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COULD THE BUBBLEVIEW METAPHOR BE USED TO INFER VISUAL ATTENTION ON 3D
GRAPHICAL CONTENT ?

Alexandre Bruckert, Mona Abid, Matthieu Perreira da Silva, Patrick Le Callet

Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France

ABSTRACT

Understanding the deployment of human gaze on 3D graph-
ical objects is of critical importance in order to propose rich
and complex 3D environments without strong latency nor ren-
dering constraints. However, the data needed to study this
gaze deployment can be costly and difficult to obtain, espe-
cially in the context of the Covid-19 pandemic where in-lab
experiments are strongly discouraged. In order to alleviate
these issues, we propose to use the BubbleView metaphor as
a way of crowdsourcing visual attention data on 3D graphi-
cal content. In this paper, we question the adequacy of this
method to provide a reliable proxy for visual attention in the
context of 3D graphical objects. Moreover, we show that data
obtained in this manner can be used to train visual saliency
models, with only a slight tradeoff in performances compared
to the use of ground-truth eye-tracking data.

Index Terms— Visual attention, eye-tracking, visual
saliency, 3D graphical objects

1. INTRODUCTION

Three-dimensional graphics have taken a prominent place
in numerous fields of applications, including video games,
digital animation or scientific simulation. However, as these
graphical content become more detailed and complex, com-
pression and simplification operations are critically needed
to ensure that 3D objects are displayed to the users without
rendering nor latency issues. In order to ensure an optimal
quality of experience (QoE) for the user, visual attention in-
formation is often used, as it gives an indication about the
perceived experience. For instance, visual attention can be
used to infer the memorability of an image [1], or to spatially
guide the compression of an image or video [2].

In this context, visual saliency, which refers to the distri-
bution of eye fixations on a given stimulus, is a particularly
interesting feature to study. Indeed, predicting this distribu-
tion allows to preserve visually important areas during com-
pression. Consequently, numerous models dedicated to pre-
dict this distribution have been proposed in the literature [3].
While most of the effort has been concentrated on 2D images
or videos, only a few studies explored visual saliency on 3D
meshes [4, 5, 6] or point clouds [7, 8].

However, gathering visual saliency data is expensive in
terms of resources, as it requires costly eye-tracking equip-
ment and human supervision during test sessions, and thus
prevents the collection of large-scale datasets needed to train
deep learning models. In order to address this problem,
several alternatives for in-lab eye-tracking experiments have
been proposed [9].

Webcam-based eye-tracking [10] was proposed as a di-
rect way to collect gaze data through crowdsourcing, by fol-
lowing the pupil of an observer captured through their web-
cam. However, it appeared to be quite difficult to gather reli-
able data with this method, due to important variations of the
quality of the equipment, lighting conditions, or the positions
of the observers.

Auto-annotation methods rely on the viewer’s self-
assessment of where gazed-upon areas are located, usually
by asking participants to paint or to click over the interesting
regions [11, 12]. These methods however generate a lot of
noise because of the intra-observer diversity in annotation
style, and the top-down nature of the collected ground-truth.

Zooming interactions [13] consists in giving the ob-
server an interactive zooming tool, and treating the zoom-
upon areas as areas of interest, from which visual attention
heatmaps can be drawn. However, this methods is more
suited to multi-scale content.

Mouse tracking methods rely on the assumption that
gaze and mouse tracks are highly correlated, especially on
specific stimuli where a mouse cursor is expected by the
participant, such as web pages [14, 15]. The BubbleView
metaphor is another form of mouse-tracking proxy for visual
attention: the image is entirely blurred, except for an area
around the mouse cursor. This unblurred region can either be
displayed by clicking [16], or continuously follow the mouse
cursor [17]. Finally, the BubbleView metaphor shows very
good correlation with eye-tracking data on various content,
and allows for the collection of very large visual saliency
datasets, such as SALICON [18]. In this work, we propose
to evaluate the BubbleView metaphor for crowdsourcing vi-
sual attention data on 3D graphical objects. We introduce a
novel dataset composed of mouse tracks on high resolution
3D objects collected under laboratory conditions. We then
compare the mouse tracks to ground truth eye-tracking data.
Finally, we retrain several visual saliency models using these



Fig. 1: Examples of the rendered stimuli

two datasets, in order to assess the interest of the BubbleView
metaphor for predicting visual attention on 3D graphical
content.

2. DATA COLLECTION AND PROCESSING

2.1. Stimuli

We build our dataset as an extension of the 3DGC saliency
dataset [19]. We selected 25 high-resolution 3D objects, with
various semantics and shapes, and selected four viewpoints
to render them, using the same method as for the 3DGC data
(i.e. considering four views corresponding to four faces of a
cube), thus yielding a total of 100 images. In order to avoid
any bias due to the occupancy of the objects, we applied a
gray background behind them. Figure 1 shows an example of
such images.

2.2. Eye-tracking data

Participants and task: In order to build an eye-tracking
ground-truth, we collected data from 34 volunteers. Partic-
ipants were asked to freely explore each stimulus, without
any specific task. A trial session was performed, in order to
ensure that the participants understood the procedure.

Apparatus and protocol conditions: We used the Eyelink
1000 Plus eye-tracker, sampling at 1000Hz, in remote mode
(i.e. using no chin rest). Stimuli were displayed in a random
order, at full HD resolution (1920×1080) during three sec-
onds, on a DELL P2417H monitor. The distance between the
eyes of the observers and the screen was set at 96cm (± 1cm).
In this setting, one degree of visual angle amounts to roughly
64 pixels. The screen luminance was set at 200 cd/m², and the
luminance for the room’s walls was measured at 30 cd/m².

Data processing: In order to transform raw gaze points
into fixations, we applied a threshold-based aggregation al-
gorithm using motion, velocity and acceleration [20], and re-
moved all fixations lasting less than 80ms, i.e. roughly the

minimum amount of time to process foveal information. Vi-
sual saliency maps were obtained by aggregating the fixation
points over all observers, and convolving them with a 2D
Gaussian kernel, which standard deviation was set to one de-
gree of visual angle, which is approximately the radius of the
fovea.

A mask was then applied in order to only consider the
surface of the rendered object, and not the background. To
take into account gaze data at the border of the surface, the
size of the mask was enlarged using a morphological dilation,
similar to the process in [19].

2.3. BubbleView data

In this study, we chose to use the BubbleView method in a
continuous way, not relying on clicks, in order to grasp both
bottom-up and top-down processes. This way, the whole im-
age is blurred, except a circular region around the center of
the mouse.

BubbleView parameters: Several parameters are required
to set up the BubbleView metaphor. First, the size of the bub-
ble needs to be set at approximately the size of the fovea [16].
The blur sigma also needs to be set such that some details
are visible to attract the attention towards different regions,
but not too many details, to force exploration using the bub-
ble. Finally, the display time of the stimulus is also important,
in order to have a balance between top-down and bottom-up
processes as close as the one in the eye-tracking study.

The size of the bubble was set to 1.5° of visual angle, i.e.
96 pixels. For the blurring parameter, we applied a homoge-
neous blur, which kernel size is designed to match the blur
in the peripheral vision at the edges of the screen when fix-
ating the center. To do so, we use the size of the screen to
measure the maximal eccentricities values (i.e. the distance,
in degrees of visual angle, from the center of the screen to the
edges), and we derive from it the visual acuity, expressed in
the Snellen decimal [21]. We can then derive the sigma for
the blur necessary to approximate this acuity, 10 pixels in our
case.

Finally, the viewing time was set at 4.5 seconds. Between
each image, participants were asked to position their mouse
cursor on a target at the center of the screen.

Participants: The dataset was split into two playlists, of
50 images each. The 60 participants were split into two group,
each group viewing one of the two playlists. Participants were
asked to explore freely each stimulus, without any specific
task. This experiment was done in a laboratory setting, under
supervision, in order to avoid spammers or outliers. The ad-
justment of this protocol for crowdsourcing settings, i.e. the
design of efficient filters to ensure trustworthy data, in a con-
text where the experiment is proposed to a large panel of on-
line participants, will be explored in future works.

Data processing: To infer visual saliency maps from the
collected BubbleView data, we followed the work in [17]. For



each pixel of a stimulus, we compute the total aggregated time
during which the mouse cursor was at this specific location.
The resulting map was then convolved with a 2D Gaussian
kernel, emulating the size of the fovea, i.e. 1° of visual an-
gle. Similarly to the eye-tracking saliency maps, a mask was
applied and dilated to only account for the surface of the ob-
ject. Figure 2 shows an example of this process, for both eye-
tracking and BubbleView data.

(a)

(b) (c)

(d) (e)

Fig. 2: Example of eye-tracking and BubbleView tracks trans-
formed into saliency maps. (a) Original stimulus, (b) Eye fix-
ation points, (c) Ground-truth visual saliency map, (d) Bub-
bleView tracks, (e) BubbleView saliency map.

3. EXPERIMENTS

In this section, we propose two different evaluations of the
BubbleView metaphor for 3D graphical objects. First, we
evaluate how similar the saliency maps generated with the
BubbleView paradigm are to the eye-tracking ground-truth;
then, we evaluate and compare how visual saliency models
trained with BubbleView or eye-tracking perform.

3.1. Similarity of the BubbleView metaphor with eye-
tracking

In order to assess how close BubbleView saliency maps are to
the eye-tracking ground-truth, we relied on four metrics com-
monly used in the context of visual saliency [22]: Pearson’s
correlation coefficient (CC), Normalized Scanpath Saliency
(NSS), Kullback-Leilbler Divergence (KLD) and Similarity
(SIM).

As recommended in [9], we also compared these scores as
a percentage of a baseline score. To compute this baseline for
the NSS, we used the inter-observer congruency, as described
in [23]: for each observer, we create a fixation map based only
on their fixations, and compared it to the saliency map created
by aggregating all of the other observers. Scores were then

averaged over observers and images. For CC, KLD and SIM
metrics, the IOC baseline is computed by randomly spliting
the observers into two groups, and comparing the saliency
maps of both groups. The percentage of the IOC is then given
by normalizing the scores with the baselines [9].

Table 1: Average similarity scores (± standard deviation)
between BubbleView saliency maps and ground-truth eye-
tracking data. First line is the score between the BubbleView
map and the eye-tracking ground-truth, and second line is the
same score as a percentage of the IOC.

CC ↑ NSS ↑ KLD ↓ SIM ↑
0.90 ± 0.05 2.90 ± 0.57 0.19 ± 0.09 0.79 ± 0.05

79.6% 86.2% 73.9% 81.7%

Table 1 shows these similarity scores. Overall, we observe
very high similarity compared to scores usually obtained on
natural images [9, 17]. This can be explained by two factors:
the simplicity of the considered stimuli, which do not present
any background to explore, thus focusing the mouse of the
participant on the content, and the relatively small size of the
objects, allowing for a fast first exploration, and time to come
back to interesting or salient areas afterwards.

Inter-observer congruency (IOC) is a measure of the sim-
ilarity of gaze patterns between several observers watching at
the same stimulus. In the context of 3D graphical objects and
QoE, inter-observer visual congruency is a particularly use-
ful metric. Indeed, it can be used to characterize the visual
attention complexity of a rendered view of a 3D object [6],
and such views can then be compared together, for instance
to infer a preferred point of view.

Therefore, we are interested in knowing whether or not
the BubbleView metaphor preserves this congruency. As ex-
plained in the previous section, we can compute IOC scores
using a leave-one-out approach, comparing each observer
with the aggregation of the others. However, while this
approach can be replicated on BubbleView tracks, the com-
parison with eye-tracking scores might be uncertain due to
the different nature of data. Since our work here is focused
on visual saliency, we use a heuristic by computing Shan-
non’s entropy of the saliency map. This way, when entropy is
high, salient areas are dispersed over the whole surface of the
object, and thus IOC scores are low, and vice versa.

We computed the entropy of both BubbleView and eye-
tracking saliency maps for each view of the objects, and com-
pared them together. We obtain a Pearson’s correlation co-
efficient between entropies of 0.886 (p − value ≪ 10−5),
showing that the BubbleView metaphor preserves relatively
well information about the dispersion of gaze tracks on 3D
graphical objects.



3.2. Visual saliency models

In order to evaluate the usefulness of BubbleView data for
training visual saliency models on 3D graphical content, we
selected and retrained three models that are representative
of the state-of-the-art: MSINet [24], SAM-Resnet [25] and
EML-Net [26].

Those three models were evaluated in three different con-
figurations: using their base weights (i.e. pretrained on the
SALICON dataset [18]), fine-tuned on the eye-tracking data,
and fined-tuned using the BubbleView data. In each of the
fine-tuning conditions, 85 images were randomly chosen to
fine-tune the model, and the 15 left were used for validation.
Each training was repeated 10 times, with a new random split
each time, and the performances averaged, to ensure consis-
tency in the results. The images were resized to fit the original
input size of each model, using padding to conserve the as-
pect ratio. For the SAM-Resnet model, considering the high
number of parameters of this model, and the low number of
stimuli, we froze the weights of the Resnet-50 feature extrac-
tor.

To test these models, we used the 84 images of the 3DGC
eye-tracking dataset [19]. As described in Section 2.2, we
apply a dilated mask to only keep the saliency values on the
surface and on the border of the object.

The predicted saliency maps are then scored against the
eye-tracking ground-truth using the same four metrics as in
Section 3.1. The results for each metric, model and training
setting are summarized in Table 2.

Overall, EML-Net gives the best results, while SAM-
Resnet exhibits the lowest performances. All of the models,
when used in their basic settings, show relatively poor per-
formances (under 1.5 in NSS, and under 0.7 in CC). This
is easily explained by the nature of the SALICON dataset,
which is composed of natural images, and not 3D graphical
content.

As expected, fine-tuning on the eye-tracking dataset
shows a significant improvement in performances compared
to the base model, even with the low amount of training data
that we used. This procedure allows the models to adjust their
weights to the specific features of the considered content, but
also to the properties of the ground-truth saliency maps,
which can slightly differ due to the diversity of experimental
conditions in which eye-tracking data are collected.

Interestingly, we observe that for the three models, fine-
tuning on the BubbleView dataset also significantly improves
the performances, although not as much as the eye-tracking
data. Nonetheless, it seems that BubbleView data can be suc-
cessfully used to improve the prediction of visual saliency on
3D graphical objects.

Similarly to Section 3.1, we also evaluated the perfor-
mances of the models in each setting to predict the visual at-
tention complexity. We compared the entropy of the predicted
saliency map to the ground truth using Pearson’s correlation

Table 2: Scores of the three visual saliency models on the test
dataset. Best performances are bolded. For each model, three
settings are compared: base, BubbleView fine-tuned (BV)
and eye-tracking fine-tuned (ET).

CC ↑ NSS ↑ KLD ↓ SIM ↑

SAM-Resnet
Base 0.582 1.023 0.527 0.621
BV 0.679 1.215 0.463 0.632
ET 0.711 1.320 0.401 0.649

MSINet
Base 0.641 1.289 0.368 0.633
BV 0.690 1.587 0.303 0.650
ET 0.724 1.613 0.287 0.675

EML-Net
Base 0.684 1.432 0.239 0.645
BV 0.741 1.721 0.207 0.678
ET 0.758 1.932 0.196 0.691

Table 3: Pearson’s correlation coefficient between the en-
tropies of ground-truth and predicted saliency maps, for base
model (B), BubbleView (BV) and eye-tracking (ET) fine-
tuned.

SAM-Resnet MSI-Net EML-Net
B BV ET B BV ET B BV ET

0.52 0.63 0.68 0.75 0.81 0.85 0.82 0.86 0.88

coefficient. Table 3 compiles these scores. The EML-Net
model shows the highest correlation, especially when fine-
tuned using eye-tracking data (CC = 0.88). We also observe
a systematic improvement of the correlation when any kind
of fine-tuning is used, including with the BubbleView data.

4. CONCLUSION

In this work, we explored the BubbleView metaphor’s ability
to be a reliable proxy for gathering visual attention data on 3D
graphical objects. Based on attention data gathered with both
eye-tracking and BubbleView experiments, we showed strong
similarities between both collecting methods in the consid-
ered features, namely the visual saliency and the visual at-
tention complexity. It should be noted that 3D graphical ob-
jects, due to their nature, are particularly good candidates for
the BubbleView metaphor: indeed, their simplicity and the
absence of background allows the observers to explore the
stimuli very quickly and easily, which is not always the case
with natural images, for instance. We also showed that Bub-
bleView data can be reliably used to fine-tune visual saliency
models in this context, and can improve the prediction of vi-
sual attention complexity.

Considering the high cost of eye-tracking experiments, it
appears that BubbleView can be a good cost-effective alterna-
tive for 3D graphical content. However, it remains to evaluate
how this metaphor would perform outside of the lab, with dif-
ferent devices and an increased probability of spammers.
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