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One Sentence Summary: Electrolytes in 2D nanochannels develop long-term memory,
allowing to implement Hebbian learning on a nanofluidic chip.

Fine-tuned ion transport across nanoscale pores is key to many biological pro-
cesses such as neurotransmission. Recent advances have enabled the con-
finement of water and ions to two dimensions, unveiling transport proper-
ties unreachable at larger scales and triggering hopes to reproduce the ionic
machinery of biological systems. Here we report experiments demonstrat-
ing the emergence of memory in the transport of aqueous electrolytes across
(sub)nanoscale channels. We unveiled two types of nanofluidic memristors, de-
pending on channel material and confinement, with memory from minutes to
hours. We explained how large timescales could emerge from interfacial pro-
cesses like ionic self-assembly or surface adsorption. Such behavior allowed us
to implement Hebbian learning with nanofluidic systems. This result lays the
ground for biomimetic computations on aqueous electrolytic chips.

Over the past decade, research in nanofluidics has shed the light on many unconventional
phenoma arising in the transport of water and ions through nanometric channels (1–12). The
field has grown at a fast pace, driven by the discovery of new fundamental behaviors of aqueous
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transport at nanoscales, but also by their potential for a wealth of applications, from water de-
salination to energy harvesting (2). Most notably, the recent development of two-dimensional
(2D) channels made by van der Waals assembly of various materials (graphite, hexagonal boron
nitride, MoS2, etc.) has enabled the study of ionic transport at the smallest scales, with un-
matched versatility in terms of geometry or surface properties (13–16). Specifics of 2D interac-
tions offer a new asset to fine-tune the properties of electrolytes, at odds with their bulk response.
A recent, noticable prediction is that two-dimensional ionic self-assembly should be at the root
of memory effects associated with conductance hysteresis under electrical forcing (17), a phe-
nomenon known as memristor effect. This effect could allow to emulate the brain’s neuronal
computation using ions in water as charge carriers, but artificial systems capable of mimicking
this behavior have eluded experimental inquiry in aqueous electrolytes until now.

A memristor – short for memory resistor – is a resistor with an internal state that is sus-
ceptible to change depending on the history of voltage seen by the system, thereby modifying
its conductance (18, 19). As this feature makes them the analogues of biological synapses,
memristors have drawn considerable attention for their potential use as building blocks of bio-
inspired neuromorphic computers (20). However, most of existing examples are based on solid-
state devices (like the metallic-insulator-metallic, or MIM, architecture) and function with cou-
pled ion and electron dynamics (21). Although a handful of fluidic memristors were also de-
signed (22–24), they require high voltage to operate, well above the water splitting threshold
(1.23 V with respect to normal hydrogen electrode), use non-aqueous environments, or far ex-
ceed the nanoscale dimensions of biological systems. More generally, a challenge is to replicate
the mechanism found in biological systems, where the transport and accumulation of solvated
ions (notably calcium) in water are used for signalization, information processing and the build-
ing of memory (25,26). Developing such bio-inspired memristors would notably allow to design
artificial nanofluidic chips for neuromorphic computation, build an interface between artificial
nanofluidics and biological systems and explore possible gains in efficiency from using solvated
ions as charge carriers. Here we report on a series of experiments that 2D nanofluidic channels
do open this avenue towards neuromorphic iontronics.

Experimental demonstration of nanofluidic memristors

Pristine MoS2 channels vs. activated carbon channels
In this work, we investigated two types of 2D nanochannels, of similar geometry but different
surface properties (Fig. 1A). “Pristine” channels were made of two atomically smooth flakes of
2D material (here MoS2) separated by an array of multiple layers of graphene nanoribbons used
as spacers. On the other hand, “activated” carbon channels consisted of two graphite flakes,
in which a nanoscale trench was milled into the bottom flake using electron-beam-induced
etching (EBIE) (16). In both cases, the bottom wall of the channel was pierced and deposited
on the aperture of a SiNx membrane. Further details regarding the fabrication of activated and

2



pristine channels can be found in Refs. (13) and (16) respectively, and recalled in Supplementary
Material (SM, Figs. S1, S2). Although similar in design, these channels differed on a few key
properties. The height of pristine MoS2 channels could be precisely controlled in increments
of 0.34 nm, and here down to 0.68 nm – the channel’s depth corresponding to the spacers’
thickness. Conversely, the depth of activated carbon channels was controlled by EBIE with a
resolution limited to a few nanometers. As recently evidenced by Emmerich et al. (16), the
latter carries a much stronger surface charge compared to pristine walls, due to the exposure of
their bottom wall to the electron beam. Here, we used activated carbon channels with channel
height between 4 and 13 nm, and pristine MoS2 channels with height between 0.68 and 86 nm.

Once fabricated, the 2D channels were embeded in a fluidic cell connected to two reservoirs
filled with electrolyte (KCl, NaCl, LiCl, CaCl2, NiSO4, AlCl3). Salt concentrations between
1 mM and 3 M were tested. Unless stated otherwise, the solution’s pH was not modified after
salt dissolution in deionized water, resulting in a pH range of 5.1 − 5.5 depending on salt con-
centration. A patch-clamp amplifier (KEITHLEY 2400 or 2600 Series) connected to Ag/AgCl
electrodes allowed for ionic current measurements under imposed time-dependent voltage drop
V (t) of various frequencies (0.1 − 200 mHz), shapes (sinusoidal, triangular), and amplitude
(0.1−1 V). In each case, the channel’s conductanceG(t) was determined from current measure-
ments from an instantaneous Ohm’s law G(t) = I(t)/V (t). Further details regarding current
measurements are reported in Supplementary Materials (SM). Typical examples of experimen-
tal results for both types of systems are shown in Fig. 1.

Two types of memristors
Firstly, our central result is that 2D nanofluidic channels did exhibit a memristive effect (Fig. 1B-
E): when probed by a time-varying voltage, they displayed a non-linear current-voltage char-
acteristics which was pinched at zero voltage, associated with a conductance hysteresis. This
pinched loop under periodic forcing is the hallmark of memristors (27). Such behavior was
found in both types of channels – pristine and activated – for all tested electrolytes and at all
salt concentrations; see SM for exhaustive results. The memristive effect was found to take
place at frequencies between 0.1 and 200 mHz, well below frequencies where capacitive ef-
fects can introduce hysteresis. This result corresponds to dynamical timescales from seconds to
hours. Moreover, the phenomenon was found to be robust and was observed in a wide range of
parameters – notably salt concentration, channel height and pH (Figs. S9-S16). All tested salts
displayed the same phenomenology. In particular, we did not observe significantly different
results with multivalent salts, suggesting that the materials used here (MoS2 and activated car-
bon) are not subject to phenomena like charge reversal commonly observed with divalent ions
like calcium (28). Our channels typically displayed an overall conductance much higher than
what could be expected from bulk estimates, due to their high surface charge and hydrodynamic
slippage (16).

Secondly, we could identify two types of memristors, depending on whether the current-
voltage characteristics did, or did not self-cross at the origin, see Fig. 1B (pristine MoS2 chan-
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Figure 1: Experimental study of the memristor effect using two kinds of nanofluidic de-
vices. (A) Sketch of the nanofluidic cell. A nanochannel was deposited on a membrane sep-
arating two reservoirs filled with an electrolytic solution. The red arrow indicates path taken
by water and ions accross the system. We used two types of nanochannels: pristine MoS2

channels (bottom left pannel) and activated carbon channels (bottom right pannel). (B and C)
Typical example of a memristive current-voltage and conductance-voltage characteristics of a
pristine MoS2 channel (height h = 1 nm) under periodic voltage (triangular wave of frequency
8 mHz, using 3 M KCl). The IV curve displays a loop that is pinched (but does not intersect) at
the origin, and the GV curve has a crossing point at zero voltage. (D and E) Typical example
of a memristive current-voltage and conductance-voltage characteristics of an activated carbon
channel (height h = 13 nm) under periodic voltage (sinusoidal wave of frequency 1 mHz, using
1 mM CaCl2). Here, the IV curve crosses itself at the origin and the GV curve takes the form
of a simple loop. For all data, pH was not modified after salt dissolution in deionized water,
resulting in a pH range of 5.1− 5.5.
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nel) versus Fig. 1D (activated carbon channel). This fundamental difference is best illustrated
by looking at the curve of conductance as function of voltage: it either displayed a twisted loop
(with one crossing point, Fig. 1C) or open loop (no crossing point, Fig. 1E). Following the
terminology introduced by Ref. (27), we classified our experimental data as follows. Systems
that exhibited a self-crossing IV curve (Fig. 1D and 1E) were termed bipolar memristors. Con-
versely, those that instead displayed a self-crossing GV curve (Fig. 1B and 1C) were refered to
as unipolar memristors.

A key aspect of memristors is their ability to switch between different internal conductance
states. We observed that bipolar memristors change state when the polarity of voltage was re-
versed, with e.g. maximum conductance at +1 V and minimum conductance at −1 V (Fig. 1E)
– hence the name bipolar. On the other hand, unipolar memristors generally exhibited symmet-
ric IV and GV curves, that were however strongly non-linear when the amplitude of voltage was
increased. Their conductance only weakly depended on voltage polarity, but could vary by up
to two orders of magnitude between voltage V = 0 and V = ±1 V (Fig. 1C) – hence the name
unipolar. Together, these facts indicate that the possible internal states of unipolar and bipolar
memristors were fundamentally different.

In addition, thinner pristine devices (channel height h < 10 nm) could display either kind
of behaviour depending on salt concentration (with unipolar memristors at 0.1 M or higher).
Thicker pristine MoS2 channels, on the other hand, only displayed a weak bipolar memristor
effect; however, the memory effect was not as significant as that observed in thinner channels
implying that confinement in a 2D geometry is essential for attaining memory effects. Lastly,
the phenomenon was found to be weakened at acidic pH in both types of systems. All corre-
sponding data are provided in SM (Figs. S9 to S16).

This comparison sheds light on a possible explanation. Bipolar memristors were predom-
inant for high surface charges (as found in activated carbon channels) and low salt concentra-
tion – in other words, for surface-dominated conduction. Instead, unipolar memristors existed
for moderate surface charge (pristine MoS2 channels), high salt concentration and strong con-
finement: these results corresponded to a ‘confinement-dominated’ regime. In both cases, a
prerequisite for memory effects was the system’s ability to display non-linear ion transport.
Accordingly, we now focus on the description of the system’s various conductance states as
function of applied voltage.

Two sources of non-linearity: collective ionic transport and ionic rectifica-
tion
The above observations suggested the existence of two distinct mechanisms behind the mem-
ristive behavior of nanofluidic channels. Unipolar memristors only existed in thin channels
(h < 10 nm) and at high salt concentration (c ≥ 0.1 M) and the corresponding experimental
results directly echoed the theoretical mechanisms discussed in Ref. (17). In this picture, a
non-linear response can be accounted for by the formation of tightly bound Bjerrum pairs of
ions if confinement is sufficiently strong (and the solution not too diluted), preventing conduc-

5



tion (Fig. 2A). The application of a sufficiently strong electric field can break these pairs or
assemble them into an arc-like polyelectrolyte, allowing in both cases electrical current to flow,
a process known as the (second) Wien effect. As a result, the system’s conductance G is a
strongly non-linear function of voltage V that almost vanishes in absence of voltage, behaving
as

G(V ) ∝ |V |α (1)

with a predicted exponent α > 1, and usually around 2 (see SM, section 3 and Ref. (17) for the
derivation). We can take into account the fact that not all ions may be paired up by adding a
small constant termG0 = G(V = 0) into the above equation. This mechanism is independent of
voltage sign, and thus does correspond to a unipolar memristor. It also allows the conductance
to vary continuously over a large range of values, accounting for experimental observations. In
theory, this process can only take place in thinner channels – less than 2 nm in thickness – as
Bjerrum pairs only exist under strong confinement. In practice, the transition from unipolar to
bipolar behavior was found to take place around a thickness of 10 nm. A possible explanation
for this robustness is that ion pairs could still exist in the few water layers next to the channel’s
walls, even in slightly larger channels: in particular, the presence of a wall tends to lower
the dielectric constant of the first water layers (29), and ions are thus expected to experience
stronger electrostatic interactions near surfaces. If that is the case, then ionic pairing near solid
surfaces could be relevant in other contexts and their dynamics could be probed for with similar
time-varying voltage.

On the other hand, bipolar devices changed state depending on the polarity of applied volt-
age, and their memory should therefore stem from an internal asymmetry. However, in some
experimental conditions, pristine MoS2 channels did display this kind of hysteresis despite their
internal surface being atomically smooth and controlled. Therefore, we attributed the source of
asymmetry to entrance effects. By construction, the SiNx membrane was present on one side
of the device only (Fig. 1A) and the two mouths of the channel did not have the same access
resistance. Coupled with the exclusion of anions from the channel (due to its strong negative
surface charge), this result is expected to result in ionic rectification (Fig. 2B, Fig. S6): when
cations flow from the side with lower access resistance, ions will accumulate inside the chan-
nel as entry is ‘easier’ than exit, resulting in a conductance increase. If voltage is reversed,
cations will flow from the side of higher resistance, the channel will instead be depleted and
conductance will drop. This mechanism is analogous to that of a PN junction, and results in a
diode-like current-voltage characteristic (30) with two distinct possible values of conductance,
defining a rectification factor βRect:

G(V > 0)

G(V < 0)
' βRect (2)

Experimentally, we found βRect = 1 − 5, consistent with the above analysis in terms of entry
effects (see SM, section 3). Because this type of non-linearity depends on voltage sign, it
corresponds to a bipolar memristor.
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We stress that these two phenomena were not mutually exclusive: pristine MoS2 channels
could show signs of both mechanisms at the same time. In such cases, the IV curve displayed
two crossing points (rather than none or a single one); further analysis and experimental data
can be found in SM (section 3.4 and Fig. S17).

Although any system presenting a strong enough non-linearity associated with various in-
ternal conductance states could in theory display a memristive behavior, it can only do so on a
frequency range fixed by the time required to switch between the conducting and the insulating
states. However, such timescales are normally too short to be accessible in nanofluidic systems,
and this phenomenon requires peculiar transport processes to be observed.

Stop-and-go transport as a source of long-term memory
For both types of memristors, memory timescales were found to reach extremely large values,
in the range of minutes to hours. Such long-term memory could be accounted for by taking
ion pairing or surface adsorption into account in the dynamics of confined ions. In the theoret-
ical framework of Ref. (17), the electrolyte is indeed predicted to retain its conductance state
through the formation of ion clusters, which was estimated to typically take a few milliseconds.
More generally, one expects a nanofluidic channel to retain a conductance state (defined by the
number of charge carriers present inside the channel) over a typical diffusion timescale, roughly
L2/D, with L the channel length and D a typical ionic diffusion coefficient in the channel. For
channels of length around 10 µm, this result would yield a maximum memory time of 0.1 s, still
orders of magnitude lower than experimental values. However, this picture changes if interfa-
cial processes, rather than diffusion, govern ion transport. Consider a particle diffusing through
a channel with chemically-active walls, such that it may adsorb on the surface (Fig. 2D). If the
adsorption rate is much larger than the diffusion rate across the channel, then the particle will
spend most of its time bound to the surface. As a result, the time it needs to escape the pore is
the sum of the durations of all adsorption events. Let us define τdiff, the time needed to escape
through diffusion alone and τd the time a particle bound to the surface takes to desorb. Then,
if the particle is adsorbed every τa � τdiff, there will be τdiff/τa such events along the particle’s
trajectory as it crosses the channel. As a result, the residence time τm of the particle inside the
pore reads:

τm =
τdiff

τa
τd =

τd
τa
τdiff � τdiff (3)

In other words, the memory time of the system is the diffusion timescale times a ratio τd/τa
measuring the strength of surface effects. At chemical equilibrium, this condition corresponds
to the ratio of particle numbers on the surface and in the bulk of the channel, as quantified by
the dimensionless Dukhin number Du = Σ/ehc, which compares the surface charge Σ to the
charge density in the bulk of the electrolyte, ec. Putting numbers, activated carbon channels typ-
ically have Du ∼ 102−103, showing that surface effects strongly dominate the bulk. Eq.(3) then
predicts a memory time in the range τm ∼ Du × τdiff ∼ 100s. This estimation is in agreement
with experimental values, which were found to be in the range τm ∼ 50− 400 s (Figs. S12 and
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sorption/desorption events, respectively.
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S14), and is consistent with previous reports of extremely slow diffusion of ions near a chem-
ically active surface (31). Our prediction was found to generally underestimate experimental
values: this can be attributed to the fact that our model assumes independent successive ad-
sorption events, while in reality they tend to be correlated over long timescales (32). Moreover,
this surface-driven mechanism could explain the disappearance of the phenomenon at low pH
(Fig. S16), which is known to greatly influence the channels’ surface charge (16). The observed
dependence of the memristor effect with the electrolyte could likewise result from difference in
chemical affinity between the various species of ions considered and surface defects (Figs. S9
and S14) – however, this depence is hard to analyze and would require further knowledge of the
chemical nature of adsorption sites.

We note that this slow ‘stop-and-go’ motion of ions near the channel’s surface is not in-
compatible with the high conductance of some (notably activated) channels: although surface
processes such as adsorption can slow down conductance changes, they do not modify the over-
all large number of ions present in the channel due to its strong surface charge. We recall how
to link conductance to surface charge in SM (section 3.2). Similarly, we observe that the slow
down of the dynamics on the timescales of minutes emerges from microscopic processes (ad-
sorbing events) with molecular timescales (say 1 µs at best). This is, however, reminiscent of
previous studies that showed how chemical or physical surface processes, involving notably the
Stern layer, can result in hour-long phenomena when coupled to a water flow (33, 34).

A similar argument can be formulated for unipolar memristors. This time, the conduction
state of the system is encoded in the number of ions which are not part of tightly bound pair
(and can therefore contribute to current) – according to the Wien effect. Similarly to surface
adsorption, one expects that successive pairing-unpairing events will create a stop-and-go mo-
tion of ions through the system (Fig. 2C). The memory time is then again found to be given
by diffusion times a ratio of pairing and unpairing times, potentially reaching minute- or even
hour-long timescales.

Building on this qualitative picture, one may propose a minimal model, accounting for the
memristor effect over minute-long times for both memory types, as detailed in SM (Fig. S7).
We found that the system’s conductance at time t was given by the convolution of its quasistatic
conductance, as given by Eqs. (1) and (2) depending on memristor type, with an exponential
memory kernel:

G(t) =

∫ ∞

0

Gqs[V (t− s)]e
−s/τ

τ
ds (4)

where Gqs is quasistatic (non-linear) conductance and τ a timescale of the order of the memory
time τm. The resulting prediction was in good agreement with experimental data (Fig. 3A-B).
According to this simple model, measuring the loop in the IV curve allowed to characterize
the memristive effect (Fig. 3C). The curve of area as function of voltage frequency exhibited
a maximum when the frequency matched the intrinsic memory time τm, akin to a resonance.
The comparison to the prediction of the model showed again a good agreement and provided a
direct measurement of τm (Fig. 3C).
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that of the minimal model, see Eq. (S38) of SM (solid lines). See Fig. S8 for the normalization
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Hebbian learning with nanofluidic memristors

Reversible modification of a nanochannel’s conductance
This qualitative and quantitative rationalization of the ionic memristor effects paves the way
for the implementation of learning algorithms using our nanofluidic devices. As a proof of
concept, we now show that they could be used to emulate some basic functionalities found
in biological synapses. Because their memory was not lost when voltage was reset to zero,
we only focused on bipolar memristors, as exhibited here with activated carbon channels. We
first confirmed that their conductance could be increased or lowered through successive voltage
sweeps of a given polarity (Fig. 4A). Following a positive spike, the conductance was abruptly
increased for a short period (∼ 1 min), before relaxing to a long-term value above its initial
state (Fig. 4B). This result shows that our device displayed both short- and long-term memory,
similar to biological synapses (35).

These neural connections act as resistors whose conductance can be tuned during learn-
ing processes, with reversible modifications both on short (milliseconds to minutes) and long
(minutes to hours or more) timescales (36, 37). The latter, known as long-term potentiation
(or depression, when the conductance is lowered) enables the storage of information through
the synapse’s conductance state as a form of in-memory coding. Although the exact biological
mechanisms are still debated, the transport and accumulation of calcium ions at specific places
play a key role (26, 38). Taking inspiration from these features, we designed a protocol to
implement in-memory computations with our nanofluidic channel (Fig. 4C). We incremented
a nanochannel’s conductance by applying a ‘write’ voltage spike (+1 V during 10 seconds). It
could then be accessed to via a ‘read’ pulse (+0.1 V during 5 seconds), which did not perturb
sensibly its value. It could also be reset to its original value with an ‘erase’ spike (−1 V during
10 seconds). This setup allowed for a versatile and reversible modification and access to the
stored value for computational applications. As a proof of concept, we show in Fig. 4C that the
modification process was indeed fully reversible and allowed to store an analog variable over
long timescales, by applying a series of 60 write and erase spikes. We thus demonstrated that
nanoscale channels could be ‘programmed’ through the tuning of their conductance, enabling
the implementation of in-memory operations with ion-based nanofluidic systems.

Hebbian learning algorithm
Building on the similarities between our nanofluidic system and synapses, we now implemented
a basic form of Hebbian learning. In biological neuron networks, this process consists in the
modification of synaptic weights depending on the relative activation timings of two neurons
connected by a given synapse (Fig. 5A). If the presynaptic neuron repeatedly emits an action
potential shortly before the activation of the postsynaptic neuron, the synapse is strengthened
(meaning its conductance is increased), as this result suggests a form of causality between the
two activation events. Conversely, the synapse is weakened (i.e., its conductance is decreased) if
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the firing order is reversed, which would point at some anticausality relation. Importantly, these
modifications occur even if the presynaptic neuron only causes a mild response (that is, too
weak to initiate an action potential by itself) of the postsynaptic one. Altogether, this process
implements a form of principal component analysis of the inputs received by the network (39),
and is believed to play a major role in learning.

To mimick this mechanism, we designed the experiment presented in Fig. 5B. A computer
generated a voltage time series that emulated the behaviour of two neurons. This time series
was then applied on a nanofluidic channel. The activation of the presynaptic neuron A was
modeled by a weak positive voltage pulse. Whenever it activated, a flip-flop mechanism was
triggered, connecting the channel to a generator E− that applied negative voltage spikes. This
behaviour lasted until the postsynaptic neuron B activated and the system was branched on
another generator E+ applying positive spikes instead. The opposite chain of events occured
if neuron B activated first: in that case, the channel first received positive spikes from E+,
followed by negative spikes from E− once neuron A activated. In both cases, the flip-flop
reseted if a given total amount of time passed since its activation, allowing the process to start
over. Further details regarding the implementation are provided in SM (Fig. S4).

If neuron A activated just before neuron B, then the system received a few negative spikes,
followed by many positive spikes (Fig. 5C, left panel). Its conductance was thus globally
increased. When the firing order was reversed, conversely, the system received more negative
than positive spikes (Fig. 5C, right panel), and its conductance was therefore lowered.

We implemented this protocol in the experiments as follows: we first measured the system’s
conductance, and ran the program which consisted in 8 successive activations of neurons A
and B. Their relative spike timing – measured from the onset of the first spike to be triggered
to the onset of the second one – was used as a tuneable parameter. Then, we measured the
resulting change in the conductance. The result is shown on Fig. 5D: when the presynaptic
spike was followed (within a 40 seconds window) by a postsynaptic spike, conductance was
increased – resulting in a strengthened connection between the two neurons. Otherwise, if the
delay was too great or if the order was reversed, the connection was left unchanged or weak-
ened, respectively. This phenomenology echoes the one observed in biological synapses, where
the transient accumulation of certain ionic species triggers various mechanisms that ultimately
result in the strengthening of neuron connections (38,40); here, the accumulation of ions inside
the nanochannel directly causes a conductance increase.

In conclusion, two-dimensional nanochannels exhibited long-term memory, in the form of
a memristor effect that could have two different physical origins - strong correlations between
ions or entrance effects. In both cases, memory was retained over long timescales through
interfacial processes that slowed down advection-diffusion across the channel. We fully char-
acterized experimentally and theoretically both of these mechanisms. In particular, we showed
they may be harnessed for ‘iontronics’ applications in a variety of contexts, as the memory
effect was observed in all tested experimental conditions (salt concentration, electrolyte, pH).
These systems reproduced the tuneability of synapses, through an accumulation (or depletion)
of ions, and could implement basic learning algorithms such as Hebb’s rule within a simple

13



A

DC

-80 -40 40 80

Relative spike timing 
(ms)

-40

40

80

Conductance change 
(%)

B

E+

E-

Presynaptic neuron
A

Postynaptic neuron
B

Time

Vo
lta

ge

E+

E-

Presynaptic spike arrives
before postsynaptic spike

Postsynaptic spike arrives
before presynaptic spike

0.5

1 1.5 2

Time (min)

-1

-0.5

0

0.5

1

Vo
lta

ge
 (V

)

0.5

1 1.5

2

-1

-0.5

0

0.5

1
(i) (ii)

B spikes B spikes 

A spikes B before A A before B

-40 -20 20 40

Relative spike timing 
(s)

-20

-10

10

20

Conductance change
(%)

Relative spike
timing: 35s

Relative spike
timing: -35s

Time (min)

A spikes 

Switches to E- when A spikes
Switches to E+ when B spikes

Figure 5: Implementation of Hebb’s law using activated carbon channels. (A) Hebb’s law in
biological synapses: a synapse’s conductance was increaseed (resp. decreased) when its presy-
naptic neuron fired just before (resp. after) the postsynaptic one, adapted from Ref. (40). This
process implemented a form of causality detection, known as spike-timing-dependent plastic-
ity (STDP). Inset: rat hippocampal neuron (©ZEISS Microscopy from Germany, CC BY 2.0).
(B) Hebb’s law with nanofluidic memristors: voltage spikes were applied to a nanochannel,
mimicking the activation of two neurons A and B. After each spike from the presynaptic (resp.
postsynaptic) neuron, a series of erase (resp. write) spikes was applied. (C) Example of voltage
spikes series depending on wether the presynaptic (i) or postsynaptic (ii) neuron activated first.
(D) Conductance change after 8 successive activations of the two neurons, in percentage of the
initial conductance and as function of the relative activation timing of the neurons. Relative
spike timing is measured from the onset of the first spike to the onset of the second. Inset: SEM
image of an activated carbon nanochannel. Data correspond to an activated carbon channel with
height h = 5 nm filled with 1 mM CaCl2. See also Fig. S5 for additional data.

14



nanofluidic architecture. More generally, our work illustrates how confinement-induced effects
could be harnessed to build ionic machines inspired by biological systems. This work paves the
way for the development of more complex iontronic devices on nanofluidic chips with advanced
circuitry. The use of water and ions in the nanofluidic memristors, which is shared by biological
systems, furthermore suggests the possibility to interface artificial with biological devices.
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1 Materials and methods

1.1 Nanofabrication of pristine MoS2 channels

We fabricated the pristine MoS2 channels via van der Waals assembly following the protocol

reported in our previous work (13). Briefly, the process has two major parts: I) the preparation

of the top-spacer layers, II) the assembly of the resulting top-spacer layers with the bottom layer

to form tri-crystal (top-spacer-bottom) stack. Graphene and MoS2 flakes were prepared by the

mechanical exfoliation of their bulk layered forms, Graphenium graphite and natural MoS2

crystals (purchased from Manchester Nanomaterials). On a Si/SiO2 substrate, an exfoliated

graphene flake with a specific thickness between 0.68 and 86 nm, was searched for using an

optical microscope, and the flake thickness was confirmed by atomic force microscopy (AFM)

(Fig. S1A). Parallel strips (width of∼120 nm, spacing∼150 nm) were made from this graphene

layer using e-beam lithography (EBL) and dry etching using oxygen plasma (Fig. S1B). The

spacing between the graphene strips would become the channel width w in the final device,

while the thickness of the graphene would become the channel height h. Fig. S1B (bottom

panel) shows the AFM height profile of a three-layer thin graphene spacer, with channel width

of ∼150 nm and a channel height of ∼ 1.2± 0.1 nm. Following this, a MoS2 crystal (thickness

of 150 to 200 nm) was transferred on top of the graphene spacer (Fig. S1C). This MoS2 layer

served as the top wall of the channel. The nanofluidic chip fabrication process began by drilling

a microhole (∼ 3 µm × 50 µm) in a SiNx membrane (thickness of 500 nm) on a silicon wafer,

using photolithography and dry etching (mixture of SF6 and CHF3 gases). A thin MoS2 layer

(thickness of 20 to 40 nm) was then transferred on top of the microhole on SiNx membrane to act

as the bottom layer of the channel, using polymethylmethacrylate (PMMA) based wet transfer

method (Fig. S1D). Then, the bottom layer was etched from the back of the SiNx membrane via

dry etching with CHF3 and O2 gases, to protrude the microhole onto MoS2. Following this, the

previously prepared stack of top MoS2-graphene spacer was wet-transferred onto the bottom

MoS2 layer on SiNx (Fig. S1E). During this transfer, the spacer was oriented in such a way
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that the channels are perpendicular to the rectangular microhole. Then, the graphene spacer

was dry etched (O2 plasma) from the back of SiNx membrane to further open the microhole

into the channels. At this stage, the resulting channels had variable lengths determined by the

shape of the top MoS2 flake, and any thin edges of the top layer could lead to its sagging into

the channels thus blocking the channel entries. To address this, a Cr/Au strip (thickness 5

nm/70 nm, respectively) was deposited on the tri-crystal stack after photolithography to open

the channels (Fig. S1E). The gold layer aided the device stability by minimizing the lifting of

the MoS2 top layer during measurements at high voltages. Moreover, the gold strip served as a

mask to create uniform and desired channel length for all channels across the device. Regions of

the tri-crystal stack not masked by the Au strip were etched away, hence only the channel region

underneath the gold strip remained (Fig. S1H). Throughout the device fabrication process, after

each flake transfer, the device was placed in a furnace under H2:Ar (1:10) gas for annealing

(300°C for 3 hours and 400°C for 4 hours) to clean the polymer contamination. The optical

images of the final channel devices on SiNx are shown in Fig. S1I, both in reflection mode and

transmission mode, with the channel length L (from the microhole to the end of the Au strip)

indicated.

1.2 Nanofabrication of activated carbon channels

We briefly recall here the nanofabrication process of activated carbon nanochannels. A more

detailed description can be found in Ref. (16). Bidimensional graphite crystals were obtained

from commercially available graphite (GRAPHENIUM) by mechanical exfoliation on a Si/SiO2

substrate using cleanroom tape. A first graphite flake (‘bottom layer’) was pierced using elec-

tron beam induced direct etching (EBIE) in water vapor inside a scanning electron microscope,

and then several trenches were dug from the hole using the same technique (Fig. S2, step 1).

A second graphite crystal (‘top layer’) of roughly 50 nm in thickness was deposited above the

hole and covered partially the trenches, closing them to form channels (Fig. S2, step 2). This

first transfer was realized using the dry-transfer techniques with a droplet-shaped polydimethyl-
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siloxane (PDMS) stamp spin-coated with polypropylene carbonate (PPC). Finally, this bi-layer

heterostructure was transferred above a Si/SiN window with a circular aperture in its middle,

by making sure that the hole in the bottom layer landed above the aperture (Fig. S2, step 3).

This second transfer was realized by wet transfer using a polymethylmethacrylate (PMMA)

sacrificial layer.

In typical cases, activated carbon channels are 5− 10 µm long, 100 nm wide, with a height

ranging from 5 to 15 nm.

1.3 Current measurements

Devices were placed into nanofluidic measurement cells separating two reservoirs filled with

electrolyte solutions of various salt concentrations and ionic species (KCl, CaCl2, AlCl3, NiSO4,

NaCl, LiCl). We used Ag/AgCl electrodes to apply a potential drop across the channels and

measure the resulting ionic current. Our electrodes were connected to KEITHLEY amplifiers

(models 2636B and 2401). We used AC voltage of various frequencies (0.1 to 200 mHz) with

a sampling rate of 2 Hz. Due to experimental technicalities, triangular waveforms were used to

probe pristine MoS2 channels and sinusoidal for activated carbon channels; it was later checked,

however, that our nanochannels react identically to both types of waveforms.

Even in the thinnest channels, the measured current was found to be several orders of mag-

nitude higher than what was measured on a control system obtained by following the “pristine”

protocol, but without spacers to create the channels. This shows that no leakage through the

channel’s walls is not possible.
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2 Bio-inspired algorithms

In this section, we detail how we performed basic neuromorphic operations with activated car-

bon channels. In all cases, input voltage was generated via MATLAB and exported as a text file,

and then applied on the system by a LABVIEW program with a sampling rate of 2 Hz.

2.1 Long-term potentiation

Reversible long-term modification of a nanochannel’s conductance was achieved by applying

positive “write” pulses (+1 V during 10 s) or negative “erase” pulses (−1 V during 10 s). Af-

ter each pulse, the conductance relaxation was tracked by applying 10 weak “read” pulses

(∆Vread = +0.1 V during 5 s) separated by 5 s (see Fig. S2A-B), and computing for each of

these pulses the conductance from:

G =
I

∆Vread
(S1)

The conductance was found to stabilize after roughly two minutes of relaxation.

We then checked that these modifications were incremental and reversible by applying 30

write pulses followed by 30 erase pulses, see Fig. 5C from main text. After each pulse, the

system was let to relax for two minutes to let the conductance stabilize.

2.2 Hebbian learing

The algorithm used to implement Hebbian learning is detailed in main text but we recall it here

for the sake of clarity. A computer generated a voltage time series that emulated the behaviour

of two neurons. This time series was then applied on a nanofluidic channel. The activation of

the presynaptic neuron A was modeled by a weak positive voltage pulse. Whenever it activated,

a flip-flop mechanism was triggered, connecting the channel to a generator E− that applied

negative voltage spikes. This behaviour lasted until the postsynaptic neuron B activated and the

system was branched on another generator E+ applying positive spikes instead. The opposite

chain of events occured if neuron B activated first: in that case, the channel first received positive
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spikes from E+, followed by negative spikes from E− once neuron A activated. In both cases,

the flip-flop reseted if a given total amount of time t0 passed since its activation, allowing the

process to start over.

To mimick Hebbian learning, we assumed that neuron B always activated with a delay ∆t

compared to neuron A. Note that ∆t could be negative, if B actually fired before A. Then, for

a given value of ∆t, we applied the above procedure 8 times, and measured the conductance

change of the channel at the end (see Fig. S4).

If A activates just before B, the system will be subject to a few negative spikes followed by

many positive ones, increasing its overall conductance (see Fig. S4D). Likewise, If A activates

just after B, the system receives a few positive spikes and many negative spikes, and its con-

ductance is lowered. On the other hand, if |∆t| is comparable to t0, the channel will receive an

almost equal amount of positive and negative spikes, leaving its conductance unchanged.

Additional data measured on different systems than the ones presented in Fig. 5-6 from

main text are displayed in Fig. S5, demonstrating the robustness of the observed phenomena.

In all cases, we prepared the channel in an intermediate conductance state so that saturation

to the state of maximum or minimum conductance is not a problem during the learning process.

3 Theory of the nanofluidic memristor

In this section, we detail an analytical model of the nanofluidic memristor, highlighting two

distinct mechanisms. The most illustrative difference between the two is the shape of the IV

and GV curves under a periodic excitation. In some cases, the GV curve displayed a self-

crossing point (unipolar memristor, proposed mechanism based on Wien effect, section 3.1);

in others, it had the shape of an open loop and the IV curve had a self-crossing point instead

(bipolar memristor, proposed mechanism based on ionic rectification, section 3.2).

If considered in a vacuum, both these effects only yield a memory time on the timescales

of milliseconds at best. In section 2.3, we will therefore provide a minimal model explaining

the emergence of long-term memory from the coupling of surface processes to bulk transport
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between two reservoirs.

We start by recalling that a memristor is a resistor with a hysteretic conductance. In terms

of elementary electronics, it is decribed by a set of two equations:

I = G [n(t)] ∆V (t), (S2)

ṅ = f(n,∆V (t)) (S3)

where I is the electrical current flowing through the device under a time-varying voltage drop

∆V (t), G is the conductance that depends on an internal parameter n, which can be seen as the

system’s memory. It evolves according to a dynamical equation (S3), where the dot represents

the time derivative.

The goal of this section is to detail, for the two mechanisms, what n physically represents

and to derive its evolution equation from the underlying physics. In other words, to explain

the memristor effect observed in confined electrolytes, we need to first show that they possess

several internal conductance states, and then that they are able to retain such states over long

periods.

3.1 Unipolar memristors – Wien effect under 2D confinement

In this section, we discuss equation (1) from main text, which describes unipolar memristors

(with a self-crossing GV curve). The full derivation can be found in Ref. (17): herein, we only

state and discuss the various results for the sake of clarity. In this mechanism, n represents the

proportion of ions which are able to move under an electric field. All other ions form neutral

(and therefore non-conducting) ion pairs, also refered to as Bjerrum pairs (42). If the field

is strong enough, it will tear some pairs apart, increasing n and the global conductance, in a

process known as the (second) Wien effect. If the field is turned off, pairs will eventually form

again. However, this pairing and unpairing process takes some time, allowing for a memristor

effect, akin to an electric arc in a discharge tube: an external voltage is required to ionize the gas

and make it conduct current, but the gas will stay conducting for a short time after the voltage

is removed (43).
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The second Wien effect is a well-known phenomenon observed in weak electrolytes. It was

extensively studied by Onsager for bulk electrolytes (44), resulting in an approximate law for

the conductance G under an external field E:

G(E) ' G(0)

[
1 +

βe2

4πε`E
+ . . .

]
' G(0)

[
1 +

`B
`E

+ . . .

]
(S4)

with β = 1/kBT , `E = kBT/eE a lengthscale defined by the external field and `B the Bjerrum

length. Here, G(0) corresponds to the conductance of ions that are already free at thermal

equilibrium (i.e. with no external field). This results in a sligthly non-linear IV curve:

I = G(E)∆V ' G(0)∆V [1 + α∆V ] (S5)

∆V being the voltage drop associated with the field E. Without detailing the (mathematically

involved) exact derivation by Onsager, the critical point is that ion pairs form according to a

chemical equilibrium given by:

ṅp =
1

τa
n2
f −

1

τd
np (S6)

with np the proportion of ion pairs, nf the proportion of free ions, τa and τd the ion pair associ-

ation and dissociation times, respectively. One has nf + np = 1 and the conductance is simply

given by:

G[nf ] = nfG∞ (S7)

where G∞ is the conductance in the fully dissociated case. Overall, the system is able to re-

member the application of an electric field in its recent past over a timescale τa, and Bjerrum

pairs can be used to create memristors.

The above process cannot be achieved in bulk water, which fully dissociates all commonly

used salts. However, as noted by Ref. (17), ionic interactions are greatly increased under con-

finement. This results in the formation of non-conducting Bjerrum pairs, sometimes to the point

that there are no ‘free’ ions left at thermal equilibrium. In this case, the conductance vanishes

in absence of an electric field, G(0) = 0, and it can be shown that:

G(E) ∝ `−αE (S8)
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with α > 1 scaling like the strength of ionic interactions. In typical cases, one has α ∼ 2. In

many experimental examples, however, a non-zero conductance remains even in the absence of

voltage. Taking into account the fact that there may actually be a few free ions left at equilib-

rium, we then write:

G(E) = G0 +G1

( |E|
E0

)α
(S9)

with G0 � G1. This corresponds to equation (1) of main text. The number of ion pairs

play the role of an internal state variable governing the system’s conductance. It should be

noted, however, that the value of G0 was found to vary from device to device (even with similar

dimensions), although the general shape of the IV curves was preserved, see Fig. S11.

3.2 Bipolar memristors – Ionic rectification

The above mechanism, based on Wien effect, can only provide an explanation for the unipo-

lar memristor effect, as only the absolute magnitude of voltage, and not its sign, governs the

dynamics of ion pairs. Consequently, bipolar memristors must have a different origin, as they

display different conductance states depending on the sign of applied voltage

This observation is remindful of ionic rectification and nanofluidic diode (Fig. S6). This

phenomenon typically appears in systems that are spatially asymmetric, e.g. conical pores

(geometrical asymmetry) (45), channels connecting reservoirs of different salt concentrations

(chemical asymmetry) (46) or with an inhomogeneous surface charge (electrostatic asymmetry)

(47). In Ref. (48), the authors show that in all those cases the underlying mechanism is the

same: the local value of the conductivity is increased where surface effects are the strongest

(e.g., where the channel is the thinnest, salt concentration the lowest or surface charge the

highest). Globally, the system then behaves like a PN junction: when current flow from the side

of highest conductivity to that of lowest conductivity, ions accumulate inside the channel and

conductance increases. Conversely, conductance is lowered if current flows from the side of

lowest conductivity.

For the sake of example, let us consider a 2D nanochannel with varying thickness h(x) or
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surface charge Σ(x), x being the direction along the channel. The local value of salt concentra-

tion c(x) will depend on h(x), Σ(x) and the salt concentration in the reservoirs c0. The exact

relation will depend on wether or not the system is in the Debye overlap regime. If the Debye

length is large compared to the channel’s thickness, then conductivity reads:

g(x) = 2w
e2D

kBT

√
(ec0h(x))2 + Σ(x)2 (S10)

whereas in the opposite regime (Debye length small compared to h) it reads:

g(x) = 2w
e2D

kBT
(ec0h(x) + |Σ(x)|) (S11)

with w the channel’s width, D the diffusion coefficient of ions (assumed to be the same for both

cations and anions), e the elementary charge and T temperature. In particular, in the case of

strong surface charges (Σ� hec), conductance is governed by the surface charge alone:

g ∼ 2w
e2D

kBT
Σ (S12)

In addition, carbon-based nanochannels like activated carbon channels are known for their high

hydrodynamic slip-length (16). Due to the differential friction of ions and water molecules on

the channel’s walls, hydrodynamic slippage yields a correction to the conductance that scales

like:

∆g ∝ bΣ2

η
(S13)

where b is the slip length and η the viscosity of water. In what follows, we will not discuss

further the impact of slippage, but the two above equations show how even thin channels can

reach a conductance of the order of 100 nS thanks to their strong surface charge.

In all cases, conductivity can always be expressed in terms of the Dukhin number defined

as:

Du(x) =
Σ(x)

ec0h(x)
(S14)

and it increases with Du in all cases. Several regimes can now be identified:
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1. Du � 1 in the entire channel: bulk conduction dominates and the system conducts lin-

early; there is no ionic rectification.

2. Du � 1 in the entire channel: surface conduction dominates, and conductance is es-

sentially given by counterions of the surface charge. As the number of counterions is

fixed, there can be no accumulation nor depletion of ions in the channel, and no ionic

rectification.

3. Du ∼ 1 in at least parts of the channel, and is inhomogeneous: ionic rectification can

occur.

Quantitatively, Ref. (48) computes the global conductance of a channel with a constant gradi-

ent of Dukhin number, in the absence of Debye overlap. The obtained ratio of the maximum

conductance of the channel (for a strongly positive voltage) to its minimum conductance (for a

strongly negative voltage) is given by:

β =
Gmax

Gmin
=

1 + 2Dumin

1 + 2Dumax

Dumax

Dumin

(S15)

where Dumin and Dumax are the minimum and maximum values of the Dukhin number, respec-

tively.

The bipolar memristor effect was typically observed in activated carbon channels at low

salt concentration. Typical parameters are Σ ∼ 0.1 C/m2, c0 ∼ 1 mM and h ∼ 10 nm, cor-

responding to Du ∼ 102. Yet, we observed ionic rectification with β ∼ 1 − 5, corresponding

to Dumin ∼ 1 in the above equation (assuming Dumax � 1). Such variations of the Dukhin

number over several orders of magnitude across the channel cannot be accounted for by fluctua-

tions of the channel’s height or surface charge, especially in the case of pristine MoS2 channels,

which are atomically smooth throughout. Therefore, it seems more reasonable to attribute the

ionic rectification observed in 2D nanochannels to entry effects: the nanofluidic device is de-

posited on a SiNx membrane, which is typically much thicker than the device itself (500 nm

versus∼50 nm, respectively). The hole in the bottom layer thus could act as an additional chan-
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nel in series with the nanofluidic device, with similar surface charge but much larger spatial

extension (∼ 1 µm), yielding Du ∼ 1.

This asymmetry in entry effects could be the source of an accumulation or a depletion of

ions inside the channel, depending on the sign of voltage.

3.3 Minimal model of a nanochannel with long-term memory

In this section, we complement the above analysis by showing how long-term memory can

emerge from interfacial processes in 2D nanochannels. We first show how the rectification

mechanism can be slowed down considerably if there is adsorption of ions on the channel’s

walls. This allows us to derive a minimal model with analytical solutions, which can then be

extended to more complex cases, like that of the second Wien effect. However, we start by

taking a step back to analyze the nature of nanofluidic memory.

3.3.1 What does it mean for a nanochannel to have memory?

In this section, we discuss what we really measure in a memristor experiment, and how we can

quantify a system’s memory, with the help of a simplistic advection-diffusion model.

We first focus on channels exhibiting ionic rectification. Rather than taking the model pre-

sented in previous section, with geometrical asymmetry, we simplify the problem even further.

We assume that the channel has a concentration c of ions, and is connected to two reservoirs.

We introduce an ad hoc asymmetry by assuming that the reservoir on the left of the channel has

concentration cL and the reservoir on the right cR, to mimick ionic rectification while keeping

mathematical complexity at a minimal level. Lastly, we assume that there is an external forcing

f driving particles from the left to the right. For the sake of simplicity, we work with units such

that the diffusion time across the channel, L2/D, is equal to 1/2.

In a continuous problem, the particle flux would be:

j(x, t) = −1

2
∂xc+ f(t)c(x, t) = jdiff + jadv (S16)
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Note that the diffusive part jdiff is an artefact: it exists because we replaced a spatial asymmetry

by a concentration gradient, resulting in a global diffusive flux; it is irrelevant in actual experi-

ments. The real physical quantity of interest is therefore jadv. In practice, we measure this flux

at the electrodes, i.e. at both ends of the channel, without access to the full spatial dependence

of j. In a time-independent problem with f(t) = f0 at all times, flux is conserved and this does

not matter; we obtain jmeasured = f0 × 〈c〉∞,f0 , where 〈c〉∞,f0 is the spatial average of c when

the channel is subject for a forcing f0 for a very long time. In the quasistatic limit, one would

replace f0 by a slow-varying forcing f(t):

jquasistatic = f(t)× 〈c〉∞,f(t) (S17)

where 〈c〉∞,f(t) is now the spatial average of cwhen the channel is subject for a forcing “frozen”

at a specific value f(t). A memory effect is any deviation from the above equation; it translates

the fact that the forcing is varying faster than the time needed to equilibrate the system qua-

sistatically. In other words, memory is stored in the number of particles that can contribute to

conduction.

However, when the system is not in the quasistatic limit, flux is not conserved across the

system. It is then hard to make exact sense of what is being actually measured at the electrodes;

in the following, we admit we may still assume we measure a spatial average of the advection

flux, but that this average is now instantaneous:

jmeasured ' f(t) 〈c(x, t)〉x = f(t)
1

L

∫
c(x, t) dx (S18)

Assuming the forcing is sinusoidal f(t) = f0 cosωt, one can then compute the area of the

hysteretic loop in the conductance-voltage curve:

A(ω) =

∣∣∣∣
∮
〈c(x, t)〉x df

∣∣∣∣ =

∫ 2π/ω

0

ωf0 〈c(x, t)〉x sinωt dt (S19)

The biggerA is, the more memory the system has of its recent past. We thus define the memory

timescale as τm = 2π/ωm such that A(ωm) is maximum.
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There is, however, no simple way to solve the advection-diffusion equation under periodic

forcing, even in 1D, so we simplify the problem further by writing an approximate equation for

the mean 〈c〉 only, see Fig. S7A:

˙〈c〉+ 〈c〉 ' cL + cR
2

+ f(t)
cL − cR

2
(S20)

This model is summed up in Fig. S7. In all what follows, we drop the 〈·〉 for the sake of

simplicity. This yields:

c(t) =
cL + cR

2
+ f0

cL − cR
2

cosωt+ ω sinωt

1 + ω2
(S21)

so that the loop area is:

A(ω) = f0
cL − cR

2

ω

ω2 + 1
(S22)

This yields τm = 2π, or, in dimensional terms:

τm = π
L2

D
(S23)

This is perfectly intuitive: since information is encoded in the particle number, it cannot be

retained for more than the diffusion time. However, nanochannels have L < 10 µm, meaning

that the diffusion time cannot exceed a second, contrary to what is observed in experiments

(τm ∼ 1 hour).

Before we move on to a slightly modified version of this model to account for this, let us

make the following remark. The quasistatic solution to the above problem is:

cqs[f ] =
cL + cR

2
+ f

cL − cR
2

(S24)

The instantaneous solution we obtained can be rewritten into the following form:

c(t) =

∫ +∞

0

cqs[f(t− s)]e
−s/τ

τ
ds (S25)

where τ = 1, equal to τm up to a factor of order unity. This equation will allow us to model

more complex situation, where analytical solutions do not exist.
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3.3.2 Adsorption-desorption model

To complement the above model, which does not account for long memory times observed in

experiments, we consider the possibility of ion adsorbing on the channel’s walls, and denote the

number of adsorbed particles by σ. Introducing k and λ, the adsorption and desorption rates,

respectively, we obtain (see Fig. S7B):

ċ+ c =
cL + cR

2
+ f(t)

cL − cR
2

− kc+ λσ (S26)

σ̇ = kc− λσ (S27)

It again can be solved analytically:

c(t) =
cL + cR

2
+ f0

cL − cR
2

[λ2 + (1 + k)ω2] cosωt+ ω [λ (k + λ) + ω2] sinωt

λ2 +
[
(1 + k)2 + 2kλ+ λ2

]
ω2 + ω4

(S28)

A(ω) = f0
cL − cR

2

ω [λ (k + λ) + ω2]

λ2 +
[
(1 + k)2 + 2kλ+ λ2

]
ω2 + ω4

(S29)

The memory timescale is then given by:

{
λ (k + λ) + 3ω2

} [
λ2 +

{
(1 + k)2 + 2kλ+ λ2

}
ω2 + ω4

]
(S30)

... = ω
{
λ (k + λ) + ω2

} [
2
{

(1 + k)2 + kλ+ λ2
}
ω + 4ω3

]
(S31)

There is no closed-form solution to this last equation, but we can extract an approximate solution

when surface effects strongly dominate (k � λ and k � 1):

ωm ∼
λ

k
� 1 (S32)

In other words, the memory time reads in this case:

τm = 2π
σ∞
c∞

L2

D
(S33)

where σ∞ and c∞ are the values of σ and c at chemical equilibrium, respectively. The ratio

σ∞/c∞ appearing in the above equation is the analogue of the Dukhin number (1), which mea-

sures the importance of the surface charge of a channel with respect to the bulk concentration

in ions. This number can reach several hundreds, so τm can be of the order of several minutes.

16



Qualitatively, the above equation can be recovered from a semi-quantitative argument as

follows. The memory time is given by the maximum time a particle can stay within the channel.

It will reach one of the reservoirs if left free for more than L2/D, by randomly diffusing along

the channel. However, every 1/k � 1, the particle is adsorbed and stops moving, only liberated

after a time 1/λ. Along its course through the channel, there will therefore be kL2/D � 1

such events of duration 1/λ. The total time spent inside the channel is the sum of the “travelling

time” and “resting time”:

τm ∼
1

λ

kL2

D
+
L2

D
∼ k

λ

L2

D
(S34)

The last approximation holds since we assumed that k � λ, such that the total resting time is

much larger than the travelling time.

To complement the above minimal model, we also computed a numerical solution of the

1D advection-diffusion under periodic forcing and with adsorption, yielding similar results (not

reported here).

3.3.3 Wien effect

In the previous model, long-term memory emerges from a stop-and-go mechanism of ions being

adsorbed and desorbed. However, this process is more general than the specific physics of

adsorption, and we can write a similar system taking into account a Wien effect mechanism:

ċ+ c = c0 −
1

τa
c2 +

1

τd[f(t)]
p (S35)

ṗ =
1

τa
c2 − 1

τd[f(t)]
p (S36)

Here, c is the concentration of ions that can contribute to conduction (free ions or polyelec-

trolytes), while p represents the concentration of pairs. This system is, however, non-linear in

both c and f , and as such admits no analytical solution, but is qualitatively similar to the pre-

vious linear case. Rather than looking for an approximate solution of this already simplistic

model, we instead use the ansatz derived above.
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3.3.4 A simple ansatz - Determination of the memory time

Here, we detail how we fitted the curves presented in Figure 3 of main text. As per sections 3.1

and 3.2, we have two models describing the conductance of a 2D nanochannel under a constant

electrical forcing. As shown by equation (S25), this conductance becomes in the timevarying-

case:

G(t) =

∫ +∞

0

Gqs[∆V (t− s)]e
−s/τ

τ
ds (S37)

where Gqs is the conductance in the stationary case (i.e. if the voltage was ‘frozen’ at the

value ∆V (t − s) for an infinite amount of time). Depending on cases, we use the following

expressions:

Gqs(∆V ) = G1∆V
α, α = 2− 3 (Wien effect) (S38)

Gqs(∆V ) =

{
G+, if ∆V > 0,

G−, if ∆V < 0
(Ionic rectification) (S39)

We first use these models to extract the quasistatic limit of experimental curves, and we then

“turn on” memory effects by plugging the chosen model into equation (S25). To assess the

robustness of our approach, we can determine the memory time through two methods:

• By using τ as a fitting parameter in equation (S25).

• By noticing that, upon correct renormalization (see below), the area of the loop in the IV

curve should take the form:

A∗(ω) ' K
ωτm

1 + ω2τ 2m
(S40)

with a theoretical value K = 1 in the adsorption-desorption model, and using τm as a fit-

ting parameter in this last equation. In the case of the pairing-unpairing model, we cannot

derive the exact expression of A∗, but we use the above expression as an approximative

ansatz, with K as a fitting parameter.

Both quantities τ and τm can be interpreted as memory timescales, being equal up to a factor

π in the minimal model. In practice, both methods yield similar results (τ ∼ τm ∼ 100 s,
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see Figure 4 from main text), but we believe the second one (τm) to be more robust as it is

determined using more experimental data points obtained using several frequencies.

Let us now detail how we normalize the loop area. Memristive devices cycle between

different conductance states. The largest loop that could possibly be observed would be in

the case where the device switches abruptly between the lowest and the highest conductance

states, Goff and Gon, whenever it reaches ∆V = ±V0 (for bipolar memristors) or ∆V = 0 and

|∆V | = V0 (for unipolar memristors). The conductance-voltage curve then takes the shape

of a rectangle of size 2V0 × (Gon − Goff). The IV curve then takes the shape of two trian-

gles of total area V 2
0 × (Gon − Goff), which we therefore use for normalization. For each

case, we determine Goff and Gon graphically using data with the lowest frequency for a given

device and salt concentration. In the case of devices with mixed unipolar-bipolar behavior,

we determined both extremal conductance for positive and negative voltage, and then used

0.5V 2
0 × (Gon,+ − Goff,+) + 0.5V 2

0 × (Gon,− − Goff,−) as normalization. This normalization

process is summed up in Fig. S8.

3.4 Mixed mechanisms and shape of the IV curve

The two mechanisms detailed above are not mutually exclusive, as some nanofluidic systems

can display both ionic rectification and allow the formation of ionic pairs. In particular, pristine

MoS2 were found to display both behaviour depending on experimental conditions (Fig. S10).

Additionally, some of our experimental data do not fall in either of the two phenomenologies:

they displayed two crossing points in their IV curve, for example.

To shed light on these ‘mixed’ cases, we designed a simple model of a memristor that is

intermediate between unipolar and bipolar cases:

I(t) = G(t)× V (t) (S41)

G(t) =

∫ +∞

0

Gqs(V (t− s))e
−s/τ

τ
(S42)

Gqs(v) = Gunipolar(1 + αv2) +Gbipolar(1 + βv) (S43)
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with I the ionic current, V voltage, G the instantaneous conductance, Gqs the quasistatic con-

ductance and τ ,Gunipolar,Gbipolar, α and β some constants. For different values of the parameters,

this model can be purely unipolar, purely bipolar, or intermediate between the two. Various ex-

amples of IV and GV curves for different values of parameters are shown on Fig. S17, along

an example of experimental data displaying this mixed behaviour. We note that there exists a

“critical point” such that the GV curve has no crossing point; however, it develops a cusp, which

transforms into a crossing point when parameters are varied.

4 Additional experimental data

4.1 Pristine MoS2 channels

We provide additional data to characterize the memristor effect in pristine MoS2 channels,

which is found to be robust when we vary salt concentration, channel height and the chemi-

cal nature of the electrolyte.

On Fig. S9, we show that the memristor effect can be observed in pristine MoS2 channels

regardless of the electrolyte used (KCl, NaCl, LiCl, CaCl2, NiSO4), asserting its robustness.

Despite variations in conductance, all these curves display the same non-linear general shape

remindful of the Wien effect.

On Fig. S10, we provide additional data for the memristor effect in bilayer pristine MoS2

channels with potassium chloride solutions of various concentrations. In particular, we notice

that the system behaves like a bipolar memristor at low salt concentration.

On Fig. S11, we show the evolution of loops in IV curve at fixed frequency and salt con-

centration, but with increasing channel height. We find that the effect is most visible in thin

channels, and that the loop collapses to a straight line in larger channels. This shows that mem-

ory effects can only be observed if confinement is sufficiently strong so that ion-ion interactions

are enhanced, allowing the formation of ion pairs.

Lastly, Fig. S12 shows the determination of the memory time of three different devices (and

two salt concentrations) from the evolution of the loop area with frequency. We obtain values
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between 50 and 400 s.

4.2 Activated carbon channels

Additional data characterizing the influence of salt concentration on memristive effects in ac-

tivated carbon channels are presented in Fig. S13. They notably include raw data for Fig. 2A

of main text. We observe that salt concentration variations have little effect on the memory of

thinner channels (Fig. S13A-B), while this influence is more visible for devices above 10 nm in

thickness. This notably shows that, in more confined systems, interfacial processes are stronger

than bulk effects.

In addition, the memristor effect can also be observed with salts other than CaCl2, as shown

in Fig. S14 for KCl and AlCl3.

We also provide additional data regarding the effect of voltage frequency (Fig. S15), cor-

responding to Fig. 4C of main text. These data allow us to compute the memory time of each

activated system as the inverse of the frequency such that the loop in the IV curve is the largest.

We obtain values spanning from 50 to 400 s, in a similar range as pristine MoS2 channels. Such

variations may be explained by the variability of the surface state of activated carbon channels

following the etching in low pressure water vapor.

5 Detailed list of supplementary figures

We summarize below the content of all supplementary figures:

• Fig. S1: Nanofabrication of pristine MoS2 channels.

• Fig. S2: Nanofabrication of activated carbon channels.

• Fig. S3: Details of the long-term potentation algorithm.

• Fig. S4: Details of the Hebbian learning algorithm

• Fig. S5: Additional data for long-term potentiation and Hebbian learning.
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• Fig. S6: Sources of ionic rectification in nanofluidics.

• Fig. S7: Minimal model of nanofluidic memory.

• Fig. S8: Normalization process of loop area in memristive GV curves.

• Fig. S9: Additional data: pristine MoS2 channels with different salt types

• Fig. S10: Additional data: pristine MoS2 channels with different salt concentrations.

• Fig. S11: Additional data: pristine MoS2 channels of different heights.

• Fig. S12: Determination of the memory time of pristine MoS2 channels.

• Fig. S13: Additional data: activated carbon channels with different salt concentrations

and different heights.

• Fig. S14: Activated carbon channels with different salt types.

• Fig. S15: Determination of the memory time of activated carbon channels.

• Fig. S16: Influence of pH.

• Fig. S17: ‘Mixed’ memristor types (theoretical model and experimental example).
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Fig. S1. Schematic flow-chart in cross-sectional view and corresponding optical and AFM
images. Step I: Preparation of the top-spacer layers on silicon/silicon oxide (SiO2) wafer.
A Graphene is mechanically exfoliated; the thickness of this graphene flake will determine
the height (h) of the channel. Bottom panel: Optical image of a 3-layer graphene spacer.
B Patterning of the spacer using electron beam lithography (EBL) and etching into parallel
strips. Bottom panel: atomic force microscopy (AFM) image and height profile of the patterned
graphene-spacer (h ∼ 1.2 nm and w ∼ 150 nm). C Transfer of MoS2 flake as a top layer over
graphene spacer. Bottom panel: Optical image of the top-spacer stack. Step II: Assembly of
the tri-crystal (top-spacer-bottom) stack on silicon/silicon nitride (SiNx) wafer. D Transfer of
a MoS2 flake onto SiNx membrane bearing a hole (∼ 3 × 50 µm), to serve as bottom wall of
the channel. E Dry etching of the MoS2 bottom layer from the back of the SiNx. F Transfer
of the top (MoS2)-spacer (graphene) stack prepared in C over the bottom MoS2 prepared in E.
G Patterned gold (Au) deposition over the tri-crystal stack. H With the Au strip as a mask to
protect the underneath channels, the surrounding regions are etched away. The gold strip thus
determines the channel length (L). I Optical images (left: reflection mode, right: transmission
mode) of the final channel device. The tricrystal device is underneath the gold strip on the SiNx

membrane. Scale bar in all images represents 20 µm.
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Fig. S2. Fabrication of activated carbon channels. Step 1: Patterning of the bottom layer.
Up: 2D side view of a graphite bottom layer crystal after the patterning on a Si/SiO2 substrate.
Middle: 3D view of the patterning process. A square-shaped hole and four trenches connected
to the hole are represented. Bottom layer graphite is dark grey and the Si/SiO2 substrate is
light pink. The electron flux, represented as a green tip, enables selective removal of matter.
Down: AFM image of the bottom layer after etching. Scale bar represents 1 µm. Step 2: Dry
transfer of the top layer. Up: 2D side view. A top layer crystal is added above the bottom
layer. Middle: 3D view of the device after the transfer of the top layer, represented in glassy
transparent grey. Down: SEM image of a device at that stage. Four channels are visible in
white. The bottom layer hole remains visible through the top layer. Scale bar represents 5 µm.
Step 3: Wet transfer on the Si/SiNx membrane. Up: 2D side view. Middle: 3D view, with the
SiN membrane in green. The circular aperture in the SiNx membrane is visible by transparency.
Down: Optical microscope image of a finished device. Scale bar represents 10 µm.
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Fig. S3. Long-term modification of a nanochannel conductance using voltage pulses. (A)
A ‘write’ pulse (+1 V, 10 s), followed by ten ‘read’ pulses (+0.1 V, 10 s) to study the relaxation
of the conductance. (B) An ‘erase’ pulse (−1 V, 10 s), followed by ten ‘read’ pulses (+0.1 V,
10 s).
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Fig. S4. Algorithm for the implementation of Hebb’s rule with activated carbon channels.
(A) Voltage input emulating 8 successive activation of a pre-synaptic and a post-synaptic neuron
with a relative spike timing ∆t = 10 s. The conductance is read before and after with low
amplitude ‘read’ pulses, highlighted by red circles. (B to E) Examples of input voltage for
various relative spike timings of the two neurons.
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Fig. S5. Additional data for the implementation of neuromorphic computing with acti-
vated carbon channels. The salt used is CaCl2, 1 mM. (A) Evolution of the ionic current (red)
under voltage pulses of constant polarity (blue) (see Fig. 5A of main text). (B) Conductance
change following a positive voltage pulse of 1 V in amplitude and a duration of 20 s (see Fig. 5B
of main text). The conductance is read with an alternating square voltage of 0.1 V in amplitude
and a period of 20 s. (C) Revsersible, long-term modification of a nanochannel’s conductance.
30 write spikes (+1 V, 10 s) are applied, followed by 30 erase spikes (-1 V, 10 s) which bring
back the system to its initial state. Between each spike, the conductance is let to stabilize during
two minutes and is then measured with a read pulse (0.1 V, 5 s), see Fig. 5C of main text. (D)
Conductance change after 8 successive activations of the two neurons, in percentage of the ini-
tial conductance and as function of the relative activation timing of the simulated neurons (see
Fig. 6D of main text).
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Fig. S6. Possible sources of ionic rectification. Nanochannel with variable (A) height, (B)
surface charge or (C) concentration gradient. In all three cases, a gradient of Dukhin number is
established across the channel, resulting in a conductivity gradient and ionic rectification.
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Fig. S7. Minimal model of nanofluidic memory. (A) Minimal model of purely diffusive
memory. The nanochannel is modeled by a single point that exchanges particles with two reser-
voirs. The concentration difference between reservoirs plays the role of geometrical asymmetry.
Memory is stored in the concentration inside the channel c, and the memory time is the diffusion
timescale. (B) Same minimal model, but with particle adsorption on the channel’s walls. Trans-
port is now limited by a stop-and-go mechanism of particles adsorbing and desorbing from the
walls, giving rise to a memory time orders of magnitude larger than diffusion. (C) Memristor
effect in the minimal model, as shown by the loop in the IV curve, in dimensionless units. The
blue curve corresponds to the model described in panel A (section 3.3.1), and the red one in
panel B (section 3.3.2). Memory effects are visible at low frequency only when surface effects
are taken into account.
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Fig. S8. Normalization of loop area. (A) Example of an experimental conductance-voltage
curve for a bipolar memristor (see Figure 1C from main text), corresponding to an adsorption-
desorption memory mechanism, with the graphical determination ofGon andGoff. (B) Idealized
loop in the conductance-voltage curve. Its area is used as a normalization factor for a bipolar
memristor. (C) Example of an experimental conductance-voltage curve for a unipolar memris-
tor (see Fig. 1B from main text), corresponding to an Wien effect memory mechanism, with
the graphical determination of Gon,± and Goff,±. (D) Idealized loop in the conductance-voltage
curve, defining the normalization factor for a unipolar memristor. Note that the difference
between Goff,− and Goff,+ is exaggerated compared to experimental data, to allow easier visual-
ization.
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Fig. S9. Evolution of the memristor effect with various electrolytes (pristine channels). (A
to E) Current-voltage characteristics of an activated carbon channel with height under a voltage
sweep of amplitude 0.75 V. Other parameters (salt type, salt concentration, channel height and
frequency) are specified on each panel.
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Fig. S10. Evolution of the memristor effect with salt concentration (pristine channels). (A
to D) Current-voltage characteristics of a pristine MoS2 channel with height h = 0.68 nm, filled
with potassium chloride at various concentrations, under a voltage sweep of amplitude 0.75 V
and frequency 3 mHz. Orange curve indicates a self-crossing loop, while blue curves do not
self-intersect.
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Fig. S11. Evolution of memristive effects with channel height (pristine channels). Current-
voltage characteristics of pristine MoS2 channels of different heights filled with potassium chlo-
ride, under a voltage sweep (frequency f = 3 mHz). (A and B) Two different devices with
height h = 0.68 nm (with salt concentration 1 M, voltage amplitude 0.75 V). (C to E) Devices
with height h = 2.8, 8.5 and 86 nm, respectively (salt concentration 1 M, voltage amplitude
0.75 V or 1 V).

32



Fig. S12. Evolution of the memristor effect with voltage frequency (pristine channels).
Current-voltage characteristics of different pristine MoS2 channels with channel heights h =
0.68 nm (A and B) and 7 nm (C and D), the electrolyte is 1M KCl for A, C and 3M KCl for
B, D; applied voltage is sinusoidal with frequency ranging from 0.6 mHz to 200 mHz. The
normalized loop area vs frequency of A is presented in main Fig. 4C of main text. Insets
represent the corresponding normalized areas of the different current-voltage characteristics for
that device. The error bars represent the area variation between three successive voltage sweeps.
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Fig. S13. Evolution of the memristor effect with salt concentration (activated channels).
(A to D) Current-voltage characteristics of four different activated carbon channels, with CaCl2
and AC voltage oscillating between ±0.8 V at 1 mHz. The current is normalized by its max-
imum value for each salt concentration. In each case, current is normalized by its maximum
absolute value, to allow easier comparison between different datasets.
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Fig. S14. Evolution of the memristor effect with various electrolytes (activated channels).
(A to C) Current-voltage characteristics of an activated carbon channel with height h = 13 nm,
under a voltage sweep of frequency 1 mHz and amplitude 0.8 V.
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Fig. S15. Evolution of the memristor effect with voltage frequency (activated channels).
(A to D) Current-voltage characteristics of four different devices filled with 100 mM or 1 mM
CaCl2 (as indicated on each panel). Inset: Normalized area versus frequency. Squares are
experimental values and solid lines are theoretical model with memory time parameter, τm
equals to 50 s (B), 100 s (C) and 400 s (D). The normalized area vs frequency of the 4 nm device
(A) is presented in main text Fig 4.C.
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Fig. S16. Evolution of the memristor effect with pH. (A) Current-voltage characteristics of a
pristine MoS2 channel (height 0.68 nm) filled with 3 M KCl under a voltage sweep at 10 mHz,
for different pH values. (B) IV curve of an activated carbon channel (height 10 nm) filled with
AlCl3 1 mM under a voltage sweep at 1 mHz, for different pH values.
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Fig. S17. Transition between bipolar and unipolar behavior. (A to D) IV and GV (inset)
curves for the minimal model of a ”mixed” memristor (equations S47-S49). All units are arbi-
trary. Parameters: Gunipolar = 3, Gbipolar = 2, τ = 1, V (t) = 1.5 sin t. (A) α = 0.8, β = 0.2
(bipolar case). The IV curve self-intersects once, but the GV curve does not. (B) α = 0, β = 0.8
(unipolar case). The IV curve does not self-intersect; the GV curve self-intersects on the y axis.
(C) α = β = 0.8 (intermediate case). The IV curve self-intersects twice and the GV curves self-
intersects outside of the y axis. (D) α = 0.8, β = 0.45 (criticality). The IV curve self-intersects
once and the GV curve develops a cusp. (E) Left panel: Example of experimental IV curve
showing a ”mixed” memristor behavior, obtained for a pristine MoS2 channel (height 0.68 nm)
filled with CaCl2 3 M at voltage frequency 3 mHz. Red arrows indicate the two crossing points.
Inset is the corresponding GV curve. Right panel: Zoom-in on the two crossing points of the
IV curve.

38


