -representation VH :=
UH/[UH , UH ]. As a GL2-representation, VH is isomorphic to Sym3(Std2) ⊗ det−1(Std2),
where Std2 denotes the standard representation of GL2. Under the identification of (12), (a
representative of) an element of VH(Q) can be written as

xa(λ1)xa+b(λ2/3)xa+2b(λ3/3)xa+3b(λ4), with λi ∈ Q,

which corresponds to the binary cubic polynomial

p(x, y) = λ1x
3 + λ2x

2y + λ3xy
2 + λ4y

3

where x, y form a basis of Std2. Associated to p, there is the cubic Q-algebra R with basis
{1, i, j} with multiplicative table

ij = −ad
i2 = −ac+ bi− aj

j2 = −bd+ di− cj.

Example 6.1.
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(1) ([26, 3.2]) If p(x, y) = x2y − xy2 then the associated Q-algebra R is isomorphic to
Q3.

(2) ([26, 3.3]) If p(x, y) = x3 −Dxy2 (or equivalently p(x, y) = −Dx2y + y3 using the
action of

(
0 1
1 0

)
) then the associated Q-algebra R is isomorphic to Q⊕Q(

√
D).

There is an action of GL2(Q) on the set of bases {1, i, j} of a given cubic algebra R, which
makes the association p(X,Y ) 7→ (R, {1, i, j}) GL2(Q)-equivariant. Since any cubic algebra
admits a basis of this shape, we have the following.

Proposition 6.2 ([26, Proposition 2.1]). There is a bijection between the GL2(Q)-orbits on
VH(Q) and the set of isomorphism classes of cubic Q-algebras. Moreover, each orbit has a
well-defined discriminant in Q×/(Q×)2.

Let e : Q\A → C× be the additive character introduced in §5.2.1. Let 〈, 〉 denote the
symplectic pairing on VH defined as follows. If v, v′ ∈ VH correspond to p(x, y) and p′(x, y)
respectively, then

〈v, v′〉 = λ1λ
′
4 − 1

3λ2λ
′
3 +

1
3λ3λ

′
2 − λ4λ

′
1.

Any character ψ : UH(Q)\UH(A) → C× factors through VH(A), hence we consider the
projection n̄ of n ∈ UH(A) to VH(A), which, by (12), can be written as

n = xa(λ
′
1)xa+b(λ

′
2/3)xa+2b(λ

′
3/3)xa+3b(λ

′
4).

If v ∈ VH(Q) corresponds to p(x, y), we then define ψv : UH(Q)\UH(A) → C× by

n 7→ e(〈v, n〉) = e(λ1λ
′
4 − 1

3λ2λ
′
3 +

1
3λ3λ

′
2 − λ4λ

′
1).

The character ψv is non-degenerate if and only if v corresponds to an étale cubic algebra
over Q. In this manuscript, we are interested in étale cubic algebras of the form Q × F ,
with F of either the form Q(

√
D) (with Q×/(Q×)2 ∋ D 6≡ 1) or Q ×Q (with D ≡ 1 mod

(Q×)2).

Definition 6.3. Let ψH,D : UH(Q)\UH(A) → C× denote the character associated to Q×F .
Given a cusp form ϕ for G2(A), define

ϕUH ,ψH,D
(g) :=

∫

UH (Q)\UH (A)
ψ−1
H,D(n)ϕ(ng)dn.

6.3. The theta lift from G2 to PGSp6. Let Π =
⊗′

v Πv denote the restricted tensor
product of the minimal representations Πv of E7(Qv) over all places v of Q. A unitary
model of the minimal representation is given by L2(Ω), where recall that Ω denotes the
subset of rank 1 elements in J . There is a unique up to a non-zero scalar embedding

θ : Π → A(E7(Q)\E7(A))

of Π in the space A(E7(Q)\E7(A)) of automorphic forms of E7 (see [22], [40]). For f ∈ Π
and ϕ ∈ A(G2(Q)\G2(A)), we define a function Θ(f, ϕ) on PGSp6(A) by

Θ(f, ϕ)(g) =

∫

G2(Q)\G2(A)
θ(f)(g′g)ϕ(g′)dg′.

Definition 6.4. Let σ be a cuspidal automorphic representation of G2(A).

(1) Define Θ(σ) to be the span of the functions Θ(f, ϕ), where f ∈ Π and ϕ runs through
the cusp forms in the contragradient σ∨ of σ.

(2) We say that a cuspidal automorphic representation π of PGSp6(A) is a Θ-lift of σ
if it appears as an irreducible subquotient of Θ(σ).
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If a Θ-lift of σ exists, then its local constituents are compatible with the local Theta
correspondence between G2 and PGSp6.

Proposition 6.5. Let π be a Θ-lift of σ, then πv is an irreducible subquotient of Θ(σv).

Proof. See [32, Theorem 1.7 (i)]. �

After imposing certain local conditions on σ, in the next section we use one of the main
results of [23] to show that Θ(σ) is non-zero and cuspidal, thus proving the existence of
a non-trivial Θ-lift of σ. Before doing so, we first recall the properties of the local theta
correspondence needed later.

6.3.1. Discrete series and a conjecture of Gross. Let Tc denote a compact torus in G2(R),
which is contained in the maximal compact subgroup KG2 ≃ (SU2 × SU2)/µ2 of G2(R).
We abuse notation denoting again by a, b the simple positive roots for Tc (with the short
root b which we assume to be compact) and ∆+ the resulting set of positive roots. Then,
ρ = 1

2

∑
α∈∆+ α = 3a+ 5b. The set of positive compact roots is given by

∆+
c = {b, 2a+ 3b},

which, in the notation of [45], is {2ε2, 2ε1}. The Weyl group WG2 is isomorphic to the
dihedral group D6 of 12 elements and it is generated by wa and wb, where wα denotes the
reflections around the line orthogonal to α. The Weyl group WKG2

≃ (Z/2Z)2 is generated
by wb and w2a+3b = wawbwawbwa.

Let γ be a dominant weight for G2 with respect to Tc. The set of equivalence classes of
irreducible discrete series of G2(R) associated to γ has cardinality equal to |WG2/WKG2

| =
3. Choose representatives {w1, w2, w3} of WG2/WKG2

such that wiρ is dominant for KG2 .

Then, for any 1 ≤ i ≤ 3, there exists an irreducible discrete series σΓ∞ of Harish-Chandra
parameter Γ = wi(γ + ρ) and minimal KG2-type Γ + δG2 − 2δKG2

, where δG2 , resp. δKG2
,

is the half-sum of roots, resp. compact roots, which are positive with respect to the Weyl
chamber in which Γ lies. Precisely, if we let w1 = id, w2 = wa, and w3 = wbwa, then

w1ρ = ρ = 3ε1 + ε2,

w2ρ = 2a+ 5b = 2ε1 + 4ε2,

w3ρ = a+ 4b = ε1 + 5ε2.

We let D3,1, D2,4, and D1,5 denote the sets of discrete series of G2(R) whose Harish-Chandra
parameter lies in the Weyl chamber corresponding to w1ρ, w2ρ, and w3ρ respectively. El-
ements of D3,1 are the quaternionic discrete series, while elements of D2,4 are the generic
discrete series.

Gross has given a precise conjectural description of the entire discrete spectrum of the dual
pair (G2,PGSp6) (cf. [45, Conjecture 1.2]). Recall that there are four families of discrete
series for PGSp6(R), indexed by the set of Hodge types up to conjugation. In particular,
the discrete series of PGSp6(R) of Hodge type (4, 2), resp. (6, 0), are the generic, resp.
holomorphic discrete series.

Conjecture 6.6 (Gross). Let Π∞ be the minimal representation of E7(R). The discrete
spectrum of the restriction of Π∞ to the dual pair G2(R) × PGSp6(R) is the direct sum of
all tensor products σ∞ ⊗ θ(σ∞), where σ∞ belongs to the discrete series of G2. If σ∞ has
infinitesimal character γ + ρ = rε1 + sε2 and belongs to either D3,1, D2,4, or D1,5, then
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θ(σ∞) is the discrete series of PGSp6(R) with infinitesimal character (r, 12(r + s), 12(r − s))
and Hodge type (3, 3), (4, 2), or (5, 1) respectively.

The conjecture of Gross has been verified for discrete series in D3,1 by Li (cf. §6.3.2
below). Moreover, it has been partially confirmed for the generic family D2,4 by Harris-
Khare-Thorne in [32, Theorem 1.5 and Theorem 1.7(ii)] using the main result of Savin’s
appendix to [32] and the non-vanishing of the global theta lift given by [23, Corollary 4.2],
while Li verified it for a proper subset D′

1,5 of D1,5 in [45, Theorem 4.3]. We also note that

the remaining equivalence class of holomorphic discrete series of PGSp6(R) (of Hodge type
(6, 0)) is realized in an exceptional theta correspondence studied by Gross-Savin between
the compact real form Gc2(R) of G2 and PGSp6(R) and moreover this is the only Hodge
type that appears in that correspondence (cf. [27, Theorem 3.5]).

6.3.2. Quaternionic discrete series and their theta lift. We describe the main result of [45],
which verifies the conjecture of Gross for quaternionic discrete series. We first notice that
a discrete series σx,y∞ of Harish-Chandra parameter xε1 + yε2 lies in the set of quaternionic
discrete series D3,1 if x, y are two non-negative integers such that x − 3 ≥ y − 1 ≥ 0 and
x− y is even. The minimal KG2-type of σx,y∞ ∈ D3,1 is given by

Symx+1(Stdε1)⊠ Symy−1(Stdε2),

where Stdε1 (resp. Stdε2) is the standard representation of the SU2 corresponding to the
long root ε1 (resp. the short root ε2).

Proposition 6.7. Let Π∞ denote the minimal representation of E7(R). We have

Π∞|G2(R)×PGSp6(R) ⊇
⊕

σx,y∞ ∈D3,1

σx,y∞ ⊗ θ(σx,y∞ )

where θ(σx,y∞ ) ∈ P (V λ), with λ = (x− 3, 12 (x+ y)− 2, 12(x− y)− 1, 0), is the discrete series
π3,3∞ of Hodge type (3, 3) and Harish-Chandra parameter (12(x+ y), 12 (x− y),−x).
Proof. See [45, Theorem 1.1] and [33, Theorem 5.4]. �

The set D3,1 contains an important family of discrete series, which were studied by Gross
and Wallach in [28] and [29].

Definition 6.8. For every n ≥ 2, the quaternionic discrete series σn is the element of D3,1

of Harish-Chandra parameter (2n− 1)ε1 + ε2 and minimal KG2-type

Sym2n(Stdε1)⊠ 1.

A fundamental property of the members of this family is that they admit (unique) mod-
els with respect to the unipotent radical of the Heisenberg parabolic and non-degenerate
characters corresponding to totally real étale cubic algebras. Recall, as in §6.2.3, that a
non-degenerate character ψ : UH(R) → C× corresponds to a cubic algebra, whose dis-
criminant is either positive or negative. The first type corresponds to the GL2(R)-orbit
on VH(R) given by R3, while the second to the GL2(R)-orbit of R ×C. A representative
ψ : UH(R) → C× of the totally real orbit is given by e2πif , where f : UH(R) → R is
non-zero on the one parameter unipotent subgroups xa+b and xa+2b and trivial on xa and
xa+3b (cf. [16, §6]). A special case of the main result of [58] gives the following.

Proposition 6.9. Let ψ be a non-degenerate character of VH(R). There is (at most) a one
dimensional space of ψ-equivariant linear functionals on σn.Moreover,

dim HomUH (R)(σn, ψ) = 1,
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exactly when ψ corresponds to a totally real cubic algebra.

6.3.3. The non-archimedean theta correspondence. We describe the properties of the non-
archimedean theta correspondence which will be later needed to study the global theta
correspondence. Let σ be an irreducible admissible representation of G2(Qp).

Definition 6.10. Let Θ(σ) be the equivalence class of irreducible admissible representations
π of PGSp6(Qp) such that σ⊗ π is a quotient of the minimal representation Πp of E7(Qp).
Denote by θ(σ) the maximal semisimple quotient of Θ(σ).

Proposition 6.11. For an irreducible admissible representation σ of G2(Qp), Θ(σ) has
finite length with unique irreducible quotient (if non-zero) θ(σ). Moreover, one has the
following.

(1) Let σ be an unramified generic representation of G2(Qp) with Satake parameter s,
then π = θ(σ) is the unramified representation of PGSp6(Qp) whose Satake param-
eter is ϕ ◦ s, where ϕ : G2 →֒ Spin7 is the map of L-groups.

(2) Let StG2 (resp. StPGSp6
) be the Steinberg representation of G2(Qp) (resp. PGSp6(Qp));

then θ(StG2) = StPGSp6
.

Proof. See [19, Theorem 1.2, Theorem 15.3(v)] and [27, Proposition 3.1]. �

7. Cuspidality and Fourier coefficients of the global theta lift

In this section, based on the works [23], [27], and the appendix of Savin in [32], we give a
criterion on the cuspidality of representations in the image of the exceptional theta lift and
on their possession of Fourier coefficients of type (4 2).

7.1. Cuspidality of the global lift. Let V denote the unipotent subgroup of SL3 (embed-
ded into G2 as in §6.2.1) generated by the roots a+3b and 2a+3b. We further consider the
subgroup SL2 embedded into G2 via the Levi of the “long root” parabolic Pa and denote,
for any cusp form ϕ for G2(A),

ϕSL2V (g) :=

∫

SL2(Q)\SL2(A)

∫

V (Q)\V (A)
ϕ(vmg)dvdm.

We are thankful to David Ginzburg, who kindly shared with us a proof that the non-
vanishing of the period appearing in [21, Theorem 3.7(3)] implies that σ is globally generic,
i.e. that it has non-zero Whittaker coefficients. We crucially use this fact to prove the
following.

Lemma 7.1. Let σ be a cuspidal automorphic representation of G2(A), which is not globally
generic. For any cusp form ϕ ∈ Vσ and g ∈ G2(A), we have ϕSL2V (g) = 0.

Proof. Let Z denote the unipotent subgroup of G2 generated by the roots a + 2b, a + 3b,
and 2a + 3b. If we Fourier expand the period ϕSL2V (g) along the 1-dimensional unipotent
subgroup xa+2b(r) of G2, we get

ϕSL2V (g) = ϕSL2Z(g) +
∑

ψZ

ϕSL2,ψZ (g),

where the sum runs over non-trivial additive characters ψZ : Z(Q)\Z(A) → C× supported
on the root a+ 2b, ϕSL2Z(g) is the period of ϕ over [SL2Z], and

ϕSL2,ψZ (g) :=

∫

SL2(Q)\SL2(A)

∫

(Q\A)3
ϕ(xa+2b(r1)xa+3b(r2)x2a+3b(r3)mg)ψZ(r1)dridm.
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By [23, Lemma 2.1], ϕSL2Z(g) = 0 for all ϕ in σ and g ∈ G2(A). Hence, ϕSL2V (g) = 0 if
and only if ϕSL2,ψZ (g) = 0 for all choices of data. We argue by contradiction. Suppose that
ϕSL2,ψZ (g) 6= 0 for a certain choice of data. We now show that this implies that σ supports
Whittaker Fourier coefficients, thus contradicting our hypothesis. Let Va be the unipotent
radical of Pa. Since V is normal in Va, we can consider the quotient V0 = Va/V , which
is isomorphic to the Heisenberg group in three variables (cf. [20, §1.1]). Note that it is
generated by the roots b, a + b, and a + 2b. We can then apply the results of [34] for the
Jacobi group given by SL2V0. In particular, [34, Proposition 1.3] implies that ϕSL2,ψZ (1) is
zero for all choices of data if and only if

I1 :=

∫

SL2(Q)\SL2(A)

∫

(Q\A)5
ϕ(xb(v1)xa+b(v2)xa+2b(r1)xa+3b(r2)x2a+3b(r3)m)·

· θφ1SL2
(xb(v1)xa+b(v2)xa+2b(r1)m)θφ2SL2

(m)dvidridm

is zero for all choices of data. Here θ•SL2
(g) is the theta function on the double cover of the

Jacobi group SL2V0 (cf. [34, p. 620]). The period I1 appears as the residue of the global

integral studied in [20]: since θφ2SL2
(m) realizes the residue at s = 3/4 of the normalized

Eisenstein series EisS̃L2
(m, s) on the metaplectic cover of SL2, by [20, Theorem 4], the

integral I1 is the residue of

I2(s) :=

∫

SL2(Q)\SL2(A)

∫

(Q\A)5
ϕ(xb(v1)xa+b(v2)xa+2b(r1)xa+3b(r2)x2a+3b(r3)m)·

· θφ1SL2
(xb(v1)xa+b(v2)xa+2b(r1)m)EisS̃L2

(m, s)dvidridm.

If I1 is not zero, then, for Re(s) large enough, the integral I2(s) is not zero. By [20, Theorem
1], I2(s) contains the Whittaker coefficient for ϕ as an inner integration. This shows that if
ϕSL2,ψZ (1) 6= 0 for some choice of data, I2(s) 6= 0 and, in particular, σ is globally generic.
This finishes the proof. �

Theorem 7.2. Let σ be a cuspidal automorphic representation of G2(A). Assume that
(1) σ is not globally generic;
(2) there exists a finite place p such that σp is generic.

Then the big theta lift Θ(σ) of σ to PGSp6 is cuspidal.

Proof. We show the result by using the tower of theta lifts from G2 and its properties studied
in [23]. If σ lifts trivially to PGSp6 then there is nothing to prove, so suppose that σ has a
non-zero theta lift π to PGSp6. Then, by [23, Theorem A] π is cuspidal if and only if the
lifts of σ to PGSp4 and PGL3 are both zero. By [23, Theorem 4.1 (3)], the lift to PGSp4 is
zero if and only if

ϕSL3(g) =

∫

[SL3]
ϕ(xg)dx = 0 and ϕSU(2,1)(g) =

∫

[SU(2,1)]
ϕ(xg)dx = 0

for any g ∈ G2(A), any ϕ ∈ Vσ∨ . Here, SL3 embeds into G2 as the stabilizer of a norm −1
vector (cf. §6.2.1), while SU(2, 1) is realized as the stabilizer of a norm −c vector, with c
not a square in Q. We argue by contradiction. Suppose that σ∨ has a non-trivial SU(2, 1)-
functional. This implies that, at every finite v, σv admits one. By Frobenius reciprocity,

HomSU(2,1)(σ
∨
v ,C) = HomG2(c-IndG2

SU(2,1)(C), σv)

and hence, since σv is irreducible, one deduces that each local component σv of σ is a
quotient of C∞

c (G2(Qv)/SU(2, 1)(Qv). In particular, σp is identified with such a quo-
tient. This is a contradiction as, by hypothesis, σp is generic but, by [27, Lemma 4.10],
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C∞
c (G2(Qp)/SU(2, 1)(Qp) does not admit a Whittaker functional. The same argument also

shows the vanishing of ϕSL3 . We claim finally that the theta lift of σ to PGL3 also vanishes.
Since σ is not globally generic, Lemma 7.1 shows that, for all ϕ ∈ σ, ϕSL2V (g) = 0. We
can then apply [23, Theorem 4.1(4)] to deduce that the theta lift of σ to PGL3 is zero and
conclude the proof.

�

Corollary 7.3. Let σ be a cuspidal automorphic representation of G2(A). Assume that

(1) σ∞ is a discrete series;
(2) there exists a finite place p such that σp is Steinberg.

Then Θ(σ) is cuspidal.

Proof. We distinguish two cases. We first suppose that σ is globally generic. Then we apply
[32, Theorem 1.7(ii)] to deduce that its theta lift is cuspidal. If, instead, σ is not globally
generic, the result follows from Theorem 7.2 as the Steinberg representation σp = StG2 is
generic. �

7.2. Calculation of orbits. This preparatory section presents an elementary but crucial
calculation needed in the proof of Proposition 7.7.

Let e : Q\A → C× be the standard non-trivial character introduced in §5.2 and let
A ∈ J(Q). We define the character ψA : N(Q)\N(A) → C× by ψA(X) = e(Tr(A ◦ X))
where A◦X = 1

2(AX+XA) is the Jordan product. Recall from §5.2 that, for any B ∈ J3(Q),
we define a character ψB : U3(Q)\U3(A) → C× by ψB(n(X)) = e(Tr(BX)). In particular,
we have denoted ψD the character associated to

αD =



0

−D
1


 ∈ J3(Q).

Define

ω(Q) := {A ∈ Ω(Q) |ψA|U3(A) = ψD},
i.e. the set of rank 1 matrices in J(Q) inducing the same character as αD on the unipotent
radical of the Siegel parabolic. In the following, we will always see ω(Q) inside N(Q). In
particular, if g ∈ GL3(Q) ⊆ M(Q), its action on A is the dual action to (10), namely

g ·A = det(g)(gt)−1Ag−1. Finally, denote by A(x, y, z) the matrix



0 z y
z −D x
y x 1


 ∈ J .

Lemma 7.4. We have

ω(Q) =
{
A(x, y, z) : Tr(x) = Tr(z) = 0,N(x) = −D,N(z) = 0, z ∈ x⊥, y = −D−1zx

}
.

Proof. Let

A =



d z y
z e x
y x f


 ∈ J

Similarly to the proof of [27, Lemma 3.4], the condition ψA|U3(A) = ψD is equivalent to

d = 0, e = −D, f = 1,

x = −x, y = −y, z = −z
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The condition that A has rank 1 gives

N(x) = −D, N(y) = N(z) = 0,

yz = 0, zx = −Dy, xy = z.

We claim that these conditions imply that z ∈ x⊥, which means that zx + xz = 0, or
equivalently zx = −xz. Indeed, multiplying z = xy on the left by x and using alternativity,
we obtain

xz = x(xy) = (xx)y = Dy = −zx.
Finally, as N(x) = −D and Tr(x) = 0, we have x2 = D and hence x−1 = D−1x, which
implies that

y = x−1z = D−1xz.

This shows one inclusion of the statement.
In the other direction let x, z ∈ O be as in the right hand side of the statement. We have

to show that y := −D−1zx has norm and trace equal to zero and that xy = z. We have

N(y) = (−D)−2N(z)N(x) = 0

and

Tr(y) = −D−1Tr(zx) = −D−1Tr(xz) = D−1Tr(zx) = −Tr(y)

because xz = −zx. Hence Tr(y) = 0. Moreover

xy = −D−1x(zx) = D−1x(xz) = D−1(xx)z = z.

This shows that A ∈ ω(Q) and concludes the proof of the lemma. �

As for any A(x, y, z) ∈ ω(Q), the octonion y = −D−1zx is determined by x and z and
we will often denote A(x, y, z) by A(x, z). Note that there is an action of G2(Q) on the set
ω(Q) given by the action on the coefficients. The following proposition describing the orbits
of this action will be essential.

Proposition 7.5. The group G2(Q) acts on ω(Q) with a finite number of orbits. Moreover,
representatives of the orbits and their respective stabilizers are given as follows.

(1) If D is a square in Q×:
(a) A3 = A(x, 0), where x = (s4− t4)

√
D and StabG2(Q)(A(x, 0)) ∼= SL3, where SL3

is embedded into G2 as §6.2.1.
(b) A2 = A(x, t3) with StabG2(A2) = SL2V ⊂ SL3, where SL2 and V embed into

SL3 as in §7.1.
(c) A1 = A(x, s3) with StabG2(A1) = SL2V ⊂ SL3, where SL2 is as in (1)(b) and

V is the opposite unipotent subgroup to V .
(d) A0 = A(x, s1 + t3) with StabG2(A0) = UD, where UD denotes the unipotent

radical of the upper-triangular Borel of SL3 (denoted by USL3 in §7.1).
(2) If D is not square in Q×:

(a) A1 = A(x, 0) ∈ ω(Q), for any x 6= 0 for which N(x) = −D, with

StabG2(Q)(A(x, 0)) ∼= SU(2, 1).

To emphasize its dependence on D, we denote this stabilizer by SUD(2, 1).
(b) A0 = A(x, z), for any norm zero z in x⊥, with StabG2(A0) ≃ UD, where UD

denotes the unipotent radical of the upper-triangular Borel of SUD(2, 1).
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Proof. Step 1. By [49, Theorem 1], the group G2 acts transitively on the set of trace zero
elements of norm −D and hence on the sets A(x, 0). The description of the stabilizer in
(1)(a) follows from [35, Theorem 4] or [49, Lemma 2]. The description of the stabilizer in
(2)(a) follows from [35, Theorem 3] or [49, Lemma 3]. More precisely, according to [49,

Lemma 3] the space x⊥ has the structure of a 3-dimensional Q(
√
D)-vector space and the

action of StabG2(x) on x⊥ induces an isomorphism StabG2(x) ≃ SUD(2, 1).
Step 2. We now study the remaining G2-orbits when D is a square in Q. Again, we can

assume that D = 1. Recall from §6.2.1 that SL3 embeds into G2 as the stabilizer of s4 − t4.
This identification is explicitly given as follows (cf. [49, Lemma 2]). An element of g ∈ SL3

induces an action on O0 fixing s4− t4 and given by the left multiplication by g on 〈s1, s2, s3〉
and by (gt)−1 on 〈t1, t2, t3〉. One verifies that this actions respects multiplication and hence
defines an element in G2. Assume z 6= 0 is such that A(x, z) ∈ ω(Q). Since z is trace zero
and orthogonal to x = s4 − t4 we can write z = z1 + z2 with z1 =

∑
i αisi and z2 =

∑
i βiti.

Since the group SL3 acts transitively on the non-zero elements of 〈s1, s2, s3〉 and 〈t1, t2, t3〉,
then the cases where z1 = 0 or z2 = 0 give rise to exactly two orbits. When z1 = 0, taking
z2 = t3 as a generator of this orbit, the corresponding stabilizer is







∗ ∗ ∗
∗ ∗ ∗
0 0 1





 ⊂ SL3,

which coincides with SL2V as in (1)(b). Similarly, when z2 = 0, taking z1 = s3 as the
generator of the orbit, then the stabilizer is







∗ ∗ 0
∗ ∗ 0
∗ ∗ 1





 ⊂ SL3.

This is nothing but SL2V , with SL2 which again embeds in the Levi of the long root parabolic
Pa and V is the opposite unipotent subgroup to V generated by the negative roots −a− 3b,
−2a− 3b. Finally we treat the case z1, z2 6= 0. Write

z = α1s1 + α2s2 + α3s3 + β1t1 + β2t2 + β3t3.

The condition N(z) = 0 translates then in

α1β1 + α2β2 + α3β3 = 0. (13)

We can assume that z2 = t3. Then α3 = 0 by (13) and, using the action of the stabilizer
of t3, we can assume that z1 = s1. It is then immediate to check that the stabilizer of
A(s4 − t4, s1 + t3) is as in (1)(d). This concludes the proof of (1).

Step 3. We finally deal with the case where D is not a square in Q. By Witt’s theorem,
the group SU(2, 1) acts transitively on the isotropic vectors of the three dimensional Q(

√
D)

vector space x⊥. We thus have two orbits for G2(Q) on ω(Q), generated by A(x, 0) and
A(x, z), where z is any non-zero vector in x⊥ with zero norm. We are now left with calcu-
lating the stabilizer of the latter orbit. Recall that the action of SU(2, 1) on x⊥ is given by

its natural action on Q(
√
D)3. More precisely, after extending scalars to Q(

√
D), we can

decompose

x⊥ ⊗Q Q(
√
D) = Q(

√
D)〈s1, s2, s3〉 ⊕Q(

√
D)〈t1, t2, t3〉.

The projection to the first component induces an isomorphism of Q(
√
D)-vector spaces

x⊥ ≃ Q(
√
D)〈s1, s2, s3〉 (cf. [49, Lemma 3]), with SU(2, 1) acting naturally on the basis
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{s1, s2, s3}. Here, we choose the Hermitian form defining SU(2, 1) given by
( √

D
−1

1

−
√
D

−1

)
∈ GL3(Q(

√
D)).

We can then suppose that z is sent to s1 and the corresponding stabilizer is given by





1 ∗ ∗
0 ∗ ∗
0 ∗ ∗





 ∩ SU(2, 1) = UD.

�

7.3. Non-vanishing of Fourier coefficients I. Recall that we have denoted by Π =⊗′
v Πv the minimal representation of the group E7. Moreover, in §6.3, for f ∈ Π and

ϕ ∈ A(G2(Q)\G2(A)), we have defined the function Θ(f, ϕ) on PGSp6(A) by

Θ(f, ϕ)(g) =

∫

G2(Q)\G2(A)
θ(f)(g′g)ϕ(g′)dg′. (14)

For any A ∈ J(Q) and f ∈ Π, consider the Fourier coefficient

θ(f)A(g) =

∫

N(Q)\N(A)
θ(f)(ng)ψ−1

A (n)dn.

We then have the Fourier expansion (cf. [32, §A.3])

θ(f)(g) = θ(f)0(g) +
∑

A∈Ω(Q)

θ(f)A(g), (15)

where Ω(Q) ⊂ J(Q) is the subset of rank 1 elements.
The following Lemma will be used in the proof of Proposition 7.7. Its proof is similar

to the one of [27, Lemma 4.6] but we give details for the convenience of the reader. Let
A0 be the representative of the open G2-orbit on ω(Q) given in Proposition 7.5. Note that
there is no harm in conjugating A0 ∈ J(Q) by an element of the Levi GL3(Q) of the Siegel
parabolic of PGSp6. Thus, conjugating by diag(n, n, n), A0 gets multiplied by n2 and so we
can assume that the entries x, y, z of A0 are in O(Z).

Lemma 7.6. Let S denote a finite number of places containing 2 and ∞, and let f =
⊗′
vfv ∈ Π be such that, for v /∈ S, we have fv = f0v where f0v denotes the spherical vector

normalized such that f0v (A0) = 1. Let QS =
∏
v∈S Qv. If g ∈ G2(A), we write g = gSg

S

where gS ∈ G2(QS) and gS ∈∏v/∈S G2(Qv). Then there exists a non-zero constant cA0 such
that for every g ∈ G2(A) we have

θ(f)A0(g) = cA0fS(g
−1
S A0)

∏

v/∈S
χv(gv)

where fS =
⊗

v∈S fv and χv is the characteristic function of UD(Zv)\G2(Zv).

Proof. By uniqueness of local functionals ([32, Theorem A.4]), there exists a non-zero scalar
cA0 such that for any g ∈ E7(A), we have θ(f)A0(g) = cA0(Π(g)f)(A0). For g ∈ G2(A)
we have (Π(g)f)(A0) = f(g−1A0) where g−1A0 is the result of the natural action of g−1

on the off diagonal entries of A0. Hence θ(f)A0(g) = cA0f(g
−1A0) = cA0

∏
v fv(g

−1
v A0)

for g ∈ G2(A). Let us prove that for any p /∈ S, we have fp(g
−1
p A0) = χp(gp). So let

gp ∈ G2(Qp) be such that f0p (g
−1
p A0) 6= 0 and let x′, y′, z′ denote the off diagonal entries of

g−1
p A0. According to [32, Theorem A.5] the spherical vector f0p is supported in J(Zp). Hence
x′, y′, z′ ∈ O(Zp). Consider O(Fp) the split octonion algebra over Fp. The projections of
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(x, y, z) and (x′, y′, z′) to O(Fp) are G2(Fp)-conjugated by the proof of Step 1 in Proposition
7.5, which is still valid over the base field Fp as long as p 6= 2. It follows from Hensel lemma
that (x, y, z) and (x′, y′, z′) are G2(Zp)-conjugated. Therefore the function gp 7→ f0p (g

−1
p A0)

is supported in UD(Zp)\G2(Zp) ⊂ UD(Qp)\G2(Qp). Since f0p is G2(Zp)-invariant, for gp ∈
G2(Zp) we have f0p (g

−1
p A0) = f0p (A0) = 1. This completes the proof. �

Proposition 7.7. Let σ be a cuspidal automorphic representation of G2(A) as in Theorem
7.2 and let ϕ ∈ σ∨ be a cuspidal form. Then, the following conditions are equivalent

(1) Θ(f, ϕ)UP ,ψD
(1) 6= 0 for some choice of f .

(2) ϕUD(g) 6= 0 for some g ∈ G2(A).
In particular, if any of the conditions holds then Θ(σ) is non-zero.

Proof. Recall first that, according to Proposition 5.7, we have Θ(f, ϕ)UP ,ψD
6= 0 if and only

if Θ(f, ϕ)U3,α 6= 0 for some α ∈ Symrk2(3)(Q) with α ∼L(Q) αD. We write

Θ(f, ϕ)U3,ψD
(1) =

∫

U3(Q)\U3(A)
Θ(f, ϕ)(u)ψ−1

D (u)du

=

∫

G2(Q)\G2(A)

∫

U3(Q)\U3(A)

∑

A∈Ω(Q)

θ(f)A(ug)ϕ(g)ψ
−1
D (u)dudg,

where in the second equality we used the definition (14) of Θ(f, ϕ) and the Fourier expansion
(15) of θ(f). Since U3 ⊆ N , we have that θ(f)A(ug) = ψA(u)θ(f)A(g) and

∫

U3(Q)\U3(A)
ψA(u)ψ

−1
D (u) =

{
vol(U3(Q)\U3(A)) if ψD = ψA|U3(A)

0 otherwise.

Hence we have

Θ(f, ϕ)U3,ψD
(1) = vol(U3(Q)\U3(A))

∫

G2(Q)\G2(A)

∑

A∈ω(Q)

θ(f)A(g)ϕ(g)dg. (16)

Let (Ai)i be the finite representatives of the orbits of the action of G2(Q) on ω(Q) as
given by Proposition 7.5, and write StabAi

for the stabilizers of Ai in G2. The integral on
the right hand side of (16) becomes
∑

i

∫

G2(Q)\G2(A)

∑

g′∈StabAi
(Q)\G2(Q)

θ(f)Ai
(g′g)ϕ(g)dg =

∑

i

∫

StabAi
(Q)\G2(A)

θ(f)Ai
(g)ϕ(g)dg.

Observe now that, by [32, Theorem A.4] we have θ(f)Ai
(g) = cAi

f(g−1Ai) for any g ∈ G2.
Hence, since StabAi

(A) fixes the matrix Ai, we deduce that the function g 7→ θ(f)Ai
(g) is

left StabAi
(A)-invariant. Making an inner integration over StabAi

(Q)\StabAi
(A) in each

term of the outer sum, we deduce that the above equals
∑

i

∫

StabAi
(A)\G2(A)

θ(f)Ai
(g)ϕStabAi (g)dg,

where ϕStabAi (g) denotes the period of ϕ over StabAi
(Q)\StabAi

(A). We now analyse two
different possibilities. If D is not a square in Q, then, by (2) of Proposition 7.5, G2(Q) acts
on ω(Q) with two orbits, one closed and one open. Let A0, A1 denote representatives of these
two orbits with stabilizers StabA0 = UD and StabA1 = SUD(2, 1) in G2. By the proof of

Theorem 7.2, ϕSUD(2,1)(g) = 0, and hence the only surviving term is the one corresponding
to the orbit represented by A0. If D is a square in Q, then by (1) of Proposition 7.5,
G2(Q) acts on the set ω(Q) with four orbits, three closed and one open. Let Ai, 0 ≤ i ≤ 3
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denote representatives of those orbits, with A0 representing the open one. The corresponding
stabilizers are are UD, SL3, SL2V and its conjugate SL2V . By the proof of Theorem 7.2,
we have ϕSL3(g) = 0. By hypothesis σ (and σ∨) is not globally generic, hence Lemma 7.1

implies that ϕSL2V (g) = ϕSL2V (g) = 0. From this, we deduce that, for any D,

Θ(f, ϕ)U3,ψD
(1) =

∫

UD(A)\G2(A)
θ(f)A0(g)ϕ

UD (g)dg, (17)

where ϕUD(g) is the constant term of ϕ along UD. This shows that if Θ(f, ϕ)U3,ψD
(1) 6= 0

then ϕUD 6= 0 since the period appears as an inner integral of the Fourier coefficient.
We now show the converse, i.e. that if ϕUD 6= 0 then, for some choice of f ∈ Π, the

Fourier coefficient Θ(f, ϕ)U3,ψD
does not vanish. Let S be as in Lemma 7.6. By enlarging

S if necessary, we can assume that the cusp form ϕ is G2(Zv)-invariant for all v /∈ S. By
Lemma 7.6, the integral of (17) equals

cA0 ·
(∫

UD(QS)\G2(QS)
fS(g

−1A0)ϕ
UD(g)dg

)
·
∏

v/∈S
vol(UD(Zv)\G2(Zv), dgv).

It remains to show that, when ϕUD 6= 0 then for a good choice of f at the places in S, the
integral ∫

UD(QS)\G2(QS )
fS(g

−1A0)ϕ
UD (g)dg 6= 0.

It follows from [32, Theorem A.4] that fS can be any smooth compactly supported function
on Ω(QS). Let g0 ∈ G2(QS) be such that ϕUD(g0) 6= 0. We can take a non-negative
f supported in a sufficiently small neighborhood of g0 to ensure the non-vanishing of the
integral. This finishes the proof of the proposition. �

7.4. Non-vanishing of Fourier coefficients II. The purpose of this section is to prove
the following result.

Theorem 7.8. Let F denote a quadratic étale algebra and σ = σ∞ ⊗ σf be a cuspidal
automorphic representation of G2(A) such that

• σ∞ is a discrete series in D3,1.
• there exists a finite prime p such that σp is Steinberg.
• The representation σ supports Fourier coefficient associated to the cubic algebra Q×
F .

The theta lift Θ(σ) = ⊗′
vΘ(σv) is a non-zero cuspidal automorphic representation of PGSp6(A).

Let π by any non-zero irreducible subquotient of Θ(σ). Then

• π∞ is a discrete series of Hodge type (3, 3).
• πp is Steinberg.
• The representation π supports a non-trivial Fourier coefficient of type (4 2) associated

to F .

Remark 7.9. By [15, Theorem 3.1], every irreducible non-trivial automorphic representation
of G2(A) has a non-zero Fourier coefficient for some étale cubic algebra R. If R does not
split as Q × F , then, one can show that the theta lift of σ supports a Fourier coefficient
for the Siegel parabolic associated to a symmetric matrix of rank three. Together with
[32, Theorem A.9], which deals with the generic case, this gives a complete correspondence
between Fourier coefficients of σ and Θ(σ). A detailed proof of this statement will appear
in a forthcoming work of ours.
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Let us first fix some notations first. Recall from §6.1.2 that the centralizer of G2 in M is
GL3 and let

U0 =







1 a b
0 1 0
0 0 1







be the unipotent radical of its Borel subgroup of upper triangular matrices. Note that the
unipotent subgroup U0U3 is the unipotent radical of the parabolic subgroup P of PGSp6 of
Levi GL2 ×GL2

1 appearing in §5.2.2.

Definition 7.10. Define the character ψ0 : U0(Q)\U0(A) → C× by sending

ψ0(u) = e(a).

Note that ψ0ψD is the character (simply denoted by ψD) on UP (Q)\UP (A) introduced
in §5.2.2.

As explained in §7.2, we view the space Ω of rank 1 elements in J inside N so that U0

acts on Ω via the natural right action of GL3 ⊆ M on N . Then, we let U0 act on the left
on ω and hence on the triples (x, y, z) of off-diagonal terms by the rule

u−1 · (x, y, z) = (x+ ay + bz, y, z). (18)

7.4.1. The relation between UP and UH . In what follows, we relate the unipotent subgroup
U0 to the unipotent radical UH of the Heisenberg parabolic. Such a relation will be employed
in Proposition 7.13 to establish a relation between Fourier coefficients for the Heisenberg
parabolic of G2-cusp forms and Fourier coefficients of type (4 2) of their theta lifts.

Before stating our result, we make the following comments on the choice of representatives
of the open orbits in Proposition 7.5. First, suppose that D = d2, with d ∈ Q×. There is
no harm in assuming d ∈ Z. Recall that the stabilizer in G2 of the vector s4 − t4 can be
identified with SL3 = SL(〈s1, s2, s3〉). Since the Heisenberg parabolic H = LH · UH is the
stabilizer of the flag 〈s1, t3〉, its unipotent radical UH contains UD = StabG2(A0), where

A0 = A(d(s4 − t4), s1 − t3, d(s1 + t3)) ∈ J(Z)

is the representative of the open orbit of the action of G2 on ω(Q) as in Proposition 7.5.
Moreover, UH/UD is 2-dimensional and supported on the roots a+ b and a+2b. Let us now
suppose that D is not a square in Q×. The vector x = s2 +Dt2 is a trace zero octonion of
norm D and orthogonal to t3. We choose the representative of the open orbit to be

A0 = A(s2 +Dt2, s1, t3) ∈ J(Z).

Lemma 7.11. There is a natural surjection p : UH → U0 inducing an isomorphism

UH/UD → U0.

Proof. By the description of the action in (18) and the linear independence of the coordinates
(x, y, z) of the representative of the open orbit, one sees that U0 acts freely on it. Hence, the
result follows from showing that any element in UH acts on the triple (x, y, z) as an element
of U0 and vice versa. Case 1. We start with the case where D is a square in Q×. The action
of U0 is given by

u−1·(d(s4−t4), s1−t3, d(s1+t3)) = (d(s4−t4)+(a+db)s1+(db−a)t3, s1−t3, d(s1+t3)). (19)

Since any element of UH fixes s1 and t3, it suffices to show that UH acts on (s4 − t4) as an
element of U0. We verify this by studying the action of the Lie algebra. By (12), we know
that the Lie algebra of UH is generated by the Lie algebra of the unipotent upper-triangular
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subgroup UD in SL3 and by the vectors v1 and δ3. Using the explicit action of the action of
the Lie algebra given in §6.2.2, one checks that

Eij · (s4 − t4) = 0,

v1 · (s4 − t4) = s1,

δ3 · (s4 − t4) = t3.

The above equations show that, for u1 = xa+b(λ1) and u2 = xa+2b(λ2) for some scalars
λ1, λ2, we have

u1 · (d(s4 − t4)) = d(s4 − t4 + λ1s1),

u2 · (d(s4 − t4)) = d(s4 − t4 + λ2t3).

This gives the desired isomorphism: if u ∈ UH/UD is identified with the product of
xa+b(λ1)xa+2b(λ2), then, from Equation (19), we see that it gets sent to the element



1 dλ1−λ22

λ1+λ2
2

0 1 0
0 0 1


 ∈ U0.

Case 2. We now suppose that D is not a square in Q×. Similarly to Case 1, it suffices to
calculate u · (s2 +Dt2) for any u ∈ UH . As above, one checks that

E12 · (s2 +Dt2) = s1,

E23 · (s2 +Dt2) = Dt3,

E13 · (s2 +Dt2) = 0,

v1 · (s2 +Dt2) = t3,

δ3 · (s2 +Dt2) = −Ds1.
This implies that if u ∈ VH = UH/[UH , UH ] equals to xa(λ1)xa+b(λ2)xa+2b(λ3)xa+3b(λ4),
then

u · (s2 +Dt2) = s2 +Dt2 + (λ1 − λ3D)s1 + (λ2 +Dλ4)t3.

In particular, UD embeds into UH as the subgroup of matrices with λ1 = λ3D and λ2 =
−λ4D, and the map p : UH/UD → U0 sends u to the element



1 λ1 − λ3D λ2 + λ4D
0 1 0
0 0 1


 ∈ U0.

�

Corollary 7.12. Under the isomorphism p : UH/UD → U0, we have

ψH,D = ψ0 ◦ p,
where ψH,D : UH(Q)\UH(A) → C× is the character corresponding to the étale cubic algebra
Q×Q(

√
D).

Proof. We start with the case where D is a square in Q×. For simplicity, we can (and do)
assume that D = 1. From Lemma 7.11, if n ∈ UH/UD is identified with the product of
xa+b(λ1)xa+2b(λ2), it is sent via p to



1 λ1−λ2

2
λ1+λ2

2
0 1 0
0 0 1


 ∈ U0.
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Hence, the character ψ0 ◦ p : UH(Q)\UH(A) → C× sends n 7→ e(λ1−λ22 ). We now show
that this corresponds to the character ψH,D associated to Q × Q ×Q as in §6.2.3. Recall
that each character on UH(Q)\UH(A) is of the form n 7→ e(〈w,n〉), where n denotes the
projection of n to UH/[UH , UH ] and w ∈ UH(Q)/[UH (Q), UH(Q)] corresponds to a binary
cubic form

fw(x, y) = λ1x
3 + λ2x

2y + λ3xy
2 + λ4y

3,

with λi ∈ Q. Furthermore, as n = xa(λ
′
1)xa+b(λ

′
2/3)xa+2b(λ

′
3/3)xa+3b(λ

′
4) corresponds to

f ′(x, y) = λ′1x
3 + λ′2x

2y + λ′3xy
2 + λ′4y

3, the pairing is

〈w,n〉 = λ1λ
′
4 −

λ2λ′3
3 +

λ3λ′2
3 − λ4λ

′
1.

Then, the character ψ0 ◦ p corresponds to an element wD for which λ1, λ4 = 0 and λ2, λ3 =
1/2, namely the binary cubic polynomial fD(x, y) = 1

2 (x
2y + xy2). The latter is in the

LH(Q)-orbit corresponding to the cubic algebra Q3. Indeed, if we let g =
(
2
−2

)
∈ LH(Q)

act on fD, we get

g · fD(x, y) = −1
4fD(2x,−2y) = 1

8 (8x
2y − 8xy2) = x2y − xy2,

which corresponds to Q3 by Example 6.1(1).
We now suppose that D is not a square in Q×. Then, by Lemma 7.11, if

n ≡ xa(λ1)xa+b(λ2)xa+2b(λ3)xa+3b(λ4) mod [UH , UH ],

the character ψ0 ◦ p : UH(Q)\UH(A) → C× sends n 7→ e(λ1 − λ3D). This character is
associated to the binary cubic polynomial fD(x, y) = Dx2y − y3, which corresponds to

Q×Q(
√
D) by Example 6.1(2). �

7.4.2. Comparison of Fourier coefficients. The following proposition can be paired with
Proposition 7.7 to give three equivalent ways of proving that the theta lift of an automorphic
representation of G2 does not vanish.

Proposition 7.13. Let σ be a cuspidal automorphic representation of G2(A) as in Theorem
7.2 and let ϕ ∈ σ∨ be a cuspidal form. The following conditions are equivalent

(1) Θ(f, ϕ)UP ,ψD
(1) 6= 0 for some choice of f ∈ Π,

(2) ϕUH ,ψH,D
(g) 6= 0 for some g ∈ G2(A).

In particular, if any of the conditions holds then Θ(σ) is non-zero.

Proof. Decomposing UP = U0U3, we have

Θ(f, ϕ)UP ,ψD
(1) =

∫

U0(Q)\U0(A)

∫

U3(Q)\U3(A)
Θ(f, ϕ)(uu′)ψ−1

D (u′)ψ−1
U0

(u)du′du.

As in the proof of Proposition 7.7, this equals
∫

U0(Q)\U0(A)

∫

UD(A)\G2(A)
θ(f)A0(ug)ϕ

UD (g)ψ−1
U0

(u)dgdu.

Exchanging integrals and making an inner integration over UD(A)\UH (A), we get

∫

UH(A)\G2(A)

∫

UD(A)\UH (A)

(∫

U0(Q)\U0(A)
θ(f)A0(uu

′g)ψ−1
U0

(u)du

)
ϕUD(u′g)du′dg.

The isomorphism p : UH/UD ∼= U0 of Lemma 7.11 induces

U0(Q)\U0(A) ∼= UH(Q)UD(A)\UH(A)
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such that ψH,D = ψ0 ◦ p (cf. Corollary 7.12). Thus, we can write the integral as

∫

UH (A)\G2(A)

∫

UD(A)\UH (A)

(∫

UH(Q)UD(A)\UH (A)
θ(f)A0(uu

′g)ψ−1
H,D(u)du

)
ϕUD(u′g)du′dg.

Exchanging integrals, we have

∫

UH(A)\G2(A)

∫

UH (Q)UD(A)\UH (A)

(∫

UD(A)\UH (A)
θ(f)A0(uu

′g)ϕUD (u′g)du′
)
ψ−1
H,D(u)dudg

=

∫

UH\G2(A)

∫

UH(Q)UD(A)\UH (A)



∫

UH(Q)UD(A)\UH (A)

∑

γ∈UD\UH (Q)

θ(f)A0(uγu
′g)ϕUD (γu′g)du′


ψ−1

H,D(u)dudg

=

∫

UH\G2(A)

∫

UH(Q)UD(A)\UH (A)

∑

γ

(∫

UH(Q)UD(A)\UH (A)
θ(f)A0(γuu

′g)ϕUD (γu′g)du′
)
ψ−1
H,D(u)dudg

Changing variable u′ 7→ u′′ = γuu′ = uγu′′ in the inner integral, the above becomes

∫

UH(A)\G2(A)

∫

UH(Q)UD(A)\UH (A)

(∫

UD(A)\UH (A)
θ(f)A0(u

′′g)ϕUD(u−1u′′g)du′′
)
ψ−1
H,D(u)dudg

which, after rearranging the integrals, equals to
∫

UH (A)\G2(A)

∫

UD(A)\UH (A)
θ(f)A0(u

′′g)ϕUH ,ψH,D
(u′′g)du′′dg

=

∫

UD(A)\G2(A)
θ(f)A0(g)ϕUH ,ψH,D

(g)dg.

This shows that (1) implies (2). The proof of the converse is identical as the one given in
Proposition 7.7.

�

We are now ready to give a proof of Theorem 7.8.

Proof of Theorem 7.8. Let σ be a cuspidal automorphic representation satisfying the hy-
potheses of the Theorem. We first apply Corollary 7.3 to deduce that Θ(σ) is cuspidal.
Moreover, by Proposition 7.13, the theta lift supports a Fourier coefficient of type (4 2)
and, in particular, it is non-zero. Finally, by the compatibility between the global and lo-
cal correspondences (Proposition 6.5), the result of Li (Proposition 6.7) implies that the
archimedean component of π is a discrete series of Hodge type (3, 3), while its component
at p is the Steinberg representation by Proposition 6.11(2). This finishes the proof. �

8. The cycle class formula and the standard motive for G2

We conclude this article with the arithmetic applications described in the introduction.
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8.1. The relation between L-functions of G2 and PGSp6. The dual group of G2 is
G2(C), which can be realized as the intersection SO7(C) ∩ Spin7(C). More precisely, we
have the commutative diagram

G2(C) �
� //

� _

ζ
��

Std

&&
SO7(C) �

� //
� _

��

GL7(C)
� _

��
Spin7(C) �

� //

Spin

88
SO8(C) �

� // GL8(C),

(20)

where Std : G2(C) → GL(V7) is the standard representation given by trace zero octonions,
Spin : Spin7(C) → GL(V8) is the 8-dimensional spin representation, while the embedding ζ
is defined from the fact that the stabilizer in Spin7(C) of a generic vector of V8 is isomorphic
to G2(C). From the commutative diagram, one immediately sees that

V8|G2
= V7 ⊕ 1.

In particular, if πℓ is an unramified smooth representation of PGSp6(Qℓ) with Satake pa-
rameter sπℓ belonging to ζ(G2(C)), then

L(s, πℓ,Spin) = L(s, πℓ,Std)ζℓ(s),

where

L(s, πℓ,Std) :=
1

det(1− ℓ−sStd(sπℓ))

denotes the Euler factor at ℓ of the 7-dimensional standard L-function for G2.
Let now π be a cuspidal automorphic representation of PGSp6, which is unramified outside

a finite set of places S containing the Archimedean place. As a special case of Langlands
functoriality, one then expects that if LS(s, π,Spin) has a simple pole at s = 1, π is a
functorial lift from either G2 or Gc2, where recall that Gc2 denotes the form of G2 which is
compact at ∞ and split at all finite places of Q. We invite the reader to consult [21], [17],
[48], and [18] for results in this direction. In particular, using results of [11], [18] and [41],
one deduces the following.

Proposition 8.1. Suppose that π satisfies the hypotheses (DS) and (St) of §2.7. Then π
is tempered and the following are equivalent:

(1) For almost all ℓ, the Satake parameter sπℓ ∈ ζ(G2(C)),
(2) There exists a cuspidal automorphic representation σ of either G2 or Gc2 such that

π is a weak functorial lift of σ.

Moreover, if these conditions hold, the partial L-function LS(s, π,Spin) has a simple pole at
s = 1 with residue

Ress=1L
S(s, π,Spin) = LS(1, σ,Std)

∏

ℓ∈S
(1− ℓ−1) 6= 0.

Proof. Since π is cohomological and it is Steinberg at a finite place, we can apply [41, Lemma
2.7] to deduce that π is essentially tempered at all places. As π has trivial central character,
this is equivalent to being tempered. The first part of the statement then follows from [18,
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Theorem 1.1]. We now discuss the formula for the residue of the Spin L-function. If either
(hence both) condition (1) or (2) holds, the commutative diagram above implies that

LS(s, π,Spin) = LS(s, π,Std)ζS(s),

where LS(s, π,Std) is the partial L-function of π associated to the standard 7-dimensional
representation of Spin7. By [43, Theorem 1.1.1], the restriction to Sp6(A) of π contains a
cuspidal automorphic representation π♭, such that (up to possibly enlarge S)

LS(s, π,Std) = LS(s, π♭,Std).

By [41, Corollary 2.2 & Lemma 2.3], there exists a cuspidal automorphic representation π♯

of GL7(A) such that

LS(s, π♭,Std) = LS(s, π♯),

where LS(s, π♯) denotes the standard L-function of π♯. We claim that LS(1, π♯) 6= 0. By
[37, Theorem (1.3)], L(s, π♯) 6= 0 for any s with Re(s) = 1. If we write

LS(s, π♯) = L(s, π♯)
∏

ℓ∈S
L(s, π♯ℓ)

−1,

then our claim follows from the fact that each L(s, π♯ℓ) has no pole at s = 1 (cf. [50, p.
317]). This implies that (up to possibly enlarge S)

LS(1, π,Std) = LS(1, σ,Std) 6= 0,

where the first equality is a consequence of the fact that the Satake parameters of σ and π
agree almost everywhere. Thus, LS(s, π,Spin) has a simple pole at s = 1 with residue

Ress=1L
S(s, π,Spin) = LS(1, σ,Std)Ress=1ζ

S(s) 6= 0.

�

The hypotheses of Proposition 8.1 can be weakened at the cost of working with an integral
representation of the Spin L-function. The following result uses the integral I(Ψ,Ψ, s) of
Theorem 5.8 and its corollary.

Proposition 8.2 ([48, Theorem 1.3]). Let π be a cuspidal automorphic representation of
PGSp6(A) supporting a Fourier coefficient of type (4 2). If LS(s, π,Spin) has a simple pole
at s = 1, then there exists a cuspidal automorphic representation σ of G2 such that π is a
weak functorial lift of σ, and

Ress=1L
S(s, π,Spin) = LS(1, σ,Std)

∏

ℓ∈S
(1− ℓ−1).

8.2. The cycle class formula. Let π be a cuspidal automorphic representation of PGSp6(A)
such that π∞ is the discrete series of Hodge type (3,3) in the L-packet of V λ with λ =
(λ2 + λ3, λ2, λ3, 0). Let Ψ = Ψ∞ ⊗ Ψf denote a cusp form in π such that Ψ∞ is a highest

weight vector of the minimal K∞-type τ(λ2+2,λ3+2,−λ1−4) of π3,3∞,1 ⊆ π∞|Sp6(R). We assume

that Ψf ∈ πf is U -invariant, so that we have (cf. §4.3)

[ωΨ] = [ωΨ∞ ⊗Ψf ] ∈ H6(g,KG;πU ⊗ V λ).

For any λ2 ≥ µ ≥ λ3, we denote Ψ[λ,µ] := A[λ,µ] · Ψ∞ ⊗ Ψf , where A[λ,µ] is the operator
that appeared in Proposition 4.8. Finally, we denote by prπ∨ the projection to the π∨f -

isotypic component in Betti cohomology of ShG(U). In Proposition 4.8 and Theorem 5.12,

we related the value 〈Z [λ,µ]
H,B , [ωΨ]〉 to the residue at s = 1 of the partial Spin L-function of

π. Combining these results with Proposition 8.2, we have the following.
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Theorem 8.3. Suppose IS(Φ,Ψ[λ,µ], 1) 6= 0. Assume that LS(s, π,Spin) has a simple pole
at s = 1 and let σ be the weak functorial lift of π given by Proposition 8.2. Then the class
prπ∨(Z [λ,µ]

H,B ) 6= 0 and

〈Z [λ,µ]
H,B , [ωΨ]〉 = C ′ · LS(1, σ,Std),

with C ′ a non-zero constant.

Proof. By Theorem 5.12, we have that

〈Z [λ,µ]
H,B , [ωΨ]〉 = C · Ress=1L

S(s, π,Spin),

where

C =
c · Φ̂(0)hU ′

(2πi)3 · vol(U ′)
IS(Φ,Ψ[λ,µ], 1).

By hypothesis, the integral IS(Φ,Ψ[λ,µ], s) is not identical zero, which implies that π supports
a Fourier coefficient of type (4 2). Thus, by Proposition 8.2 we get

Ress=1L
S(s, π,Spin) = LS(1, σ,Std)

∏

ℓ∈S
(1− ℓ−1).

This finishes the proof by setting C ′ := C ·∏ℓ∈S(1− ℓ−1). �

Our result slightly improves if we assume that π is Steinberg at a finite place. When this
holds, by Lemma 2.10, we have

dimR⊗QLH
1
H(M(π∨f )R(4)) = dimC (π∨f )

U .

Combining Theorem 5.12, Proposition 8.1, and Proposition 4.10, we obtain the following.

Theorem 8.4. Suppose that π satisfies the following hypotheses:

• πp is Steinberg at a prime p ∈ S;
• IS(Φ,Ψ[λ,µ], 1) 6= 0 for some µ;
• for all ℓ 6∈ S, the Satake parameter sπℓ ∈ ζ(G2(C)).

Then there exists a cuspidal automorphic representation σ of G2 such that

〈Z [λ,µ]
H,B , [ωΨ]〉 = 〈Z [λ,µ]

H,H , [ωΨ]〉H = C ′ · LS(1, σ,Std) 6= 0,

with C ′ the constant of Theorem 8.3. In particular prπ∨Z [λ,µ]
H,H and its Hecke translates

generate H1
H(M(π∨f )R(4)).

Remark 8.5. This verifies a weaker form of Conjecture 1.1(3) for the motive M(π∨f )(3) at

the cost of supposing that IS(Φ,Ψ[λ,µ], 1) is non-zero for some µ.

Remark 8.6. By Proposition 5.11, an automorphic representation π which satisfies the hy-
potheses of Theorem 8.4 is H-distinguished, namely the map PH ∈ HomH(A)(π,1) defined
by

Ψ 7→ PH(Ψ) :=

∫

Z(A)H(Q)\H(A)
Ψ(h)dh

is not identically zero. Then, asking IS(Φ,Ψ[λ,µ], 1) 6= 0 for some µ is equivalent to asking
that the map obtained as the composition of PH with an H(R)-equivariant embedding
π∞ → π restricts non-trivially to the minimal K∞-type of π∞.
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Remark 8.7. Let σ be a cuspidal automorphic representation of G2(A), unramified outside
a finite set S of primes, such that σ∞ is the quaternionic discrete series σn for n ≥ 2 of
Definition 6.8, and σp is Steinberg at a finite prime p ∈ S. Then [15, Theorem 3.1] and
Proposition 6.9 imply that there always exists a cubic totally real étale algebra R such that
σ supports a Fourier coefficient associated to R. Assume that such algebra splits as Q×F .
By Theorem 7.8, Θ(σ) is a non-zero and cuspidal automorphic representation of PGSp6(A).
If we let π be an irreducible constituent of Θ(σ), then π satisfies all the running assumptions

of Theorem 8.4 up to asking that IS(Φ,Ψ[λ,µ], 1) 6= 0, where now λ = (2n−4, n−2, n−2, 0)

and µ = n − 2. By [48, Proposition 5.1], there exists a cusp form Ψ̃[λ,µ] in π, with Ψf and

Ψ̃f equal away from S, and a Schwartz-Bruhat function Φ′ such that

IS(Φ′, Ψ̃[λ,µ], s) = I∞(Φ,Ψ[λ,µ], s).

Hence, up to modifying the components of Ψ at the finite places in S, our hypothesis reduces
to the non-triviality of I∞(Φ,Ψ[λ,µ], 1). The explicit formulae for the Fourier coefficient

Ψ
[λ,µ]
UP ,ψD

given in Proposition 7.13 allow us to write I∞(Φ,Ψ[λ,µ], s) as an archimedean integral

involving the generalized G2-Whittaker functions studied in [47] and a function f∞ in the

minimal representation Π∞ of E7(R), whose projection to π∞ equals A[λ,µ] · Ψ∞. The
uniqueness of the former proved in loc.cit. seems to suggest the possibility of calculating
I∞(Φ,Ψ[λ,µ], s) up to determining f∞ ∈ Π∞ explicitly. We hope to come back to this
problem in the future.

8.3. Galois representations of G2-type and a question of Gross and Savin. By the
work of [41], under some mild conditions, we can associate to the cuspidal automorphic
representation σ of G2(A) a G2-valued Galois representation ρσ which satisfies the expected
properties. Using the exceptional theta correspondence, this representation is realized in
the middle degree cohomology H6

ét(ShG,Q,Vλl (3)) of the Siegel sixfold ShG, where we have

denoted with H6
ét(ShG,Q,Vλl (3)) the direct limit of the cohomology at level U as U varies.

This direct limit is a smooth admissible representation of G(Af ), endowed with an action

of Gal(Q/Q) commuting with the one of G(Af ). The theorem below for the compact form
of G2 is shown in [41, Theorem 11.1 and Corollary 11.3]. The same proof works for the split
form of G2 as long as one has some information on its lift to PGSp6, and we only sketch it
for the convenience of the reader.

Theorem 8.8. Let σ be an automorphic cuspidal representation of G2(A) such that

• σ∞ is a quaternionic discrete series;
• σp is the Steinberg representation at some finite prime p;
• σ supports a Fourier coefficient to a cubic algebra of the form Q× F .

Then, for each prime ℓ and ι : C ∼= Qℓ, there exists a Galois representation ρσ = ρσ,ι :

Gal(Q/Q) → G2(Qℓ) such that

• For every finite place v 6= ℓ where σ is unramified, ρσ is unramified at v. Moreover,
the semisimple part of ρσ(Frobv) is conjugate to the Satake parameter ι(sσv) in
G2(Qℓ).

• ρσℓ is de Rham, and it is crystalline if σ if unramified at ℓ.
• ζ ◦ρσ = ρπ, where π is a theta lift of σ, and ζ : G2(C) → Spin7(C) is the embedding

appearing in (20).
• the Zariski closure of the image of ρσ maps onto either the image of a principal SL2

in G2 or onto G2.
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Proof. By Theorem 7.8, the big theta lift Θ(σ) is non-zero and cuspidal. Moreover, if we let
π denote an irreducible subquotient of Θ(σ), its archimedean component π∞ is a discrete
series of Hodge type (3, 3), and πp is the Steinberg representation. By [41, Theorem A],

there exists a representation ρπ : Gal(Q/Q) → Spin7(Qℓ) attached to π. By the proof of
[41, Theorem 11.1], one has that the image of ρπ is contained in G2(Qℓ), and thus we have ρσ
such that ζ ◦ρσ = ρπ for a suitable choice of embedding ζ : G2(C) → Spin7(C) fitting in the
diagram (20). Hence, by [41, Theorem A] and Proposition 6.11(1), the representation ρσ :
Gal(Q/Q) → G2(Qℓ) satisfies the desired first three properties. Finally, by [41, Theorem A
(v)], the Zariski closure of ρπ must map onto either a principal SL2 in SO7 ∩G2, or G2. �

Remark 8.9. The hypotheses of the Theorem above can be substantially weakened to asking
that σ∞ is a discrete series and σp is Steinberg. This follows from establishing a complete
correspondence of Fourier coefficients between σ and its theta lift and by the results of [41].
A proof of this fact is beyond the scope of this article and it will appear in forthcoming
work.

By construction, the composition of the Galois representation ρπ (and thus ρσ) with the
Spin representation appears in the middle degree cohomology of ShG. If σ∞ has Harish-
Chandra parameter xε1 + yε2, with x − 3 ≥ y − 1 ≥ 0 and x − y even, the archimedean
component π∞ is a discrete series in the L-packet of V λ, with λ = (x− 3, x+y−4

2 , x−y−2
2 , 0).

By Lemma 2.7, the π∨f -isotypic component of H6
ét,!(ShG,Q,Vλl (3)) is 8-dimensional, and we

have
H6

ét,!(ShG,Q,Vλl (3))[π∨f ]⊗Qℓ = VSpin◦ρπ ⊗ π∨f = VSpin◦ζ◦ρσ ⊗ π∨f .

If the image of ρσ is Zariski dense in G2(Qℓ), we have Spin ◦ ζ ◦ ρσ = Std ◦ ρσ ⊕ 1, where
Std◦ρσ is the irreducible “standard” Galois representation attached to σ. If not, by Theorem
8.8, the image of ρσ is Zariski dense onto a principal ξ : SL2(Qℓ) → G2(Qℓ). Then, the
branching law of [24, (7.1)] gives that Spin ◦ ζ ◦ ρσ = Sym6 ◦ ρσ ⊕ 1, where Sym6 ◦ ρσ is the
irreducible symmetric sixth power Galois representation attached to σ. Denote by Mℓ(πf )
the Galois representation VSpin◦ρπ and let Mℓ(σf ) be either the Galois representation VStd◦ρσ
or VSym6◦ρσ . Then, we have that Mℓ(σf )

GQ = 0 and Mℓ(πf ) decomposes as the direct sum

of Mℓ(σf ) and the trivial representation 1 with multiplicity 1.

Remark 8.10. In the case where ρσ is not Zariski dense in G2(Qℓ), the Satake parameter
sσp ∈ ξ(SL2(C)) for any unramified prime p. By Langlands reciprocity principle, σ should
be the functorial lift of a cuspidal automorphic representation τ of PGL2(A), while VSym6◦ρσ
should be a geometric realization of the motive of the symmetric sixth power of τ .

Tate conjecture predicts the existence of a cycle which gives rise to the trivial represen-
tation appearing in the decomposition above. In [27], Gross and Savin, inspired by local
computations, conjectured that this cycle should come from a Hilbert modular 3-fold inside
ShG. The Theorem below confirms this expectation for cuspidal automorphic representa-
tions σ of G2 which satisfy the hypotheses of Theorem 8.8. In particular, we suppose that
σ supports a Fourier coefficient for a (necessarily totally real) cubic étale algebra Q × F .

Let Z [λ,µ]
H,ét := clét(Z [λ,µ]

H,M) ∈ H6
ét(ShG(U)Q,Vλl (3))GQ be the étale realization of the mo-

tivic class Z [λ,µ]
H,M (see Definition 3.9), where H = GL2 ⊠ GL∗

2,F . Since the construction of
the class is compatible with pull-backs, the cycles at finite level are matched into a class

Z [λ,µ]
H,ét ∈ H6

ét(ShG,Q,Vλl (3))GQ . By composing the projection to the π∨f -isotypic component
together with the projection given by the vector Ψf ∈ πf , we get

Zσ
H,ét := Ψf (prπ∨(Z [λ,µ]

H,ét )) ∈ (Mℓ(σf )⊕ 1)GQ = 1.
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Theorem 8.11. Let σ be an automorphic cuspidal representation of G2(A) such that

• σ∞ is a quaternionic discrete series;
• σp is the Steinberg representation at some finite prime p;
• σ supports a Fourier coefficient to a cubic algebra of the form Q× F .

Assume that the integral IS(Φ,Ψ[λ,µ], 1) is non-zero for some Schwartz-Bruhat function Φ
and Ψ[λ,µ] as in §8.2. Then the class Zσ

H,ét generates the trivial sub-representation 1 of
Mℓ(πf ).

Proof. By the comparison theorem between étale and Betti cohomology [2, Exposé XI,

Theorem 4.4 (iii)] and Theorem 8.4, we know that the projection prπ∨Z [λ,µ]
H,ét to Mℓ(πf )⊗π∨f

generates a one dimensional subspace, which is trivial for the action of the Galois group.
As we have explained above, the image of ρσ is either dense in G2(Qℓ) or in SL2(Qℓ) →
PGL2(Qℓ) →֒ G2(Qℓ). In either case, the representation Mℓ(σf ) is irreducible and the trivial
factor 1 in Mℓ(πf ) is hence generated by the image of Zσ

H,ét. �
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