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ABSTRACT

Thanks to their mechanical properties, composite materials are widely used 

in the aeronautic industry. However, they are subject to internal damages like 

delamination that can threaten structural integrity while being invisible to the naked 

eye. Structural Health Monitoring (SHM) allows to ensure in real-time that aircraft 

substructures can still perform their function. Among all the technologies used in 

SHM, the emission/reception of Lamb waves makes it possible to obtain a lot of 

information regarding the state of the structure since one knows the input signal in 

addition to the output signal. Algorithms using Lamb waves for damage detection 

and localization already exist in the literature but damage size estimation is still an 

open problem. In this paper, we propose a baseline-free approach to quantify 

delamination damage size by relying on an analytical scattering model. The structure 

considered is a plate equipped with piezoelectric transducers (PZT) acting both as 

actuators and sensors. We use the framework of the Mindlin-Kane plate theory to 

describe S0-mode Lamb wave propagation. We make the assumption that the S0 

mode can be assimilated to an extensional-compressional wave. The damage 

considered is a cylindrical inhomogeneity where the mechanical properties are 

different from the rest of the plate. The analytical model derived takes into account 

the signal emission by a PZT, the scattering by the damage, and the reception by a 

sensor PZT. This model is then used in an identification process to estimate the size 

of the damage by minimizing a dedicated cost function. The proposed approach is 

applied on simulation data using aluminum plate.

INTRODUCTION

In order to reduce their maintenance costs, airlines are increasingly interested

in predictive maintenance systems. This type of maintenance consists in 

immobilizing an aircraft once a condition indicator exceeds a threshold, rather than 

wait for a pre-determined period of use. This indicator reflects the actual state of 

degradation of the monitored structure. To build this indicator, it is necessary to know 

the size of the detected damages to be able to estimate the remaining life of the 

structure. This is why there is a strong need for reliable and robust quantification 

algorithms in SHM field. In this paper, we will address the quantification step of 

SHM by a physic based analytical model inversion.

Yet the literature is rich in articles on the different physical phenomena 

involved in the process of guided waves SHM. Indeed, the propagation of Lamb 

waves is well known in isotropic materials, transverse isotropic materials and 

laminated composites that are of particular interest for aerospace applications. 

Similarly, analytical models of the effect of a piezoelectric actuator on its support 

exist. Crawley and de Luis proposed a model based on Euler-Bernoulli strain 

distribution and shear lag theory [1]. This approach is detailed for a 1D piezoelectric 

element glued to the structure through a bonding layer transmitting the shear 

produced by the actuator to the host structure. Shear lag theory is based on the 

assumptions that the adhesive only carries shear stress and adherends (transducer and 

plate) only deforms axially [2]. Giurgiutiu extend this work for 2D circular and 

rectangular transducers [3]. In both cases the dynamic of the actuator is neglected 

thus, this model is only valid for low frequency range. If the bonding layer is enough
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stiff and thin we can consider the piezoelectric wafer as ideally bonded to the 

structure. In this limit case, the actuator only produces shear at its tips, or for a circular 

actuator, on its perimeter. This simplified model is called pin-force model and is 

widely use in the literature. Piezoelectric sensors are easier to model [4]. Indeed, the 

output voltage is proportional to the in-plane normal surface strain. Finally, some 

analytical damage models exist. In [5], the author proposed an analytical model of 

scattering for blind hole in an isotropic plate. He compared the results obtained with 

zeroth-order plate theory for extensional and flexural waves to the ones obtained with 

2D wave equations. The scattered wave is written as a Fourier-Bessel series and the 

unknown coefficients are determined from continuity conditions at damage interface. 

The comparison shown that both models have similar results at low frequency range. 

Several articles investigated the model based on plate theory by using different plate 

theory and damage shape. The authors of [6] studied the conversion of modes for 

extensional and flexural waves induced by a blind hole in an isotropic plate. Good 

agreement was find between the proposed model and experimental results. The same 

kind of analysis has been made for blind holes on each side of the plate that scatter 

extensional and flexural waves [7]. In [8], the authors used a higher plate theory for 

extensional waves called Kane-Mindlin theory and described a model for extensional 

wave scattered by a cylindrical inhomogeneity with a different thickness from the 

plate for transverse isotropic material. 

However, even if these models are known and used to qualitatively dimension 

the PZT network (size and position of the transducers, choice of excitation signal), 

there is no comprehensive analytical model of a signal received after the actuator-

damage-sensor path in the literature. The advantages of such an analytical model are 

multiple: calculation of the signal induced by the wave reflected by the damage 

without reference state, speed of calculation and easy study of the influential 

parameters. Up to now, this kind of results can only be obtained by finite element 

simulation, which is computationally expensive and requires a careful selection of 

the simulation parameters (time step, mesh size) to ensure convergence.  

This complete analytical model can also be used to determine the size of the 

damage. Let say we have the output signals of transducers mounted on a plate in an 

unknown state of damage. Then we can solve the inverse problem which consists in 

estimating the size and the severity of the damage by minimizing the difference 

between the experimental received signal and the signal obtained with the model. To 

do this, we can use an optimization algorithm that will minimize a cost function by 

varying the parameters of interest. The speed of calculation of the modeled signal is 

crucial for this approach because it requires a large number of evaluations of the 

model: the use of a finite element model is therefore unfeasible. 

The topic of this paper is to build an analytical model that takes as input the 

material and geometrical parameters of the problem as well as the input signal to 

return the signal received by the sensor after reflection on a damage. We will first 

build this model and validate it on data from finite element simulation. Then, we will 

apply this model to estimate the size of a damage in a plate from simulation data. 

 

 

 

 



ANALYTICAL MODEL 

 

In this section, we propose to develop a physics based analytical model that 

takes the excitation signal send to the actuator as input and returns the electrical signal 

received by the sensor after the incident wave has been scattered by a damage. The 

plate is made of an isotropic material, piezoelectric elements are considered perfectly 

bonded to the plate and the damage is modeled as a through thickness cylindrical 

inhomogeneity. Inside the damage boundaries, the material parameters are different 

from the rest of the plate. Fig.01 illustrates the overall configuration of the problem. 

 

 

 

In the following, we will only consider the symmetrical fundamental mode 

S0 because it travels faster and is then easy to isolate from A0 mode and wave 

reflections. 

 

Actuator model 

 

Since we limit our study to low frequencies, that is to say frequency range 

where only fundamentals Lamb wave modes exists, we will use the pin-force actuator 

model to represent the exciting PZT [3]. The expression of the displacement radial 

component for S0 mode is 

 

 𝑢𝑟 =
𝜋𝑖𝜏0

4𝜇
𝑐𝐽1(𝑘𝑐)

𝑁s(𝑘)

𝐷′
s(𝑘)

𝐻1
(2)(𝑘𝑟) = 𝐾(𝑘) 𝐻1

(2)(𝑘𝑟) (1) 

 

 
Figure 1. Configuration of the scattering problem. 



where 𝜇 is the shear modulus of the plate material, 𝑐 is the radius of the PZT, 𝜏0 is 

the interfacial shear stress and 𝑘 is the wavenumber of the S0 mode. 𝑁s(𝑘) and 

𝐷′
s(𝑘) expressions are given in the reference paper. 

 

 

Scattering model 

 

Since we are interested in the low frequency excitation range, the extension-

compression plate waves are a good approximation of the S0 mode of Lamb. In this 

paper we follow the method proposed by Wang and Chang [8] which relies Kane-

Mindlin theory [9] where the displacement is written 

 

 𝑢𝑥 = 𝑣𝑥(𝑥, 𝑦), 𝑢𝑦 = 𝑣𝑦(𝑥, 𝑦), 𝑢𝑧 =
𝑧

ℎ
𝑣𝑧(𝑥, 𝑦) (2) 

 

The equation of motion then becomes 

 

 ℎ𝜇∇2𝑣 +  ℎ(𝜆 + 𝜇)∇(∇. 𝑣) + 𝜆 𝜅 ∇𝑣𝑧 = 𝜌ℎ�̈� (3) 

 
𝜇ℎ2

3
∇2𝑣𝑧 − 𝜅2(𝜆 + 2𝜇)𝑣𝑧 − ℎ𝜆𝜅 ∇. 𝑣 =

𝜌ℎ2

3
𝑣�̈� (4) 

 

where 𝑣 = 𝑣𝑥(𝑥, 𝑦)𝑥 + 𝑣𝑦(𝑥, 𝑦)𝑦, 𝑣𝑧 = 𝑣𝑧(𝑥, 𝑦) and 𝜅 is a correction factor with 

𝜅2 =
𝜋2

12
. The purely extensional thickness mode of the plate can be displayed by 

taking 𝑣𝑥 = 𝑣𝑦 = 0 and 𝑣𝑧 = 𝑒−𝑖𝜔t𝑡. This exhibits the mode frequency 𝜔t, which 

will appear in the following 

 

 𝜔t =  √
3𝜅2(𝜆 + 2𝜇)

ℎ2𝜌
 . (5) 

 

According to Helmholtz decomposition, the displacement field can be separated into 

two scalar field and one vector field 

 

 𝑣(𝑥, 𝑦) = ∇𝜙1(𝑥, 𝑦) +  ∇𝜙2(𝑥, 𝑦) + ∇ ∧ 𝜓(𝑥, 𝑦) (6) 

 

By replacing 𝑣 by its new expression, we can decompose the equation of motion into 

three independent Helmholtz equations 

 

 ∇2𝜙1 + 𝑘1
2𝜙1 = 0,   ∇2𝜙2 + 𝑘2

2𝜙2 = 0,   ∇2𝜓 + 𝑘3
2𝜓 = 0. (7) 

 

We exhibit three wavenumbers 𝑘1, 𝑘2 and 𝑘3 which correspond respectively to first 

extensional mode, second extensional mode and first shear horizontal mode and have 

the expression 

 

 𝑘1
2 = 𝐵 +  √𝐵2 − 𝐶 (8) 

 𝑘2
2 = 𝐵 − √𝐵2 − 𝐶 (9) 



 𝑘3
2  =  

𝜔2

𝑐3
2  (10) 

 

where 

 

 𝑩 =
𝝆𝝎𝟐

𝟐(𝝀 + 𝟐𝝁)
+

𝝆

𝟐𝝁
(𝝎𝟐 − 𝝎𝐭

𝟐) +
𝟑𝜿𝟐𝝀𝟐

𝟐𝒉𝟐𝝁(𝝀 + 𝟐𝝁)
 (11) 

 𝐶 =  
𝜌2𝜔2

𝜇(𝜆+2𝜇)
(𝜔2 − 𝜔t

2),  𝑐3 =  √
𝜇

𝜌
 (12) 

. 
The displacement field coordinates can then be written in the cylindrical coordinate 

system as 

 

 𝒗𝒓 = (
𝝏𝝓𝟏

𝝏𝒓
+

𝝏𝝓𝟐

𝝏𝒓
+

𝟏

𝒓

𝝏𝝍

𝝏𝜽
) 𝒆−𝒊𝝎𝒕 (13) 

 𝒗𝜽 =  (
𝟏

𝒓

𝝏𝝓𝟏

𝝏𝜽
+

𝟏

𝒓

𝝏𝝓𝟐

𝝏𝜽
−

𝝏𝝍

𝝏𝒓
) 𝒆−𝒊𝝎𝒕 (14) 

 𝑣𝑧 = (𝜎1𝜙1 + 𝜎2𝜙2)𝑒−𝑖𝜔𝑡 (15) 

 

We consider an incoming wave generated by the actuator. We assume a pure 

compressive wave thus the wave potentials associated to the other wave mode are 

null. For the following calculation, we need to derive an expression of the potential 

𝜙1
i  under Fourier series form. From equation (1), we get 

 

 𝜙1
𝑖 = −𝐾(𝑘1)𝐻0

(2)
(𝑘1𝑟)~ − 𝐾(𝑘1)

1 + 𝑖

√𝜋𝑘1𝑟
 ∑ 𝑖𝑛𝐽𝑛(−𝑘1𝑟)𝑒𝑖𝑛𝜃

∞

𝑛=−∞

 (16) 

 𝜙2
i  = 𝜓i  =  0  (17) 

 

The Helmholtz equation governing all wave potentials equation is solved using the 

separation of variables technique. Thus, the governing equation lead to two 

independent single-variable ordinary differential equations: the angle variable 𝜃 must 

satisfy the harmonic oscillator equation whereas the radius 𝑟 must satisfy the Bessel’s 

equation. The solutions of this last equation are a linear combination of Bessel 

function of different order. Nevertheless, the only pair of functions that satisfies the 

physics of the problem (finite potential at 𝑟 = 0 and outgoing wave toward 𝑟 → +∞) 

and that guarantees linear independence are 𝐻𝑛
(1)

and 𝐽𝑛which are Hankel function of 

the first kind and Bessel function of the first kind at order 𝑛, respectively. Finally, 

the wave potentials are written as 

 

 𝜙1
s = ∑ 𝐴𝑛𝑖𝑛𝐻𝑛

(1)(𝑘1𝑟)𝑒𝑖𝑛𝜃  

∞

𝑛=−∞

 𝜙2
s = ∑ 𝐵𝑛𝑖𝑛𝐻𝑛

(1)
(𝑘2𝑟)𝑒𝑖𝑛𝜃

∞

𝑛=−∞

 

(18) 

 𝜓s = ∑ 𝐶𝑛𝑖𝑛𝐻𝑛
(1)

(𝑘3𝑟)𝑒𝑖𝑛𝜃

∞

𝑛=−∞

 

 



 𝜙1
t =  ∑ 𝐷𝑛𝑖𝑛𝐽𝑛(𝑘1

∗𝑟)𝑒𝑖𝑛𝜃

∞

𝑛=−∞

 𝜙2
t =  ∑ 𝐸𝑛𝑖𝑛𝐽𝑛(𝑘2

∗𝑟)𝑒𝑖𝑛𝜃

∞

𝑛=−∞

 

(19) 

 𝜓t =  ∑ 𝐹𝑛𝑖𝑛𝐽𝑛(𝑘3
∗𝑟)𝑒𝑖𝑛𝜃

∞

𝑛=−∞

 

 

where 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛, 𝐸𝑛 and 𝐹𝑛 are the unknown coefficients at order 𝑛 related to 

each potential field. The terms with star superscript are properties inside the damage 

region. To determine the numerical value of each of these coefficients, we write the 

continuity conditions at damage interface  

 

 𝑣𝑟
i(𝛿, 𝜃)  + 𝑣𝑟

s(𝛿, 𝜃)  =  𝑣𝑟
t(𝛿, 𝜃) 𝑁𝑟𝑟

i (𝛿, 𝜃)  + 𝑁𝑟𝑟
s (𝛿, 𝜃)  =  𝑁𝑟𝑟

t (𝛿, 𝜃)  

(20)  𝑣𝜃
i (𝛿, 𝜃)  +  𝑣𝜃

s(𝛿, 𝜃)  =  𝑣𝜃
t (𝛿, 𝜃)  𝑁𝑟𝜃

i (𝛿, 𝜃) + 𝑁𝑟𝜃
s (𝛿, 𝜃)  =  𝑁𝑟𝜃

t (𝛿, 𝜃) 

 𝑣𝑧
i(𝛿, 𝜃)  + 𝑣𝑧

s(𝛿, 𝜃)  =  𝑣𝑧
t(𝛿, 𝜃) 𝑅𝑟𝑧

i (𝛿, 𝜃) + 𝑅𝑟𝑧
s (𝛿, 𝜃)  =  𝑁𝑟𝑧

t (𝛿, 𝜃) 

 

where the generalized stresses expression are 

 

 𝑁𝑟𝑟  =  2ℎ ((𝜆 + 2𝜇)
𝜕𝑣𝑟

𝜕𝑟
+ 𝜆 (

1

𝑟

𝜕𝑣𝜃

𝜕𝜃
+

𝑣𝑟

𝑟
+

𝑣𝑧

ℎ
 )) (21) 

 𝑁𝑟𝜃  = 2ℎ𝜇 (
1

𝑟

𝜕𝑣𝑟

𝜕𝜃
 +  

𝜕𝑣𝜃

𝜕𝑟
 −  

𝑣𝜃

𝑟
) (22) 

 𝑅𝑟𝑧  =  
2ℎ2𝜇

3

𝜕𝑣𝑧

𝜕𝑟
. (23) 

 

Sensor model  

 

The expression of the voltage 𝑉 produced by a thin PZT in sensing mode and 

considered as a voltage generator is 

 

 𝑉 =  
𝑑31𝑌s

Eℎs

𝜋𝑐2(휀3
𝑇(1 − 𝜈s) − 2𝑑31

2  𝑌s
E)

∫(휀𝑟𝑟 + 휀𝜃𝜃) d𝐴 (24) 

 

where 𝑌s
E, 𝜈s, 𝑑31 and 휀3

𝑇 are respectively the Young’s modulus in O𝑥𝑦 plane, 

Poisson’s ratio, the 𝑥𝑧-directional piezoelectric coefficient and the electric 

permittivity of the transducer's material. ℎs, and 𝑐 are the thickness and the radius of 

the sensing PZT. 휀𝑟𝑟  and 휀𝜃𝜃 are the in-plane normal surface strains and can be 

replaced by their expressions derived from the displacement field (13), (14) and the 

wave potentials (18). The resulted voltage generated by the scattered wave is  

 

 

𝐻(𝜔) =
𝑑31𝑌s

Eℎs

𝜋𝑐2( 3
𝑇(1−𝜈s)−2𝑑31

2  𝑌s
E)

(
𝐴0

𝐻0
(1)

(𝑘1𝛿)
∫ (𝑘2𝐻2

(1)(𝑘1𝑟) −
𝑟S+𝑐

𝑟S−𝑐

2𝑘

𝑟
𝐻1

(1)(𝑘1𝑟)) Θ𝑟 d𝑟 − ∑
2𝑖𝑛𝐴𝑛𝑒𝑖𝑛𝜃𝑠 

𝑛𝐻𝑛
(1)

(𝑘1𝛿)

𝑛=𝑁
𝑛=−𝑁

𝑛≠0
 (∫ 𝑘1

2𝐻𝑛+2 
(1) (𝑘1𝑟)

𝑟S+𝑐 

𝑟S−𝑐 
−

 
2𝑘1(𝑛+1)

𝑟
𝐻𝑛+1

(1) (𝑘1𝑟)) sin (
𝑛Θ

2
) 𝑟 d𝑟)   

(25) 

 



where 𝑁 is the truncation order of the Bessel-Fourier series. Finally, to obtain the 

time signal received from the sensor we compute the inverse Fourier transform of 

𝑈(𝜔)𝐻(𝜔) with 𝑈 the Fourier transform of the excitation signal. 

 

 

 

IDENTIFICATION ALGORITHM 

 

Now we have the expression of the received signal after wave scattered by a 

damage, we will use this physic model for damage size quantification purpose. We 

first define a cost function that we will seek to minimize. This cost function is based 

on the difference of Damage Index (DI) between the theoretical physic model and the 

experimental signal. This experimental signal is calculated as the difference between 

the pristine state and the current damaged state. The DI selected here is the maximum 

amplitude of the wave packet because this feature is greatly sensitive to the size of 

the damage. This difference is squared and computed over each actuator-sensor paths. 

 

 𝐽(𝛿) =  ∑ ∑ |DI𝑖𝑗
xp

− DI𝑖𝑗
th(𝛿)|

2

𝑀PZT

𝑗=1
𝑗≠𝑖

𝑀PZT

𝑖=1

 (26) 

 

Since the physical model only, account for the S0 mode, we isolate the first 

wave packet of the experimental signal using an appropriate signal. The size of the 

damage is estimated by minimizing 𝐽 according to the parameter 𝛿. We also set 

boundaries to constrain the results between a lower bound (0 mm) and an upper 

bound (50 mm) to improve the performance. The selected minimization algorithm is 

the interior-point method already implemented in the MATLAB function fmincon. 

This method is particularly suited for nonlinear cost function with bound constraints, 

which we are interested in here. We denote 𝛿∗ the estimated damage radius. 

 

 𝛿∗ = argmin 
𝛿

𝐽 (𝛿) (27) 

 

APPLICATION ON SIMULATION DATA 

 

The quantification algorithm proposed in this paper is applied on data coming 

from FEM simulation. The structure considered is a 600 mm by 600 mm aluminum 

and 2.4 mm thickness plate meshed with 2 mm square Mindlin plate elements. 5 PZT 

of 25 mm diameter are ideally bonded on the surface and meshed with piezoelectric 

elements. The simulation is done in two cases : a pristine state and a damage state 

where a cylindrical inhomogeneity –a region where the Young’s modulus is lower 

than in the main structure- is introduced. Here the damage has a 5 mm radius and a 

Young’s modulus equal to 90% of the plate Young’s modulus. The time step chosen 

is 200 ns. The excitation signal is a 5-cycle tone burst of central frequency 150 kHz 

and 10 V amplitude. Each PZT is actuated sequentially. 

The proposed quantification method is applied on the simulation data. It finds a 

damage radius of 4.3 mm which is very close to the real size 5 mm, even for a low 

severity damage as in the studied case. It means that the algorithm seems very 



sensitive to the damage presence and can be exploited to quantify small and emerging 

damage with low severity. 

 

 

TABLE 1. PZT AND DAMAGE POSITIONS 

 PZT 1 PZT 2 PZT 3 PZT 4 PZT 5 Damage 

x [mm] 473 287 103 456 265 356 

y [mm] 166 251 331 376 456 343 

 

 

CONCLUSION 

 

In this article we proposed a damage size quantification method using the 

inversion of a physics model. We presented the theoretical model that enable to 

calculate the signal received by a sensor PZT after an incident wave generated by an 

actuator PZT had been scattered by a cylindrical inhomogeneity. Then we described 

the identification method used for damage size quantification purposes. This 

algorithm relies on the minimization of a cost function to estimate the radius of the 

damage. The proposed approach has been applied on simulation data and show very 

promising results even for a small damage size and a low severity. 

The future work will focus on the extension to composite material on one 

hand, and on the application to experimental data on the other hand. Besides, we will 

extend the current identification method to also estimate the severity of the damage 

along with its size. 
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