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AN INEQUALITY FOR THE SOLUTIONS TO AN EQUATION WITH BOUNDARY

CONDITION.

SAMY SKANDER BAHOURA

ABSTRACT. We give a uniform estimate and an inequality for solutions of an equation with

Dirichlet boundary condition.

1. INTRODUCTION AND MAIN RESULT

We set ∆ = −∇i∇i the Laplace-Beltrami operator on a connected compact Riemannian

manifold with boundary (M, g) of dimension n ≥ 3 with metric g.

We consider the following boundary value problem:

(P )

{

∆u+ hu = V uN−1, u > 0 in M,

u = 0 on ∂M.

Here, we assume the solutions in the sense of distributions and here also in C2,α(M̄), α > 0
and the operator ∆ + h is coercive in H1

0 (M) with h a smooth function and 0 ≤ V ≤ b with

V 6≡ 0 a smooth function and ||V ||Cα ≤ A and N = 2n
n−2 the critical Sobolev exponent. This

problem arises in physics and astronomy.

In [1-25] we have various estimates and inequalities of type sup+ inf and sup× inf. Here we

look to the case of lower bounds for theses inequalities as in [2], [4], [5], [7] and [21].

Here we prove an a priori estimate and an implicit Harnack type inequality for the solutions of

the problem (P ).
Our main results are:

Theorem 1.1. For all b, A,M0 > 0 and all compact K of M , there is a positive constant

c = c(b, A, α,K,M, g, n,M0) > 0 such that:

inf
K
u ≥ c if sup

M

u ≤M0.

for all solution u > 0 of (P ) relative to V ≥ 0 with bounds b, A.

In the previous Theorem, we have an apriori estimate for the solutions of the problem (P ). We

can see, the influence of the boundary condition, the Dirichlet boundary condition.

As a consequence of the previous Theorem, we have infK u ≥ c = c(supM u) with c > 0.

We write this as: the following implicit Harnack type inequality:

Theorem 1.2. For all b, A > 0 and all compact K of M , there is a positive constant c > 0
depending on the supM u, such that:

inf
K
u ≥ c(b, A, α,K,M, g, n, sup

M

u).

for all solution u > 0 of (P ) relative to V ≥ 0 with bounds b, A.

In the last Theorem, we have an implicit inequality between sup and inf: if we have an infor-

mation on the sup then we have information of the inf and also if we have an idea on the infimum,

then we have an information of the supremum.

sup
M

u and inf
K
u are linked implicitly.

In various previous papers, we proved some inequalities of type sup× inf for equations of

type prescribed scalar curvature and under some conditions, on the manifold or on the solutions.
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In [2, 5], to have a positive lower bound for sup× inf, we also supposed the manifold compact

without boundary. We used the Green function of an invertible operator, lower bound of the

Green function and an iterate scheme.

In [5], for manifolds with boundary, we have added a condition on the solutions(a jump condi-

tion), to prove a minoration of sup× inf. Here we can see the influence of the Dirichlet boundary

condtion. We also used, Green function for an invertible operator and used a positive lower bound

of the Green function, locally, and an iterate scheme.

In [4], we can see that the optimal sup× inf inquality holds. Here, we have an implicit Har-

nack inequality for more general nonlinear equations with critical Sobolev exponent. Here also,

we used, Green function and lower bound of the Green function, locally, and two methods to

obtain the estimate, one by iterate scheme, the other by integration by parts in the equation, and

by the Sobolev inequality.

In [7], we used a blow-up technique to have an explicit Harnack inequality on the n−ball of

the euclidean space.

Remarks:

1) The function M0 7→ c is non-increasing function of M0.

2) We need uniform Cα regularity for V , because we will use the strong maximum principle

which require C2 regularity of the solutions.

3) We can replace the exponentN by q ≥ 2 + ǫ0 with ǫ0 > 0.

4) These results can be applied to h = n−2
4(n−1)Sg with Sg the scalar curvature, in the non-

negative case. We obtain the prescribed scalar curvature equation and the Yamabe equation on

manifolds with boundary, with Dirichlet boundary condtions. For example Sg ≥ 0 and Sg > 0
somewhere.

5) In [4], we have explicit Harnack inequality, for K compact subset of Ω, there is c =
c(n,K,Ω) > 0 and c̃ = c̃(n,K,Ω) > 0 such that, precisely:

sup
Ω
u× inf

K
u ≥ c(n,K,Ω)

∫

Ω

|∇u|2dx ≥ c̃(n,K,Ω) > 0.

Where u > 0 is solution of

{

∆u = uN−1−ǫ, u > 0 in Ω ⊂⊂ R
n,

u = 0 on ∂Ω.

Here ǫ > 0 small and perhaps tending to 0. It is a nonlinear boundary Dirichlet problem with

subcritical exponent perhaps tending to the critical exponent.

For the previous inequality we used that the solutions are uniformly bounded in a neighbor-

hood of the boundary.(By the moving-planes method).

One can see, in the previous inequality that if the solutions have an upper bound, then locally

they have a positive lower bound.

2. PROOFS OF THE THEOREMS

Proofs of Theorems 1 and 2:

We use a cover argument (a finite cover) for a local convergence in open sets of charts, to have

convergence of subsequence and to build a limit function u ≥ 0 by extensions.

We argue by contradiction, suppose that for aK compact ofM we have sequences of solutions

(ui, Vi) of (P ) such that: infK ui → 0 and supM ui ≤M0. Using charts around points of M̄ in

R
n and R

n
+, we can reduce the uniform estimates to estimates in the euclidean case and by the

elliptic estimates, see [17] , we have ui → u ≥ 0 uniformly in C2,α(M̄). (Since ui is regular,

we have for a chart of a boundary, ψ, uioψ is regular in a half ball, and the usual trace can be

considered and we reduce the problem to a boundary value problem with a portion boundary as

trace’s subset, then, theorems of [17] can be applied to uioψ, chapters 9 and 6).

One can build a limit function by using local convergence in open sets of charts. Since, all the

topologies coincide, the topology of charts and the topology of the metric.
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Now we use the condition infK ui → 0 to have for the solution u ≥ 0, u(x0) = 0 with

x0 ∈ K ⊂⊂M .

Then we use the maximum principle applied to−u to have u ≡ 0 on M̄ . (since the operator∆+
h is coercive, we have the existence of the Green function,G, of ∆+ h with Dirichlet boundary

conditions. We use the Green representation formula to prove u ≡ 0, because V uN−1 ≡ 0
and G > 0 in M , and we multiply the equation of u by u and we integrate, and then, we use

coercivity to have u ≡ 0).

Also, we can use the fact u ≥ 0 we take λ < 0 such that −h+λ < 0, the operator −∆−h+λ
satisfy the strong maximum principle and we have (−∆ − h + λ)(−u) = (V uN−2 − λ)u ≥ 0
and −u ≤ 0, and (−u)(x0) = 0, x0 ∈ K ⊂⊂M and then −u ≡ 0, then u ≡ 0.

Thus,

ui → 0 in C2,α(M̄).

But if we multiply the equation by ui and use integration by part, the coercivity of the operator

and the Sobolev embedding we obtain for some constant C2 > 0 independant from i:

C2||ui||
2
N ≤ C1||ui||

2
H1

0
(M) ≤

∫

M

|∇ui|
2 + hu2i

and,

∫

M

|∇ui|
2 + hu2i =

∫

M

(∆ui + hui)ui =

∫

M

Viu
N
i ≤ b||ui||

N
N ,

thus,

||ui||
N−2
N ≥

C2

b
> 0,

with uniform bound.

And this contradict: ui → 0 in C0(M̄).

Thus, for all b, A > 0, M0 > 0, for all compact K of M , there is a positive constant c =
c(b, A, α,K,M, g, n,M0) such that:

sup
M

u ≤M0 ⇒ inf
K
u ≥ c > 0,

with by definition,

c = c(M0) = sup{c′ > 0, inf
K
u ≥ c′, if sup

M

u ≤M0,M0 > 0}.

With this definition, by taking twice the supremum in c′ > 0, we see that if 0 < supM u ≤
M0 ≤ K0 ⇒ infK u ≥ c(K0) ⇒ infK u ≥ c(M0) ≥ c(K0) ⇒ M0 7→ c is non-increasing

function of M0.

Take u > 0 a regular solution of (P ) relative to V and set M0 = supM u > 0, then for all

v > 0 solution of (P ) relative to W ≥ 0 with bounds b, A, we have the previous inequality.

But v = u > 0 is a particular solution, thus it satisfies the inequality and we have:

inf
K
u ≥ c = c(b, A, α,K,M, g, n, sup

M

u) > 0.

Thus, we obtain an implicit Harnack type inequality.

Questions: 1) How to expilcit the previous Harnack type inequality ? in the previous papers

we proved that we have inequalities of type sup× inf .

2) Can we have inequalities of type:

(sup
M

u)α × inf
K
u ≥ c > 0, α > 0?
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