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TOPOLOGICAL PROOFS OF CATEGORICAL COHERENCE

PIERRE-LOUIS CURIEN AND GUILLAUME LAPLANTE-ANFOSSI

”We shall construct KPn, as a CW-complex, in Section 2 and show that it is an pn´ 1q-ball. This gives an
instant one-step proof of MacLane’s theorem in full generality.”

– Mikhail M. Kapranov

Abstract. In this note, we give a short topological proof of coherence for categorified
non-symmetric operads by using the fact that the diagrams involved are the 1-skeleton of
simply connected CW complexes. In particular, we obtain a ”one-step” topological proof
of MacLane’s coherence theorem, as suggested by Kapranov in 1993. In addition, we use
Morse theory to give a second topological proof which is very close to MacLane’s original
argument. We use the same methods to deduce other categorical coherence results and
discuss possible generalisations to higher categories.

Introduction

The n-dimensional permutoassociahedron, a CW-complex whose faces are in bijection
with parenthesized permutations of n ` 1 letters, was first introduced by M. Kapranov
in his study of higher dimensional Yang–Baxter equations, through the moduli spaces of
curves M0,n`1pRq and the solutions of the Knizhnik–Zamolodchikov equation [Kap93]. It
was later realized as a convex polytope by V. Reiner and G. M. Ziegler [RZ94], and more
recently as a simple polytope in [BIP19] and through the nested braid fan in [CL21].

The present note stems from a desire to understand the epigraph, taken from the intro-
duction of [Kap93]: what is the precise relationship between the permutoassociahedron and
MacLane’s coherence theorem for symmetric monoidal categories? We show that the sim-
ple connectedness of the former implies the latter, thereby refining and proving Kapranov’s
claim (see Theorem 2.8).

This is done through a general “topological coherence theorem” which applies to any
simply connected, regular CW complex (Theorem 1.1). We use it to prove coherence result
for categorified non-symmetric operads, symplifying the proof of [DP15]. These objects,
introduced in [DP15], are an operadic generalization of non-symmetric monoidal categories.

We also investigate a topological incarnation of MacLane’s original argument, in the spirit
of rewriting theory. Using Morse theory on affine cell complexes [BB97], we obtain a general
topological theorem which applies to a certain family of simply connected polyhedral com-
plexes; the ones that admit a terminating and confluent rewriting system on their 1-skeleton
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(Theorem 1.4). In particular, this second theorem can be applied to polytopes, allowing us
to give a second, rewriting-theoretic proof of both previously mentioned coherence results.

These two general topological coherence theorems can be used to prove other categorical
results where polytopes appear, such as coherence for monoidal functors between monoidal
categories [Eps66], which we present in Section 2.4. This all points towards further investiga-
tion of the relationship between n-categorical coherence and n-connectedness of appropriate
spaces. As a motivation in this direction, the present results could well be the strict, n “ 1
case of recent theorems of S. Barkan in the 8-categorical setting [Bar22], see Section 3.1.

1. Topological coherence

1.1. Coherence à la Van Kampen. Let X be a regular CW complex, and let Xk, k ě 0
denote its k-skeleton. Let FpXq be the groupoid with set of objects X0 and morphisms
spanned by the following set: for each x P X0, one identity morphism idx : xÑ x; and for
each 1-cell α P X1, one morphism α : x Ñ y oriented according to its attaching map, and
one inverse morphism α´1 : y Ñ x in the opposite direction. In other words, FpXq is the
free groupoid generated by the morphisms α. A combinatorial path on X is a morphism
in FpXq, that is, a composable sequence of α and α´1 morphisms (a word in α and α´1).
Two combinatorial paths γ, γ1 P FpXqpx, yq with the same endpoints are said to be parallel.

The attaching map of a 2-cell A of X defines a morphism γA P FpXqpx, xq for a certain
x P A0, given by the sequence of 1-cells in its image. Two parallel combinatorial paths γ, γ1

are said to be elementary combinatorially homotopic if they differ exactly by a relation of
the form γA “ idx, for some 2-cell A. That is, one can rewrite γ into γ1 or γ1 into γ by
replacing some (possibly empty) subword of γ with an equivalent subword using the relation
γA “ idx. More generally, two parallel combinatorial paths are combinatorially homotopic
if they are related by a sequence of elementary combinatorial homotopies.

Theorem 1.1. Any two parallel combinatorial paths on X are combinatorially homotopic
if and only if every path component of X is simply connected.

Proof. Let ΠpXq denote the fundamental groupoid of X, that is the groupoid with objects
the vertices of X and morphisms the homotopy classes of paths between them. Let CpXq de-
note the quotient of the groupoid FpXq by the relation “being combinatorially homotopic”.
Then, we have an isomorphism of groupoids

ΠpXq – CpXq .

To show this, one proceeds in three steps. First, one shows that the fundamental groupoid
ΠpX1q of the 1-skeleton of X is free on the homotopy classes of maps generated by the
attaching maps of the 1-cells, that is, free on the α-morphisms [Bro06, 9.1.5]. Thus, one
gets ΠpX1q – FpXq. Second, one shows that the fundamental groupoid ΠpX2q of the 2-
skeleton of X is the free groupoid ΠpX1q modulo the relations γA “ 1, for A a 2-cell of
X [Bro06, 9.1.6]. This is done through repeated application of the Seifert–Van Kampen
theorem; one then has ΠpX2q – CpXq. Third, one shows that the inclusion of X2 in X
induces an isomorphism of fundamental groupoids ΠpX2q – ΠpXq [Bro06, 9.1.7], which
concludes the proof of the isomorphism ΠpXq – CpXq. The theorem then follows, since
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every path component of X is simply connected if and only if its fundamental groupoid
ΠpXq is trivial. �

1.2. Coherence à la Morse. Let X Ă Rn be a polyhedral complex, and let ~v P Rn be
generic on the edges of X, meaning that for any pair of vertices x, y P X belonging to
the same edge of X, we have x~v, xy ‰ x~v, yy. Such a generic vector ~v induces a natural
orientation on the edges of X, directed from the source vertex where the functional x~v,´y
is minimal to the target vertex where it is maximal.

In general, for any face F Ă X of X, there is a unique source vertex scpF q such that all
its adjacent edges e Ă F are outgoing, and a unique sink vertex skpF q whose adjacent edges
are all incoming. When the complex X has a unique global sink, a vertex whose adjacent
edges e Ă X are all incoming, we will denote it by skpXq.

Let H :“ ty P Rn | x~v, yy “ 0u be the linear hyperplane orthogonal to ~v. For every vertex
x P X, choose ε ą 0 such that the interval between x~v, xy and x~v, xy ` ε does not contain
the image of any other vertex under the “height” function x~v,´y.

Definition 1.2. The outgoing link of a vertex x P X is the intersection F X pH ` x` ε~vq
of the family of faces F :“ tF Ă X | scpF q “ xu with the affine hyperplane H ` x` ε~v.

A combinatorial path γ on X is oriented if for any pair pe, fq of consective edges in γ, we
have that skpeq “ scpfq. When no ambiguity arises, we will omit the adjective “combinato-
rial” and say only “oriented path”. Two parallel oriented paths are said to be elementary
combinatorially homotopic if they are as non-oriented paths. They are combinatorially ho-
motopic if they are related by a sequence of elementary combinatorial homotopies between
oriented paths.

The following Lemma and its consequence Theorem 1.4 translate into topological terms
the proof of [ML63, Theorem 3.1].

Lemma 1.3. Let X be a polyhedral complex, and let ~v be generic on the edges of X. If
there is a unique global sink skpXq, then the outgoing link of every vertex is connected if
and only if any two parallel oriented paths on X are combinatorially homotopic.

Proof. We prove the first implication. Suppose that the outgoing link of every vertex is
connected. Let γ and γ1 be two parallel oriented paths between two vertices x and y. We
prove that they are combinatorially homotopic. We proceed by induction on the maximal
length m of an oriented path between x and y in X. Without loss of generality, we can
suppose that y “ skpXq, since if y ‰ skpXq we can always find an oriented path between
y and skpXq. The cases when m “ 0 and m “ 1 are trivial. Suppose that the hypothesis
holds up to m “ k ´ 1, k ě 2, and consider two paths γ and γ1 for which m “ k. Let e and
e1 denote the edges of γ and γ1 that are adjacent to x. We examine three cases.

(1) If e “ e1, we can apply the induction hypothesis to γze and γ1ze1.
(2) If e ‰ e1 and both edges are on the same 2-face F of X, then using the induction

hypothesis we have that γ and γ1 are respectively combinatorially homotopic to the
paths δ and δ1 defined as follows: they go from x “ scpF q to skpF q by the unique path
containing e and e1, respectively, and then from skpF q to y along the same arbitrary
oriented path. Since δ and δ1 are combinatorially homotopic by definition, the
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conclusion follows from the transitivity of the combinatorial homotopy equivalence
relation.

(3) Suppose that e ‰ e1, and that e and e1 are not on the same 2-face of X. Since the
outgoing link of x is connected, there exists a path θ between e and e1 in this link.
For every edge ei of X in the path θ, choose an oriented path γi in X from x to
y “ skpXq going through ei. Now apply Point (2) above to every pair of parallel
oriented paths pγi, γi`1q with ei and ei`1 consecutive in θ, and conclude again by
transitivity of the combinatorial homotopy equivalence relation.

In the other direction, suppose that every pair of parallel oriented combinatorial paths are
combinatorially homotopic. We show that for any vertex x, its outgoing link is connected.
Indeed, take two edges e, e1 of X with source x, and consider their extensions to oriented
paths γ, γ1 from x to skpXq. By hypothesis, these two paths are combinatorially homotopic,
that is, there is a sequence of parallel oriented paths from γ to γ1. The collection of first
edges in each of these paths defines a path between e and e1 in the outgoing link of x. Thus,
this link is connected. �

Theorem 1.4. Let X be a polyhedral complex, and let ~v be generic on the edges of X.
Suppose that

i) there is a unique sink skpXq, and
ii) the outgoing link of every vertex is connected.

Then, any two parallel combinatorial paths on X are combinatorially homotopic.

Proof. By Lemma 1.3, the conclusion holds for oriented paths. Let us show that this implies
the non-oriented version. Let γ be a (non-oriented) combinatorial path on X between x
and y. For every vertex z along γ, one can choose an oriented path δz from z to skpXq. We
observe that for any edge e : z Ñ z1 of γ, the oriented paths δz and δz1e are combinatorially
homotopic by hypothesis. Going from x to y inductively one edge at a time and using
transitivity of the homotopy equivalence relation, one obtains that γ is combinatorially
homotopic to δ´1y δx. Taking another combinatorial path γ1 parallel to γ, the same argument

shows that γ1 is combinatorial homotopic to δ´1y δx. Thus γ and γ1 are combinatorially
homotopic, which completes the proof. �

Remark 1.5. One can consider the abstract rewriting system defined by ~v on the vertices of
X, saying that x can be rewritten into y if and only if there is an oriented path from x to
y in X. The hypotheses of Theorem 1.4 impose that this rewriting system is terminating
and confluent [BN98, Definition 2.1.3].

The class of polyhedral complexes to which Theorem 1.4 applies is a strict subclass of
simply connected complexes, as the following proposition shows.

Proposition 1.6. Let X be a polyhedral complex. If there is a generic vector ~v P Rn such
that the outgoing link of every vertex is connected, then every path component of X is simply
connected.

Proof. Let ~v P Rn be generic with respect to X, and suppose that the outgoing link of every
vertex is connected. Since ~v is generic on edges, it defines a Morse function x~v,´y on X,
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in the sense of [BB97, Definition 2.2]. As in classical Morse theory, one can determine the
homotopy type of X by considering its successive level sets. For t P R denote by Xt the
closed subspace of X containing points x such that xx,~vy is at least t. Let x be a vertex of X
of height h “ xx,~vy. Observe first that Xh`ε, for some small ε ą 0, is homotopy equivalent
to Xh1 where h1 ą h is the next greater height at which there is a vertex. That is, the
homotopy type of X can only change at vertices [BB97, Lemma 2.3]. Then, one proves that
Xh is homotopy equivalent to the pushout of Xh`ε with the cone over the outgoing link of
x along the outgoing link of x [BB97, Lemma 2.5]. By our assumption, the outgoing link of
x is connected, and thus the cone over it is simply connected. Since the pushout of simply
connected spaces over a connected space is always simply connected (this is an application
of the Seifert–Van Kampen theorem), we obtain by induction that every path component
of X is simply connected [BB97, Point (3) of Corollary 2.6]. �

The converse of Proposition 1.6 is not true in general: many simply connected polyhedral
complexes, as the one represented in Figure 1, have disconnected outgoing links, for many
(sometimes for all) choices of generic orientation vectors.

Figure 1. A simply connected polyhedral complex which admits discon-
nected outgoing links for every choice of generic vector.

This implies that the converse of Theorem 1.4 does not hold, and thus that MacLane’s
original proof is far from reaching the full generality of Theorem 1.1. However, it will be
sufficient for our purposes, presented in the next Section, since it applies to any polytope.

Proposition 1.7. Let P Ă Rn be a polytope, and let ~v P Rn be generic with respect to P .
Then, P admits a unique sink skpP q, and the outgoing link of every vertex is connected.

Proof. The existence and uniqueness of a sink is one of the basic, very useful facts about
polytopes, see [Zie95, Theorem 3.7]. For the second part, we first observe that the link of
a vertex x in a polytope, called the vertex figure and denoted P {x, is itself a polytope of
dimension dimP´1, whose pk´1q-faces are in bijection with the k-faces of P that contain x
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[Zie95, Proposition 2.4]. Define the linear hyperplane H :“ ty P Rn | x~v, yy “ 0u, and
consider the two half-spaces H´ :“ ty P Rn | x~v, yy ă 0u and H` :“ ty P Rn | x~v, yy ă 0u.
Since ~v is not perpendicular to any edge of P , it defines a partition of the vertices of P {x
into two connected components: the vertices that lie in H´, which correspond to incoming
edges of P at x, and the vertices that lie in H`, which correspond to outgoing edges of P
at x. Thus, the outgoing link of x is connected, and the proof is complete. �

2. Categorical coherence

2.1. Basic definitions. Throughout this section we consider structures without units. Un-
less otherwise stated, the adjective “non-unital” will be implicitly assumed.

Definition 2.1. A categorified non-symmetric operad P is a collection tPpnqunPN of small
categories equipped with bifunctors

˝i : Ppnq ˆ Ppkq ÝÑ Ppn` k ´ 1q , for 1 ď i ď n ,

and for each κ P Ppmq, µ P Ppnq, ν P Ppkq, 1 ď i ď m, 1 ď j ď n natural isomorphisms

βκ,µ,ν : pκ ˝i µq ˝j`i´1 ν
–
ÝÑ κ ˝i pµ ˝j νq ,

θκ,ν,µ : pκ ˝i νq ˝j`k´1 µ
–
ÝÑ pκ ˝j µq ˝i ν , when i ă j ,

such that the following diagrams commute: the pentagonal

ppκ ˝ τq ˝ µq ˝ ν

pκ ˝ pτ ˝ µq ˝ νq

κ ˝ ppτ ˝ µq ˝ νq

κ ˝ pτ ˝ pµ ˝ νqq

pκ ˝ τq ˝ pµ ˝ νq

βκ,τ,µ ˝ 1ν

βκ,τ˝µ,ν

1κ ˝ βτ,µ,ν

βκ˝τ,µ,ν

βκ,τ,µ˝ν

ppκ ˝ τq ˝ µq ˝ ν

ppκ ˝ τq ˝ νq ˝ µ

ppκ ˝ νq ˝ τq ˝ µ

pκ ˝ νq ˝ pτ ˝ µq

pκ ˝ pτ ˝ µq ˝ ν

θκ˝τ,µ,ν

θκ,τ,ν ˝ 1µ

βκ˝ν,τ,µ

βκ,τ,µ ˝ 1ν

θκ,τ˝µ,ν
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ppκ ˝ τq ˝ µq ˝ ν

ppκ ˝ µq ˝ τq ˝ ν

ppκ ˝ µq ˝ νq ˝ τ

pκ ˝ pµ ˝ νqq ˝ τ

pκ ˝ τq ˝ pµ ˝ νq

θκ,τ,µ ˝ 1ν

θκ˝µ,τ,ν

βκ,µ,ν ˝ 1τ

βκ˝τ,µ,ν

θκ,τ,µ˝ν

and hexagonal identities

ppκ ˝ τq ˝ µq ˝ ν

pκ ˝ pτ ˝ µqq ˝ ν

κ ˝ ppτ ˝ µq ˝ νq

κ ˝ ppτ ˝ νq ˝ µq

ppκ ˝ τq ˝ νq ˝ µ

pκ ˝ pτ ˝ νqq ˝ µ

βκ,τ,µ ˝ 1ν

βκ,τ˝µ,ν

1κ ˝ θτ,µ,ν

θκ˝τ,µ,ν

βκ,τ,ν ˝ 1µ

βκ,τ˝ν,µ

ppκ ˝ τq ˝ µq ˝ ν

ppκ ˝ µq ˝ τq ˝ ν

ppκ ˝ µq ˝ νq ˝ τ

ppκ ˝ νq ˝ µq ˝ τ

ppκ ˝ τq ˝ νq ˝ µ

ppκ ˝ νq ˝ τq ˝ µ

θκ,τ,µ ˝ 1ν

θκ˝µ,τ,ν

θκ,µ,ν ˝ 1τ

θκ˝τ,µ,ν

θκ,τ,ν ˝ 1µ

θκ˝ν,τ,µ

.

The diagrams above hold for all instances of composable β and θ; these depend on the
indices i, j, k, which are omitted for the sake of readability. Observe that a categorified
non-symmetric operad concentrated in arity 1 is a non-symmetric monoidal category.

One can picture an object µ P Ppnq as a planar tree with one vertex decorated by µ,
n leaves and one root (a corolla). The ˝i bifunctors then correspond to the operation of
grafting a corolla on top of another. Iterated applications of the ˝i can be visualized as
fully nested planar trees [Lap22, Definition 2.2], with vertices decorated by objects of P,
see Figure 2.

The β and θ arrows correspond to the sequential and parallel axioms of an operad, and
relate the two possible ways of nesting a tree with 3 vertices, see Figure 3. Moreover, there
is then one coherence diagram (pentagon or hexagon) for every planar tree with 4 vertices,
see Figure 4.

Remark 2.2. K. Došen and Z. Petrić introduced in [DP15, Section 12] the notion of weak
Cat-operad. Despite looking different at first sight, the two notions are in fact equivalent.
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µ

ν ρ
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Figure 2. A fully nested planar tree.
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ÝÑ

κ

µ

ν

κ

µν
θ
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κ

µν

Figure 3. The β and θ isomorphisms defining a categorified non-symmetric operad.

κ

τ

µ

ν

κ

τ

µ

ν

κ

τ µ

ν

κ

τ

µ ν

κ

τ µ ν

Figure 4. The five planar trees with four vertices, giving rise to the pen-
tagonal (first three) and hexagonal (last two) identites.

The crucial observation is the following: the θ-isomorphisms of Došen–Petrić comprise both
the isomorphisms θ in Definition 2.1 and their inverses θ´1. Therefore, there are only two
pentagonal coherence diagrams in the definition of a weak Cat-operad, the equations (β
pente) and (βθ2e) of [DP15, Section 9]. The set of diagrams of the form (β pente) is the
same as the set of diagrams which arises from the first pentagon in Definition 2.1, while the
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set of diagrams of the form (βθ2e) is partitioned into the sets of diagrams which arise from
the second and third pentagons in Definition 2.1.

We will give in Theorem 2.6 two topological proofs of coherence for categorified non-
symmetric operads. A benefit of our presentation is that, adopting the oriented approach
(see the second proof of Theorem 2.6), we get a proof of coherence where β and θ are
both treated as rewriting rules, in contrast with the proof in [DP15], which proceeds in two
stages: first get rid of β (rewriting), then deal with θ. See also Remark 2.9.

Definition 2.3. A strong morphism of categorified non-symmetric operads F : P Ñ Q is a
collection of functors Fn : Ppnq Ñ Qpnq together with natural isomorphisms

γκ,µ : Fm´1`npκ ˝i µq
–
ÝÑ Fmpκq ˝i Fnpµq

such that the following diagrams commute:

F ppκ ˝ µq ˝ νq

F pκ ˝ µq ˝ F pνq

pF pκq ˝ F pµqq ˝ F pνq

F pκq ˝ pF pµq ˝ F pνqq

F pκ ˝ pµ ˝ νqq

F pκq ˝ F pµ ˝ νq

γκ˝µ,ν

γκ˝µ ˝ 1F pνq

βF pκq,F pµq,F pνq

F pβκ,µ,νq

γκ,µ˝ν

1F pκq ˝ γµ,ν

F ppκ ˝ νq ˝ µq

F pκ ˝ νq ˝ F pµq

pF pκq ˝ F pνqq ˝ F pµq

pF pκq ˝ F pµqq ˝ F pνq

F ppκ ˝ µq ˝ νq

F pκ ˝ µq ˝ F pνq

γκ˝ν,µ

γκ,ν ˝ 1F pµq

θF pκq,F pνq,F pµq

F pθκ,ν,µq

γκ˝µ,ν

γκ,ν ˝ 1F pνq

.

It is said to be strict if the natural isomorphisms are identities.

Once again, the diagrams above hold for all instances of β and θ arrows, and we have
omitted the pi, j, kq-indices for readability. Observe that a strong (resp. strict) morphism
between categorified non-symmetric operads concentrated in arity 1 is a strong (resp. strict)
monoidal functor between non-symmetric monoidal categories.

2.2. Coherence theorem. We now aim at the coherence theorem for categorified non-
symmetric operads. In order to state the theorem, we construct the free non-symmetric
categorified operad on a family of sets S “ tSnuně1. We define a family of categories
S “ tSnuně1 whose objects are given by the following rules:

(1) if µ P Sn, then µ is an object of Sn;
(2) if µ P Sm and ν P Sn, then µ ˝i ν is an object of Sm´1`n, for any 1 ď i ď m.

If an object µ is in Sn, we say that µ has arity n. Now we define a set M of basic morphisms
β : pκ ˝i µq ˝j`i´1 ν Ø κ ˝i pµ ˝j νq : β´1 for every κ P Sm, µ P Sn, ν P Sk, 1 ď i ď m and
1 ď j ď n, and θ : pκ ˝i νq ˝j´1`k µØ pκ ˝j µq ˝i ν : θ´1 whenever i ă j. We then define the
generating morphisms of the family S by the following rules:
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(1) if φ PM , then φ is a generating morphism of S;
(2) if φ : t1 Ñ t2 is a generating morphism in S, and t3 P S, then φ˝i id : t1˝i t3 Ñ t2˝i t3

and id ˝j φ : t3 ˝j t1 Ñ t3 ˝j t2 are morphisms, for any i (resp. j) between 1 and the
arity of t1 (resp. t3).

Note that by construction, for every morphism φ : t1 Ñ t2, the objects t1 and t2 have
the same arity, and we say that φ has this arity. We then define Sn as the free category
over all generating morphisms of arity n. This finishes the construction of our family S of
categories.

One can think about the objects of S as the set of fully nested planar trees whose vertices
are decorated by objects of S, subject to the requirement that if a vertex has n incoming
edges, it must be decorated by an element of Sn. The nests in the tree represent the order
in which the objects decorating the vertices should be formally composed, as represented
in Figure 2. Morphisms in S are sequences of applications of the associativity rules β and
θ, moving one nest at a time to a neighbouring pair of vertices as in Figure 3.

Definition 2.4. We denote by FpSq the quotient of the family of categories S by local-
ization (inverting the β and θ morphisms), the axioms of bifunctors, and the coherence
diagrams defining a categorified non-symmetric operad.

Remark 2.5. In the tree representation for S, there is a coherence diagram for every deco-
rated planar tree with 4 vertices, see Figure 4. In the rewriting system formed by the fully
nested planar trees and the β and θ arrows, these correspond precisely to the critical pairs
[BN98, Section 6.2].

We obtain that FpSq is the free categorified non-symmetric operad on S. That is, for any
categorified non-symmetric operad P, and for any family of functions ρn : Sn Ñ ObpPpnqq,
there is a unique strict morphism of non-symmetric categorified operads FpSq Ñ P which
extends ρ “ tρnuně1. By precomposing it with the quotient map S Ñ FpSq, we get a
levelwise functor r´s : S Ñ P.

Theorem 2.6 (Coherence theorem). For any categorified non-symmetric operad P, for any
family of functions ρ : S Ñ ObpPq, and for any two parallel morphisms φ1, φ2 : t1 Ñ t2 in
S, we have rφ1s “ rφ2s.

Proof. The morphisms of S are in bijection with combinatorial paths on a family of poly-
topes called operahedra [Lap22, Section 2.1], see also [DP15, Section 13] and [COI19], whose
faces are in bijection with the set of all nestings on a planar tree. There is one operahedron
for each planar tree t, and its vertices are in bijection with the maximal (full) nestings of t
and edges between them are in bijection with the generating morphisms between the corre-
sponding terms. Two parallel morphisms in S thus define two parallel combinatorial paths
on some operahedron. Since an operahedron is simply connected, Theorem 1.1 implies that
these two combinatorial paths are combinatorially homotopic. The result then follows from
the fact that a 2-face of an operahedron is exactly either a square (witnessing naturality), a
pentagon or an hexagon (witnessing a coherence condition) as in Definition 2.1 above. �

Second proof. Alternatively, since the operahedra are polytopes, one can use Proposition 1.7
and Theorem 1.4. Choosing a generic vector ~v which has strictly decreasing coordinates
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for the Loday realizations [Lap22, Section 2.2] gives the orientations of the diagrams given
in Definition 2.1 on every 2-face [Lap22, Proposition 3.11]. The posets/rewriting system
obtained generalize the Tamari lattice on fully nested linear trees [Lap22, Definition 2.8].
One then obtains a topological proof of coherence which is almost word for word the original
proof of MacLane [ML63, Theorem 3.1], suitably generalized to categorified operads. �

Following Remark 2.2, we have that Theorem 2.6 gives an alternative, more economical
proof of coherence for weak Cat-operads [DP15, Proposition 14.2]. Incidentally, it gives an
alternative input to the proof of coherence for cyclic symmetric categorified operads [CO20].

Restricting the theorem above to non-symmetric operads concentrated in arity 1, the
category FpSq becomes the free non-symmetric monoidal category on S, and we get the
following corollary.

Corollary 2.7 (MacLane’s coherence theorem for non-symmetric monoidal categories).
For any non-symmetric monoidal category C, for any function ρ : S Ñ ObpCq, and for any
two parallel morphisms φ1, φ2 : t1 Ñ t2 in S, we have rφ1s “ rφ2s.

2.3. Symmetric monoidal categories. One can use the same ideas to prove MacLane’s
coherence theorem for symmetric monoidal categories, using the family of permutoassoci-
ahedra [Kap93, RZ94, BIP19, CL21]. Here we simply formulate the theorem, the proof is
really the same as the one of Theorem 2.6.

Let Wn denote the set of non-commutative, fully parenthesized words on n distinct letters.
Let pC,bq be a symmetric monoidal category. Each w P Wn defines in an obvious way a
functor rws : Cˆn Ñ C. For instance, if w “ ppabqcqpedq, then the associated functor is
defined on objects and morphisms by the formula

rws : Cˆn Ñ C
pa, b, c, d, eq ÞÑ ppab bq b cq b peb dq .

We consider the free category Wn which has objects the elements of Wn, and morphisms
generated by the ones of the form φ : w1 Ñ w2, where the word w2 is obtained from w1 by
applying either α : ppww1qw2q Ñ pwpw1w2qq, α´1, or τ : ww1 Ñ w1w to a subword of w1. To
any such φ one can associate a natural transformation rφs : rw1s Ñ rw2s in C in the obvious
way.

Theorem 2.8 (MacLane’s coherence theorem). For any symmetric monoidal category C,
and for any pair of parallel morphisms φ1, φ2 : w1 Ñ w2 in W “ tWnuně1, we have
rφ1s “ rφ2s.

Remark 2.9. MacLane’s original proof [ML63] proceeds in two stages, (anachronically) much
like the one of Došen–Petrić for weak Cat-operads (Remark 2.2). But the second proof of
Theorem 2.6 suggests a one stage proof: indeed, fixing a total order on the letters, allowing
τ : ab Ñ ba only if the maximal letter is in a (and adding τ´1), we get a terminating and
confluent rewriting system.

2.4. Further applications. One can also use the same strategy to prove coherence for
unital non-symmetric monoidal categories, using the unital associahedra of F. Muro and A.
Tonks [MT14].
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It is natural to ask if the construction of unital associahedra could be extended to the
permutoassociahedra, in such a way as to provide a topological proof of coherence for unital
symmetric monoidal categories. The question of the existence of these constructions at the
operadic level (i.e. does there exist unital operahedra, symmetric operahedra, and unital
symmetric operahedra?) is, to our knowledge, still open as well.

Another immediate application of Theorem 1.1 is the coherence of strong non-symmetric
monoidal functors between non-symmetric monoidal categories [Eps66]. The corresponding
topological objects are in this case the family of multiplihedra [Sta70, For08]. The general-
ization to strong morphisms between non-symmetric categorified operads also goes through,
involving this time the family of multiploperahedra described at the end of the introduction
in [LAM22].

In the same spirit as in Theorem 2.6, one could obtain coherence results for categorifica-
tions of many operad-like structures, for instance the ones described in [BMO20]: categori-
fied modular operads, wheeled properads, and permutads (shuffle algebras), among others.
In order to treat cyclic and symmetric structures, one could take inspiration from the re-
duction process followed in [CO20] for the case of cyclic symmetric categorified operads.

3. Perspectives

3.1. Higher categories. Theorem 1.1 demonstrates that, in the case of monoidal cate-
gories, coherence is equivalent to the vanishing of the first homotopy groups of the associ-
ahedra. Since the associahedra are contractible, and therefore all their homotopy groups
vanish, one could hope for a topological proof of higher dimensional coherence theorems.
Seeing a monoidal category as a bicategory with one object, one can ask about a coherence
theorem for tricategories with one object. A first look at the diagrams in the beginning of
[GPS95, Section 2] suggests that such a theorem should be at least related to the vanish-
ing of the second homotopy groups of the associahedra. To formulate higher dimensional
statements, one needs a good structure of pasting scheme on each associahedron, which is
the subject of ongoing work [LAMM].

Recent results of S. Barkan provide evidence for these higher dimensional statements, in
the context of 8-operads [Bar22]. In this vein, it seems likely that the present results could
be interpreted as a strict version and a special case of [Bar22, Theorem B]. It would be
interesting to see how the permutoassociahedra arise in the strictification process, and how
they are related to operadic partition complexes.
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