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AN INEQUALITY FOR THE SOLUTIONS TO AN EQUATION WITH BOUNDARY

CONDITION.

SAMY SKANDER BAHOURA

ABSTRACT. We give a uniform estimate and an inequality for solutions of an equation with

Dirichlet boundary condition.

1. INTRODUCTION AND MAIN RESULT

We set ∆ = −∇i∇i the Laplace-Beltrami operator on a connected compact Riemannian

manifold with boundary (M, g) of dimension n ≥ 3 with metric g.

We consider the following equation:

(P )

{

∆u+ hu = V uN−1, u > 0 in M,

u = 0 on ∂M.

Here, we assume the solutions in the sense of distributions and here also in C2,α(M̄), α > 0
and the operator ∆ + h is coercive in H1

0 (M) with h a smooth function and 0 ≤ V ≤ b with

V 6≡ 0 a smooth function and ||V ||Cα ≤ A and N = 2n
n−2 the critical Sobolev exponent.

In [1-25] we have various estimates and inequalities of type sup+ inf and sup× inf. Here we

look to the case of lower bounds for theses inequalities as in [2], [4], [5], [7] and [21].

Our main results are:

Theorem 1.1. For all b, A,M0 > 0 and all compact K of M , there is a positive constant

c = c(b, A, α,K,M, g, n,M0) > 0 such that:

inf
K

u ≥ c if sup
M

u ≤ M0.

for all solution u > 0 of (P ) relative to V ≥ 0 with bound b.

As a consequence of the previous theorem, we have infK u ≥ c = c(supM u) with c > 0. We

write this as: the following implicit Harnack type inequality:

Theorem 1.2. For all b, A > 0 and all compact K of M , there is a positive constant c =
c(b, A, α,K,M, g, n, supM u) > 0 such that:

inf
K

u ≥ c(b, A, α,K,M, g, n, sup
M

u).

for all solution u > 0 of (P ) relative to V ≥ 0 with bound b.

Remarks:

1) The function M0 7→ c is non-incrising function of M0.

2) We need uniform Cα regularity for V , because we will use the strong maximum principle

which require C2 regularity of the solutions.

3) We can replace the exponent N by q ≥ 2 + ǫ0 with ǫ0 > 0.

4) These results can by applied to h = n−2
4(n−1)Sg with Sg the scalar curvature, in the non-

negative case. We obtain the prescribed scalar curvature equation and the Yamabe equation on

manifolds with boundary, with Dirichlet boundary condtions. For example Sg ≥ 0.
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2. PROOFS OF THE THEOREMS

Proofs of Theorems 1 and 2:

We argue by contradiction, suppose that for a K compact of M we have sequences of solutions

(ui, Vi) of (P ) such that: infK ui → 0 and supM ui ≤ M0. By the elliptic estimates, see [17] ,

we have ui → u ≥ 0 uniformly in C2,α(M̄).

Now we use the condition infK ui → 0 to have for the solution u ≥ 0, u(x0) = 0 with

x0 ∈ K ⊂⊂ M .

Then we use the maximum principle applied to −u to have u ≡ 0 on M̄ . Thus,

ui → 0 in C2,α(M̄).

But if we multiply the equation by ui and use integration by part, the coercitivity of the oper-

ator and the Sobolev embedding we obtain for some constant C2 > 0 independant from i:

C2||ui||
2
N ≤ C1||ui||

2
H1

0
(M) ≤

∫

M

|∇ui|
2 + hu2

i =

∫

M

(∆ui + hui)ui =

∫

M

Viu
N
i ≤ b||ui||

N
N ,

thus,

||ui||
N−2
N ≥

C2

b
> 0,

with uniform bound.

And this contradict: ui → 0 in C0(M̄).

Thus, for all b, A > 0, M0 > 0, for all compact K of M , there is a positive constant c =
c(b, A, α,K,M, g, n,M0) such that:

sup
M

u ≤ M0 ⇒ inf
K

u ≥ c > 0,

with by definition,

c = c(M0) = sup{c′ > 0, inf
K

u ≥ c′, if sup
M

u ≤ M0,M0 > 0}.

With this definition, by taking twice the supremum in c′ > 0, we see that if 0 < supM u ≤
M0 ≤ K0 ⇒ infK u ≥ c(K0) ⇒ infK u ≥ c(M0) ≥ c(K0) ⇒ M0 7→ c is non-incrising

function of M0.

Take u > 0 a regular solution of (P ) relative to V and set M0 = supM u > 0, then for all

v > 0 solution of (P ) relative to W ≥ 0 with bound, b, we have the previous inequality.

But v = u > 0 is a particular solution, thus it satisfies the inequality and we have:

inf
K

u ≥ c = c(b, A, α,K,M, g, n, sup
M

u) > 0.
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