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Introduction

The n-dimensional permutoassociahedron, a CW-complex whose faces are in bijection with parenthesized permutations of n `1 letters, was first introduced by M. Kapranov in his study of higher dimensional Yang-Baxter equations, through the moduli spaces of curves M 0,n`1 pRq and the solutions of the Knizhnik-Zamolodchikov equation [START_REF] Mikhail | The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation[END_REF]. It was later realized as a convex polytope by V. Reiner and G. M. Ziegler [START_REF] Reiner | Coxeter-associahedra[END_REF], and more recently as a simple polytope in [START_REF] Baralić | A simple permutoassociahedron[END_REF] and through the nested braid fan in [START_REF] Castillo | The permuto-associahedron revisited[END_REF].

The present note stems from a desire to understand the epigraph, taken from the introduction of [START_REF] Mikhail | The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation[END_REF]: what is the precise relationship between the permutoassociahedron and MacLane's coherence theorem for symmetric monoidal categories? We show that the simple connectedness of the former implies the latter, thereby refining and proving Kapranov's claim (see Theorem 2.8). This is done through a general "topological coherence theorem" which applies to any simply connected, regular CW complex (Theorem 1.1). We use it to prove coherence result for categorified non-symmetric operads, symplifying the proof of [START_REF] Došen | Weak cat-operads[END_REF]. These objects, introduced in [START_REF] Došen | Weak cat-operads[END_REF], are an operadic generalization of non-symmetric monoidal categories.

We also investigate a topological incarnation of MacLane's original argument, in the spirit of rewriting theory. Using Morse theory on affine cell complexes [START_REF] Bestvina | Morse theory and finiteness properties of groups[END_REF], we obtain a general topological theorem which applies to a certain family of simply connected polyhedral complexes; the ones that admit a terminating and confluent rewriting system on their 1-skeleton (Theorem 1.4). In particular, this second theorem can be applied to polytopes, allowing us to give a second, rewriting-theoretic proof of both previously mentioned coherence results.

These two general topological coherence theorems can be used to prove other categorical results where polytopes appear, such as coherence for monoidal functors between monoidal categories [START_REF] Epstein | Functors between tensored categories[END_REF], which we present in Section 2.4. This all points towards further investigation of the relationship between n-categorical coherence and n-connectedness of appropriate spaces. As a motivation in this direction, the present results could well be the strict, n " 1 case of recent theorems of S. Barkan in the 8-categorical setting [START_REF] Barkan | Arity Approximation of 8-Operads[END_REF], see Section 3.1.

Topological coherence

1.1. Coherence à la Van Kampen. Let X be a regular CW complex, and let X k , k ě 0 denote its k-skeleton. Let FpXq be the groupoid with set of objects X 0 and morphisms spanned by the following set: for each x P X 0 , one identity morphism id x : x Ñ x; and for each 1-cell α P X 1 , one morphism α : x Ñ y oriented according to its attaching map, and one inverse morphism α ´1 : y Ñ x in the opposite direction. In other words, FpXq is the free groupoid generated by the morphisms α. A combinatorial path on X is a morphism in FpXq, that is, a composable sequence of α and α ´1 morphisms (a word in α and α ´1). Two combinatorial paths γ, γ 1 P FpXqpx, yq with the same endpoints are said to be parallel.

The attaching map of a 2-cell A of X defines a morphism γ A P FpXqpx, xq for a certain x P A 0 , given by the sequence of 1-cells in its image. Two parallel combinatorial paths γ, γ 1 are said to be elementary combinatorially homotopic if they differ exactly by a relation of the form γ A " id x , for some 2-cell A. That is, one can rewrite γ into γ 1 or γ 1 into γ by replacing some (possibly empty) subword of γ with an equivalent subword using the relation γ A " id x . More generally, two parallel combinatorial paths are combinatorially homotopic if they are related by a sequence of elementary combinatorial homotopies.

Theorem 1.1. Any two parallel combinatorial paths on X are combinatorially homotopic if and only if every path component of X is simply connected.

Proof. Let ΠpXq denote the fundamental groupoid of X, that is the groupoid with objects the vertices of X and morphisms the homotopy classes of paths between them. Let CpXq denote the quotient of the groupoid FpXq by the relation "being combinatorially homotopic". Then, we have an isomorphism of groupoids ΠpXq -CpXq .

To show this, one proceeds in three steps. First, one shows that the fundamental groupoid ΠpX 1 q of the 1-skeleton of X is free on the homotopy classes of maps generated by the attaching maps of the 1-cells, that is, free on the α-morphisms [Bro06, 9.1.5]. Thus, one gets ΠpX 1 q -FpXq. Second, one shows that the fundamental groupoid ΠpX 2 q of the 2skeleton of X is the free groupoid ΠpX 1 q modulo the relations γ A " 1, for A a 2-cell of X [Bro06, 9.1.6]. This is done through repeated application of the Seifert-Van Kampen theorem; one then has ΠpX 2 q -CpXq. Third, one shows that the inclusion of X 2 in X induces an isomorphism of fundamental groupoids ΠpX 2 q -ΠpXq [Bro06, 9.1.7], which concludes the proof of the isomorphism ΠpXq -CpXq. The theorem then follows, since every path component of X is simply connected if and only if its fundamental groupoid ΠpXq is trivial. 1.2. Coherence à la Morse. Let X Ă R n be a polyhedral complex, and let v P R n be generic on the edges of X, meaning that for any pair of vertices x, y P X belonging to the same edge of X, we have x v, xy ‰ x v, yy. Such a generic vector v induces a natural orientation on the edges of X, directed from the source vertex where the functional x v, ´y is minimal to the target vertex where it is maximal.

In general, for any face F Ă X of X, there is a unique source vertex scpF q such that all its adjacent edges e Ă F are outgoing, and a unique sink vertex skpF q whose adjacent edges are all incoming. When the complex X has a unique global sink, a vertex whose adjacent edges e Ă X are all incoming, we will denote it by skpXq.

Let H :" ty P R n | x v, yy " 0u be the linear hyperplane orthogonal to v. For every vertex x P X, choose ε ą 0 such that the interval between x v, xy and x v, xy `ε does not contain the image of any other vertex under the "height" function x v, ´y.

Definition 1.2. The outgoing link of a vertex x P X is the intersection F X pH `x `ε vq of the family of faces F :" tF Ă X | scpF q " xu with the affine hyperplane H `x `ε v.

A combinatorial path γ on X is oriented if for any pair pe, f q of consective edges in γ, we have that skpeq " scpf q. When no ambiguity arises, we will omit the adjective "combinatorial" and say only "oriented path". Two parallel oriented paths are said to be elementary combinatorially homotopic if they are as non-oriented paths. They are combinatorially homotopic if they are related by a sequence of elementary combinatorial homotopies between oriented paths.

The following Lemma and its consequence Theorem 1.4 translate into topological terms the proof of [ML63, Theorem 3.1].

Lemma 1.3. Let X be a polyhedral complex, and let v be generic on the edges of X. If there is a unique global sink skpXq, then the outgoing link of every vertex is connected if and only if any two parallel oriented paths on X are combinatorially homotopic.

Proof. We prove the first implication. Suppose that the outgoing link of every vertex is connected. Let γ and γ 1 be two parallel oriented paths between two vertices x and y. We prove that they are combinatorially homotopic. We proceed by induction on the maximal length m of an oriented path between x and y in X. Without loss of generality, we can suppose that y " skpXq, since if y ‰ skpXq we can always find an oriented path between y and skpXq. The cases when m " 0 and m " 1 are trivial. Suppose that the hypothesis holds up to m " k ´1, k ě 2, and consider two paths γ and γ 1 for which m " k. Let e and e 1 denote the edges of γ and γ 1 that are adjacent to x. We examine three cases.

(1) If e " e 1 , we can apply the induction hypothesis to γze and γ 1 ze 1 .

(2) If e ‰ e 1 and both edges are on the same 2-face F of X, then using the induction hypothesis we have that γ and γ 1 are respectively combinatorially homotopic to the paths δ and δ 1 defined as follows: they go from x " scpF q to skpF q by the unique path containing e and e 1 , respectively, and then from skpF q to y along the same arbitrary oriented path. Since δ and δ 1 are combinatorially homotopic by definition, the conclusion follows from the transitivity of the combinatorial homotopy equivalence relation.

(3) Suppose that e ‰ e 1 , and that e and e 1 are not on the same 2-face of X. Since the outgoing link of x is connected, there exists a path θ between e and e 1 in this link.

For every edge e i of X in the path θ, choose an oriented path γ i in X from x to y " skpXq going through e i . Now apply Point (2) above to every pair of parallel oriented paths pγ i , γ i`1 q with e i and e i`1 consecutive in θ, and conclude again by transitivity of the combinatorial homotopy equivalence relation. In the other direction, suppose that every pair of parallel oriented combinatorial paths are combinatorially homotopic. We show that for any vertex x, its outgoing link is connected. Indeed, take two edges e, e 1 of X with source x, and consider their extensions to oriented paths γ, γ 1 from x to skpXq. By hypothesis, these two paths are combinatorially homotopic, that is, there is a sequence of parallel oriented paths from γ to γ 1 . The collection of first edges in each of these paths defines a path between e and e 1 in the outgoing link of x. Thus, this link is connected.

Theorem 1.4. Let X be a polyhedral complex, and let v be generic on the edges of X. Suppose that i) there is a unique sink skpXq, and ii) the outgoing link of every vertex is connected. Then, any two parallel combinatorial paths on X are combinatorially homotopic.

Proof. By Lemma 1.3, the conclusion holds for oriented paths. Let us show that this implies the non-oriented version. Let γ be a (non-oriented) combinatorial path on X between x and y. For every vertex z along γ, one can choose an oriented path δ z from z to skpXq. We observe that for any edge e : z Ñ z 1 of γ, the oriented paths δ z and δ z 1 e are combinatorially homotopic by hypothesis. Going from x to y inductively one edge at a time and using transitivity of the homotopy equivalence relation, one obtains that γ is combinatorially homotopic to δ ´1 y δ x . Taking another combinatorial path γ 1 parallel to γ, the same argument shows that γ 1 is combinatorial homotopic to δ ´1 y δ x . Thus γ and γ 1 are combinatorially homotopic, which completes the proof.

Remark 1.5. One can consider the abstract rewriting system defined by v on the vertices of X, saying that x can be rewritten into y if and only if there is an oriented path from x to y in X. The hypotheses of Theorem 1.4 impose that this rewriting system is terminating and confluent [BN98, Definition 2.1.3].

The class of polyhedral complexes to which Theorem 1.4 applies is a strict subclass of simply connected complexes, as the following proposition shows.

Proposition 1.6. Let X be a polyhedral complex. If there is a generic vector v P R n such that the outgoing link of every vertex is connected, then every path component of X is simply connected.

Proof. Let v P R n be generic with respect to X, and suppose that the outgoing link of every vertex is connected. Since v is generic on edges, it defines a Morse function x v, ´y on X, in the sense of [BB97, Definition 2.2]. As in classical Morse theory, one can determine the homotopy type of X by considering its successive level sets. For t P R denote by X t the closed subspace of X containing points x such that xx, vy is at least t. Let x be a vertex of X of height h " xx, vy. Observe first that X h` , for some small ą 0, is homotopy equivalent to X h 1 where h 1 ą h is the next greater height at which there is a vertex. That is, the homotopy type of X can only change at vertices [BB97, Lemma 2.3]. Then, one proves that X h is homotopy equivalent to the pushout of X h` with the cone over the outgoing link of x along the outgoing link of x [BB97, Lemma 2.5]. By our assumption, the outgoing link of x is connected, and thus the cone over it is simply connected. Since the pushout of simply connected spaces over a connected space is always simply connected (this is an application of the Seifert-Van Kampen theorem), we obtain by induction that every path component of X is simply connected [BB97, Point (3) of Corollary 2.6].

The converse of Proposition 1.6 is not true in general: many simply connected polyhedral complexes, as the one represented in Figure 1, have disconnected outgoing links, for many (sometimes for all) choices of generic orientation vectors.

Figure 1. A simply connected polyhedral complex which admits disconnected outgoing links for every choice of generic vector. This implies that the converse of Theorem 1.4 does not hold, and thus that MacLane's original proof is far from reaching the full generality of Theorem 1.1. However, it will be sufficient for our purposes, presented in the next Section, since it applies to any polytope.

Proposition 1.7. Let P Ă R n be a polytope, and let v P R n be generic with respect to P . Then, P admits a unique sink skpP q, and the outgoing link of every vertex is connected.

Proof. The existence and uniqueness of a sink is one of the basic, very useful facts about polytopes, see [Zie95, Theorem 3.7]. For the second part, we first observe that the link of a vertex x in a polytope, called the vertex figure and denoted P {x, is itself a polytope of dimension dim P ´1, whose pk ´1q-faces are in bijection with the k-faces of P that contain x [Zie95, Proposition 2.4]. Define the linear hyperplane H :" ty P R n | x v, yy " 0u, and consider the two half-spaces H ´:" ty P R n | x v, yy ă 0u and H `:" ty P R n | x v, yy ă 0u. Since v is not perpendicular to any edge of P , it defines a partition of the vertices of P {x into two connected components: the vertices that lie in H ´, which correspond to incoming edges of P at x, and the vertices that lie in H `, which correspond to outgoing edges of P at x. Thus, the outgoing link of x is connected, and the proof is complete.

Categorical coherence

2.1. Basic definitions. Throughout this section we consider structures without units. Unless otherwise stated, the adjective "non-unital" will be implicitly assumed.

Definition 2.1. A categorified non-symmetric operad P is a collection tPpnqu nPN of small categories equipped with bifunctors ˝i : Ppnq ˆPpkq ÝÑ Ppn `k ´1q , for 1 ď i ď n , and for each κ P Ppmq, µ P Ppnq, ν P Ppkq, 1 ď i ď m, 1 ď j ď n natural isomorphisms β κ,µ,ν : pκ ˝i µq ˝j`i´1 ν -ÝÑ κ ˝i pµ ˝j νq , θ κ,ν,µ : pκ ˝i νq ˝j`k´1 µ -ÝÑ pκ ˝j µq ˝i ν , when i ă j , such that the following diagrams commute: the pentagonal ppκ ˝τ q ˝µq ˝ν pκ ˝pτ ˝µq ˝νq κ ˝ppτ ˝µq ˝νq κ ˝pτ ˝pµ ˝νqq pκ ˝τ q ˝pµ ˝νq β κ,τ,µ ˝1ν

β κ,τ ˝µ,ν 1 κ ˝βτ,µ,ν β κ˝τ,µ,ν β κ,τ,µ˝ν
ppκ ˝τ q ˝µq ˝ν ppκ ˝τ q ˝νq ˝µ ppκ ˝νq ˝τ q ˝µ pκ ˝νq ˝pτ ˝µq pκ ˝pτ ˝µq ˝ν

θ κ˝τ,µ,ν θ κ,τ,ν ˝1µ β κ˝ν,τ,µ β κ,τ,µ ˝1ν θ κ,τ ˝µ,ν
ppκ ˝τ q ˝µq ˝ν ppκ ˝µq ˝τ q ˝ν ppκ ˝µq ˝νq ˝τ pκ ˝pµ ˝νqq ˝τpκ ˝τ q ˝pµ ˝νq θ κ,τ,µ ˝1ν

θ κ˝µ,τ,ν β κ,µ,ν ˝1τ β κ˝τ,µ,ν θ κ,τ,µ˝ν
and hexagonal identities ppκ ˝τ q ˝µq ˝ν pκ ˝pτ ˝µqq ˝ν κ ˝ppτ ˝µq ˝νq κ ˝ppτ ˝νq ˝µq ppκ ˝τ q ˝νq ˝µ pκ ˝pτ ˝νqq ˝µ

β κ,τ,µ ˝1ν β κ,τ ˝µ,ν 1 κ ˝θτ,µ,ν θ κ˝τ,µ,ν β κ,τ,ν ˝1µ β κ,τ ˝ν,µ
ppκ ˝τ q ˝µq ˝ν ppκ ˝µq ˝τ q ˝ν ppκ ˝µq ˝νq ˝τ ppκ ˝νq ˝µq ˝τ ppκ ˝τ q ˝νq ˝µ ppκ ˝νq ˝τ q ˝µ θ κ,τ,µ ˝1ν

θ κ˝µ,τ,ν θ κ,µ,ν ˝1τ θ κ˝τ,µ,ν θ κ,τ,ν ˝1µ θ κ˝ν,τ,µ .
The diagrams above hold for all instances of composable β and θ; these depend on the indices i, j, k, which are omitted for the sake of readability. Observe that a categorified non-symmetric operad concentrated in arity 1 is a non-symmetric monoidal category.

One can picture an object µ P Ppnq as a planar tree with one vertex decorated by µ, n leaves and one root (a corolla). The ˝i bifunctors then correspond to the operation of grafting a corolla on top of another. Iterated applications of the ˝i can be visualized as fully nested planar trees [Lap22, Definition 2.2], with vertices decorated by objects of P, see Figure 2.

The β and θ arrows correspond to the sequential and parallel axioms of an operad, and relate the two possible ways of nesting a tree with 3 vertices, see Figure 3. Moreover, there is then one coherence diagram (pentagon or hexagon) for every planar tree with 4 vertices, see Figure 4.

Remark 2.2. K. Došen and Z. Petrić introduced in [DP15, Section 12] the notion of weak Cat-operad. Despite looking different at first sight, the two notions are in fact equivalent. set of diagrams of the form (βθ2 e ) is partitioned into the sets of diagrams which arise from the second and third pentagons in Definition 2.1.

We will give in Theorem 2.6 two topological proofs of coherence for categorified nonsymmetric operads. A benefit of our presentation is that, adopting the oriented approach (see the second proof of Theorem 2.6), we get a proof of coherence where β and θ are both treated as rewriting rules, in contrast with the proof in [START_REF] Došen | Weak cat-operads[END_REF], which proceeds in two stages: first get rid of β (rewriting), then deal with θ. See also Remark 2.9. 

γ κ˝ν,µ γ κ,ν ˝1F pµq θ F pκq,F pνq,F pµq F pθ κ,ν,µ q γ κ˝µ,ν γ κ,ν ˝1F pνq .
It is said to be strict if the natural isomorphisms are identities.

Once again, the diagrams above hold for all instances of β and θ arrows, and we have omitted the pi, j, kq-indices for readability. Observe that a strong (resp. strict) morphism between categorified non-symmetric operads concentrated in arity 1 is a strong (resp. strict) monoidal functor between non-symmetric monoidal categories.

Coherence theorem.

We now aim at the coherence theorem for categorified nonsymmetric operads. In order to state the theorem, we construct the free non-symmetric categorified operad on a family of sets S " tS n u ně1 . We define a family of categories S " tS n u ně1 whose objects are given by the following rules:

(1) if µ P S n , then µ is an object of S n ;

(2) if µ P S m and ν P S n , then µ ˝i ν is an object of S m´1`n , for any 1 ď i ď m. If an object µ is in S n , we say that µ has arity n. Now we define a set M of basic morphisms β : pκ ˝i µq ˝j`i´1 ν Ø κ ˝i pµ ˝j νq : β ´1 for every κ P S m , µ P S n , ν P S k , 1 ď i ď m and 1 ď j ď n, and θ : pκ ˝i νq ˝j´1`k µ Ø pκ ˝j µq ˝i ν : θ ´1 whenever i ă j. We then define the generating morphisms of the family S by the following rules:

(1) if φ P M , then φ is a generating morphism of S;

(2) if φ : t 1 Ñ t 2 is a generating morphism in S, and t 3 P S, then φ˝i id : t 1 ˝i t 3 Ñ t 2 ˝i t 3 and id ˝j φ : t 3 ˝j t 1 Ñ t 3 ˝j t 2 are morphisms, for any i (resp. j) between 1 and the arity of t 1 (resp. t 3 ). Note that by construction, for every morphism φ : t 1 Ñ t 2 , the objects t 1 and t 2 have the same arity, and we say that φ has this arity. We then define S n as the free category over all generating morphisms of arity n. This finishes the construction of our family S of categories.

One can think about the objects of S as the set of fully nested planar trees whose vertices are decorated by objects of S, subject to the requirement that if a vertex has n incoming edges, it must be decorated by an element of S n . The nests in the tree represent the order in which the objects decorating the vertices should be formally composed, as represented in Figure 2. Morphisms in S are sequences of applications of the associativity rules β and θ, moving one nest at a time to a neighbouring pair of vertices as in Figure 3. Definition 2.4. We denote by FpSq the quotient of the family of categories S by localization (inverting the β and θ morphisms), the axioms of bifunctors, and the coherence diagrams defining a categorified non-symmetric operad.

Remark 2.5. In the tree representation for S, there is a coherence diagram for every decorated planar tree with 4 vertices, see Figure 4. In the rewriting system formed by the fully nested planar trees and the β and θ arrows, these correspond precisely to the critical pairs [BN98, Section 6.2].

We obtain that FpSq is the free categorified non-symmetric operad on S. That is, for any categorified non-symmetric operad P, and for any family of functions ρ n : S n Ñ ObpPpnqq, there is a unique strict morphism of non-symmetric categorified operads FpSq Ñ P which extends ρ " tρ n u ně1 . By precomposing it with the quotient map S Ñ FpSq, we get a levelwise functor r´s : S Ñ P.

Theorem 2.6 (Coherence theorem). For any categorified non-symmetric operad P, for any family of functions ρ : S Ñ ObpPq, and for any two parallel morphisms φ 1 , φ 2 : t 1 Ñ t 2 in S, we have rφ 1 s " rφ 2 s.

Proof. The morphisms of S are in bijection with combinatorial paths on a family of polytopes called operahedra [Lap22, Section 2.1], see also [START_REF] Došen | Weak cat-operads[END_REF]Section 13] and [START_REF] Curien | Syntactic aspects of hypergraph polytopes[END_REF], whose faces are in bijection with the set of all nestings on a planar tree. There is one operahedron for each planar tree t, and its vertices are in bijection with the maximal (full) nestings of t and edges between them are in bijection with the generating morphisms between the corresponding terms. Two parallel morphisms in S thus define two parallel combinatorial paths on some operahedron. Since an operahedron is simply connected, Theorem 1.1 implies that these two combinatorial paths are combinatorially homotopic. The result then follows from the fact that a 2-face of an operahedron is exactly either a square (witnessing naturality), a pentagon or an hexagon (witnessing a coherence condition) as in Definition 2.1 above.

Second proof. Alternatively, since the operahedra are polytopes, one can use Proposition 1.7 and Theorem 1.4. Choosing a generic vector v which has strictly decreasing coordinates for the Loday realizations [Lap22, Section 2.2] gives the orientations of the diagrams given in Definition 2.1 on every 2-face [START_REF] Laplante-Anfossi | The diagonal of the operahedra[END_REF]Proposition 3.11]. The posets/rewriting system obtained generalize the Tamari lattice on fully nested linear trees [Lap22, Definition 2.8]. One then obtains a topological proof of coherence which is almost word for word the original proof of MacLane [ML63, Theorem 3.1], suitably generalized to categorified operads. Following Remark 2.2, we have that Theorem 2.6 gives an alternative, more economical proof of coherence for weak Cat-operads [DP15, Proposition 14.2]. Incidentally, it gives an alternative input to the proof of coherence for cyclic symmetric categorified operads [START_REF] Curien | Categorified Cyclic Operads[END_REF].

Restricting the theorem above to non-symmetric operads concentrated in arity 1, the category FpSq becomes the free non-symmetric monoidal category on S, and we get the following corollary.

Corollary 2.7 (MacLane's coherence theorem for non-symmetric monoidal categories). For any non-symmetric monoidal category C, for any function ρ : S Ñ ObpCq, and for any two parallel morphisms φ 1 , φ 2 : t 1 Ñ t 2 in S, we have rφ 1 s " rφ 2 s.

Symmetric monoidal categories.

One can use the same ideas to prove MacLane's coherence theorem for symmetric monoidal categories, using the family of permutoassociahedra [Kap93, RZ94, BIP19, CL21]. Here we simply formulate the theorem, the proof is really the same as the one of Theorem 2.6.

Let W n denote the set of non-commutative, fully parenthesized words on n distinct letters. Let pC, bq be a symmetric monoidal category. Each w P W n defines in an obvious way a functor rws : C ˆn Ñ C. For instance, if w " ppabqcqpedq, then the associated functor is defined on objects and morphisms by the formula We consider the free category W n which has objects the elements of W n , and morphisms generated by the ones of the form φ : w 1 Ñ w 2 , where the word w 2 is obtained from w 1 by applying either α : ppww 1 qw 2 q Ñ pwpw 1 w 2 qq, α ´1, or τ : ww 1 Ñ w 1 w to a subword of w 1 . To any such φ one can associate a natural transformation rφs : rw 1 s Ñ rw 2 s in C in the obvious way.

Theorem 2.8 (MacLane's coherence theorem). For any symmetric monoidal category C, and for any pair of parallel morphisms φ 1 , φ 2 : w 1 Ñ w 2 in W " tW n u ně1 , we have rφ 1 s " rφ 2 s.

Remark 2.9. MacLane's original proof [START_REF] Mac | Natural associativity and commutativity[END_REF] proceeds in two stages, (anachronically) much like the one of Došen-Petrić for weak Cat-operads (Remark 2.2). But the second proof of Theorem 2.6 suggests a one stage proof: indeed, fixing a total order on the letters, allowing τ : ab Ñ ba only if the maximal letter is in a (and adding τ ´1), we get a terminating and confluent rewriting system.

2.4. Further applications. One can also use the same strategy to prove coherence for unital non-symmetric monoidal categories, using the unital associahedra of F. Muro and A. Tonks [START_REF] Muro | Unital associahedra[END_REF].

It is natural to ask if the construction of unital associahedra could be extended to the permutoassociahedra, in such a way as to provide a topological proof of coherence for unital symmetric monoidal categories. The question of the existence of these constructions at the operadic level (i.e. does there exist unital operahedra, symmetric operahedra, and unital symmetric operahedra?) is, to our knowledge, still open as well.

Another immediate application of Theorem 1.1 is the coherence of strong non-symmetric monoidal functors between non-symmetric monoidal categories [START_REF] Epstein | Functors between tensored categories[END_REF]. The corresponding topological objects are in this case the family of multiplihedra [START_REF] Stasheff | H-spaces from a homotopy point of view[END_REF][START_REF] Forcey | Convex hull realizations of the multiplihedra[END_REF]. The generalization to strong morphisms between non-symmetric categorified operads also goes through, involving this time the family of multiploperahedra described at the end of the introduction in [START_REF] Laplante | The diagonal of the multiplihedra and the tensor product of A-infinity morphisms[END_REF].

In the same spirit as in Theorem 2.6, one could obtain coherence results for categorifications of many operad-like structures, for instance the ones described in [START_REF] Batanin | Minimal models for graphs-related operadic algebras[END_REF]: categorified modular operads, wheeled properads, and permutads (shuffle algebras), among others. In order to treat cyclic and symmetric structures, one could take inspiration from the reduction process followed in [START_REF] Curien | Categorified Cyclic Operads[END_REF] for the case of cyclic symmetric categorified operads.

Perspectives

3.1. Higher categories. Theorem 1.1 demonstrates that, in the case of monoidal categories, coherence is equivalent to the vanishing of the first homotopy groups of the associahedra. Since the associahedra are contractible, and therefore all their homotopy groups vanish, one could hope for a topological proof of higher dimensional coherence theorems. Seeing a monoidal category as a bicategory with one object, one can ask about a coherence theorem for tricategories with one object. A first look at the diagrams in the beginning of [GPS95, Section 2] suggests that such a theorem should be at least related to the vanishing of the second homotopy groups of the associahedra. To formulate higher dimensional statements, one needs a good structure of pasting scheme on each associahedron, which is the subject of ongoing work [LAMM].

Recent results of S. Barkan provide evidence for these higher dimensional statements, in the context of 8-operads [START_REF] Barkan | Arity Approximation of 8-Operads[END_REF]. In this vein, it seems likely that the present results could be interpreted as a strict version and a special case of [START_REF] Barkan | Arity Approximation of 8-Operads[END_REF]Theorem B]. It would be interesting to see how the permutoassociahedra arise in the strictification process, and how they are related to operadic partition complexes.

  Definition 2.3. A strong morphism of categorified non-symmetric operads F : P Ñ Q is a collection of functors F n : Ppnq Ñ Qpnq together with natural isomorphisms γ κ,µ : F m´1`n pκ ˝i µq -ÝÑ F m pκq ˝i F n pµq such that the following diagrams commute: F ppκ ˝µq ˝νq F pκ ˝µq ˝F pνq pF pκq ˝F pµqq ˝F pνq F pκq ˝pF pµq ˝F pνqq F pκ ˝pµ ˝νqq F pκq ˝F pµ ˝νq γ κ˝µ,ν γ κ˝µ ˝1F pνq β F pκq,F pµq,F pνq F pβ κ,µ,ν q γ κ,µ˝ν 1 F pκq ˝γµ,ν F ppκ ˝νq ˝µq F pκ ˝νq ˝F pµq pF pκq ˝F pνqq ˝F pµq pF pκq ˝F pµqq ˝F pνq F ppκ ˝µq ˝νq F pκ ˝µq ˝F pνq

  rws : C ˆn Ñ C pa, b, c, d, eq Þ Ñ ppa b bq b cq b pe b dq .
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