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Abstract: Conglomerate formation, where enantiomers within a racemic mixture self-segregate upon
crystallization, is an advantageous property for obtaining chirally pure crystals and allows large-scale
chiral resolution. However, the prevalence of conglomerates is low and difficult to predict. In this
report, we describe our attempts to engineer conglomerates from racemate-forming compounds by
integrating them into a conglomerate-forming matrix. In this regard, we found that Ni(II) and Fe(II)
form molecular alloys with Zn(II) in [MxZn(1−x)(bpy)3](PF6)2 (where bpy = 2,2′-bipyridyl). Powder
X-ray Diffraction (PXRD) and Energy-Dispersive X-ray spectroscopy (EDX) evidenced conglomerate
crystallization with Ni(II) concentrations up to about 25%, while it was observed only for much lower
concentrations of Fe(II). This can be attributed to the ability of [Ni(bpy)3](PF6)2 to access a metastable
conglomerate phase, while no such phase has been detected in [Fe(bpy)3](PF6)2. Furthermore, the
chiral phase appears to be favored in fast-growing precipitates, while the racemic phase is favored in
slow re-crystallizations for both Ni(II) and Fe(II) molecular alloys. X-ray natural circular dichroism
(XNCD) measurements on [Ni0.13Zn0.87(bpy)3](PF6)2 demonstrate the chirality of the nickel molecules
within the zinc molecular matrix.

Keywords: crystal engineering; chirality; conglomerate; molecular alloy; PXRD

1. Introduction

Racemic mixtures of enantiomers crystallize in one of three ways: as racemic crystals
containing both enantiomers in equimolar proportions, as solid solutions with the two
enantiomers randomly distributed in the crystals, or as conglomerates where the enan-
tiomers self-segregate [1]. While racemic systems and solid solutions are not restrained
in terms of space group, conglomerates will necessarily crystallize in one of the 65 non-
centrosymmetric Sohncke space groups compatible with chiral enantiopure molecules.
While it has been estimated that such spontaneous resolutions occur in only 5–10% of
racemic mixtures [2], this feature was central to the discovery of molecular chirality by
Louis Pasteur [3] and opens the way to specific chiral purification techniques, such as
preferential crystallization [4] or complete deracemization [5], both of which strictly require
conglomerate-forming systems. As these methods have been shown to be appropriate for
industrial scale-up [6–11], the identification and design of conglomerate systems are of great
interest for the enantiopure production of pharmaceuticals, pesticides, etc. Identification
methods include the screening of crystallized racemic mixtures for second-harmonic gener-
ation (SHG) [12], as well as the construction of phase diagrams from their solubility [1] or
melting point [2] data at different enantiomeric enrichments. In particular, the screening of
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co-crystals, formed, for example, with solvents [13], other molecules [14] or as salts [15,16],
is an important design approach to conglomerate systems.

As conglomerates provide direct access to optically active crystals, they have been
used as an alternative to chiral ligands for the design and isolation of chiral metal com-
plexes [17–21]. In the realm of coordination chemistry, octahedral propeller-type complexes
are intrinsically chiral and appear to be a particularly rich source of conglomerate-forming
compounds [22,23]. As observed in organic co-crystals, the preferential formation of
conglomerates is highly dependent on the nature of the counter-ion [24]; for example,
[Zn(en)3](NO3)2 (where en = ethylenediamine) forms a conglomerate at room temper-
ature [25], while the sulfate salt forms a racemate [26], even if the unit cell and crystal
packing are very similar in the two salts.

The formation of conglomerates or racemates can also depend on the metal center.
An example of this is the [M(bpy)3](PF6)2 family (where bpy = 2,2′-bipyridyl), which
crystallizes either in a Sohncke space group as a conglomerate or in a centrosymmetric
space group as a racemate, depending on the metal used. For [M(bpy)3](PF6)2 where
M = divalent manganese [27], technetium [28], cobalt [23,29], copper [30], or zinc [31], a
spontaneous resolution of the enantiomers yield crystalline conglomerates in the chiral
γ-phase in the enantiomorphic space group pair P31/P32. On the other hand, when
M = divalent iron [32], ruthenium [31,33–35], or osmium [36,37], the compounds crystallize
as racemates in the centrosymmetric β-phase (P3c1) and may undergo a low-temperature
phase transition to the non-centrosymmetric space group P3c1 [38]. The nickel(II) derivative
[Ni(bpy)3](PF6)2 represents an intermediate case; this compound has been reported in both
the γ-phase [39] and the β-phase [35,40], with both appearing concomitantly in the same
crystallization batch [31]. The simultaneous appearance of both phases suggests that the
energies are similar, and Breu et al. identified the racemic β-phase of [Ni(bpy)3](PF6)2
as the thermodynamic phase, stabilized by 5.4 kJ/mol compared to the conglomerate
γ-phase [41].

In order to broaden access to conglomerate systems, the current work describes
attempts to induce spontaneous resolution of [Fe(bpy)3](PF6)2 and [Ni(bpy)3](PF6)2 by
associating these molecules with [Zn(bpy)3](PF6)2 as a conglomerate-forming matrix. While
the formation of alloys has been known for millennia, the formation of molecular solid
solutions or “molecular alloys” [35] has been more rarely used to improve the physical
properties of materials and typically involves the co-crystallization of isostructural com-
pounds. Examples of molecular alloys using molecular congeners can be especially found
in the molecular magnetism community, where magnetic relaxation may be slowed by the
isolation of single-molecule magnets within a diamagnetic matrix [42,43]. The imposition of
a different crystalline structure on one of the components of a molecular alloy is, however,
rather uncommon. We note particularly the thesis work by M.C. Balogh, who found that it
was possible to impose the structure of the dominant compound on the minority compound
in the context of lanthanide tris-dipicolinate guanidinium complexes [44].

In the present work, binary mixtures of [Fe(bpy)3](PF6)2 or [Ni(bpy)3](PF6)2 with the
zinc analogue were evaluated both as precipitates immediately formed upon the mixture
of the reagents, and again after recrystallization, to try to differentiate between potential
kinetic and thermodynamic phases. Single-crystal X-ray diffraction (SCXRD), powder
X-ray diffraction (PXRD), and energy-dispersive X-ray spectroscopy (EDX) data suggest
that it is indeed possible to isolate [NixZn(1−x)(bpy)3](PF6)2 in conglomerate form, but that
the proportion of [Fe(bpy)3](PF6)2 that could be introduced into the conglomerate matrix
appeared to be very limited, although non-zero. The high solubility of the nickel congener
in the zinc matrix allowed the demonstration of optical activity using X-rays at the Ni
K-edge, while the iron incorporation was too low to clearly evidence a chiral response,
even if the visual inspection of individual crystals suggests that the iron partially exists in
the conglomerate phase.
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2. Materials and Methods

All syntheses were performed at room temperature under an ambient atmosphere.
The metal sulfates, KPF6, 2,2′-bipyridine and organic solvents were obtained commercially
and used as received. Water was deionized using an ion-exchange resin to reach a resistivity
of ≥10 MΩ·cm.

2.1. General Procedure for [M(bpy)3](PF6)2

MSO4·nH2O (1 mmol, Table 1) was dissolved in 5 mL of water, KPF6 (3 mmol, 0.552 g)
was dissolved in 10 mL of water, and 2,2′-bipyridine (4 mmol, 0.625 g) was dissolved
in 12.5 mL of an EtOH/water mixture (4:1). The bpy solution was added to the metallic
one and stirred 10 min. The product was precipitated in quantitative yield by dropwise
addition of the KPF6 solution. The precipitate was isolated by filtration on type 4 sintered
glass and washed three times with distilled water and twice with absolute ethanol and
dried in the air for one day.

Table 1. Masses of metal sulfates used in the synthesis of pure [M(bpy)3](PF6)2 compounds.

Compound MSO4·nH2O Mass MSO4·nH2O

[Mn(bpy)3](PF6)2 MnSO4·H2O 0.169 g
[Fe(bpy)3](PF6)2 FeSO4·7H2O 0.278 g
[Co(bpy)3](PF6)2 CoSO4·7H2O 0.281 g
[Cu(bpy)3](PF6)2 CuSO4·5H2O 0.250 g
[Ni(bpy)3](PF6)2 NiSO4·7H2O 0.281 g
[Zn(bpy)3](PF6)2 ZnSO4·7H2O 0.288 g

The powders were re-crystallized by dissolving about 250 mg of powder in acetone,
acetonitrile, or dichloromethane under stirring. The solutions were filtered using a syringe
fitted with a 0.22 µm porosity filter to remove undissolved powders. The solutions were
placed in vials loosely closed with a screw cap, allowing the solvent to evaporate slowly.
The crystals were selected, and their unit cell was determined using SCXRD (Table S3).
In the case of [Ni(bpy)3](PF6)2, crystals formed by vapor diffusion of diethylether into an
acetonitrile solution were also ground with a mortar and pestle and examined by PXRD.

2.2. General Procedure for [MxZn(1−x)(bpy)3](PF6)2

[MxZn(1−x)(bpy)3](PF6)2 was prepared as above, but instead of using a pure metal
sulfate, ZnSO4·7H2O and NiSO4·7H2O or FeSO4·7H2O were dissolved together in 5 mL of
water (Table 2). The powders of the molecular alloys were recrystallized by vapor diffusion
of diethyl ether into an acetonitrile solution.

2.3. X-ray Diffraction

Crystals of [Ni(bpy)3](PF6)2 and [Zn(bpy)3](PF6)2 suitable for X-ray diffraction were
selected in ambient conditions and attached to a MiTeGen microloop with silicone grease.
The crystals were mounted at 298(2) K and centered in the X-ray beam using a video camera.
Data collections were performed with Mo Kα (λ = 0.71073 Å) radiation on a Bruker Kappa
APEXII, operating at 50 kV and 30 mA using graphite monochromated radiation. The data
were collected using a routine to survey reciprocal space, and reduction was performed
using software included in the Bruker Apex4 suite [45]. The structures were solved using
direct methods [46]. Non-hydrogen atoms were refined anisotropically using weighted full-
matrix least-squares on F2, followed by difference Fourier synthesis [47,48]. All hydrogen
atoms were included in the final structure factor calculation at idealized positions and were
allowed to ride on the neighboring atoms with relative isotropic displacement coefficients.
Data for the compounds in Table S2 were obtained similarly, although here only enough
data to determine the unit cell parameters were collected.
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Table 2. Quantities of metal sulfates used in the synthesis of MxZn(1−x)(bpy)3](PF6)2 molecular alloys.

mmol NiSO4·7H2O mmol ZnSO4·7H2O Mass ZnSO4·7H2O Mass NiSO4·7H2O

0.1 0.9 0.259 g 0.028 g
0.2 0.8 0.230 g 0.056 g
0.3 0.7 0.201 g 0.084 g
0.4 0.6 0.173 g 0.112 g
0.5 0.5 0.144 g 0.140 g
0.6 0.4 0.115 g 0.169 g
0.7 0.3 0.086 g 0.197 g
0.8 0.2 0.058 g 0.225 g
0.9 0.1 0.029 g 0.253 g

mmol FeSO4·7H2O mmol ZnSO4·7H2O Mass ZnSO4·7H2O Mass FeSO4·7H2O

0.1 0.9 0.259 g 0.028 g
0.2 0.8 0.230 g 0.056 g
0.3 0.7 0.201 g 0.083 g
0.4 0.6 0.173 g 0.111 g
0.5 0.5 0.144 g 0.139 g

Powder X-ray diffraction data of precipitates were recorded using a PANalytical X’Pert
PRO MPD diffractometer with Bragg–Brentano geometry, Cu-Kα1,2 radiation (λ = 1.54184 Å)
and a graphite backscattering monochromator, using standard Al sample holders. Powder
X-ray diffraction of ground crystals was performed on 0.3 mm diameter glass capillaries
in transmission geometry using a Bruker D8 Mo-Kα1,2 radiation (λ = 0.71075 Å) diffrac-
tometer. The Debye–Scherrer setup employed a focusing Göbel mirror primary optic, with
2.5◦ primary and secondary Soller slits and a Dectris EIGER2R-500K detector performing
1D mode 2θ scans in 158 min, over the range 2–25◦, with a 0.02◦ 2θ step size. Le Bail and
Reitveld refinements were performed with JANA2020 [49].

2.4. IR Spectroscopy

Infrared spectra on precipitated powders of the compounds were obtained on an
IRAffinity-1 (Shimadzu) Fourier Transform Infrared Spectrophotometer, equipped with
MIRacle 10 single reflection ATR module (Pike Technologies); 512 scans accumulated.

2.5. EDX

Energy-dispersive X-ray spectroscopy was performed on a JEOL 6360A Scanning
Electron Microscope equipped with an EDX detector. The crystals were mounted on
the sample holder by affixing them on conductive carbon adhesive tape, and to prevent
charging during the analyses, the sample was sputter-coated by a thin film of Au. The
spectra were acquired at an acceleration voltage of 20 keV unless specified otherwise. The
quantitative analysis was performed directly with JEOL’s Analysis Station software using
the Phi-Roh-Z method on the Kα lines of the transition metal elements.

2.6. XNCD

X-ray absorption experiments at the Ni and Fe K-edges were carried out at the ID12
beamline of the European Synchrotron Radiation Facility (Grenoble, France), dedicated
to polarization-dependent X-ray spectroscopy in the 2−15 keV energy range. A high flux
of circularly polarized photons was provided by a HELIOS-II undulator. X-rays were
monochromatized by a Si(111) double-crystal monochromator. For XNCD studies, the
samples were glued with a carbon tape pad on an aluminum sample holder and oriented so
that the crystal’s c-axis and the photons wave vector formed an angle of 90◦ (Figure S6). All
spectra were recorded at room temperature in total X-ray fluorescence yield detection mode
in backscattering geometry. At the Ni K-edge, sets of absorption spectra were acquired,
alternating the photon helicity after each spectrum 8 times, for a total of 16 spectra. The
spectra were then normalized with reference points at the pre-edge (8320 eV) and post-edge
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(8398 eV). The absorption spectrum was obtained by averaging all normalized spectra,
and XNCD was obtained by averaging the difference of the 8 sets of dichroic pairs. At the
Fe K-edge, spectra were marred with intense diffraction peaks from the sample, which
prevented a correct treatment. The only pair of spectra partially exploitable was normalized
at the pre-edge (7105 eV) and post-edge (7192.3 eV).

3. Results and Discussion
3.1. Phase Determination of Pure [M(bpy)3](PF6)2 in Powders and Crystals

Polycrystalline samples of [M(bpy)3](PF6)2, where M = Mn(II), Fe(II), Co(II), Ni(II),
Cu(II), and Zn(II), were prepared by rapid precipitation by adding an aqueous solution of
KPF6 to an EtOH/water mixture of 2,2′-bipyridine and the metal sulfate. Le Bail refinement
of PXRD data from the precipitates was performed using representative γ-phase (WOT-
SON) and β-phase (WOTSAZ or NUZKOI) structures found in the Cambridge Structural
Database (CSD) [50]. In the case of [Mn(bpy)3](PF6)2, refinements of two different synthesis
batches both showed the presence of significant unidentified impurities in addition to the
chiral γ-phase. The powders of the other complexes were monophasic and adopted the
conglomerate γ-phase, except for [Fe(bpy)3](PF6)2, which was found to be wholly in the
racemic β-phase (Table 3). While both the crystalline γ- and β-phase for [Ni(bpy)3](PF6)2
have been reported in the literature [31,35,39,40], under the present conditions of rapid
precipitation, only the γ-phase was obtained.

Table 3. Le Bail refinements for [M(bpy)3](PF6)2 precipitates.

Metal Phase a (Å) c (Å) V (Å3) GOF V (A3) SC a

Fe β 10.6392(11) 16.588(3) 1626.1(4) 1.46 1561.3
Co γ 10.4818(9) 26.525(3) 2523.9(5) 1.24 2432.0
Ni γ 10.5058(11) 26.367(4) 2520.3(5) 1.48 2415.8
Cu γ 10.4921(13) 26.428(4) 2519.6(7) 1.72 2482.1
Zn γ 10.5046(9) 26.455(3) 2528.1(4) 1.52 2507.9

a Single-crystal data; the cell volumes found by Le Bail refinement are consistently too large, by a maximum of
4.3% compared to single-crystal data.

The powders were re-crystallized by using various methods, and the unit cell pa-
rameters of the selected crystals were determined by using single-crystal X-ray diffraction
(Table S2). The data show that the Co(II), Cu(II), Mn(II), and Zn(II) compounds tend to
form conglomerates, while the Fe(II) and Ni(II) compounds tend to form racemic crystals.
This is consistent with literature reports [23,27,29,31], except that, in the present conditions,
no conglomerate γ-[Ni(bpy)3](PF6)2 crystals were observed, as further confirmed from the
PXRD data conducted on a ground batch of [Ni(bpy)3](PF6)2 crystals (Figure S1). On the
other hand, the chiral γ-phase of [Ni(bpy)3](PF6)2 was the only one obtained upon rapid
precipitation, which supports the interpretation that the β-phase is the thermodynamic
phase, while the γ-phase is the kinetic phase [41].

Infrared spectra were obtained for powders of all of the compounds. Very small
differences between the conglomerate and racemic phases can be observed, as pointed out
by the asterisks in Figure S2. We note the appearance of a peak at 1598–1602 cm−1 that
appears in the conglomerate powders but not in the racemic iron system, as well as two
peaks around 1010–1023 cm−1 and another set of two peaks around 653–630 cm−1. While
it appears possible to differentiate the two phases using infrared spectroscopy, further
experimental and theoretical work will have to be undertaken to use this technique to
quantitatively evaluate phase mixtures.

Concerning the preference for the conglomerate or racemic phase in the series of
[M(bpy)3](PF6)2 molecules, we note that the preferred phase appears to be correlated to the
average M−N distances. In the case of [Ni(bpy)3](PF6)2, the packing appears to dictate the
M−N distances, longer by ca. 0.02 Å in the γ-phase than in the β-phase (Table 4).
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Table 4. [M(bpy)3](PF6)2 compounds organized by average M−N distance.

M(II) T [M−N]avg (Å) Ref.

Racemic
β-phase

Fe rt 1.967 [32]
Ru rt 2.055 [33]
Os rt 2.056 [36]

Ni rt 2.078
2.076(2)

[40]
This work a

Tc rt 2.076 [28]

Chiral
γ-phase

Ni rt 2.090 [39]
Cu rt 2.119 [30]
Co rt 2.142 [23]
Zn rt 2.159(5) This work a

Mn rt 2.249 [27]
Cd 223 K 2.335 [51]

a see Table S1 for crystallographic information.

For this analysis, we obtained room temperature crystal structures of rac-[Ni(bpy)3](PF6)2
and [Λ-Zn(bpy)3](PF6)2. Bond distances for rac-[Ni(bpy)3](PF6)2 at 295 K were published
in reference [40], but atomic positions are not available on the Cambridge Structural
Database, hence the redetermination. Crystallographic information can be found in Table
S1, and the structures are shown in Figure 1. As previously observed [31], the packing
of the two phases shows significant differences, dominated by T-type π-stacking in the
racemate and by co-planar π-stacking in the conglomerate. Likewise, as previously reported,
[Λ-Zn(bpy)3](PF6)2 crystallizing in space group P32 suffered from significant merohedral
twinning, which was resolved using the twin law reported by Breu et al. [31].
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3.2. Molecular Alloys of [NixZn(1−x)(bpy)3](PF6)2

Powders were prepared by combining a specific ratio of ZnSO4·7H2O with NiSO4·7H2O
in water/EtOH in the presence of bipyridine, followed by precipitation with KPF6, using
the same protocol as previously. As expected from the previous observation of the γ-phase
in both [Ni(bpy)3](PF6)2 and [Zn(bpy)3](PF6)2 under the same conditions, PXRD of the
precipitates ranging from 90% molar mass of [Zn(bpy)3](PF6)2 to 80% [Ni(bpy)3](PF6)2
show that all of the samples adopt this chiral phase (Table 5, Figure S3). The unit cell
parameters tend to decrease with increasing Ni(II), which is consistent with the slightly
smaller volume found in the previous refinement for the Ni(II) pure compound compared
to that of the Zn(II) one, 2520.3(5) vs. 2528.1(4) A3, respectively.
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Table 5. Le Bail refinements for co-precipitations of [Ni(bpy)3](PF6)2 with [Zn(bpy)3](PF6)2
a.

Ni (mol %) a (Å) c (Å) V (Å3) GOF

10 10.5022(5) 26.453(1) 2526.8(2) 1.37
20 10.4978(5) 26.457(2) 2525.0(3) 1.37
30 10.4953(5) 26.447(1) 2522.9(2) 1.34
40 10.4969(5) 26.443(2) 2523.3(2) 1.41
60 10.4964(5) 26.440(2) 2522.8(3) 1.41
70 10.4965(5) 26.430(2) 2521.9(2) 1.54
80 10.4932(5) 26.419(2) 2519.2(2) 1.54

a The refinements of the powders prepared with proportions of 50% and 90% Ni gave poor GOFs due to
misalignment of the sample as observed by a displacement of the Al sample holder peaks, and these data have
thus been omitted.

In an attempt to obtain γ-[NixZn(1−x)(bpy)3](PF6)2 as single crystals, the powders
were re-crystallized through the vapor diffusion of diethyl ether into acetonitrile solutions.
Notably, different crystal forms were observed depending on the proportion of Ni(II)
used in the reaction: needles with 10% of Ni(II) and a mixture of needles and plates with
equimolar proportions of Zn(II) and Ni(II) (Figure 2). SCXRD unit cell determination of
selected crystals showed that needles are indicative of the conglomerate phase and the
plates represent the racemic phase, while a visual inspection of the color of the two crystals
indicates the presence of [Ni(bpy)3](PF6)2 in both phases.
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proportion of the two phases as a function of Ni(II) content. Here, one sees the tendency 
of crystalline [Ni(bpy)3](PF6)2 to favor the racemic β-phase more than the powder form, 
but also its ability to integrate into the conglomerate matrix: with 10–20% of nickel, only 
the chiral γ-phase was observed; with 30−50% of nickel, both phases are observed, and at 
60%−90% of nickel, only the racemic β-phase is observed (Table 6, Figure S4). The lack of 
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Figure 2. Photos of crystals obtained from the recrystallization of powders of [NixZn(1−x)(bpy)3](PF6)2:
(a) 10% Ni and 90% Zn (needles); (b) 50% Ni and 50% Zn (needles + plates). Vials shown are 13 mm
in diameter.

The bulk crystals were ground in a mortar and measured by PXRD to determine the
proportion of the two phases as a function of Ni(II) content. Here, one sees the tendency
of crystalline [Ni(bpy)3](PF6)2 to favor the racemic β-phase more than the powder form,
but also its ability to integrate into the conglomerate matrix: with 10–20% of nickel, only
the chiral γ-phase was observed; with 30−50% of nickel, both phases are observed, and
at 60%−90% of nickel, only the racemic β-phase is observed (Table 6, Figure S4). The lack
of any racemic phase at low Ni(II) proportions, and the lack of any conglomerate phase
at high proportions, indicates that the metal complexes efficiently co-crystallize to form
molecular alloys and adopt the phase of the prevailing metal. At 30% to 50% of Ni(II),
the proportion of the β-phase is found to be higher than that of the Ni(II) concentration,
suggesting the presence of a number of racemic zinc-containing crystals and a limit to the
[Ni(bpy)3](PF6)2 solubility in the conglomerate matrix.
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Table 6. Rietveld refinements of co-crystallizations of [Ni(bpy)3](PF6)2 with [Zn(bpy)3](PF6)2.

Ni(II) (mol %) β-Phase (%) aγ (Å) cγ (Å) vγ (Å3) aβ (Å) cβ (Å) vβ (Å3)

10 0 10.479(1) 26.402(6) 2510.6(5) – – –
20 0 a 10.475(1) 26.393(6) 2508.3(5) – – –
30 45 10.478(2) 26.400(12) 2510(1) 10.796(3) 16.570(8) 1673(1)
40 57 10.477(4) 26.395(17) 2509(1) 10.787(3) 16.562(8) 1669(2)
50 56 10.477(3) 26.402(12) 2510(1) 10.780(2) 16.564(6) 1667(1)
60 100 b – – – 10.777(2) 16.571(6) 1666.7(5)
70 100 – – – 10.770(2) 16.562(6) 1663.8(5)
80 100 – – – 10.769(2) 16.569(6) 1664.2(5)
90 100 – – – 10.759(2) 16.564(6) 1660.6(5)

a Trace of β phase. b Trace of γ phase.

According to the found refined parameters, only the β phase is significantly affected
by the Ni ratio as the unit cell volume quasi-linearly decreases from 1673 Å3 for 30% of Ni
to 1661 Å3 for 90% of Ni, in line with the smaller size of the Ni(II) cation vs. Zn(II). The
incorporation of Ni(II) may be thus relatively low in the γ phase while significant in the β

phase. However, as the racemic β-phase only appears at 30% Ni, we can assume that the
proportion of Ni(II) in the conglomerate γ-phase can reach at least 20%.

3.3. Molecular Alloys of [FexZn(1−x)(bpy)3](PF6)2

Powders with proportions of Fe(II) ranging from 10% to 50% were formed in the same
way as the nickel-based molecular alloys. At all concentrations, a mixture of the two phases
could be identified in the PXRD data (Table 7, Figure S5). In general, the proportion of the
β-phase tends to be lower than the starting iron concentrations, which suggests that some
of the iron can be incorporated into the zinc matrix to crystallize in the conglomerate form,
which is in line with the decrease in the unit cell volume of the γ phase up to 30% Fe(II).
Above 30%, the racemic β phase proportion significantly increases, while the β and γ cell
parameters remain almost unchanged. It is then probable than that the β phase contains
essentially Fe(II) and very little Zn(II).

Table 7. Rietveld refinements of co-precipitations of [Fe(bpy)3](PF6)2 with [Zn(bpy)3](PF6)2.

Fe(II) (mol %) β-Phase (%) aγ (Å) cγ (Å) vγ (Å3) aβ (Å) cβ (Å) vβ (Å3)

10 1 10.500(4) 26.426(12) 2523(2) 10.74 16.59 1657
20 4 10.498(4) 26.417(13) 2521(2) 10.741(21) 16.587(49) 1657(2)
30 12 10.497(4) 26.385(14) 2518(2) 10.752(4) 16.582(12) 1660(2)
40 27 10.497(4) 26.373(13) 2517(2) 10.754(5) 16.582(13) 1660(2)
50 65 10.504(5) 26.346(17) 2517(2) 10.753(4) 16.584(9) 1661(2)

The precipitates were subsequently recrystallized from acetonitrile and diethyl ether.
They showed two distinct forms: large ruby-red needles in the conglomerate phase and very
dark small needles in the racemic phase (Figure 3). In some crystals, dark domains could be
discerned in the red conglomerate crystals. This system thus appears to be heterogeneous
both within and among the crystals.
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Figure 3. Photo of crystals obtained from the recrystallization of [Fe0.4Zn0.6(bpy)3](PF6)2. Dark
needles = racemic crystals, ruby needles = conglomerate crystals.

As precipitates, the conglomerate phase of [FexZn(1−x)(bpy)3](PF6)2 was generally
favored, while after the growth of single crystals, the proportions of the racemic phase
tend to be higher than the starting iron quantity (Table 8, Figure S5). This is the same
trend as seen in the Ni(II) experiments (Table 6), showing the increased prevalence of the
β-phase after slow crystallization. The evolution of the unit cell volume in the β-phase is
consistent with the proportion of iron used in the sample preparations, while, as previously,
the conglomerate γ-phase does not show large changes, meaning that the γ-phase probably
contains a very limited amount of iron. The strong deviations at 30% and 40% observed in
the phase ratio are likely due to an unrepresentative sampling of the crystals due to the
heterogeneity of the sample. As previously observed for the powder samples, it seems that
the racemic β phase is mostly constituted of the Fe compound.

Table 8. Reitveld refinements for co-crystallizations of [Fe(bpy)3](PF6)2 with [Zn(bpy)3](PF6)2.

Fe(II) (mol %) β-Phase (%) aγ (Å) cγ (Å) vγ (Å3) aβ (Å) cβ (Å) vβ (Å3)

10 7 10.476(2) 26.393(8) 2509(1) 10.706(11) 16.517(28) 1639(1)
20 29 10.476(3) 26.395(10) 2509(2) 10.666(4) 16.539(11) 1629(1)
30 59 10.478(6) 26.380(20) 2508(3) 10.644(4) 16.533(11) 1622(2)
40 90 10.476(10) 26.310(43) 2500(4) 10.632(3) 16.533(7) 1619(4)
50 54 10.477(4) 26.384(13) 2508(2) 10.630(3) 16.536(8) 1618(2)

3.4. EDX

While the presence of nickel or iron compounds in the crystals could be confirmed by
visual inspection of the color (Figures 2 and 3), the quantitative proportions of the metals
in individual crystals are unknown. Using EDX, 46 crystals of [NixZn(1−x)(bpy)3](PF6)2
prepared with 40% Ni(II) and 60% Zn(II) as well as 48 crystals of [FexZn(1−x)(bpy)3](PF6)2
prepared with 50% Fe(II) and 50% Zn(II), of unknown phase were assayed. The average
value over the entire collection of crystals was found to be 40.8% nickel and 52.2% iron,
respectively, consistent with the starting proportion of the metals. As indicated in Figure 4,
the crystal batch of [NixZn(1−x)(bpy)3](PF6)2 was relatively homogenous, with 65% of the
crystals containing between 30 and 50% Ni and 35% outside of these values. Indeed, all
of the assayed crystals possessed both Ni(II) and Zn(II) in significant quantities. We then
selected crystals from various batches of different initial compositions, for which the phase
was first determined by SCXRD, and the proportion of metals was assayed by EDX (Table 9).
Among this small sampling, the crystals found in the γ-phase possessed a maximum of ca.
24% Ni (Table 9), which shows that Ni(II) can be incorporated in rather high proportions
while still retaining the conglomerate phase, in accordance with the observations from the
PXRD data (c.f. Table 6).
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Table 9. Metal assay by EDX of [MxZn(1−x)(bpy)3](PF6)2 according to metal proportion and phase.

Theoretical Found Phase Theoretical Found Phase

Ni (%) Zn (%) Ni (%) Zn(%) Fe (%) Zn (%) Fe (%) Zn (%)

10 90 10.6 89.4 γ 10 90 2.4 97.6 γ

30 70 24.4 75.6 γ 20 80 2.5 97.5 γ

50 50 9.1 90.9 γ 30 70 1.4 98.6 γ

50 50 54.3 45.7 β 30 70 1.4 98.6 γ

60 40 66.6 33.4 β 30 70 86.2 13.8 β

90 10 95.5 4.5 β 40 60 61.3 38.7 β

90 10 94.9 5.1 β 40 60 2.2 97.8 γ

Performing the same sampling in the case of iron, any conglomerates were always
found with very low quantities of iron, with a maximum of 2.5% (Table 9), in full agree-
ment with PRXD results on ground single crystals. EDX measurements on a collection
of 49 crystals yielded a stark bimodal distribution: some crystals were low in iron, which
likely corresponds to conglomerates, while another group was found to have a majority of
iron, which likely corresponds to the racemic crystals (Figure 3 and ESI Figure S6a,b).

These data, taken together, show very different behaviors in the nickel molecular
alloys vs. the iron molecular alloys. The fact that the β-phase is present even with very
low Fe(II) concentrations shows the strong propensity of [Fe(bpy)3](PF6)2 to crystallize
as a racemate. Indeed, molecular alloys of [FexZn(1−x)(bpy)3](PF6)2 tend to be mainly
zinc-based conglomerates or iron-based racemates (Table 9). The iron and zinc compounds
have limited miscibility, with the highest Fe(II) proportions found in a conglomerate crystal
being 6.1% (Figure S7, crystal phase determined by SCXRD). This induced us to limit our
syntheses to an equimolar ratio of iron and zinc, as increasing the starting concentration of
iron did not appear to improve the proportion of iron found in the conglomerate crystals.
[Ni(bpy)3](PF6)2, on the other hand, tends to crystallize within the [Zn(bpy)3](PF6)2 matrix
in a wide range of proportions (Figure 4a). While higher Ni(II) concentrations tend to
favor racemates, at least 24.4% of nickel can be integrated into conglomerate crystals. EDX
measurements show that the quantity of nickel found in an individual crystal tends to
reflect the starting nickel quantity added and is well dispersed among the crystals batch
compared to the iron case.

3.5. XNCD

To determine if the nickel compounds embedded in [Zn(bpy)3](PF6)2 are indeed chiral
and do not simply generate racemic domains within the chiral zinc matrix, X-ray natural
circular dichroism (XNCD) measurements [17,52,53] were carried on the two enantiomers
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with formal proportions of Ni0.2Zn0.8(bpy)3(PF6)2 at the Ni K-edge. Two crystals were
mounted in an orthoaxial orientation, such that the incident X-ray beam was perpendicular
to the optical c-axis, the latter is parallel to the long crystal direction (Figure S8). Absorption
and XNCD spectra for the two enantiomers of Ni0.2Zn0.8(bpy)3(PF6)2 are shown in Figure 5.
In the absorption spectrum, the white line is observed at 8353 eV, with pre-edges at 8335.8
and 8339.2 eV. XNCD spectra for the two enantiomers appear mostly as mirror images,
with the pre-edge XNCD values reaching about 0.4% of the white line absorption intensity
and about 9% of the pre-edge absorption intensity. Since XNCD is sensitive to chirality and
is chemically selective, the finite XNCD signals are direct proof that Ni(II) ions are sitting
in non-centrosymmetric domains, i.e., [Ni(bpy)3](PF6)2 can adopt the conglomerate form.
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[Ni0.1Zn0.9(bpy)3](PF6)2, the absolute configuration of which had been previously assigned by X-ray 
diffraction (Figure S9 in ESI). 
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to enable the formation of chiral crystals of racemate-forming systems. However, the 
nickel and iron systems behave very differently. While there appears to be a metastable 
conglomerate phase for the nickel compound, which is observed in the precipitates and 
has previously been observed in the crystal form [31], the iron compound does not exhibit 
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Figure 5. Absorption (dotted lines) and XNCD (full lines) spectra for the ∆ (in red) and Λ (in blue)
enantiomers of [Ni0.2Zn0.8(bpy)3](PF6)2. Diffraction peaks are signaled with a *. EDX measure-
ments on one of the enantiomers yielded proportions of Ni0.133Zn0.867. Assignment of spectra to
chiral configurations was made afterward, with measurements performed on two single crystals of
[Ni0.1Zn0.9(bpy)3](PF6)2, the absolute configuration of which had been previously assigned by X-ray
diffraction (Figure S9 in ESI).

We also performed XNCD measurements at the Fe K-edge on single crystals of both
enantiomers of [Fe0.1Zn0.9(bpy)3](PF6)2, mounted in the same way. Unfortunately, the
spectra were contaminated with intense diffraction peaks, which prevented a full treatment
of the spectra to extract an averaged XNCD spectrum with satisfactory signal-to-noise.
Nevertheless, an inspection of the pre-edge peak on a pair of spectra of opposite polarity
indicates that the XNCD signal, if it exists, is clearly of limited amplitude, much more so
than for the nickel compound (Figure S10).

4. Conclusions

In this report, it was shown that it is possible to use conglomerate-forming matrices
to enable the formation of chiral crystals of racemate-forming systems. However, the
nickel and iron systems behave very differently. While there appears to be a metastable
conglomerate phase for the nickel compound, which is observed in the precipitates and
has previously been observed in the crystal form [31], the iron compound does not exhibit
conglomerate formation in its pure form. This resistance to conglomerate formation ex-
plains why the racemic form is found with even very low iron proportions were used and
why conglomerate crystals of [FexZn(x-1)(bpy)3](PF6)2 possess very low iron concentrations.
This results in a heterogeneous collection of crystals with high iron content (racemates) and
very low iron content (conglomerates). On the other hand, the nickel and zinc molecular
alloys show a continuum of metal concentrations, allowing the formation of conglomer-
ates with relatively high nickel content. X-ray spectroscopic measurements showed that
the nickel complexes in [Ni0.13Zn0.87(bpy)3](PF6)2 give rise to a circular dichroism signal,
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showing that the presence of [Zn(bpy)3](PF6)2 induces the conglomerate crystallization
of [Ni(bpy)3](PF6)2.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemistry5010020/s1, Table S1: Crystal data and structure refinement
for [Λ-Zn(bpy)3](PF6)2 and [rac-Ni(bpy)3](PF6)2; Table S2: Phase determination of [M(bpy)3](PF6)2
crystals using single-crystal X-ray diffraction; Figure S1: Profile matching refinement (Le Bail method)
for ground single crystals of [Ni(bpy)3](PF6)2; Figure S2: Infrared spectra of the precipitated powders;
Figure S3: Profile matching refinement (Le Bail method) for co-precipitations of [Ni(bpy)3](PF6)2
with [Zn(bpy)3](PF6)2; Figure S4: Rietveld refinement (MoKα12 radiation) for ground single crystals
of [NixZn(1−x)(bpy)3](PF6)2 for (a) x = 0.1, showing an unique γ phase (cwRp = 0.12; wR2 = 0.09),
(b) x = 0.4 showing a mixture of γ and β phases; Figure S5: Rietveld refinement for ground single
crystals (a,c) and powders (b,d) of [FexZn(1−x)(bpy)3](PF6)2 showing a mixture of γ and β phases
for (a,b): x = 0.1 and % β = 7% and 1%, respectively, and (c,d): x = 0.4 and % β = 54% and 65%,
respectively; Figure S6a,b: SEM images of [Ni0.4Zn0.6(bpy)3](PF6)2. Blue crosses show the point
where metal content was assayed by EDX. See Table S3 for metal assay at the labeled points; Table S3:
Nickel and zinc proportions measured by EDX at the points corresponding to the blue crosses in
Figure S6a,b; Figure S7: SEM images of [Fe0.5Zn0.5(bpy)3](PF6)2. Blue crosses show the point where
metal content was assayed by EDX. See Table S4 for metal assay at the labeled points; Table S4: Nickel
and zinc proportions measured by EDX at the points corresponding to the blue crosses in Figure S7;
Figure S8: Sample mounting for X-ray Natural Circular Dichroism, crystals were glued to carbon
tape pads with the c axis lying horizontal; Figure S9: Absorption (dotted lines) and XNCD (full lines)
spectra for single crystals, in orthoaxial configuration respective to the beam, for the ∆ (in red) and
Λ (in blue) enantiomers of Ni0.1Zn0.9(bpy)3(PF6)2. EDX measurements on both enantiomers gave
proportions of Ni0.106Zn0.894 for ∆ and Ni0.12Zn0.88 for Λ; Figure S10: X-ray absorption spectra for
both circular polarizations of the beam (red and blue lines) on a single crystal of the ∆ enantiomer of
Fe0.1Zn0.9(bpy)3(PF6)2, in orthoaxial configuration respective to the beam. Diffraction peaks present
in this pair of spectra are signaled with a *. (inset) zoom on the pre-edge region.
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