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Abstract

In some real clustering tasks, the data may be sparse and uncertain. Although there

is usually some useful knowledge in related scenes, the data among different domains is of-

ten of great inconsistency. A new unsupervised transfer learning method is proposed in the

framework of belief functions to handle the insufficiency and uncertain problems in clustering

simultaneously. Firstly, under the assumption that the source and target domains have the

same number of clusters, the Transfer Evidential C Means (TECM) is developed by incor-

porating the idea of transfer learning and evidential clustering. A novel objective function is

designed to employ the cluster prototypes of the source data as references to guide the clus-

tering process on the target. Furthermore, ETECM, as an extended version of TECM, is also

introduced for the situation that the two domains have different numbers of clusters. Some

experiments conducted on synthetic and real-world data sets demonstrate the advantages of

TECM and ETECM.
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1. Introduction

Clustering is an unsupervised technique aiming to assign patterns into groups, and it

has been widely used in many fields such as image segmentation, market research, and data

analysis [2, 3]. Traditional clustering methods, such as the c-means method, usually work well

when the data are sufficient. However, in some real clustering tasks, we cannot get sufficient

data to train a fine partition model. To address the problem caused by insufficient information,

several advanced clustering approaches have been developed, such as semi-supervised learning

[4], multi-view clustering [5], transfer learning [6, 7], and so on.

Transfer learning can learn an effective model for the target domain by effectively lever-

aging useful information from the source domain [8, 9]. Based on different situations between

the source and target domains and tasks, transfer learning methods can be categorized into

three sub-settings: inductive transfer learning, transductive transfer learning, and unsuper-

vised transfer learning [9]. In the inductive transfer learning setting, the tasks in the target

and source domains are different, no matter when the two domains are the same or not.

Dai et.al. [10] extended the AdaBoost algorithm and proposed a transferred version named
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TrAdaBoost. It boosts a basic learner to transfer knowledge from one distribution to another

distribution. On the contrary, the transductive transfer learning requires that the source and

target tasks are the same, while the two domains are different [11]. Ling et.al. proposed an

approach called Cross-Domain Spectral Classifier (CDSC) [12]. This method can classify the

unlabeled data in out-of-domains by utilizing the labeled data from in-domains. Similar to

the inductive transfer learning, in the unsupervised transfer learning setting, the target task

is different from but related to the source task. However, it focuses on solving unsupervised

learning tasks in the target domain, such as clustering, dimensionality reduction, and density

estimation[13, 14].
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Figure 1: An example where transfer learning is required for the clustering task.

In this paper, we mainly focus on the transfer clustering problem. In the case of an

unsupervised learning task with small number of samples, it is difficult to obtain an ideal

partition (such as the data illustrated in the left figure in Fig. 1). These cases are not

unusual in reality. For instance, in applications, new challenges frequently appear, e.g., load

balancing in distributed systems and attenuation correction in medical imaging. It is difficult

to accumulate abundant and reliable data in the beginning phase for these new applications

[15]. At this time, if some information from the source-related domain (see the right figure in

Fig. 1) is available, more promising clustering results can be expected with the help of transfer

learning technology. In general, two kinds of information can be transferred from the source

to the target domain: raw data and knowledge [16]. Due to the necessity of privacy protection

in some applications, such as users’ personal information, the original raw data in the source

domain are not always accessible. Thus, employing some advanced knowledge from the source

domain instead of raw data is more practical. For example, in the clustering task, the cluster

prototypes of the source data (red triangles in the right figure) can be regarded as good

references for the target domain. There are already some transfer clustering methods. Deng

et.al. [6] extended Fuzzy C-Means (FCM) to the transfer clustering scenario by exploiting

the idea of leveraging knowledge from the source domain, and developed the Transfer FCM

algorithms (TFCM). Gargees et.al. [7] proposed a Transfer-learning Possibilistic C-Means

(TPCM) algorithm to handle the soft clustering problem in a domain that has insufficient
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data. Jiang et.al. [17] presented a Negative-Transfer-Resistant Fuzzy Clustering model with

a Shared Cross-domain Transfer latent space (named NTR-FC-SCT) by integrating negative-

transfer-resistant and maximum mean discrepancy into the framework of FCM. The method

has been successfully applied to brain CT image segmentation.

Another challenge in clustering is that the data are often of great uncertainty. Some

objects distributed in the overlapped area among different specific clusters may be difficult

to be assigned to a specific group. Although the available knowledge in the source domain

can help us improve the cluster model, the inconsistency between information from the two

domains may increase the uncertainty of the data. The theory of belief functions is an effi-

cient mathematical tool for uncertain information representation and fusion [18], and it has

been widely applied in image analysis [19, 20], social networks [21], reliability analysis [22],

statistical inference [23, 24] et.al..

The concept of credal partitions defined in the framework of belief functions was first

proposed by Denœux et.al. [25] to deal with the uncertain cluster structure by introducing

imprecise (meta) classes. Many evidential clustering methods have been designed for credal

partitions [26–28]. Evidential c-means (ECM) [26] is a direct generalization of FCM in the

framework of belief functions. Antoine et.at. [29] introduced a semi-supervised version of

ECM algorithm called CECM, taking pairwise constraints into account. A new heuristic

algorithm is presented in [30], which relaxes the constraints of semi-supervised evidential

clustering in such a way that the optimization problem can be solved by using the Lagrangian

method. Denœux [31] presented a method to construct mass functions for representing the

cluster-membership uncertainty, by bootstrapping finite mixture models. A neural network-

based evidential clustering algorithm named NN-EVCLUS，which learns a mapping from

attribute vectors to mass functions, is discussed in Ref. [32]. There are also some supervised

transfer learning methods based on the theory of belief functions. For instance, a decision-

level combination method was proposed by Liu et.al. [33], which can improve the classification

accuracy through multi-source domain adaptation. Liu et.al. proposed a transfer classification

method [34], where the source and target domains are linked by estimating the mapping

from target pattern values to the source domain. Huang et.al. [35] proposed an evidential

combination of augmented multi-source of information approach to deal with multi-source

domain adaptation issues.

In this paper, we combine the idea of evidential clustering with transfer learning to de-

velop a new clustering method, named Transfer Evidential C-means (TECM), for insufficient

and uncertain data. This method can employ the cluster prototypes of the source data as

references to guide the clustering process on the target domain with the theory of belief func-

tion. The experimental results on synthetic data and real data show the effectiveness of the

proposed method. The preliminary results are published in our prior work in [1]. In this pa-

per, we propose an extended version called ETECM to make the evidential transfer clustering

method applicable to the case where the source and target domains have different numbers of

clusters. Besides, more experiments are conducted to show the performance of the proposed

methods.

The remainder of this paper is organized as follows. Some basic knowledge related to

the proposed method is briefly introduced in Section 2. The proposed TECM algorithm is
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presented in detail in Section 3. The extended version of TECM, called ETECM, is proposed

in Section 4. Numerical experiments are conducted in Section 5. Conclusions are drawn in

the final section.

2. Background

In this section, some related preliminary knowledge, including the transfer fuzzy c-means

and the theory of belief functions will be presented.

2.1. Transfer fuzzy c-means

Transfer fuzzy c-means [6] is a prototype-based transfer clustering method. It attempts to

cluster the target domain instances by transferring knowledge from the source domains proto-

types V (s) = {v(s)
1 ,v

(s)
2 , · · · ,v(s)

cs }. Define the data in the target domain by

X = {x1,x2, · · · ,xn}. Notations U = [µij ](ct×n) and V = (v1, · · · ,vct)(ct×p) are used to

describe the membership matrix and the prototype matrix of the target domain samples re-

spectively. Assume that the source and target domains have the same number of clusters.

The objective function of TFCM can be given as

JTFCM =

ct∑
i=1

n∑
j=1

um
ij ||xj − vi||2 + λ1

ct∑
i=1

n∑
j=1

um
ij ||xj − v

(s)
i ||2

+ λ2

ct∑
i=1

n∑
j=1

um
ij ||v

(s)
i − vi||2,

s.t. uij ∈ [0, 1],

ct∑
i=1

uij = 1, 0 <
n∑

i=1

uij < n, (1)

where m ∈ [1,+∞] is the weighting exponent reflecting the fuzziness degree. Parameters λ1

and λ2 are used to balance the influence of target domain learning and source domain learning.

TFCM can find the best partition of the target data by iteratively updating the membership

and prototype matrices. The updating rule is

vi =

n∑
j=1

um
ijxj + λ2

n∑
j=1

um
ijv

(s)
i

n∑
j=1

um
ij + λ2

n∑
j=1

um
ij

, (2)

uij =

(
1

||xj−vi||2+λ1||xj−v
(s)
i ||2+λ2||vi−v

(s)
i ||2

) 1
(m−1)

ct∑
k=1

(
1

||xj−vk||2+λ1||xj−v
(s)
k ||2+λ2||vk−v

(s)
k ||2

) 1
(m−1)

. (3)

In order to apply TFCM to the case where the two domains have different numbers of

cluster, the authors have introduced an extended version of TFCM (denoted by E-TFCM)
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[6]. The objective function of E-TFCM is

JE-TFCM =

ct∑
i=1

n∑
j=1

um1

ij ||xj − vi||2 + λ1

ct∑
i=1

cs∑
l=1

rm2

il ||v(s)
l − vi||2

s.t. uij ∈ [0, 1],

ct∑
i=1

uij = 1, 0 <
n∑

j=1

uij < n,

rij ∈ [0, 1],

ct∑
i=1

ril = 1, 0 <

cs∑
l=1

ril < cs. (4)

In this term, rij describes the similarity between prototype vi and v
(s)
j , which is a nonnegative

parameter that should be learned. For minimizing JE-TFCM, the update date rule can be

derived from

vi =

n∑
j=1

um1

ij xj + λ1

cs∑
t=1

rm2

il v
(s)
l

n∑
j=1

um1

ij + λ1

cs∑
l=1

rm2

il

, (5)

uij =

(
1

||xj − vi||2

)1/(m1−1)/ ct∑
k=1

[
1

||xj − vi||2

]1/(m1−1)

, (6)

ril =
1

cs∑
q=1

||v(s)
l − vi||2/||v(s)

q − vi||2
1

m2−1

. (7)

As mentioned, the inconsistency among information from different domains may increase

uncertainty. The theory of belief functions can be adopted to deal with the uncertain infor-

mation. We will introduce some basic knowledge related to this theory in the following.

2.2. Theory of belief functions

Let Ω = {ω1, ω2, . . . , ωc} be the finite domain, called the discernment frame. The belief

functions are defined on the power set 2Ω = {A : A ⊆ Ω}.
The function m : 2Ω → [0, 1] is said to be the Basic Belief Assignment (bba) on 2Ω, if it

satisfies ∑
A⊆Ω

m(A) = 1. (8)

Every A ∈ 2Ω such that m(A) > 0 is called focal element.

The credibility and plausibility functions are defined, respectively, as

Bel(A) =
∑

B⊆A,B ̸=∅

m(B) ∀A ⊆ Ω, (9)

Pl(A) =
∑

B∩A ̸=∅

m(B), ∀A ⊆ Ω. (10)
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Each quantity Bel(A) measures the total support given to A, while Pl(A) represents potential

amount of support to A. Functions Bel and Pl are linked by the following relation:

Pl(A) = 1−m(∅)−Bel(A), (11)

where A denotes the complement of A in Ω.

A belief function can be transformed into a probability function by distributing equally

each mass of belief m(A) among the elements of A [36]. This leads to the concept of Pignistic

probability, BetP , defined by

BetP (ωi) =
∑

ωi∈A⊆Ω

m(A)

|A|(1−m(∅))
, (12)

where |A| is the cardinality of A ⊆ Ω.

2.3. Evidential c-means

Assume that there are n objects {x1,x2, · · · ,xn} to be clustered in ECM. The set of

classes is denoted by Ω = {ω1, · · · , ωc}. The uncertain membership of objects can be repre-

sented by bbas mi = (mi (Ak) : Ak ⊆ Ω) (i = 1, 2, · · · , n) over the given frame of discernment

Ω. The optimal credal partition is obtained by minimizing the following objective function:

JECM =
n∑

i=1

∑
Ak⊆Ω,Ak ̸=∅

|Ak|αmi(Ak)
βd2ik +

n∑
i=1

δ2mi(∅)β (13)

subject to ∑
Ak⊆Ω,Ak ̸=∅

mi(Ak) +mi(∅) = 1, (14)

and

mi (Ak) ≥ 0, mi (∅) ≥ 0. (15)

Parameters α and δ are adjustable parameters. In Eq. (13), dik denotes the distance (generally

the Euclidean distance) between xi and the barycenter (prototype, denoted by vk) associated

with Ak:

d2ik = ∥xi − vk∥2, (16)

where vk is defined by

vk =
1

|Ak|

c∑
h=1

shkvh, with shk =

1 if ωh ∈ Ak

0 else
. (17)

In Eq. (17), vh is the geometrical center of points in cluster h. The updating process with

the Euclidean distance alternates updating of the centers and the mass membership using the

Lagrange multiplier method. Notation mij , which is equivalent to mi(Aj), means the bba

of xi given to the nonempty set Ak, and mi∅, which is equivalent to mi(∅), is the bba of xi

assigned to the empty set. The update rule of mass assignment can be derived as
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mik =
|Ak|−α/(β−1)d

−2/(β−1)
ik∑

Ah ̸=∅
|Ah|−α/(β−1)d

−2/(β−1)
ih + δ−2/(β−1)

, i = 1 · · ·n (18)

and

mi∅ = 1−
∑
Ak ̸=∅

mik, i = 1, 2, · · · , n. (19)

The prototypes (centers) of the classes are given by the rows of matrix V (the size is c × p),

obtained as the solution of the following linear system:

HV = B, (20)

where H is a matrix of size (c× c) given by

Hlk =
n∑

i=1

∑
Ak⫆{ωk,ωl}

|Ak|α−2mβ
ik, (21)

and B is a matrix of size (c× p) defined as

Blq =
n∑

i=1

xiq

∑
Ak∋ωl

|Ak|α−1mβ
ik. (22)

As one of the prototype-based clustering methods, ECM is widely applied in uncertain

data applications due to its simplicity and efficiency. As mentioned, if we have some infor-

mation from a related domain, the available knowledge can help us improve the clustering

performance. In the next section, we will introduce a new clustering method taking advantages

of both evidential clustering and transfer learning.

3. Transfer evidential c-means

Inspired by the idea of evidential clustering and transfer learning, we will introduce

the TECM clustering algorithm. As before, denote the n data samples in the target do-

main by X = {x1,x2, · · · ,xn} and assume that there are ct clusters. The set of classes is

Ω = {ω1, · · · , ωct}. The available supervised knowledge in a related domain is represented by

prototypes V (s) = {v(s)
1 ,v

(s)
2 , · · · ,vcs

(s)}. The superscript (s) indicates that the prototypes

are from the source domain. TECM assumes that the source and target domains have the

same number of clusters (ct = cs). The objective function of TECM and the optimization

approach will be introduced in the following.

3.1. Objective function of TECM

As an evidential clustering method in the framework of belief functions, TECM aims to

obtain the optimal credal partition M = (m1, · · · ,mn) ∈ Rn×2ct and the matrix

V = (v1, · · · ,vct) of size (ct × p) of cluster centers in the target domain by minimizing

7



the following objective function:

JTECM(M ,V ) =
n∑

i=1

∑
Aj⊆Ω

Aj ̸=∅

cαj m
β
ijd

2
ij +

n∑
i=1

δ2mβ
i∅

+ β1

 n∑
i=1

∑
Aj⊆Ω

Aj ̸=∅

cαj m
β
ijd

(s)2
ij +

n∑
i=1

δ2mβ
i∅

+ β2

ct∑
k=1

||v(s)
k − vk||2, (23)

subject to ∑
Aj⊆Ω,Aj ̸=∅

mij +mi∅ = 1. (24)

The distance between samples xi and source domain barycenter is defined by d
(s)
ij . The

symbol cj denotes the cardinality of Aj . Parameters α, β and δ control the degree of pe-

nalization for imprecise classes with high cardinality, the fuzziness of the partition, and the

amount of data considered as outliers respectively. These parameters have the same meaning

as those in ECM recalled in Section 2.3.

The objective function in Eq. (23) has four terms. The first two terms are directly

inherited from ECM and used to learn from the target data. The third and fourth terms enable

the model to learn with the source information, where the knowledge of cluster prototypes is

available for the clustering task. Nonnegative parameters β1 and β2 balance the influence of

data in the target domain and knowledge in the source domain.

Remark: A transfer evidential c-means clustering method is proposed by Jiao et.al. [37].

It can also leverage the knowledge from the source by qualifying the distance between the

prototypes of classes in the source and target domains. The objective function of Jiao’s

method is defined as follows:

JJiao =
n∑

i=1

∑
At,j⊆Ω

At,j ̸=∅

cαj m
β
ijd

2
ij +

n∑
i=1

δ2mβ
i∅ + λ

∑
As,k⊆Ω

As,k ̸=∅

∑
At,j⊆Ω

At,j ̸=∅

cαj r
γ
kj ||ṽk − vj ||2, (25)

where At,j and As,k denote the classes in the target and source respectively, rkj denotes the

similarity between the barycenter vj in the target domain and the barycenter ṽk in the source

domain, λ is a balance coefficient of transfer learning and γ is a weighting exponent. Please

see Ref. [37] for more details. As we can see, different from Jiao’s method, in the objective

function of TECM, not only the distances between prototypes in the two domains are taken

into account, but also the distances between samples in the target domain and prototypes

in the source domain are considered. As a result, more source knowledge can be learned by

TECM. Besides, in calculating the distance between prototypes in the two domains, we only

consider the specific classes (classes with only one focal element such as {ωi}) in the two

domains. But in Jiao’s method they consider all the classes in the power set of Ω. As the

prototypes of imprecise classes are completely determined by specific classes (see Eq. (17)),

we consider that the distances between prototypes of specific classes are sufficient to qualify

the difference between the two domains in terms of the prototypes. We will compare the

behaviors of TECM with Jiao’s method in Section 5.
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3.2. Optimization

To minimize the objective function JTECM, we use the Lagrange multiplier method.

First, assume that the prototypes in the target domain are fixed. To solve the constrained

minimization problem with respect to the membership matrix M , n Lagrange multipliers

λi(i = 1, · · · , n) are introduced and the Lagrangian can be written as

L(M ;λ1, · · · , λn) = JTECM −
n∑

i=1

λi

∑
Aj⊆Ω

Aj ̸=∅

mij +mi∅ − 1

 . (26)

Differentiating the Lagrangian with respect to mij , mi∅, and λi and setting the derivatives to

zero, the following necessary conditions of optimality for M are obtained:

∂L

∂mij

= cαj βm
β−1
ij

(
d2ij + β1d

(s)2
ij

)
− λi = 0, (27)

∂L

∂mi∅
= βmβ−1

i∅
(
δ2 + β1δ

2
)
− λi = 0, (28)

∂L

∂λi

=
∑
Aj⊆Ω

Aj ̸=∅

mij +mi∅ − 1 = 0. (29)

From Eqs. (27) and (28), it is easy to obtain

mij =

 λi

cαj β
(
d2ij + β1d

(s)2
ij

)
1/(β−1)

, (30)

mi∅ =

(
λi

β(δ2 + β1δ(s)2)

)1/(β−1)

. (31)

Substituting Eqs. (30) and (31) into Eq. (29), we get

(
λi

β

)1/(β−1)

=
1∑

Aj⊆Ω

Aj ̸=∅

∆ij +
(

1
δ2+β1δ(s)2

) 1
β−1

, (32)

where

∆ij =

 1

cαj

(
d2ij + β1d

(s)2
ij

)
 1

β−1

. (33)
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Returning to Eqs. (30) and (31), we get

mij =

(
1/
(
cαj

(
d2ij + β1d

(s)2
ij

))) 1
β−1

∑
Ak⊆Ω

Ak ̸=∅

(
1/
(
cαk

(
d2ik + β1d

(s)2
ik

))) 1
β−1

+
(

1
δ2+β1δ2

) 1
β−1

, (34)

and

mi∅ =

(
1

δ2+β1δ2

) 1
β−1

∑
Ak⊆Ω

Ak ̸=∅

(
1/
(
cαk

(
d2ik + β1d

(s)2
ik

))) 1
β−1

+
(

1
δ2+β1δ2

) 1
β−1

. (35)

Next, we consider that the credal membership matrixM is fixed. Then, the minimization

of JTECM with respect to V is an unconstrained optimization problem. The partial derivatives

of JTECM with respect to the prototypes of the specific classes in the target domain are

∂JTECM

∂vl

=
n∑

i=1

∑
Aj⊆Ω

Aj ̸=∅

cαj m
β
ij

∂d2ij
∂vl

− 2β2(v
(s)
l − vl), (36)

where

∂d2ij
∂vl

= 2 (xi − vj)

(
−slj

1

cj

)
, (37)

and vj is defined by Eq. (17). Thus, we have

∂JTECM

∂vl

= −2
n∑

i=1

∑
Aj⊆Ω

Aj ̸=∅

cα−1
j mβ

ijslj

(
xi −

∑ct
k=1skjvk

cj

)
− 2β2

(
v
(s)
l − vl

)
. (38)

Setting these derivatives to zero, we can get l linear equations of vk:

∑
i

xi

∑
Aj⊆Ω

Aj ̸=∅

cα−1
j mβ

ijslj =

ct∑
k=1

vk

n∑
i=1

∑
Aj⊆Ω

Aj ̸=∅

cα−2
j mβ

ijskjslj − β2

(
v
(s)
l − vl

)
. (39)

Let B be the matrix of size (ct × p) defined by

Blq =
n∑

i=1

xiq

∑
Aj⊆Ω

Aj ̸=∅

cα−1
j mβ

ijslj =
n∑

i=1

xiq

∑
Aj∋ωl

cα−1
j mβ

ij , (40)

and let H be the matrix of size (ct × ct) given by

Hlk =
n∑

i=1

∑
Aj⊆Ω

Aj ̸=∅

cα−2
j mβ

ijsljskj =
∑
i

∑
Aj⫆{ωk,ωl}

cα−2
j mβ

ij . (41)

Let I be the (ct × ct) identity matrix. The prototype matrix V can be obtained by solving

the following linear system

(H + β2I)V = B + β2V
(s). (42)
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4. Extended transfer evidential c-means

As will be shown in Section 5, the TECM clustering algorithm can effectively make use of

the knowledge in the source domain and improve the performance of the clustering algorithm

in the target domain, but it assumes that the source and target domains have the same number

of clusters. However, in many practical applications, this assumption cannot always hold. In

this section, an Extended version of Transfer Evidential C-Means (ETECM) is proposed for

the clustering task with different numbers of clusters in the two domains.

4.1. The objective function of ETECM

Let R be a matrix of size (cs×ct) with elements rij , which denotes the similarity between

the i-th cluster in the source domain and the j-th cluster in the target domain. ETECM aims

to get the optimal partition by updating the membership M , the prototypes V and the

similarity matrix R respectively. The objective function of ETECM is defined as

JETECM(M ,V ,R) =
n∑

i=1

∑
Aj⊆Ω

Aj ̸=∅

cαj m
β
ijd

2
ij +

n∑
i=1

δ2mβ
i∅ + β3

cs∑
i=1

ct∑
j=1

rηij

∥∥∥v(s)
i − vj

∥∥∥2 , (43)

subject to ∑
Aj⊆Ω,Aj ̸=∅

mij +mi∅ = 1, (44)

and
ct∑
j=1

rij = 1. (45)

As we can see, the first two terms are directly inherited from ECM, and the third term is

designed to utilize the knowledge from the source domain. It should be noticed that, ETECM

is not equivalent to TECM when the source and target domains have the same number of

clusters. TECM uses two terms to transfer knowledge from the source domain, but ETECM

only adopts one.

4.2. Optimization

From the objective function of ETECM, we can see that M is only related to the first

two terms. Thus, the update rule for M is the same as that in ECM:

mij =
c
−α/(β−1)
j d

−2/(β−1)
ij∑

Ak ̸=∅
c
−α/(β−1)
k d

−2/(β−1)
ik + δ−2/(β−1)

, i = 1, 2 · · ·, n; j|Aj ⊆ Ω, Aj ̸= ∅, (46)

mi∅ = 1−
∑
Aj ̸=∅

mij , i = 1, 2, · · · , n. (47)

11



To update the cluster centers in the target domain vl, we let

∂JETECM

∂vl

= −2
n∑

i=1

∑
Aj⊆Ω

Aj ̸=∅

{
cα−1
j mβ

ijslj ×

(
xi −

1

cj

ct∑
k=1

skjvk

)}

− 2β3

cs∑
i=1

rηil

(
v
(s)
i − vl

)
= 0, l = 1, · · · , ct, (48)

from which we get

∑
i

xi

∑
Aj⊆Ω

Aj ̸=∅

cα−1
j mβ

ijslj =

ct∑
k=1

vk

n∑
i=1

∑
Aj⊆Ω

Aj ̸=∅

(cα−2
j ×mβ

ijskjslj) −β3

cs∑
i=1

rηil

(
v
(s)
i − vl

)
. (49)

Let R be a (ct × ct) diagonal matrix with diagonal elements

rl =

cs∑
i=1

ril, l = 1, 2, · · · , ct. (50)

The prototype matrix in the target domain V is obtained by solving the following linear

system: (
H + β3R

)
V = B + β3(R

η)TV (s), (51)

where B and H are defined in Eqs. (40) and (41) respectively, and AT denotes the transpose

of matrix A.

The update rule for rij can be obtained, which is similar to that of mij by introducing

Lagrangian multipliers:

rij =
(dij [st])

− 1
η−1

ct∑
j=1

(dij [st])
− 1

η−1

, i = 1, · · · , cs; j = 1, · · · , ct, (52)

where

dij [st] =
∥∥∥v(s)

i − vj

∥∥∥2 . (53)

4.3. Computational complexity

The cluster membership of each object is distributed on the power set 2Ω for credal

partitions. Consequently, the number of parameters to be optimized in TECM and ETECM

are linear in the number of objects and exponential in the number of clusters. TECM and

ETECM both have the computational complexity of O(n2ct), where n is the size of data set

in the target domain and ct is the number of clusters in the target domain. In practice, it is

possible to reduce the complexity of proposed methods by constraining the focal sets to be

composed of singletons, the empty set and Ω. In this way, the computational complexity can

be simplified to O(2n+ nct) in both the TECM and the ETECM.

12



5. Experiments

In this section, we will conduct some experiments on synthetic and real-world data sets

to show the performance of the proposed methods. The Adjusted Rand Index (ARI) and the

Normalized Mutual Information (NMI), which are commonly used in evaluating clustering

methods, are adopted as the performance indexes. As ARI and NMI are used to measure

the quality of hard partitions, when evaluating the partitions provided by ECM, TECM and

ETECM, we use the corresponding hard partitions by assigning samples to the cluster with

maximal Pignistic probability [36].

Besides, we use the evidential precision (EP) proposed in [38, 39] to show the advantages

of imprecise clusters in credal partitions. EP is defined as

EP =
ner

Ne

, (54)

where Ne denotes the number of pairs partitioned into the same specific group by evidential

clustering, and ner is the number of relevant instance pairs out of these specifically clustered

pairs. For hard partitions, EP boils down to the classical Precision (P) since there are no

imprecise clusters. Precision is the fraction of relevant instances (pairs in identical groups in

the clustering benchmark) out of those retrieved instances (pairs in identical groups of the

discovered clusters), calculated by

P =
a

a+ c
, (55)

where a is the number of pairs of objects simultaneously assigned to identical classes by the

reference partition and the obtained one, and c is the number of dissimilar pairs partitioned

into the same cluster. The codes are available on GitHub2.

5.1. Gaussian data sets

Gaussian data sets were used to show how to determine the appropriate parameters of

TECM. The source and target data both followed two-dimensional Gaussian distributions

with parameters (mean values and covariance matrices) listed in Tables 1-2.

Table 1: Distributions of the source data.

parameter
ID

S1 S2 S3 S4

Mean [2, 4] [9, 15] [8, 30] [13, 40]

Covariance

[
10 0
0 10

] [
25 0
0 7

] [
30 0
0 20

] [
15 0
0 10

]

There were four alternative clusters in the source data and three clusters in the target.

Notations nt and ns denote the numbers of data samples in the target and source domain

respectively.

2https://github.com/kuangzhou/TECM

13



Table 2: Distributions of the target data.

parameter
ID

T1 T2 T3

Mean [3, 4] [10.5, 12.5] [9, 29]

Covariance

[
10 0
0 11

] [
25 0
0 7

] [
30 0
0 10.9

]
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Figure 2: ARI and NMI of the clustering results on Gaussian data with changing β1 and β2.
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Figure 3: ARI and NMI of the clustering results on Gaussian data with changing α.
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Table 3: ARI by TECM on Gaussian data sets under different parameter settings.

β1

ARI β2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.729 0.726 0.734 0.730 0.732 0.727 0.735 0.73 0.736 0.742 0.745
0.1 0.731 0.739 0.749 0.769 0.764 0.758 0.768 0.764 0.767 0.778 0.767
0.2 0.767 0.776 0.770 0.782 0.772 0.770 0.771 0.777 0.776 0.775 0.784
0.3 0.773 0.774 0.773 0.775 0.782 0.773 0.78 0.786 0.774 0.772 0.785
0.4 0.778 0.783 0.787 0.794 0.790 0.785 0.787 0.787 0.784 0.785 0.786
0.5 0.782 0.779 0.775 0.790 0.783 0.784 0.783 0.79 0.788 0.793 0.793
0.6 0.785 0.776 0.796 0.780 0.798 0.791 0.793 0.792 0.796 0.795 0.787
0.7 0.801 0.798 0.782 0.797 0.787 0.798 0.789 0.793 0.787 0.783 0.789
0.8 0.792 0.804 0.792 0.794 0.802 0.801 0.801 0.799 0.796 0.788 0.797
0.9 0.792 0.798 0.799 0.783 0.801 0.796 0.803 0.793 0.798 0.789 0.799
1.0 0.799 0.789 0.794 0.790 0.802 0.801 0.799 0.793 0.794 0.795 0.804

Table 4: NMI by TECM on Gaussian data sets under different parameter settings.

β1

NMI β2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.722 0.721 0.729 0.723 0.727 0.721 0.731 0.725 0.731 0.735 0.734
0.1 0.721 0.730 0.734 0.753 0.750 0.743 0.750 0.748 0.754 0.760 0.749
0.2 0.748 0.761 0.752 0.763 0.757 0.752 0.756 0.756 0.758 0.757 0.766
0.3 0.757 0.758 0.755 0.756 0.764 0.754 0.758 0.768 0.757 0.753 0.765
0.4 0.759 0.763 0.766 0.774 0.770 0.767 0.768 0.766 0.763 0.765 0.767
0.5 0.765 0.759 0.756 0.768 0.764 0.766 0.761 0.770 0.768 0.773 0.772
0.6 0.766 0.757 0.776 0.757 0.776 0.770 0.772 0.770 0.773 0.773 0.766
0.7 0.778 0.775 0.759 0.777 0.764 0.775 0.768 0.770 0.768 0.763 0.768
0.8 0.771 0.781 0.770 0.774 0.780 0.778 0.778 0.775 0.773 0.770 0.774
0.9 0.772 0.778 0.776 0.761 0.780 0.775 0.781 0.771 0.773 0.766 0.776
1.0 0.776 0.765 0.772 0.767 0.779 0.780 0.776 0.770 0.774 0.772 0.782

The influence of β1 and β2 was tested during the experiment. The source data set was

syntheticed by Gaussian distribution with parameters S1, S2, and S3. The target data set

was generated by Gaussian distribution with parameters T1, T2, and T3. Set nt = 50 and

ns = 500. The experiment was repeated 100 times by randomly generating Gaussian data

with fixed parameters. The average values of ARI and NMI are reported in Table 3 and

Table 4 respectively. When parameters β1 and β2 are both set to 1, TECM yields the best

clustering results. Then we increased β2 gradually from 0 to 1 (with β1 = 1) and increased

β1 gradually from 0 to 1 (with β2 = 1) respectively. The mean values of ARI and NMI are

shown in Fig. 2. We can find that β2 has little impact on clustering results when β1 is set to

1. On the contrary, β1 have a great influence on the clustering results when β2 is fixed to 1.

When β1 increases, clustering results tend to be better. Then, we set β1 = 1 and β2 = 1, and

increased α gradually from 0 to 30. Fig. 3 shows that NMI and ARI are growing when α is

increasing from 0 to 4, but become stable when the α is larger than 4. Thus, in the following

experiments, we set β1 = β2 = 1 and α = 4 as the default parameter values.

In additional, the sensitivity of initial prototypes was tested. TECM and ETECM were

run with five different initial prototype sets, which were randomly selected from target data

samples. Other parameters of TECM and ETECM used in this experiment are illustrated in

the first two columns in Table 5. The final prototypes as well as the ARI, NMI, and EP of

TECM and ETECM are shown in Table 6. It can be seen that different initial prototypes

lead to similar results. In other word, TECM and ETECM are robust to the setting of initial

prototypes. Thus, the initial prototypes will be randomly selected from the target data set in
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Table 5: Parameter settings in TECM, ETECM, TFCM, E-TFCM, ECM, and Jiao’s method.

TECM ETECM TFCM E-TFCM Jiao ECM
β1 = β2 = 1 α = 4, β = 2 λ1 = 0.1 m1 = 3 α = 4, δ = 10 α = 4
α = 4, β = 2 β3 = 1, η = 2 λ2 = 0.5 m2 = 3 β = 2, λ = 1 δ = 10

δ = 10 δ = 10 m=2 λ1 = 1 γ = 2 β = 2

the following experiments.

Table 6: The final prototypes, ARI, NMI, and EP obtained by TECM and ETECM with five different groups of
initial prototypes.

Initial prototypes
TECM ETECM

Prototypes ARINMI EP Prototypes ARINMI EP

1
(7.45, 19.15) (2.54144, 4.19656) (8.28819, 29.19526)
(11.82, 7.64) (10.26608, 13.46417) 0.84 0.80 0.92(11.27092, 12.66844) 0.84 0.80 0.91
(7.37, 3.56) (8.19675, 29.61525) (2.66649, 4.24254)

2
(1.37, 12.50) (2.54137, 4.19646) (11.27092, 12.66844)
(2.28, 4.43) (10.26580, 13.46404) 0.84 0.80 0.92(2.66649, 4.24254) 0.84 0.80 0.91
(6.49, 32.24) (8.19683, 29.61524) (8.28819, 29.19526)

3
(17.64, 14.99) (2.54147, 4.19661) (11.27180, 12.66883)
(11.93, 13.73) (10.26611, 13.46428) 0.84 0.80 0.92( 2.66677, 4.24298) 0.84 0.80 0.91
(7.60, 33.84) (8.19675, 29.61531) (8.28793, 29.19530)

4
(2.43, 0.78) (2.54145, 4.19659) (2.66648, 4.24252)
(6.90, 26.97) (10.26609, 13.46425) 0.84 0.80 0.92( 8.28820, 29.19526) 0.84 0.80 0.91
(6.79, 9.02) (8.19673, 29.61530) (11.27087, 12.66842)

5
(9.24, 15.06) (2.54138, 4.19647) (8.28821, 29.19526)
(0.08, -4.56) (10.26587, 13.46404) 0.84 0.80 0.92(2.66647, 4.24251) 0.84 0.80 0.91
(-1.48, 4.35) (8.19683, 29.61522) (11.27086, 12.66842)

As mentioned, TECM is only suitable for the case where the cluster numbers of the two

domains are identical. In contrast, ETECM is able to handle transfer learning tasks in which

the source and target domains have different cluster numbers. The application scope will

be illustrated in detail in the following experiments. The parameters of these two clustering

methods were set the same as before. Two scenarios for transfer learning were considered.

The first scenario was that the data in the source and target domains had the same cluster

numbers, and the second scenario was that cluster numbers in the two domains were different.

In the first scenario, Gaussian data sets were generated with parameters S1-S3 (T1-T3) as

the source domain (target domain). We compared the proposed clustering methods (TECM

and ETECM) with three existing algorithms: TFCM, ECM and Jiao’s method. We increased

nt gradually from 10 to 500. For each nt, Gaussian data were generated 100 times under the

fixed parameters of S1-S3 and T1-T3. The prototypes of clusters in the source domain were

provided by the mean values shown in Table 1. The average values of ARI, NMI and EP are

reported in Fig. 4.

From Fig. 4, TECM performs better than ETECM. The objective function of TECM

takes the distances between samples and source domain prototypes into account, but the

objective function of ETECM does not. Thus, TECM makes greater use of the source domain

information. In addition, the clustering results obtained by TECM are better than those
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Figure 4: ARI, NMI, and EP of the clustering results on Gaussian data.
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by ECM in terms of ARI, NMI, and EP. This demonstrates the effectiveness of transfer

learning in this scenario. The results obtained by TECM are better than TFCM as indicated

by the EP. Compared with TFCM, TECM introduces the theory of belief function to well

express uncertain information in the cluster structure. We can also find that TECM performs

significantly better than Jiao’s method when nt is small. This is because TECM considers

the distances between source domain prototypes and target domain samples. Consequently,

it can learn more knowledge from the source domain.

In the second scenario, Gaussian data sets were generated with S1-S4 as the source

domain and T1-T3 as the target domain. In this case, there were four clusters in the source

domain while three in the target. We compared ETECM with E-TFCM conducted on above

Gaussian sets. As Fig. 5 shows, the clustering results obtained by ETECM are close to those

of E-TFCM in terms of both ARI and NMI when the target domain has a small number

of samples, but better than E-TFCM in terms of EP. It demonstrates the effectiveness of

ETECM in describing the uncertainty information among clusters.
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Figure 5: ARI, NMI, and EP for ETECM and E-TFCM clustering results on Gaussian data sets with 4 clusters in
the source domain and 3 clusters in the target domain.
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5.2. Iris data set

This subsection is designed to verify the effectiveness of the available prototypes in the

source domain on the clustering performance. We consider the Iris data set consisting of 150

samples from three species. Four features were measured for each sample: Sepal.Length (SL),

Sepal.Width (SW), Petal.Length (PL) and Petal.Width (PW). The four features were divided

into two parts FT1 and FT2. The six cases are listed in Table 7. The samples with features

in FT1 were regarded as the target data to be clustered.

Table 7: The feature division for Iris data.

Case FT1 FT2 Case FT1 FT2
Case 1 SL, SW PL, PW Case 4 SW, PL SL, PW
Case 2 SL, PL SW, PW Case 5 SW, PW SL, PL
Case 3 SL, PW SW, PL Case 6 PL, PW SL, SW

In order to generate the prototypes in the source domain which were required before

using TECM and ETECM, for each case, we first applied c-means clustering on the samples

with features in FT2 and got the best hard partition for the 150 samples. Then the following

two schemes were designed to get the prototypes v
(s)
k :

Scheme A: By the feature mean of samples in each group with feature set FT2;

Scheme B: By the feature mean of samples in each group with feature set FT1;

In Scheme B, the prototypes were from the target data (with FT1) based on a clustering

rule learned with the source domain (with FT2), while in Scheme A the prototypes were from

the source data (with FT2) based on a clustering rule learned with the same domain (with

FT2). TECM with these two schemes were termed by TECM-A and TECM-B respectively.

Analogously, ETECM with the two schemes were termed by ETECM-A and ETECM-B. We

also designed two cases using ECM: ECM-Target and ECM-Emerge. The former denotes the

ECM algorithm conducted on the target data, while the latter represents ECM conducted

on the data set directly combining samples in the target and source domain. The ARI and

NMI for the results by ECM-Target, ECM-Emerge, TECM-A, TECM-B, ETECM-A, and

ETECM-B are displayed in Table 8. From the table we can see

• TECM-B performs better than ECM-Target in Cases 1 and 3, but the performance of

the two methods is similar in Cases 2, 4, 5 and 6.

• TECM-A performs worse than TECM-B and ECM-Target in all cases.

• ECM-Emerge performs worse than ECM-Target in all cases.

• ETECM-B performs better than ECM-Emerge and TECM-B in all cases.

In TECM-B, the transferred knowledge of prototypes has the same feature set as the

target samples (this corresponds to the illustrative example in the introduction). The results

show that the clustering performance is indeed improved by the use of information from the
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Figure 6: The FT1 and prototype v
(s)
k in different cases. In the above figures, the blue ∆ represents setosa;

the green + represents versicolor; the brown ⊕ represents virginica; the red filled squares represent the source
prototypes of Scheme A and the black filled circles represent the source prototypes of Scheme B.
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source. In contrast, v
(s)
k generated from TECM-A is far away from target data sets in all cases

(Fig. 6). The knowledge from the source domain has a negative influence on the performance

of transfer clustering in this situation. We can deduce that the performance degradation of

TECM-A may be caused by the imperfect information matching between the two domains.

Although ETECM-A adopts the same source prototypes as TECM-A, it can reduce the risk

of negative transfer clustering and get the best clustering results in most cases.

Table 8: ARI and NMI for the clustering results on Iris set by TECM, ETECM and ECM.

Method
Case 1 2 3 4 5 6 1 2 3 4 5 6

ARI NMI
ECM-Target 0.56 0.69 0.58 0.80 0.79 0.78 0.58 0.70 0.60 0.83 0.78 0.78
ECM-Emerge 0.16 0.56 0.30 0.57 0.00 0.43 0.15 0.55 0.28 0.58 0.02 0.48
TECM-A 0.01 0.57 0.00 0.55 0.00 0.51 0.02 0.58 0.00 0.57 0.00 0.49
ETECM-A 0.42 0.74 0.46 0.83 0.80 0.81 0.38 0.73 0.42 0.83 0.77 0.79
TECM-B 0.57 0.68 0.61 0.80 0.79 0.78 0.59 0.68 0.62 0.80 0.78 0.75
ETECM-B 0.44 0.70 0.59 0.82 0.80 0.78 0.46 0.70 0.61 0.82 0.79 0.78

Table 9: ARI and NMI for the clustering results on TCA-processing Iris set by TECM, ETECM and ECM.

Method
Case 1 2 3 4 5 6 1 2 3 4 5 6

ARI NMI
ECM-Target 0.35 0.79 0.68 0.71 0.80 0.40 0.41 0.80 0.70 0.71 0.79 0.49
ECM-Emerge 0.35 0.79 0.68 0.71 0.80 0.40 0.41 0.80 0.70 0.71 0.79 0.49
TECM-A 0.35 0.74 0.70 0.74 0.82 0.47 0.41 0.77 0.71 0.72 0.80 0.53
ETECM-A 0.35 0.79 0.68 0.57 0.79 0.44 0.41 0.80 0.70 0.61 0.78 0.50
TECM-B 0.35 0.74 0.70 0.74 0.82 0.47 0.41 0.77 0.71 0.72 0.80 0.53
ETECM-B 0.35 0.79 0.47 0.71 0.80 0.41 0.41 0.80 0.46 0.71 0.79 0.49

From the results of TECM-A and TECM-B in Table 8, the performance of TECM de-

grades when source domain and target domain distributions are greatly different. To improve

the performance of TECM in Scheme A, the TCA algorithm [40] was used to reduce the

distribution discrepancy first. Table 9 shows ARI and NMI values of the results by ECM-

Target, ECM-Emerge, TECM-A, TECM-B, ETECM-A, ETECM-B with the data processed

by TCA. From the table, we can find that, in this way, TECM-A makes great progress in

Cases 2-5. TECM-A gains the best clustering results than any other methods in most of cases.

In summary, TECM is recommended when the distribution of source and target domain are

close. When the distribution of source and target domain are greatly different, we suggest

using ETECM, or using TCA first before TECM to make the data distributions in the two

domains close.

5.3. Texture segmentation

In this subsection, clustering methods were conducted on texture segmentation. The

Brodatz texture dataset3 was utilized to verify the effectiveness of the proposed methods.

Five basic textures in this data set including D1, D16, D35, D43, and D49 were used to

synthesize the source or target domain data.

Firstly, the artificial scenario was constructed for transfer learning, as shown in Fig. 7.

All these synthetic textures were resized to 45×45 pixels. It is noted that Fig. 7a is regarded

3T. Randen, Brodatz Texture, https://www.ux.uis.no/tranden/brodatz.html.
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as the source domain for all tasks. In this experiment, target pictures with different cluster

numbers were designed. The target data sets T4-T6 had 3, 4, and 5 clusters respectively.

Some Gaussian noise with different standard deviations were added to these images. In

Fig. 7, T4-1, T4-2, and T4-3 denote the data sets generated by T4 adding Gaussian noise

with δ = 0.05, 0.1, 0.2 respectively. Similarly, T5-1 to T5-3 and T6-1 to T6-3 were designed.

The Gabor filter [41] was used to extract texture features of all target domain pictures in

terms of the filtering banks with 6 orientations (at every 30°) and 5 frequencies (0.46, 0.47,

0.48, 0.49 and 0.50). The ideal segmentation results of all target images are shown in Fig. 8,

where the small squares from the same textures should be grouped together. Table 10 shows

the ARI, NMI, and EP of the obtained segmentation. From the table, we can see that TECM

performs better in most cases when the target and source domains are of the same number of

clusters.

Table 10: ARI, NMI and EP calculated by clustering methods on the different texture images.

Target image Index
Clustering methods

ECM TFCM E-TFCM Jiao TECM ETECM

T4-1
ARI 0.516 - 0.419 0.492 - 0.472
NMI 0.493 - 0.446 0.484 - 0.478
EP 0.749 - 0.699 0.731 - 0.722

T5-1
ARI 0.386 - 0.381 0.378 - 0.374
NMI 0.485 - 0.442 0.447 - 0.448
EP 0.596 - 0.599 0.591 - 0.587

T6-1
ARI 0.196 0.376 0.251 0.201 0.390 0.216
NMI 0.307 0.375 0.255 0.309 0.381 0.304
EP 0.531 0.684 0.606 0.530 0.681 0.546

T4-2
ARI 0.506 - 0.402 0.456 - 0.440
NMI 0.492 - 0.441 0.473 - 0.467
EP 0.742 - 0.690 0.706 - 0.701

T5-2
ARI 0.383 - 0.345 0.350 - 0.341
NMI 0.475 - 0.410 0.418 - 0.414
EP 0.590 - 0.579 0.577 - 0.568

T6-2
ARI 0.204 0.361 0.244 0.208 0.375 0.219
NMI 0.313 0.377 0.245 0.327 0.385 0.307
EP 0.536 0.676 0.599 0.538 0.678 0.548

T4-3
ARI 0.450 - 0.325 0.354 - 0.346
NMI 0.455 - 0.368 0.402 - 0.400
EP 0.713 - 0.629 0.633 - 0.629

T5-3
ARI 0.378 - 0.308 0.279 - 0.291
NMI 0.463 - 0.356 0.349 - 0.365
EP 0.591 - 0.556 0.524 - 0.538

T6-3
ARI 0.205 0.327 0.257 0.222 0.330 0.264
NMI 0.315 0.363 0.271 0.303 0.362 0.322
EP 0.533 0.653 0.609 0.575 0.646 0.616
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5 clusters 3 clusters 4 clusters 5 clusters 3 clusters

without noise δ = 0.05 δ = 0.05 δ = 0.05 δ = 0.1

a. S5 b. T4-1 c. T5-1 d. T6-1 e. T4-2

4 clusters 5 clusters 3 clusters 4 clusters 5 clusters

δ = 0.1 δ = 0.1 δ = 0.2 δ = 0.2 δ = 0.2

f. T5-2 g. T6-2 h. T4-3 i. T5-3 j. T6-3

Figure 7: Texture images for transfer clustering.

a b c

Figure 8: The ideal segmentation of target texture images. a for T4-1, T4-2 and T4-3; b for T5-1, T5-2 and T5-3;
c for T6-1, T6-2 and T6-3.

a. ECM b. E-TFCM c. ETECM d. Jiao

Figure 9: Segmentation of T4-1.

a. ECM b. E-TFCM c. ETECM d. Jiao

Figure 10: Segmentation of T5-1.
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a. ECM b. E-TFCM c. ETECM d. Jiao e. TECM f. TFCM

Figure 11: Segmentation of T6-1.

a. ECM b. E-TFCM c. ETECM d. Jiao

Figure 12: Segmentation of T4-2.

a. ECM b. E-TFCM c. ETECM d. Jiao

Figure 13: Segmentation of T5-2.

a. ECM b. E-TFCM c. ETECM d. Jiao e. TECM f. TFCM

Figure 14: Segmentation of T6-2.
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a. ECM b. E-TFCM c. ETECM d. Jiao

Figure 15: Segmentation of T4-3.

a. ECM b. E-TFCM c. ETECM d. Jiao

Figure 16: Segmentation of T5-3.

a. ECM b. E-TFCM c. ETECM d. Jiao e. TECM f. TFCM

Figure 17: Segmentation of T6-3.

5.4. UCI data sets

Ten UCI data sets were used in this subsection: Seeds, Wine, Glass, Breast Tissue (BT),

Wisconsin Diagnostic Breast Cancer (WDBC), Robot Navigation (RN), Breast Cancer (BC),

Diabetes, Vehicle data set, and Karate Club network (Karate). We show data size, feature

dimension, and the number of clusters (NC) in Table 11. It is remarked here as Karate

Club network is a graph data set, it has no dimension. In the experiment, nf features were

selected from the original data to form the target data sets. The selected feature indexes are

reported in Table 11. For Karate graph, the vector embedding was first calculated by spectral

decomposition of its adjacency matrices [42]. The embedding dimension was set to nf .

Then the ECM, TFCM, TECM, and ETECM algorithms were used. We note here as

the benchmarks for these data sets are known, in TECM, TFCM and ETECM, the average

values of the samples in the target data were directly used to simulate the prototypes in the

source domain.

The ARI, NMI, and EP values of the clustering results provided by ECM, TFCM, and

TECM are listed in Tables 12-13. TECM and ETECM perform better in most data sets than

other methods. This confirms the advantages of the evidential transfer clustering approach
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Table 11: The information of the UCI data sets.

Data set size Dimension NC feature index(nf = 2) feature index(nf = 3)
Seeds 210 7 3 (4, 6) (2, 3, 5)
Wine 178 13 3 (3, 5) (4, 9, 6)
Glass 214 9 6 (1, 8) (6, 8, 9)
BT 106 9 6 (1, 8) (2, 4, 7)

WDBC 569 30 2 (4, 26) (5, 11, 22)
RN 5456 24 4 (16,24) (3, 11, 23)
BC 699 9 2 (4, 9) (3, 4, 7)

Diabetes 768 8 2 (3, 6) (1, 2, 3)
Vehicle 846 18 4 (7, 11) (8, 11, 18)
Karate 34 - 2 - -

Table 12: ARI, NMI, and EP of clustering results on the UCI data sets with nf = 2.

Dataset
ARI NMI EP

ECMTFCMTECMETECM ECM TFCMTECMETECM ECM TFCMTECMETECM
Seeds 0.178 0.216 0.254 0.143 0.178 0.203 0.222 0.161 0.444 0.474 0.495 0.495
Wine 0.119 0.122 0.125 0.151 0.122 0.111 0.109 0.148 0.466 0.418 0.407 0.407
Glass 0.140 0.147 0.150 0.129 0.216 0.196 0.189 0.185 0.348 0.321 0.321 0.321
BT 0.319 0.356 0.472 0.045 0.502 0.485 0.570 0.087 1.000 0.422 1.000 1.000

WDBC 0.436 0.514 0.562 0.070 0.368 0.415 0.449 0.188 0.870 0.736 1.000 1.000
RN 0.035 0.047 0.071 0.048 0.079 0.094 0.122 0.080 0.386 0.364 0.380 0.380
BC 0.373 0.461 0.473 0.427 0.279 0.347 0.358 0.319 0.765 0.717 0.723 0.723

Diabetes 0.012 0.003 0.026 0.008 0.002 0.021 0.024 0.014 0.515 0.547 0.559 0.559
Vehicle 0.101 0.102 0.114 0.129 0.138 0.106 0.122 0.154 0.471 0.310 0.304 0.304
Karate 0.264 1.000 1.000 1.000 0.317 1.000 1.000 1.000 0.903 1.000 1.000 1.000

when there is some available positively transferred knowledge in the source domain.

6. Conclusion

In this study, the concept of knowledge transfer has been used to develop an evidential

transfer clustering method named TECM for the application of clustering task when the target

data are uncertain or insufficient. The proposed TECM algorithm can learn from not only

the data of the target domain but also the knowledge of the source domain in the form of

prototypes.

In TECM, the cluster numbers of the source and target domains are assumed to be

identical. This may be difficult to satisfy in practice. ETECM is designed for the case where

source and target domains have different numbers of clusters. The experimental results on

generated data and UCI data have demonstrated the effectiveness of the TECM and ETECM

algorithms. The problem of TECM, which can be seen from the experimental results in Section

5, is that the source data should be relevant to the target data. This is a general assumption

in transfer learning. In the following research, we will also study how to address this problem

when the information from the two domains is not very related. Another problem of the

proposed methods is that the number of attributes of samples in the source and target should

be the same. However, sometime this condition cannot be satisfied in reality. In this case

we can use some feature selection methods first to make the data in the two domains sharing

the same dimension. As mentioned, how to reduce the distribution discrepancy should also

be considered in the feature selection. These problems may be addressed by introducing new

items in the objective function. We will study these points in future work.
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Table 13: ARI, NMI, and EP of clustering results on UCI data sets with nf = 3.

Dataset
ARI NMI EP

ECM TFCMTECMETECM ECM TFCMTECMETECM ECM TFCMTECMETECM
Seeds 0.556 0.663 0.621 0.620 0.573 0.642 0.591 0.597 0.900 0.771 0.794 0.794
Wine 0.154 0.142 0.143 0.107 0.198 0.177 0.178 0.171 0.456 0.432 0.436 0.436
Glass 0.129 0.139 0.173 0.097 0.244 0.219 0.247 0.224 0.342 0.346 0.361 0.361
BT 0.272 0.243 0.274 0.087 0.467 0.421 0.422 0.151 0.143 0.339 0.373 0.373

WDBC 0.190 0.195 0.195 0.190 0.144 0.136 0.137 0.144 0.716 0.627 0.651 0.651
RN 0.015 0.052 0.059 0.015 0.057 0.093 0.096 0.057 0.376 0.379 0.386 0.386
BC 0.675 0.730 0.730 0.690 0.552 0.606 0.603 0.567 0.914 0.856 0.858 0.858

Diabetes 0.171 0.191 0.194 0.066 0.116 0.121 0.125 0.114 0.804 0.635 0.603 0.603
Vehicle 0.105 0.105 0.120 0.116 0.133 0.115 0.130 0.125 0.393 0.314 0.369 0.369
Karate 0.264 1.000 1.000 1.000 0.317 1.000 1.000 1.000 0.760 1.000 1.000 1.000
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