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TOPOLOGICAL PROOFS OF CATEGORICAL COHERENCE

PIERRE-LOUIS CURIEN AND GUILLAUME LAPLANTE-ANFOSSI

”We shall construct KPn, as a CW-complex, in Section 2 and show that it is an pn ´ 1q-ball. This gives an
instant one-step proof of MacLane’s theorem in full generality.”

– Mikhail M. Kapranov

Abstract. We give a short topological proof of coherence for categorified non-symmetric
operads by using the fact that the diagrams involved form the 1-skeleton of simply con-
nected CW complexes. We also obtain a “one-step” topological proof of Mac Lane’s
coherence theorem for symmetric monoidal categories, as suggested by Kapranov in 1993.
Our analysis is based on a notion of combinatorial homotopy, which we further study in
the special case of polyhedral complexes, leading to a second geometrical proof of coher-
ence which is very close to Mac Lane’s original argument. We use Morse theory to show
that this second method is (strictly) less general than the first. We provide a detailed
analysis of how both methods allow us to deduce these two categorical coherence results
and discuss possible generalizations to higher categories.

Introduction

The n-dimensional permuto-associahedron, a CW-complex whose faces are in bijection
with parenthesized ordered partitions of n` 1 letters, was first introduced by M. Kapranov
in his study of higher dimensional Yang–Baxter equations, through the moduli spaces of
curves M0,n`1pRq and the solutions of the Knizhnik–Zamolodchikov equation [Kap93]. It
was later realized as a convex polytope by V. Reiner and G. M. Ziegler [RZ94], and more
recently through the nested braid fan by F. Castillo and F. Liu in [CL23].

The present study stems from a desire to understand the epigraph, taken from the intro-
duction of [Kap93]: what is the precise relationship between the permuto-associahedron and
Mac Lane’s coherence theorem for symmetric monoidal categories? We show that the sim-
ple connectedness of the former implies the latter, thereby refining and proving Kapranov’s
claim (see Theorem 2.16).
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This is done through a general “topological coherence theorem” which applies to any
simply connected, regular CW complex (Theorem 1.1). Applying it to the operahedra, an-
other family of polytopes which encodes categorified non-symmetric operads [DP15, COI19,
Lap22], we obtain a “one-step” proof of the associated coherence theorem as well.

There is little price to pay, though. For both theorems, one needs to provide a precise
bijective correspondence between the 1-skeleton (resp. the 2–cells) on the topological side,
and canonical morphisms (resp. bifunctoriality, naturality, and applications of coherence
conditions) on the categorical side (Propositions 2.6 and 2.13). Since the 2-skeleton of
the permuto-associahedra corresponds to other basic canonical morphisms and coherence
conditions than those of Mac Lane (hexagons and naturality of the involutive braiding on
one hand versus dodecagons on the other hand), one needs to show that the two presenta-
tions are equivalent, which is non-trivial, see Remark 2.17. There is yet a third equivalent
presentation (and hence another proof of coherence) due to D. Baralić, J. Ivanović and
D. Petrić [BIP19], that matches the 2-skeleton of a different polytope, which unlike the
permuto-associahedron is simple, see Remark 2.14.

We further investigate a topological incarnation of Mac Lane’s original argument, in
the spirit of rewriting theory. We study polyhedral complexes endowed with a generic
orientation vector, or equivalently a Morse function in the sense of [BB97], whose 1-skeletons
naturally feature terminating and confluent rewriting systems (Proposition 1.12). We focus
on the family of simply connected polyhedral complexes whose outgoing links are connected.
The study of directed paths on their 1-skeleton leads to a second general proof of coherence
(Theorem 1.9). In particular, this second theorem can be applied to all polytopes, allowing
us to give a second, “rewriting-theoretic” proof of both previously mentioned coherence
results. In the case of operahedra, our rewriting proof simplifies the original proof of Došen
and Petrić [DP15], see Remark 2.2.

It is worth noting that, while the above polyhedral complexes admit abstract rewriting
systems on their 1-skeleton, the family of operahedra (which includes the associahedra,
encoding non-symmetric monoidal categories) further admits term rewriting systems, which
exhibit more structure and are the subject of a companion paper [CLA24]. In contrast, we
shall argue that the abstract rewriting approach to symmetric monoidal categories is not
informative, see Remark 2.18.

Using Morse theory on affine cell complexes [BB97], we relate our two approaches by
showing that the second is (strictly) less general than the first (Proposition 1.5).

Our two general topological coherence theorems can be used to prove other categorical
results where polytopes appear, such as coherence for monoidal functors between monoidal
categories [Eps66], see Section 3.1. They also shed light on some statements in the literature,
such as the proof of [KV94, Prop. 3.9], see Section 3.2. This all points towards further
investigation of the relationship between n-categorical coherence and n-connectedness of
appropriate spaces. While topological proofs of 2-categorical coherence already appeared in
[Gur11], higher dimensional results have been obtained recently by S. Barkan in the context
of 8-operads [Bar22], for which the present results could well be the strict, n “ 1 case.
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1. Topological coherence

1.1. Coherence à la Van Kampen. Let X be a regular CW complex, and let Xk, k ě 0
denote its k-skeleton. For an edge e of X, denote its attaching map fe : S0 Ñ X0. Consider
the category ApXq with set of objects X0, and generating morphisms αe : fep´1q Ñ fep1q

and α´1
e : fep1q Ñ fep´1q for each edge e P X1. A combinatorial path on X is a composable

sequence of α and α´1 morphisms (a word in α and α´1). Two combinatorial paths γ, γ1 P

ApXqpx, yq with the same endpoints are said to be parallel .
Let A be a 2-cell of X, let fA : S1 Ñ X1 be its attaching map, and x P X0 be a vertex

in the image of fA. Then fA defines a morphism γA P ApXqpx, xq, given by the sequence
of edges e1, . . . , en in its image starting at x and respecting the anti-clockwise orientation
of S1. Here, one selects αei if the orientation of fA restricted to ei agrees with the one of
fei , and α´1

ei otherwise. Two parallel combinatorial paths γ, γ1 are said to be elementary

combinatorially homotopic if they differ exactly by a relation of the form αeα
´1
e “ idfep1q

or α´1
e αe “ idfep´1q, or of the form γA “ idx, for some 2-cell A and vertex x as above.

That is, one can rewrite γ into γ1 or γ1 into γ by replacing some (possibly empty) subword
of γ with an equivalent subword using a relation γA “ idx. More generally, two parallel
combinatorial paths are combinatorially homotopic if they are related by a sequence of
elementary combinatorial homotopies.

The quotient of the category ApXq by the relations αα´1 “ α´1α “ id is the free
groupoid FpXq generated by the α morphisms. Let CpXq denote the further quotient of
the groupoid FpXq by the relations γA “ idx for some choice of x, for each 2-cell A of X.
In other words, CpXq is the quotient of ApXq by the combinatorial homotopy equivalence
relation. Note that the definition of CpXq does not depend on the choice of x, for every
2-cell A. Indeed, if x1 ‰ x P A0 defines a relation γ1

A “ idx1 , we have γ1
A “ δγAδ

´1 in FpXq,
where δ is the morphism in ApXqpx, x1q induced by γA. Thus, a path γ can be rewritten
into γ1 using γA “ idx if and only if it can be rewritten using γ1

A “ idx1 .
Let ΠpXq denote the fundamental groupoid of X, that is the groupoid with objects the

points of X and morphisms the homotopy classes of paths between them.

Theorem 1.1. Any two parallel combinatorial paths on X are combinatorially homotopic
if and only if every path component of X is simply connected.

Proof. For Y Ď X, let us write ΠpXqY for the full subcategory of the fundamental groupoid
of X spanned by Y . Then, we have an isomorphism of groupoids

ΠpXqX0 – CpXq .

To show this, one proceeds in three steps. First, one shows that the fundamental groupoid
ΠpX1qX0 of the 1-skeleton of X is free on the homotopy classes of maps generated by the
attaching maps of the 1-cells, that is, free on the α-morphisms [Bro06, 9.1.5]. Thus, one
gets ΠpX1qX0 – FpXq. Second, one shows that the fundamental groupoid ΠpX2qX0 of the
2-skeleton of X is the free groupoid ΠpX1qX0 modulo the relations γA “ 1, for A a 2-cell
of X [Bro06, 9.1.6]. This is done through repeated application of the Seifert–Van Kampen
theorem; one then has ΠpX2qX0 – CpXq. Third, one shows that the inclusion of X2 in
X induces an isomorphism of fundamental groupoids ΠpX2qX0 – ΠpXqX0 [Bro06, 9.1.7],
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which concludes the proof of the isomorphism ΠpXqX0 – CpXq. The theorem then follows,
since every path component of X is simply connected if and only if its fundamental groupoid
ΠpXq is trivial, which holds if and only if its full subcategory ΠpXqX0 is trivial. □

Note that any CW complex is locally path connected, and therefore is connected if and
only if it is path connected. Therefore, we could have replaced in the preceding theorem
“path component” by “connected component”.

Let us say that X is combinatorially connected if there is a combinatorial path between
any two vertices of X. In the course of the preceding proof, we have in particular showed
the following.

Corollary 1.2. A regular CW complex X is combinatorially connected if and only it is
connected.

1.2. Coherence à la Morse. Let X Ă Rn be a polyhedral complex. Let v⃗ P Rn be generic
on the edges of X, meaning that for any pair of vertices x, y P X belonging to the same
edge of X, we have xv⃗, xy ‰ xv⃗, yy. Such a generic vector v⃗ induces a natural orientation on
the edges of X, directed from the source vertex where the functional xv⃗,´y is minimal to
the target vertex where it is maximal.

One of the basic, very useful facts about polyhedral complexes is that, for any face
F Ď X of X, there is a unique source vertex scpF q such that all its adjacent edges e Ď F
are outgoing, and a unique sink vertex skpF q whose adjacent edges are all incoming, see
[Zie95, Thm. 3.7]. More generally a vertex whose adjacent edges e Ď X are all incoming is
called a local sink , and when X has only one such vertex, we call it global sink and denote
it by skpXq.

Let H :“ ty P Rn | xv⃗, yy “ 0u be the linear hyperplane orthogonal to v⃗. For every vertex
x P X, choose ε ą 0 such that the interval between xv⃗, xy and xv⃗, xy ` ε does not contain
the image of any other vertex under the “height” function xv⃗,´y.

Definition 1.3. The outgoing link Lk`px,Xq of a vertex x P X is the intersection FXpH`

x ` εv⃗q of the family of faces Fpx,Xq :“ tF Ď X | scpF q “ xu with the affine hyperplane
H ` x` εv⃗.

Recall from [Zie95, Sec. 2.1] that the vertex figure P {x of a polytope P at a vertex x
is obtained by cutting P by a hyperplane that cuts off the single vertex x. Such a cut
establishes a bijection between the pk ´ 1q-faces of P {x and the k-faces of P which contain
x [Zie95, Prop. 2.4].

Lemma 1.4. For any k ě 0, there is a bijection between the k-faces of Fpx,Xq and the
pk ´ 1q-faces of Lk`px,Xq.

Proof. Each maximal face of Fpx,Xq with respect to inclusion is a polytope P , for which
the intersection P X pH ` x` εv⃗q is the vertex figure P {x of P at x. By [Zie95, Prop. 2.4],
there is a bijection between the k-faces of P and the pk ´ 1q-faces of P {x. Collecting these
bijections for all maximal faces of Fpx,Xq, and making the appropriate identifications, we
get the desired global bijection. □
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In this section we shall focus on polyhedral complexes whose outgoing links are connected.
The following proposition gives the topological significance of this condition.

Proposition 1.5. Let X be a polyhedral complex. If there is a generic vector v⃗ P Rn such
that the outgoing link of every vertex is connected, then every path component of X is simply
connected.

Proof. Let v⃗ P Rn be generic with respect to X, and suppose that the outgoing link of
every vertex is connected. Since v⃗ is generic on edges, it defines a Morse function xv⃗,´y

on X, in the sense of [BB97, Def. 2.2]. As in classical Morse theory, one can determine the
homotopy type of X by considering its successive level sets. For t P R denote by Xt the
closed subspace of X containing points x such that xx, v⃗y is at least t. Let x be a vertex
of X of height h “ xx, v⃗y. Observe first that Xh`ϵ, for some small ϵ ą 0, is homotopy
equivalent to Xh1 where h1 ą h is the next greater height at which there is a vertex. That
is, the homotopy type of X can only change at vertices [BB97, Lem. 2.3]. Then, one proves
that Xh is homotopy equivalent to the pushout of Xh`ϵ with the cone over the outgoing
link of x along the outgoing link of x [BB97, Lem. 2.5]. By our assumption, the outgoing
link of x is connected, and thus the cone over it is simply connected. Since the pushout
of simply connected spaces over a connected space is always simply connected (this is an
application of the Seifert–Van Kampen theorem), we obtain by induction that every path
component of X is simply connected [BB97, Point (3) of Cor. 2.6]. □

The converse of Proposition 1.5 is not true in general: many simply connected polyhedral
complexes, as the one represented in Figure 1, have disconnected outgoing links, for many
(sometimes for all) choices of generic orientation vectors.

Figure 1. A simply connected polyhedral complex which admits discon-
nected outgoing links for every choice of generic vector.

An important class of complexes which have connected outgoing links are polytopes,
which will be our main object of study in the next sections.
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Proposition 1.6. Let P Ă Rn be a polytope, and let v⃗ P Rn be generic with respect to P .
Then, the outgoing link of every vertex of P is connected.

Proof. Define the linear hyperplane H :“ ty P Rn | xv⃗, yy “ 0u, and consider the two
half-spaces H´ :“ ty P Rn | xv⃗, yy ă 0u and H` :“ ty P Rn | xv⃗, yy ă 0u. Since v⃗ is not
perpendicular to any edge of P , it defines a partition of the vertices of the vertex figure P {x
into two connected components: the vertices that lie in H´, which correspond to incoming
edges of P at x, and the vertices that lie in H`, which correspond to outgoing edges of P
at x. Thus, the outgoing link of x is connected, and the proof is complete. □

From now on we shall suppose that the polyhedral complexes X that we consider are
endowed with a regular CW structure and provided with a generic vector v⃗. Combining
Proposition 1.5 with Theorem 1.1, we have that any polyhedral complex X whose outgoing
links are connected satisfies the property that “any two parallel combinatorial paths on
X are combinatorially homotopic”. We shall now derive this same result by following
an alternative, more combinatorial path (indeed!), getting close to the proof of [ML63,
Thm 3.1].

A combinatorial path γ on X is directed if for any pair pe, fq of consective edges in γ, we
have that skpeq “ scpfq. When no ambiguity arises, we will omit the adjective “combinato-
rial” and say only “directed path”.

In the rest of this section we shall use the notion of combinatorial connectedness, which
as we have seen in Corollary 1.2 is equivalent to connectedness for the spaces we consider.

Lemma 1.7. Let X be a polyhedral complex with generic vector v⃗ such that the outgoing
link of every vertex is combinatorially connected. Let e, e1 be two edges of X such that
scpeq “ scpe1q, and suppose that there are directed paths from skpeq and skpe1q to local
sinks s and s1, respectively. Then, we have s “ s1.

Proof. Define the height hpxq of a vertex x as the length of the longest directed path in
X starting at x. Since v⃗ is generic and X0 is finite, this is well-defined. We proceed
by induction on hpxq. The statement holds vacuously for vertices x such that hpxq “ 0.
Suppose that the assertion above holds for all vertices x P X such that hpxq “ n, and
consider an x with hpxq “ n ` 1. Since the outgoing link Lk`px,Xq is combinatorially
connected, there is a combinatorial path θ in Lk`px,Xq between the vertices corresponding
to e and e1 (Lemma 1.4). θ determines a sequence of edges e0 :“ e, e1, . . . , ek, e

1 “: ek`1 of X
with scpeiq “ x for all 0 ď i ď k ` 1. Moreover, each consecutive pair ei, ei`1 determines a
2-face Fi`1 of X. Now, choose for each ei with 1 ď i ď k, a directed path of maximal length
starting at skpeiq and passing through skpFiq. Each of these paths ends at a local sink si,
including s0 :“ s and sk`1 :“ s1. Since we have hpskpeiqq ă hpxq for all 0 ď i ď k` 1, we can
apply induction to the two directed paths from skpeiq to si and si`1, which gives si “ si`1.
Therefore, we have s “ s0 “ s1 “ ¨ ¨ ¨ “ sk “ sk`1 “ s1, as desired. □

Two parallel directed paths are said to be elementary combinatorially homotopic if they
are as undirected paths. They are combinatorially homotopic if they are related by a
sequence of elementary combinatorial homotopies between directed paths.
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The following Proposition 1.8 and its consequence Theorem 1.9 expresses in topological
terms the original proof technique used by Mac Lane in [ML63, Thm 3.1]. Note that
this Proposition 1.8 involves first directed paths, while Theorem 1.9 treats the general,
undirected case.

Proposition 1.8. Let X be a polyhedral complex, and let v⃗ be generic on the edges of X.
Consider the following three properties:

(i) the outgoing link of every vertex is combinatorially connected,
(ii) there is a global sink in every connected component,
(iii) any two parallel directed combinatorial paths on X are combinatorially homotopic.

Then, X satisfies (i) if and only if it satisfies (ii) and (iii).

Proof. First, we prove that (i) implies (ii). Suppose that there are two local sinks s1 and s2
in the same connected component of X. Consider a combinatorial path γ between s1 and s2,
whose existence is garanteed by Corollary 1.2. We proceed by induction on the number of
peaks in γ, that is the number of vertices x which are the source scpeq “ x “ scpe1q of two
edges e, e1 of γ. The path γ has at least a peak, otherwise s1 and s2 would not be both
local sinks. If γ has a unique peak, Lemma 1.7 implies that s1 “ s2. Now suppose that for
any k ď n, if γ has k peaks, then we have s1 “ s2. If γ has n ` 1 peaks, consider the first
peak x “ scpeq “ scpe1q of γ. By Lemma 1.7, there is a directed path δ from skpe1q to s1.
Replacing the initial section of γ ending in e1 by δ, we get a path with n peaks, and by the
induction hypothesis we get s1 “ s2, completing the proof.

Second, we prove that (i) implies (iii). Let us assume that X is connected, otherwise we
apply the same reasoning to each connected component. From the preceding paragraph,
we know that X has a global sink skpXq. Suppose that the outgoing link of every vertex is
combinatorially connected. Let γ and γ1 be two parallel directed paths between two vertices
x and y. We prove that they are combinatorially homotopic. We proceed by induction on
the maximal length m of a directed path between x and y in X. Without loss of generality,
we can suppose that y “ skpXq, since if y ‰ skpXq we can always find a directed path
between y and skpXq. The cases when m “ 0 and m “ 1 are trivial. Suppose that the
hypothesis holds up to m “ k´ 1, k ě 2, and consider two paths γ and γ1 for which m “ k.
Let e and e1 denote the edges of γ and γ1 that are adjacent to x. We examine three cases.

(1) If e “ e1, we can apply the induction hypothesis to γze and γ1ze1.
(2) If e ‰ e1 and both edges are on the same 2-face F of X, then using the induction

hypothesis we have that γ and γ1 are respectively combinatorially homotopic to the
paths δ and δ1 defined as follows: they go from x “ scpF q to skpF q by the unique path
containing e and e1, respectively, and then from skpF q to y along the same arbitrary
directed path. Since δ and δ1 are combinatorially homotopic by definition, the
conclusion follows from the transitivity of the combinatorial homotopy equivalence
relation.

(3) Suppose that e ‰ e1, and that e and e1 are not on the same 2-face of X. Since the
outgoing link of x is combinatorially connected, there exists a combinatorial path θ
between the vertices corresponding to e and e1 in this link (Lemma 1.4). For every
edge ei of X in the path θ, choose a directed path γi in X from x to y “ skpXq
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going through ei. Now apply Point (2) above to every pair of parallel directed paths
pγi, γi`1q with ei and ei`1 consecutive in θ, and conclude again by transitivity of
the combinatorial homotopy equivalence relation.

Finally, we prove that (ii) and (iii) imply (i). Suppose that every pair of parallel directed
combinatorial paths are combinatorially homotopic. We show that for any vertex x, its
outgoing link is combinatorially connected. Indeed, take two edges e, e1 of X with source x,
and consider their extensions to directed paths γ, γ1 from x to skpXq. By hypothesis, these
two paths are combinatorially homotopic, that is, there is a sequence of parallel directed
paths from γ to γ1. The collection of first edges in each of these paths defines a combinatorial
path between e and e1 in the outgoing link of x. Thus, this link is combinatorially connected.

□

Theorem 1.9. Let X be a polyhedral complex with generic vector v⃗ such that the outgoing
link of every vertex is combinatorially connected. Then, any two parallel combinatorial paths
on X are combinatorially homotopic.

Proof. Assume that X is connected, otherwise apply the argument to each connected com-
ponent. By Proposition 1.8, the polyhedral complex X admits a global sink skpXq and the
conclusion holds for directed paths. Let us show that this implies the undirected version.
Let γ be an undirected combinatorial path on X between x and y. For every vertex z
along γ, one can choose a directed path δz from z to skpXq. We observe that for any edge
e : z Ñ z1 of γ, the directed paths δz and δz1e are combinatorially homotopic by hypothesis.
Going from x to y inductively one edge at a time and using transitivity of the homotopy
equivalence relation, one obtains that γ is combinatorially homotopic to δ´1

y δx. Taking an-

other combinatorial path γ1 parallel to γ, the same argument shows that γ1 is combinatorial
homotopic to δ´1

y δx. Thus γ and γ1 are combinatorially homotopic, which completes the
proof. □

As Proposition 1.5 shows, the class of polyhedral complexes to which Theorem 1.9 ap-
plies is a strict subclass of simply connected complexes. This implies that the converse of
Theorem 1.9 does not hold, and thus that Mac Lane’s original proof is far from reaching
the full generality of Theorem 1.1. However, it will be sufficient for our purposes, since –as
we have seen in Proposition 1.6– it applies to any polytope.

Another feature of generically oriented polyhedral complexes is that their 1-skeleton
defines abstract rewriting systems which are terminating and confluent, as we now show.

1.3. Rewriting systems. We refer to [BN98] for more details on rewriting systems.

Definition 1.10. An abstract rewriting system is a set A together with a binary relation Ñ.

We denote by
˚
ÝÑ the reflexive and transitive closure of Ñ. We say that pA,Ñq is locally

confluent (resp. confluent) if for all a, a1, a2 P A such that a1 Ð a Ñ a2 (resp. a1
˚

ÐÝ a
˚
ÝÑ a2),

there exists a term b with a1
˚
ÝÑ b

˚
ÐÝ a2. The diagram
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a

a1 a2

b
˚ ˚

is called a local confluence diagram. A rewriting system is terminating if every reduction
sequence a Ñ a1 Ñ a2 Ñ ¨ ¨ ¨ eventually must terminate. An element a P A is reducible if
there exists an a1 P A such that a Ñ a1; otherwise it is called irreducible – the rewriting

synonymous of local sink! We say that b is a normal form of a if a
˚
ÝÑ b and b is irreducible.

Given a polyhedral complex X and a generic vector v⃗, one can consider the abstract
rewriting system defined by v⃗ on the vertices of X.

Definition 1.11. The vertices rewriting system is the pair pX0,Ñq made of the set of
vertices X0 of X, together with the following relation: we have x Ñ y if x and y are vertices
of the same edge and xv, xy ă xv, yy.

According to this definition, we have x
˚
ÝÑ y if and only if there is a directed path from

x to y in X1. The hypothesis of Theorem 1.9 imposes that the rewriting system pX0,Ñq is
terminating and confluent.

Proposition 1.12. Let X be a polyhedral complex and v⃗ be a generic vector. If the out-
going link of every vertex is combinatorially connected, the rewriting system pX0,Ñq is
terminating and confluent.

Proof. Since v⃗ is generic, and thus strictly increasing along edges, it defines a partial order,
and since the set X0 is finite, the rewriting system pX0,Ñq is terminating. By Proposi-
tion 1.8, there is a global sink in each connected component of X. Confluence then follows:
given any pair of vertices x, y in the same connected component, since v⃗ is generic there are

directed paths x
˚
ÝÑ s

˚
ÐÝ y to the global sink s of this connected component. □

Corollary 1.13. The abstract rewriting system on the vertices of any oriented polytope P
is terminating and confluent. Moreover, every pair of vertices admits a unique normal
form skpP q.

Recall that a polytope P is simple if each vertex of P is incident to precisely dimP edges.

Lemma 1.14. If a polytope P is simple, then there is a bijection between the local confluence
diagrams of pP0,Ñq and the oriented boundaries of the 2-faces of P .

Proof. When P is simple, the vertex figure P {x of every vertex x is a simplex [Zie95,
Prop. 2.16], with each edge in P {x corresponding to a 2-face of P (Lemma 1.4). Thus every
pair of edges e, e1 with source x “ scpeq “ scpe1q determines a 2-face of P . □

Not much more can be said at this level of generality. For the specific familiy of operahe-
dra that we will consider in the next section, the rewriting systems possess more structure
(they are term rewriting system) and are studied in a companion paper [CLA24].
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2. Categorical coherence

2.1. Categorified non-symmetric operad. Throughout this section we consider struc-
tures without units. Unless otherwise stated, the adjective “non-unital” will be implicitly
assumed.

Definition 2.1. A categorified non-symmetric operad P is a collection tPpnqunPN of small
categories equipped with bifunctors

˝i : Ppnq ˆ Ppkq ÝÑ Ppn` k ´ 1q , for 1 ď i ď n ,

and for each κ P Ppmq, µ P Ppnq, ν P Ppkq, 1 ď i ď m, 1 ď j ď n natural isomorphisms

βκ,µ,ν : pκ ˝i µq ˝j`i´1 ν
–

ÝÑ κ ˝i pµ ˝j νq ,

θκ,ν,µ : pκ ˝i νq ˝j`k´1 µ
–

ÝÑ pκ ˝j µq ˝i ν , when i ă j ,

such that the following diagrams commute: the pentagonal

ppκ ˝ τq ˝ µq ˝ ν

pκ ˝ pτ ˝ µq ˝ νq

κ ˝ ppτ ˝ µq ˝ νq

κ ˝ pτ ˝ pµ ˝ νqq

pκ ˝ τq ˝ pµ ˝ νq

βκ,τ,µ ˝ 1ν

βκ,τ˝µ,ν

1κ ˝ βτ,µ,ν

βκ˝τ,µ,ν

βκ,τ,µ˝ν

ppκ ˝ τq ˝ µq ˝ ν

ppκ ˝ τq ˝ νq ˝ µ

ppκ ˝ νq ˝ τq ˝ µ

pκ ˝ νq ˝ pτ ˝ µq

pκ ˝ pτ ˝ µq ˝ ν

θκ˝τ,µ,ν

θκ,τ,ν ˝ 1µ

βκ˝ν,τ,µ

βκ,τ,µ ˝ 1ν

θκ,τ˝µ,ν

ppκ ˝ τq ˝ µq ˝ ν

ppκ ˝ µq ˝ τq ˝ ν

ppκ ˝ µq ˝ νq ˝ τ

pκ ˝ pµ ˝ νqq ˝ τ

pκ ˝ τq ˝ pµ ˝ νq

θκ,τ,µ ˝ 1ν

θκ˝µ,τ,ν

βκ,µ,ν ˝ 1τ

βκ˝τ,µ,ν

θκ,τ,µ˝ν

and hexagonal identities
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ppκ ˝ τq ˝ µq ˝ ν

pκ ˝ pτ ˝ µqq ˝ ν

κ ˝ ppτ ˝ µq ˝ νq

κ ˝ ppτ ˝ νq ˝ µq

ppκ ˝ τq ˝ νq ˝ µ

pκ ˝ pτ ˝ νqq ˝ µ

βκ,τ,µ ˝ 1ν

βκ,τ˝µ,ν

1κ ˝ θτ,µ,ν

θκ˝τ,µ,ν

βκ,τ,ν ˝ 1µ

βκ,τ˝ν,µ

ppκ ˝ τq ˝ µq ˝ ν

ppκ ˝ µq ˝ τq ˝ ν

ppκ ˝ µq ˝ νq ˝ τ

ppκ ˝ νq ˝ µq ˝ τ

ppκ ˝ τq ˝ νq ˝ µ

ppκ ˝ νq ˝ τq ˝ µ

θκ,τ,µ ˝ 1ν

θκ˝µ,τ,ν

θκ,µ,ν ˝ 1τ

θκ˝τ,µ,ν

θκ,τ,ν ˝ 1µ

θκ˝ν,τ,µ

.

The diagrams above hold for all instances of composable β and θ; these depend on the
indices i, j, k, which are omitted for the sake of readability. Observe that a categorified
non-symmetric operad concentrated in arity 1 is a non-symmetric monoidal category.

As explained in Proposition 2.6 below, one can picture an object µ P Ppnq as a planar tree
with one vertex decorated by µ, n leaves and one root (a corolla). The ˝i bifunctors then
correspond to the operation of grafting a corolla on top of another. Iterated applications of
the ˝i can be visualized as fully nested planar trees, with vertices decorated by objects of P,
see Figure 2. A nesting of a planar tree is a collection of subtrees (nests) which are either
included in one another or disjoint. A nesting is full if its number of nests is maximal, equal
to the number of internal edges of the tree [Lap22, Def. 2.2].

κ

τ

µ

ν ρ

1

2

3
4

Figure 2. A fully nested planar tree.

The β and θ arrows correspond to the sequential and parallel axioms of an operad, and
relate the two possible ways of fully nesting a tree with 3 vertices, see Figure 3. Moreover,
there is then one coherence diagram (pentagon or hexagon) for every planar tree with 4
vertices, see Figure 4.
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κ

µ

ν

β
ÝÑ

κ

µ

ν

κ

µν
θ

ÝÑ
κ

µν

Figure 3. The β and θ isomorphisms defining a categorified non-symmetric operad.

κ

τ

µ

ν

κ

τ

µ

ν

κ

τ µ

ν

κ

τ

µ ν

κ

τ µ ν

Figure 4. The five planar trees with four vertices, giving rise to the pen-
tagonal (first three) and hexagonal (last two) identites.

Remark 2.2. K. Došen and Z. Petrić introduced in [DP15, Sec. 12] the notion of weak
Cat-operad. Despite looking different at first sight, the two notions are in fact equivalent.
The crucial observation is the following: the θ-isomorphisms of Došen–Petrić comprise both
the isomorphisms θ in Definition 2.1 and their inverses θ´1. Therefore, there are only two
pentagonal coherence diagrams in the definition of a weak Cat-operad, the equations (β
pente) and (βθ2e) of [DP15, Section 9]. The set of diagrams of the form (β pente) is the
same as the set of diagrams which arises from the first pentagon in Definition 2.1, while the
set of diagrams of the form (βθ2e) is partitioned into the sets of diagrams which arise from
the second and third pentagons in Definition 2.1.

We will give in Theorem 2.5 two topological proofs of coherence for categorified non-
symmetric operads. A benefit of our presentation is that, adopting the oriented approach
(see the second proof of Theorem 2.5), we get a proof of coherence where β and θ are
both treated as rewriting rules, in contrast with the proof in [DP15], which proceeds in
two stages, much like in Mac Lane’s proof of coherence for symmetric monoidal categories
(see Remark 2.18): first get rid of β (rewriting), then deal with θ.

Definition 2.3. A strong morphism of categorified non-symmetric operads F : P Ñ Q is
a collection of functors Fn : Ppnq Ñ Qpnq together with natural isomorphisms

γκ,µ : Fm´1`npκ ˝i µq
–

ÝÑ Fmpκq ˝i Fnpµq

such that the following diagrams commute:
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F ppκ ˝ µq ˝ νq

F pκ ˝ µq ˝ F pνq

pF pκq ˝ F pµqq ˝ F pνq

F pκq ˝ pF pµq ˝ F pνqq

F pκ ˝ pµ ˝ νqq

F pκq ˝ F pµ ˝ νq

γκ˝µ,ν

γκ˝µ ˝ 1F pνq

βF pκq,F pµq,F pνq

F pβκ,µ,νq

γκ,µ˝ν

1F pκq ˝ γµ,ν

F ppκ ˝ νq ˝ µq

F pκ ˝ νq ˝ F pµq

pF pκq ˝ F pνqq ˝ F pµq

pF pκq ˝ F pµqq ˝ F pνq

F ppκ ˝ µq ˝ νq

F pκ ˝ µq ˝ F pνq

γκ˝ν,µ

γκ,ν ˝ 1F pµq

θF pκq,F pνq,F pµq

F pθκ,ν,µq

γκ˝µ,ν

γκ,ν ˝ 1F pνq

.

It is said to be strict if the natural isomorphisms are identities.

Once again, the diagrams above hold for all instances of β and θ arrows, and we have
omitted the pi, j, kq-indices for readability. Observe that a strong (resp. strict) morphism
between categorified non-symmetric operads concentrated in arity 1 is a strong (resp. strict)
monoidal functor between non-symmetric monoidal categories.

2.2. Coherence for categorified non-symmetric operads. We now aim at the coher-
ence theorem for categorified non-symmetric operads. In order to state the theorem, we
construct the free non-symmetric categorified operad on a family of sets S “ tSnuně1. We
define a family of categories S “ tSnuně1 whose objects are given by the following rules:

(1) if a P Sn, then a is an object of Sn;
(2) if t1 P Sm and t2 P Sn, then t1 ˝i t2 is an object of Sm´1`n, for any 1 ď i ď m.

If an object t1 is in Sn, we say that t1 has arity n. Now we define a setM of basic morphisms
β : pt1 ˝i t2q ˝j`i´1 t3 Ø t1 ˝i pt2 ˝j t3q : β´1 for every t1 P Sm, t2 P Sn, t3 P Sk, 1 ď i ď m
and 1 ď j ď n, and θ : pt1 ˝i t3q ˝j´1`k t2 Ø pt1 ˝j t2q ˝i t3 : θ´1 whenever i ă j. We then
define the generating morphisms of the family S by the following rules:

(1) if ϕ P M , then ϕ is a generating morphism of S;
(2) if ϕ : t1 Ñ t2 is a generating morphism in S, and t3 P S, then ϕ˝i id : t1˝i t3 Ñ t2˝i t3

and id˝jϕ : t3˝j t1 Ñ t3˝j t2 are generating morphisms, for any i (resp. j) between 1
and the arity of t1 (resp. t3).

Note that by construction, for every morphism ϕ : t1 Ñ t2, the objects t1 and t2 have
the same arity, and we say that ϕ has this arity . We then define Sn as the free category
over all generating morphisms of arity n. This finishes the construction of our family S of
categories.

Definition 2.4. We denote by FpSq the quotient of the family of categories S by localiza-
tion (inverting the β and θ morphisms), the axioms of bifunctors for the ˝i, the naturality
conditions for β and θ, and the coherence diagrams (pentagons and hexagons) defining a
categorified non-symmetric operad.
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We obtain that FpSq is the free categorified non-symmetric operad on S. That is, for any
categorified non-symmetric operad P, and for any family of functions ρn : Sn Ñ ObpPpnqq,
there is a unique strict morphism of non-symmetric categorified operads FpSq Ñ P which
extends ρ “ tρnuně1. By precomposing it with the quotient map S Ñ FpSq, we get a
levelwise functor rr´ss : S Ñ P.

Theorem 2.5 (Coherence theorem). For any categorified non-symmetric operad P, for any
family of functions ρ : S Ñ ObpPq, and for any two parallel morphisms ϕ1, ϕ2 : t1 Ñ t2
in S, we have rrϕ1ss “ rrϕ2ss.

In order to prove this Theorem 2.5, we need to first recall the construction of the oper-
ahedra, a family of polytopes whose faces are in bijection with the set of all nestings of a
planar tree. We refer to [Lap22, Sec. 2] for details, see also [DP15, Sec. 13] and [COI19].
Given a planar tree t with n internal edges, and a full nesting N of t, one associates a
point Mpt,N q P Rn via a simple algorithm which is due to J.-L. Loday [Lap22, Sec. 2.2].
The operahedron Pt Ă Rn is the convex hull of the points Mpt,N q, for all maximal nestings
N of t. It has dimension n ´ 1. One then shows that the poset of nestings of t, ordered
by reverse inclusion, is isomorphic to the poset of faces of Pt [Lap22, Prop. 2.15]. The
dimension of a face is given by n minus the number of nests in the corresponding nesting
of t.

Reading a planar tree t from the leaves to the root defines a family of incoming edges
and one outgoing edge at each vertex of t. Given the family of sets S and a planar tree t,
we say that a decoration of the vertices of t by elements of S is admissible if at every vertex
the number of incoming edges is equal to the arity of the element of S decorating it. Now,
let us consider the collection OpSq of polytopes with one copy of the operahedron Pt for
each admissible decoration of the planar tree t by elements of S.

Proposition 2.6. There are bijections between

(1) objects of S and vertices of the operahedra in OpSq,
(2) generating morphisms of S and edges of the operahedra in OpSq,
(3) bifunctoriality, naturality and coherence diagrams and 2-faces of the operahedra

in OpSq.

Proof. To each element a of Sn, we associate a planar corolla with n leaves and vertex
decorated by a. Then, we identify a ˝i b with the planar tree obtained from grafting the
corolla decorated by b at the ith leaf of the corolla decorated by a. Continuing in this
fashion, and remembering the order in which we graft the corollas, we obtain all possible
fully nested planar trees with vertices decorated by elements of S (Figure 2). A generating
morphism f in S is an application of one of the associativity rules β or θ to a fully nested
tree t, moving only one nest (Figure 3). If t has n internal edges, forgetting the nest that
has been moved gives a nesting of t with n ´ 1 nests. We associate to f the edge of the
operahedron Pt in OpSq labeled by this nesting, see [Lap22, Def. 2.8 & Prop. 3.11]. It
remains to consider all the possible diagrams one can obtain by applying two generating
morphisms to a given fully nested tree t with n internal edges. These arise from moving
two different nests in the same fully nested tree. Starting by moving one or the other of
these 2 nests, one faces two types of situations:
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(A1) If the two nests are disjoint, one obtains a bifunctoriality square,
(A2) If the two nests are nested, but do not share the same root, one obtains a naturality

square,
(B) If the two nests are nested and share the same root, one obtains either a pentagon

or a hexagon as in Definition 2.1.

To such a diagram, we associate the 2-face of the operahedron Pt in OpSq corresponding to
the nesting of t obtained by forgetting the two nests that have been moved along the edges.
We refer to [CLA24, Sec. 2] for a more detailed analysis of the 2-faces. □

Remark 2.7. The fact that every possible choice of initial moves gives rise to a 2-face
amounts to the fact that the operahedron Pt is a simple polytope [DP11, Sec. 9]. As
Lemma 1.14 shows, this property garantees the correspondence between geometric and
rewriting-theoretic proofs of coherence, see [CLA24] for more details on the latter.

The conceptual origin of the bijections of Proposition 2.6 is the fact that the combinatorics
of the faces of the operahedra correspond exactly to the monad of trees [LV12, Sec. 5.6.1].
Or, said differently, it lies in the fact that the operahedra encode (via the cellular chains
functor) the minimal resolution of the colored symmetric operad whose algebras are non-
unital non-symmetric operads, see [VdL03] and [Lap22, Sec. 4.1].

We are now ready to prove Theorem 2.5, using either our non-oriented or oriented topo-
logical coherence results for polytopes.

Proof of Theorem 2.5. From Point (2) in Proposition 2.6, we have that the morphisms of S
are in bijection with combinatorial paths on the operahedra of OpSq. Two parallel mor-
phisms in S thus define two parallel combinatorial paths on some operahedron Pt in OpSq.
Since an operahedron Pt is simply connected, Theorem 1.1 implies that these two combi-
natorial paths are combinatorially homotopic. By Point (3) in Proposition 2.6 the 2-faces
of the operahedra are exactly either a bifunctoriality or naturality square, a pentagon or
a hexagon (witnessing a coherence condition) as in Definition 2.1. Therefore, two parallel
morphisms ϕ1, ϕ2 in S are equal in the quotient FpSq, and thus their images rrϕ1ss, rrϕ2ss

are also equal in P. □

Second proof of Theorem 2.5. Alternatively, since the operahedra are polytopes, one can
use Proposition 1.6 and Theorem 1.9. As shown in [Lap22, Prop. 3.11], choosing a generic
vector v⃗ which has strictly decreasing coordinates gives the orientations of the diagrams
given in Definition 2.1 on the 2-faces. One then obtains a topological proof of coherence
which follows closely the original proof of Mac Lane [ML63, Thm. 3.1], suitably generalized
to categorified operads. □

Following Remark 2.2, we have that Theorem 2.5 gives an alternative, more economi-
cal proof of coherence for weak Cat-operads [DP15, Prop. 14.2]. Incidentally, it gives an
alternative input to the proof of coherence for cyclic symmetric categorified operads [CO20].

Restricting the theorem above to non-symmetric operads concentrated in arity 1, the
category FpSq becomes the free non-symmetric monoidal category on S, and we get the
following corollary.
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Corollary 2.8 (Mac Lane coherence theorem for non-symmetric monoidal categories). For
any non-symmetric monoidal category C, for any function ρ : S Ñ ObpCq, and for any two
parallel morphisms ϕ1, ϕ2 : t1 Ñ t2 in S, we have rrϕ1ss “ rrϕ2ss.

Remark 2.9. As mentioned at the end of Section 1.3, the rewriting systems obtained on the
vertices of the operahedra by choosing a generic vector with strictly decreasing coordinates
are in fact term rewriting systems. The faces of type (B) in Point (3) of Proposition 2.6 (the
coherence conditions) correspond precisely to the critical pairs of these rewriting systems,
see [CLA24, Sec. 3.4]. Moreover, the associated posets on fully nested planar trees have
recently been shown to be lattices [DS24].

2.3. Symmetric monoidal categories. We now formulate and prove Mac Lane’s coher-
ence theorem for symmetric monoidal categories in the same style as above. Recall that in
a symmetric monoidal category C, in addition to the natural isomorphisms β, with compo-
nents βκ,µ,ν : pκ b µq b ν Ñ κ b pµ b νq, there are involutive natural transformations τ ,
with components τµ,ν : µb ν Ñ ν b µ. Here, we use κ, µ, ν, . . . to range over the objects of
the category, consistently with the notation used in Sections 2.1 and 2.2. In addition to the
pentagons, obtained from the first pentagon in Definition 2.1 by replacing ˝ with b, there
are hexagons

pκb µq b ν

κb pµb νq

pµb νq b κ

µb pν b κq

pµb κq b ν

µb pκb νq

β

τ

β

τ b 1

β

1 b τ

for all objects κ, µ, ν in C.
In order to state the coherence theorem, we construct a free category on a set S of

generating objects. We define a small category SML whose set of objects

TS “
ď

tTA | A is a non-empty finite subset of Su

is defined as follows:

(1) if a P S, then a P Ttau;
(2) if t1 P TA and t2 P TB, and if AXB “ H, then t1 b t2 P TAYB.

We can see the objects of SML as fully parenthesized words over S where letters are not
repeated. We then define a setMML of basic morphisms β : pt1bt2qbt3 Ø t1bpt2bt3q : β´1

and τ : t1 b t2 Ø t2 b t1, for every t1, t2, t3 P TS . We then define the generating morphisms
of SML by the following rules:

(1) if ϕ P MML, then ϕ is a generating morphism;
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(2) if ϕ : t1 Ñ t2 is a generating morphism and t3 P TS , then ϕ b id : t1 b t3 Ñ t2 b t3
and id b ϕ : t3 b t1 Ñ t3 b t2 are generating morphisms.

We then define SML as the free category over all generating morphisms. This finishes the
construction of the category SML.

Definition 2.10. We denote by FpSq the quotient of SML by localization (inverting the β
morphisms), by the axioms τt1,t2 ˝ τt2,t1 “ 1, by the axioms of bifunctors, by the naturality
conditions for β and τ , and by the coherence conditions of symmetric monoidal categories.

By freeness, we have that for any symmetric monoidal category C, and for any function
ρ : S Ñ ObpCq, there is a unique functor rr´ssML : SML Ñ C which extends ρ and sends
the formal basic morphisms to the actual canonical morphisms of C. This functor factorizes
through the quotient map r´sML : SML Ñ FpSq.

It turns out that Kapranov’s topological proof is not based on the above presentation
of FpSq, but on another presentation of this category, that is made explicit in [BIP19, Sec. 2].
Let us recall this presentation. We define another category SK as follows. Its objects are
the same as those of SML. We define a set MK of basic morphisms β : pt1 b t2q b t3 Ø

t1 b pt2 b t3q : β´1 for every t1, t2, t3 P TS , and τ : a b b Ø b b a for every a, b P S, i.e.,
we limit τ to generating objects. Generating morphisms are defined in the same way as for
SML. We note that by construction SK is a wide subcategory of SML.

Definition 2.11. We denote by FpSqK the quotient of SK by localization (inverting the
β morphisms), by the axioms τa,b ˝ τb,a “ 1, by the axioms of bifunctors, by the naturality
conditions for β, by the coherence conditions of monoidal categories, and by the axioms in
dodecagonal form given by the solid arrows in Figure 5 (left), for a, b, c ranging over S only.

We pause here to reflect on the difference between the two presentations. In the second
one, we have less generators, and we have lost hexagons. For an intuition, here is how Mac
Lane himself motivated his hexagonal axioms (verbatim, just changing the notation to fit
with ours) in [ML63]:

The instance τκbµ,ν interchanges the block κµ with the single letter ν; the
hexagon condition states that this interchange may be replaced by two in-
stances of τ which interchange single letters with ν. Repeated such replace-
ment using instances of the hexagon shows that any interchange of successive
blocks may be replaced by interchanges of successive letters.

In other words, hexagons are now taken as definitions rather than axioms. But how do we
guarantee that the general τ morphisms defined in this way define a natural transformation?
This is what the dodecagons are for.

Let C be a symmetric monoidal category. By freeness again, any function ρ : S Ñ ObpCq

extends uniquely to a functor rr´ssK : SK Ñ C. This functor is the restriction of rr´ssML

to SK, and factorizes through the quotient functor r´sK : SK Ñ FpSqK.

Theorem 2.12 (Kapranov coherence theorem for symmetric monoidal categories). For any
two parallel morphisms ϕ1, ϕ2 : t1 Ñ t2 in SK, we have rϕ1sK “ rϕ2sK.
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Figure 5. Kapranov dodecagons.

In order to prove this “Kapranov style” coherence, we need to first recall the construc-
tion of the permuto-associahedra, a family of polytopes whose faces are in bijection with
parenthesized ordered partitions of a finite set. We refer to [Zie95, Sec. 9.3] for details, see
also [Kap93] and [RZ94]. Given a finite set A of cardinal n and a parenthesized permuta-
tion σ of its elements, one associates a section γσ of the projection from the n-cube to the
cyclic polygon with n ` 1 vertices [Zie95, Ex. 9.14], whose integral over the base gives a
point Mpσq in Rn. The permuto-associahedron PA is the convex hull of the points Mpσq,
for all parenthesized permutations σ of the elements of A. It has dimension n ´ 1. One
then shows that the poset of parenthesized ordered partitions of A, ordered according to
the rules below, is isomorphic to the poset of faces of PA [Zie95, Thm. 9.15].

Parenthesized ordered partitions of A can be drawn as planar trees whose leaves are
decorated with the parts of a partition of A. The subface relation ă is defined by two
clauses: one can contract an edge of the tree, or remove a node all of whose incoming edges
are leaves and decorate its outcoming edge – now a leaf – with the union of the decorations
of those incoming edges. The maximal face is A. For example, with A “ ta1, . . . , a7u, the
following is a face:

pta1u ta4u ta2, a6uq ta3, a5, a7u

which is covered by the following two elements.

pta1u ta4u ta2, a6uq ta3, a5, a7u ă ta1u ta4u ta2, a6u ta3, a5, a7u

pta1u ta4u ta2, a6uq ta3, a5, a7u ă ta1, a2, a4, a6u ta3, a5, a7u .
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Given the set S, let us consider the collection PpSq of polytopes with one copy of the
permuto-associahedron PA for each finite subset A Ă S.

Proposition 2.13. There are bijections between

(1) objects of SK and vertices of the permuto-associahedra in PpSq,
(2) generating morphisms of SK and edges of the permuto-associahedra in PpSq,
(3) bifunctoriality, naturality and coherence diagrams and 2-faces of the permuto-associahedra

in PpSq.

Proof. The 0-dimensional faces of PA are fully parenthesized words whose letters are sin-
gletons, and are in obvious bijective correspondence with the elements of TA. The 1-
dimensional faces are

‚ either fully parenthesized words whose letters are singletons but for one letter which
is a two-element set tai, aju and feature an application of the basic morphism τai,aj ,

‚ or an “almost” fully parenthesized word of singletons, with just one parenthesis
removed, yielding a subword ptaiu taju takuq, featuring an application of the basic
morphism βai,aj ,ak or β´1

ai,aj ,ak
– the orientation of the edge being “decided” by the

shape of its end vertices.

Finally, the 2-dimensional faces can be analyzed much in the same way as in Proposi-
tion 2.6, and seen to correspond to bifunctoriality, naturality of β, and to the pentagons
and dodecagons. We have pictured the poset view of the latter in Figure 5 (right). The
reader can also convince himself on this figure how the orientation of the β arrows on the
left can be reconstructed from the non-oriented dodecagon on the right. □

Proof of Theorem 2.12. The proof is similar to the proof of Theorem 2.5, using either the
Van Kampen (Theorem 1.1) or the Morse (Proposition 1.6 and Theorem 1.9) technique. □

Remark 2.14. Alternatively, one could use the same strategy with the simple permutoassoci-
ahedra from [BIP19], involving yet another equivalent presentation of symmetric monoidal
categories.

The following proposition establishes relations between the Mac Lane and Kapranov
presentations of symmetric monoidal categories.

Proposition 2.15 (Kapranov–Mac Lane comparison).

(1) Let ϕ1, ϕ2 : t1 Ñ t2 be parallel morphisms of SK, and suppose that rϕ1sK “ rϕ2sK.
Then rϕ1sML “ rϕ2sML.

(2) Let ϕ be a morphism of SML. Then there is a morphism ψ of SK such that rϕsML “

rψsML.

Proof. The proof of Point (1) is visualized in Figure 5 (left). The two dotted lines delimit
two Mac Lane hexagons on the top and at the bottom and a naturality square in the
middle. Explicitly, the two dotted τ -morphisms are τa,bbc and τa,cbb. As for Point (2), we
observe that a morphism ψ as in the statement can be obtained by repeatedly applying the
procedure described by Mac Lane in the quotation which follows Definition 2.11 above. □
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Theorem 2.16 (Mac Lane coherence theorem for symmetric monoidal categories). For any
symmetric monoidal category C, for any function ρ : S Ñ ObpCq, and for any two parallel
morphisms ϕ1, ϕ2 : t1 Ñ t2 in SML, we have rrϕ1ssML “ rrϕ2ssML.

Proof. Since the functor rr´ssML factorizes through the functor r´sML, it is enough to prove
that rϕ1sML “ rϕ2sML. By Point (2) of Proposition 2.15, there exist ψ1 and ψ2 in SK such
that rψ1sML “ rϕ1sML and rψ2sML “ rϕ2sML. In particular ψ1 and ψ2 are parallel, so
by Theorem 2.12 we get rψ1sK “ rψ2sK, and by Point (1) of Proposition 2.15 we have
rψ1sML “ rψ2sML. Thus, we have rϕ1sML “ rψ1sML “ rψ2sML “ rϕ2sML, which concludes
the proof. □

Remark 2.17. One can see easily that this proof also shows that the categories FpSqK

and FpSq are isomorphic. The statement of this fact is unrelated to coherence issues, but
its proof relies on Kapranov style coherence. In other words, the proof that Kapranov’s
conditions imply Mac Lane’s conditions is non-trivial, in contrast to the converse direction
(cf. Proposition 2.15); a result of the magic of polytopes!

Remark 2.18. Note that contrary to the case of the operahedra, there does not seem to exist
an orientation vector whose induced orientation on the edges of the permuto-associahedra
coincides with a consistent orientation of the β and τ arrows based on conventions inde-
pendent of the orientation vector. This follows from the observation that the dodecagon
(Figure 5, left) involves β´1 arrows. The same remarks apply to the simple permuto-
associahedra of [BIP19]. As for the original presentation of Mac Lane (for which no poly-
topal correspondence is known), one could still hope to have an associated term rewriting
system. But instead Mac Lane’s proof (rightly!) proceeds in two stages: first using rewriting
for the monoidal part (β only), and then dealing with the symmetric part using Coxeter’s
presentation of the symmetric groups. It seems that one cannot do better. Indeed, even
if Mac Lane’s hexagon does not involve β´1 arrows, the latter would pop up when taking
the combinatorics of orientation of the τ arrows into account. As an illustration, suppose
that we decide to move parentheses to the right for β, fix a total order on S and split the
involutive τ into τ and τ´1 according to where the maximum lies. Then, for µ ă κ ă ν the
hexagon becomes

pκb µq b ν

κb pµb νq

pµb νq b κ

µb pν b κq

pµb κq b ν

µb pκb νq

β

τ

β

τ b 1

β

1 b τ

and a local confluence diagram for the pair of rewritings out of pµ b νq b κ cannot be
completed without inverting β arrows.
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3. Perspectives

3.1. Further applications. One can also use the same strategy to prove coherence for
unital non-symmetric monoidal categories, using the unital associahedra of F. Muro and A.
Tonks [MT14].

It is natural to ask if the construction of unital associahedra could be extended to the
permutoassociahedra, in such a way as to provide a topological proof of coherence for unital
symmetric monoidal categories. The question of the existence of these constructions at the
operadic level (i.e. does there exist unital operahedra, symmetric operahedra, and unital
symmetric operahedra?) is, to our knowledge, still open as well.

Another immediate application of Theorem 1.1 is the coherence of strong non-symmetric
monoidal functors between non-symmetric monoidal categories [Eps66]. The corresponding
topological objects are in this case the family of multiplihedra [Sta70, For08]. The general-
ization to strong morphisms between non-symmetric categorified operads also goes through,
involving this time the family of multiploperahedra described at the end of the introduction
in [LM23].

In the same spirit as in Theorem 2.5, one could obtain coherence results for categorifica-
tions of many operad-like structures, for instance the ones described in [BMO23]: categori-
fied modular operads, wheeled properads, and permutads (shuffle algebras), among others.
In order to treat cyclic and symmetric structures, one could take inspiration from the re-
duction process followed in [CO20] for the case of cyclic symmetric categorified operads.

3.2. Higher categories. Theorem 1.1 shows the precise relationship between coherence
and connectedness. In addition to Kapranov’s claim [Kap93], it clarifies other statements
in the literature, such as the proof of [KV94, Prop. 3.9]. There, the incipit “since Pn is a
convex polytope” could be replaced by a more precise “since Pn is simply connected”.

In the case of (symmetric) monoidal categories, Theorem 1.1 demonstrates that coherence
is equivalent to the vanishing of the first homotopy groups of the (permuto-)associahedra.
Since the (permuto-)associahedra are contractible, and therefore all their homotopy groups
vanish, one could hope for a topological proof of higher dimensional coherence theorems.

One dimension higher, N. Gurski has shown in [Gur11, Thms. 22 & 23] that coherence for
(braided) monoidal bicategories is equivalent to the vanishing of fundamental 2-groupoids
of braid groups. Recent results of S. Barkan provide evidence for higher dimensional state-
ments, relating coherence diagrams of 8-operads to the connectivity of certain operadic
partition complexes [Bar22]. It seems likely that the present results could be interpreted as
a strict version and a special case of [Bar22, Thm. B]. It would be interesting to see how
the permuto-associahedra arise in the strictification process, and how they are related to
operadic partition complexes.
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[CO20] Pierre-Louis Curien and Jovana Obradović, Categorified Cyclic Operads, Applied Categorical Struc-

tures 28 (2020), no. 1, 59–112.
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