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The aim of this paper is to unify the ideas and to extend to a more general setting the 
work done in (Dell’Accio et al., 2023 [14]) for a polynomial enrichment of the standard 
three-node triangular element (triangular linear element) using line integrals and quadratic 
polynomials. More precisely, we introduce a new class of nonconforming finite elements 
by enriching the class of linear polynomial functions with additional functions which are 
not necessarily polynomials. We provide a simple condition on the enrichment functions, 
which is both necessary and sufficient, that guarantees the existence of a family of 
such enriched elements. Several sets of admissible enriched functions that satisfy the 
admissibility condition are also provided, together with the explicit expression of the 
related approximation error. Our main result shows that the approximation error can 
be decomposed into two parts: the first one is related to the linear triangular element 
while the second one depends on the enrichment functions. This representation of the 
approximation error allows us to derive sharp error bounds in both L∞ and L1 norms, 
with explicit constants, for continuously differentiable functions with Lipschitz continuous 
gradients. These bounds are proportional to the second and the fourth power of the 
circumcircle radius of the triangle, respectively. We also provide explicit expressions of 
these bounds in terms of the circumcircle diameter and the sum of squares of the triangle 
edge lengths.
© 2023 The Authors. Published by Elsevier B.V. on behalf of IMACS. This is an open access 

article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The finite element method (FEM) has achieved great success in many fields of science and technology. It is a very 
useful and powerful tool for calculating accurate approximations of solutions of partial differential equations [8]. One of the 
simplest finite elements is the traditional low-order finite element using three-node triangular element in two-dimensional 
Euclidean space [8]. It is defined locally as the triplet

(T , P1(T ),�T ),
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where T is any non degenerate triangle of a triangulation, P1(T ) is the space of bivariate linear polynomials and �T is 
the set of functional evaluations at the vertices of T , also called degrees of freedom of the finite element. The three-node 
triangular element is widely used in the applications, however it does not yield satisfactory results due to the low order of 
approximation of its trial functions. Basing on this simple element, alternative approaches have been proposed in an effort 
to obtain more effective finite element methods. One approach is to enrich the traditional triangular element (T , P1(T ), �T )

with special enrichment functions and additional appropriate degrees of freedom, which are added to P1(T ) and �T , re-
spectively, in order to obtain a more accurate element (for an overview of the relevant literature see, for instance, [2–4,21]). 
This is a natural way to improve the performance of finite element analysis and it is very important in the applications, 
see [10,18]. Motivated by the polynomial enrichment proposed in [14], which is applied to improve the triangular Shepard 
method (see [6,12,13,16,27] for other approaches) and by recent works on finite element approximations via the use of 
enrichment functions [2,4,21], in this paper we propose a general polynomial and non-polynomial approach for the en-
richment of the standard triangular linear element. While in theory this approach has considerable generality, we focus 
on the two-dimensional case, from which both one-dimensional and three-dimensional cases can similarly be developed. 
More precisely, the goal of the current study is to unify the ideas and to extend to a more general setting the polynomial 
enrichment presented in [14], by using more general polynomial and non-polynomial enrichment functions.

The paper is organized as follows. Section 2 begins by presenting the traditional three-node triangular element and by 
recalling some classical results and notations of the finite element method, used throughout the paper. Then we propose 
a generalization, using both polynomial and non-polynomial functions, of the polynomial enrichment for the standard tri-
angular linear element presented in [14]. Furthermore we provide explicit expressions of the basis functions in terms of 
barycentric coordinates and an explicit error representation. Thereafter, in Section 3 we present the general framework and 
extend the results of Section 2 to non-polynomial enrichments of the standard triangular linear element. Here an essen-
tial problem is to establish necessary and sufficient conditions, on the enrichment functions, to guarantee the existence 
of well-defined enriched finite elements. This will be done by deriving, in Theorem 3.1, a general characterization result, 
which significantly extends and improves the corresponding characterization Theorem of the polynomial enrichment case 
introduced in [14]. In Section 3.1 we derive an explicit error representation formula for the non-polynomial enriched ap-
proximant, in Proposition 3.4, and provide explicit bounds for the approximation error, both in L1-norm and L∞-norm, in 
Corollary 3.12 and Corollary 3.19, respectively. We also list several relevant a priori error estimates. We discuss the quality 
of the presented bounds and obtain, in Corollary 3.19, sharp error bounds in L1-norm, while, in Corollary 3.21, we extend 
this result for some special choices of admissible enrichment functions. In fact, we show that both in the L∞-norm and 
L1-norm cases these bounds are respectively proportional to the square and the fourth power of the circumcircle of the 
triangle, respectively, independently of admissible enrichment functions. To our knowledge, the form of the bounds and the 
computational approach based on Leibniz and Weitzenböck inequalities, are new in the context of the error estimate.

2. Polynomial enrichment of the standard triangular linear element

2.1. The standard triangular linear element

Given a non-degenerate triangle T ⊂R2 with vertices v i = (xi, yi), we denote by �i the edge of T opposite to the vertex 
v i , i = 1, 2, 3 and by {λi(x)}i the barycentric coordinates of T , defined as follows

λ1(x) :=

∣∣∣∣∣∣
1 1 1
x x2 x3
y y2 y3

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣
, λ2(x) :=

∣∣∣∣∣∣
1 1 1
x1 x x3
y1 y y3

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣
, λ3(x) :=

∣∣∣∣∣∣
1 1 1
x1 x2 x
y1 y2 y

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣
,

where x = (x, y) ∈R2. We denote by 〈·, ·〉 the scalar product of the Euclidean space R2, and by ‖·‖ the relative norm. Then

|�1| = ‖v2 − v3‖ , |�2| = ‖v1 − v3‖ , |�3| = ‖v1 − v2‖ ,

are the triangle T edge lengths. We also denote by |T | the area of the triangle T . Let

P1(T ) := span{λ1, λ2, λ3}
be the space of linear polynomials in R2. The standard triangular linear element P1 is the triple

P1 := (T , P1(T ),�T ),

where �T is the set of point evaluation functionals at the vertices of T , that is

�T := {L1( f ) := f (v1), L2( f ) := f (v2), L3( f ) := f (v3)}.

2
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2.2. The general problem for polynomial enrichment of the standard triangular linear element

In this Section we generalize the quadratic polynomial enrichment of the standard triangular linear element proposed 
in [14] and based on the set of linear functionals, called degrees of freedom

�̃T := {Li, Ii, i = 1,2,3},
with

Li( f ) = f (v i), f ∈ P̃2(T ), i = 1,2,3, (1)

Ii( f ) := 1

|�i |
∫
�i

f dσ , f ∈ P̃2(T ), i = 1,2,3, (2)

to the case of polynomials of degree greater than 2. We start with the case of cubic polynomials by fixing three linear 
polynomials l1, l2, l3, which satisfy

l1(v12) = l2(v23) = l3(v13) = 1, (3)

where v12, v23 and v13 are the midpoints of the sides of T , and precisely

v12 := v1 + v2

2
∈ �3, v23 := v2 + v3

2
∈ �1, v13 := v1 + v3

2
∈ �2.

We introduce the enriched space P̃2(T ) as follows:

P̃2(T ) := P1(T ) ⊕ span {l1λ2λ3, l2λ1λ3, l3λ1λ2} (4)

and we denote by A F 3 the enriched polynomial element

A F 3 := (T , P̃2(T ), �̃T ). (5)

The following technical lemma will be useful in establishing the proof of Theorem 2.3 about the unisolvence of the 
element A F 3.

Lemma 2.1. Let p ∈ P̃2(T ), then we have

I1(p) = 1

6
(p(v2) + 4p(v23) + p(v3)) , (6)

I2(p) = 1

6
(p(v1) + 4p(v13) + p(v3)) , (7)

I3(p) = 1

6
(p(v1) + 4p(v12) + p(v2)) . (8)

Proof. Let us prove the identity (6). We parametrize the edge �1 by

t → t v3 + (1 − t)v2, t ∈ [0,1].
Since the restriction of p to the edge �1 is a cubic polynomial in t , the Simpson’s rule provides exact results for the integral, 
and then by equation (2) we get

I1(p) = 1

|�1|
∫
�1

pdσ =
1∫

0

p(t v3 + (1 − t)v2)dt = 1

6
(p(v2) + 4p(v23) + p(v3)) .

The same argument can be used to prove identities (7) and (8). �
Remark 2.2. Note that, if p ∈ P̃2(T ) and L j(p) = I j(p) = 0, j = 1, 2, 3, then, by Lemma 2.1, we get

p(v23) = p(v13) = p(v12) = 0, (9)

that is, p vanishes at the midpoints of the sides of T .

Theorem 2.3. The triple A F 3 = (T , ̃P2(T ), ̃�T ) is a unisolvent element.
3
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Proof. We have to show that �̃T is P̃2(T )-unisolvent, i.e., if p ∈ P̃2(T ) and

L j(p) = 0, j = 1,2,3, (10)

I j(p) = 0, j = 1,2,3, (11)

then p ≡ 0 [11, Ch. 2]. Let p ∈ P̃2(T ) and assume that (10) and (11) hold. By definition, p can be represented as

p = α1λ1 + α2λ2 + α3λ3 + β1l1λ2λ3 + β2l2λ1λ3 + β3l3λ1λ2 (12)

for some constants αi, βi ∈ R, i = 1, 2, 3. Since the barycentric coordinates satisfy Lagrange property, that is L j(λi) =
λi(v j) = δi j , where δi j is the Kronecker delta symbol, then (10) implies α1 = α2 = α3 = 0 and p reduces to

p = β1l1λ2λ3 + β2l2λ1λ3 + β3l3λ1λ2.

On the other hand, I1(p) = 0 and L2(p) = L3(p) = 0 imply, by (6), p(v23) = 0. Now, since λ2(v23) = λ3(v23) = 1
2 and 

λ1(v23) = 0, we get

0 = 4

6
p(v23) = β1

6
l1(v23) = β1

6
,

where in the last equality, we used the conditions (3). Thus β1 = 0. A similar argument can be used to show that β2 = β3 =
0, therefore p ≡ 0 and the proof of the theorem is completed. �
Remark 2.4. We notice that if we take l1 = l2 = l3 = 1, then the enriched space P̃2(T ) becomes the standard space of 
quadratic polynomials P2(T ) and, in this sense, the AF3 element (5) generalizes the element (T , P2(T ), ̃�T ) introduced 
in [14].

Remark 2.5. The enriched function space P̃2(T ) satisfies the following properties:

i) it is a subspace of P3(T ), the space of cubic polynomials, and hence the restriction of any p ∈ P̃2(T ) to each side of T
is a cubic polynomial in one variable;

ii) it contains the set of linear polynomials;
iii) the nonlinear terms in the expression (12) of p ∈ P̃2(T ) vanish at the vertices of T .

Theorem 2.3 can be stated equivalently by saying that the functionals of �̃T are linearly independent in the dual space 
P̃2(T )	 . Then, there exists a basis {ϕi, φi, i = 1, 2, 3} of P̃2(T ) which satisfies

Li(ϕ j) = δi j, Ii(ϕ j) = 0, i, j = 1,2,3, (13)

Li(φ j) = 0, Ii(φ j) = δi j, i, j = 1,2,3. (14)

Theorem 2.6. The basis functions ϕi , φi , i = 1, 2, 3, of (T , ̃P2(T ), ̃�T ) satisfying (13) and (14) have the following expressions

ϕ1 = λ1(1 − 3l3λ2 − 3l2λ3), ϕ2 = λ2(1 − 3l3λ1 − 3l1λ3), ϕ3 = λ3(1 − 3l2λ1 − 3l1λ2), (15)

φ1 = 6l1λ2λ3, φ2 = 6l2λ1λ3, φ3 = 6l3λ1λ2. (16)

Proof. Let us prove the first of identities (15). The element ϕ1 ∈ P̃2(T ) can be represented as

ϕ1 = α1λ1 + α2λ2 + α3λ3 + β1l1λ2λ3 + β2l2λ1λ3 + β3l3λ1λ2, (17)

for some constants αi, βi ∈ R, i = 1, 2, 3. Since L1(ϕ1) = 1, L2(ϕ1) = L3(ϕ1) = 0, the Lagrange property of the barycentric 
coordinates implies α1 = 1, α2 = α3 = 0 and therefore

ϕ1 = λ1 + β1l1λ2λ3 + β2l2λ1λ3 + β3l3λ1λ2.

Moreover, since λ1 = 0 on �1, from I1(ϕ1) = 0, by applying the Simpson’s rule, we get

0 = 1

|�1|
∫
�1

β1l1λ2λ3dσ = 4

6
β1l1(v23)λ2(v23)λ3(v23) = β1

6
,

which readily gives β1 = 0. Similarly, since λ2 = 0 on �2, from I2(ϕ1) = 0 we get
4
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0 = 1

|�2|
∫
�2

(λ1 + β2l2λ1λ3)dσ

= 1

6

(
1 + 4

(
1

2
+ β2l2(v13)λ1(v13)λ3(v13)

))
= 1

6
(3 + β2),

that implies β2 = −3. Finally, since λ3 = 0 on �3, from I3(ϕ1) = 0 we get β3 = −3, and then the first of (15) is proved. 
We now show that the first of identities (16) holds. Since Li(φ1) = 0, i = 1, 2, 3, the Lagrange property of the barycentric 
coordinates implies that φ1 ∈ span {l1λ2λ3, l2λ1λ3, l3λ1λ2} and then it can be written as

φ1 = β1l1λ2λ3 + β2l2λ1λ3 + β3l3λ1λ2,

for some constants βi , i = 1, 2, 3. Moreover, from I1(φ1) = 1 we get

1 = 1

|�1|
∫
�1

β1l1λ2λ3dσ = 4

6
β1l1(v23)λ2(v23)λ3(v23) = β1

6
,

hence β1 = 6. From I2(φ1) = I3(φ1) = 0, we also get β2 = β3 = 0 and then the first of (16) is proved. We can obtain the 
expressions for the other functions by using symmetry arguments. �
Remark 2.7. It is easily seen that conditions (3), which are sufficient for the existence of the enrichment (5) of the element 
(T , P1(T ), �T ), can be replaced by the more general ones

l1(v12) �= 0, l2(v23) �= 0, l3(v13) �= 0. (18)

As it has become clear during the discussion, general conditions (18) are also necessary.

More generally, let us consider three interior points x1, x2, x3, of the sides �1, �2, �3 of the triangle T , respectively, and 
three linear polynomials l1, l2, l3. We call these points (and polynomials) admissible if they generate a unisolvent enriched 
element, possibly with different basis functions. In analogy with (18), we introduce the nonvanishing conditions

l1(x1) �= 0, l2(x2) �= 0, l3(x3) �= 0. (19)

The question arises whether conditions (19) are sufficient (and necessary) to generate a unisolvent enriched element. As 
we will see below, the answer to previous question is positive, but the differentiability class of the enrichment functions 
will depend on the position of the point x1, x2, x3. To prove this result, we use appropriate 1-point Gauss quadrature rules, 
instead of Simpson’s rule, used in the case of the midpoints of the sides of T . The idea is rather simple and dates back to 
paper [19]. By assumption, there exist real numbers αi, βi > 1, i = 1, 2, 3, such that

x1 = α1

α1 + β1
v2 + β1

α1 + β1
v3,

x2 = α2

α2 + β2
v1 + β2

α2 + β2
v3, (20)

x3 = α3

α3 + β3
v1 + β3

α3 + β3
v2.

As in Section 2, for the sake of simplicity, we can assume that

l1(x1) = l2(x2) = l3(x3) = 1. (21)

We introduce the following more general enriched space

S̃2(T ) = P1(T ) ⊕ span
{

l1λ
α1−1
2 λ

β1−1
3 , l2λ

α2−1
1 λ

β2−1
3 , l3λ

α3−1
1 λ

β3−1
2

}
, (22)

which includes P̃2(T ) as particular case. In order to test whether or not �̃T is S̃2(T )-unisolvent and to compute the basis 
of the enriched space, we recall the classical Euler beta function

B(α,β) =
1∫

tα−1(1 − t)β−1 dt, α,β > 0, (23)
0

5
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which satisfies the key property

B(α + 1, β) = α

α + β
B(α,β), α,β > 0. (24)

The beta function is connected to the gamma function through the equation [1]

B(α,β) = �(α)�(β)

�(α + β)
, (25)

and hence for positive integers α and β , we have

B(α,β) = (α − 1)!(β − 1)!
(α + β − 1)! . (26)

The following Proposition is crucial to prove that �̃T is S̃2(T )-unisolvent.

Proposition 2.8. Under nonvanishing conditions (21), the enrichment functions of ̃S2(T ) satisfy the following delta properties

1

|�i |
∫
�i

l1λ
α1−1
2 λ

β1−1
3 dσ = δ1i B(α1, β1),

1

|�i |
∫
�i

l2λ
α2−1
1 λ

β2−1
3 dσ = δ2i B(α2, β2), (27)

1

|�i |
∫
�i

l3λ
α3−1
1 λ

β3−1
3 dσ = δ3i B(α3, β3),

for each i = 1, 2, 3.

Proof. Let us prove the first of identities (27). Since α1 > 1 and β1 > 1 then λα1−1
2 λ

β1−1
3 vanishes on �2 and �3, therefore 

the first of identities (27) holds for i = 2, 3. For i = 1, using the fact that λ2 and λ3 are affine functions, we get

1

|�1|
∫
�1

l1λ
α1−1
2 λ

β1−1
3 dσ =

1∫
0

(
l1λ

α1−1
2 λ

β1−1
3

)
(t v2 + (1 − t)v3)dt

=
1∫

0

l1(t v2 + (1 − t)v3)t
α1−1(1 − t)β1−1 dt.

For the 1-point Gauss quadrature in the interval [0, 1] associated with the weight function wα1,β1(t) = tα1−1(1 − t)β1−1, the 
node is located at the point α1

α1+β1
, while the corresponding weight is equal to B(α1, β1) [25, Sect. 3.1]. Indeed, it suffices 

to determine the orthogonal polynomial q(t) of degree 1 relative to the weight function wα1,β1 on the interval [0, 1] and 
using (23) and (24), we get

q(t) = t − α1

α1 + β1
. (28)

Since we assumed by (21) that l1(x1) = 1, the result then follows from the exactness of the 1-point Gauss–Jacobi quadrature 
for polynomials of degree 1. �

The following theorem extends the Theorem 2.3 to the case of the general configuration of three points (20).

Theorem 2.9. Let the linear polynomials l1, l2, l3 satisfy the nonvanishing conditions (21) in the points x1, x2, x3 . Then the element 
(T , ̃S2(T ), ̃�T ) is unisolvent.

Proof. As the dimension of S̃2(T ) is equal to the cardinality of �̃T , it suffices to show that ψ ∈ S̃2(T ) is identically zero if 
all the degrees of freedom (1) and (2) vanish when applied to ψ . The proof follows the same argument of Theorem 2.3 by 
using the general identities given in Proposition 2.8. It is therefore omitted here. �
6
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Remark 2.10. The nonvanishing conditions (19) are also necessary. Indeed, let us assume that conditions (19) do not hold, 
and without loss of generality, we can assume that l1(x1) = 0. The function e1 = l1λ

α1−1
2 λ

β1−1
3 ∈ S̃2(T ), satisfies e1(v i) =

0, i = 1, 2, 3 and

1

|�2|
∫
�2

e1dσ = 1

|�3|
∫
�3

e1dσ = 0,

since e1 vanishes both on �2 and �3. We also have

1

|�1|
∫
�1

e1dσ =
1∫

0

tα1−1(1 − t)β1−1l1(t v2 + (1 − t)v3)dt = B(α1, β1)l1(x1) = 0.

Then Li(e1) = I j(e1) = 0, i, j = 1, 2, 3, and therefore �̃T is not S̃2(T )-unisolvent since e1 �= 0.

By assuming that the nonvanishing conditions (19) hold, we introduce the following notations

e1 = l1λ
α1−1
2 λ

β1−1
3 , e2 = l2λ

α2−1
1 λ

β2−1
3 , e3 = l3λ

α3−1
1 λ

β3−1
2 , γi = B(αi, βi), i = 1,2,3. (29)

Using the delta properties of the enriched terms given in Proposition 2.8, we can provide simple but elegant expressions 
for the basis functions ϕi, φi , i = 1, 2, 3 of (T , ̃S2(T ), ̃�T ). The proof of the following theorem follows the same argument of 
Theorem 2.6 and it is omitted

Theorem 2.11. The basis functions of (T , ̃S2(T ), ̃�T ) satisfying (13) and (14) have the following expressions

ϕi = λi −
3∑

j=1

e j

2γ j

(
1 − δi j

)
, i = 1,2,3, (30)

φi = ei

γi
, i = 1,2,3. (31)

2.3. An explicit error representation

For the enriched space S̃2(T ), we introduce the approximation operator

� : C(T ) → S̃2(T )

f 
→
3∑

i=1

Li( f )ϕi +
3∑

i=1

Ii( f )φi,
(32)

where ϕi, φi, i = 1, 2, 3, are the basis functions defined in Theorem 2.11. We are interested in evaluating or estimating the 
approximation error

E[ f ] := f − �[ f ]. (33)

The following result shows that the error (33) can be decomposed in two parts: the first one is related to the linear 
triangular element while the second one depends on the enriched functions ei , i = 1, 2, 3. To short the notation, in this 
representation we make use of a generalization of the classical trapezoidal formula to the case of line integrals. More 
precisely, for each j = 1, 2, 3, we set

L j := 1

2

3∑
i=1
i �= j

Li (34)

and

E tra
j := L j − I j, (35)

where Li and I j , i, j = 1, 2, 3 are defined in (1) and (2), respectively.
7
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Proposition 2.12. Let us assume that the nonvanishing conditions (21) hold and let ei , i = 1, 2, 3, be the functions defined in (29). 
Then, for all f ∈ C(T ), the approximation error at any point x ∈ T is given by

E[ f ](x) = Elin[ f ](x) + Eenr[ f ](x), (36)

where

Elin[ f ](x) = f (x) −
3∑

i=1

Li( f )λi(x), (37)

and

Eenr[ f ](x) =
3∑

j=1

e j(x)

γ j
E tra

j ( f ). (38)

Proof. By (33) and (32)

E[ f ] = f −
3∑

i=1

Li( f )ϕi −
3∑

i=1

Ii( f )φi .

By (30) and by changing the order of the summation, we get

3∑
i=1

Li( f )ϕi =
3∑

i=1

Li( f )

⎛⎝λi −
3∑

j=1

e j

2γ j

(
1 − δi j

)⎞⎠ ,

=
3∑

i=1

Li( f )λi −
3∑

j=1

e j

2γ j

3∑
i=1

(
1 − δi j

)
Li( f ),

=
3∑

i=1

Li( f )λi −
3∑

j=1,

e j

2γ j

3∑
i=1,i �= j

Li( f ),

=
3∑

i=1

Li( f )λi −
3∑

j=1,

e j

γ j
L j( f ).

Therefore, for all x ∈ T , we get

E[ f ](x) = f (x) −
3∑

i=1

Li( f )ϕi(x) −
3∑

j=1

I j( f )φ j(x)

= f (x) −
3∑

i=1

Li( f )λi(x) +
3∑

j=1,

e j(x)

γ j
L j( f ) −

3∑
j=1

I j( f )φ j(x)

= E lin[ f ](x) +
3∑

j=1

e j(x)

γ j

(
L j( f ) − I j( f )

)
,

as desired. �
3. Non-polynomial enrichment of the standard triangular linear element

3.1. Non-polynomial enrichment

In this Section we introduce a more general enrichment of the standard triangular linear element P1 based on three lin-
early independent arbitrary enrichment functions e1, e2, e3. As before, we assume that these functions satisfy the vanishing 
conditions on the vertices

e1(v i) = e2(v i) = e3(v i) = 0, i = 1,2,3. (39)

The new element, denoted by G F 3, is
8
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(T , G2(T ), �̃T ),

where

G2(T ) = P1(T ) ⊕ span {e1, e2, e3} . (40)

The motivation for the introduction of this new enriched element lies in the possibility to capture, through the new enrich-
ment functions, features of the function to be approximated that cannot be accurately captured by previously considered 
basis. It is worthwhile to note that, in the present situation, we cannot apply previously developed approaches, based on 
the use of Simpson’s rule or 1-point Gauss quadrature rule. The following theorem gives necessary and sufficient conditions 
on the enrichment functions e1, e2, e3, such that �̃T is G2(T )-unisolvent.

Theorem 3.1. Let be

N =
⎡⎣ I1(e1) I1(e2) I1(e3)

I2(e1) I2(e2) I2(e3)

I3(e1) I3(e2) I3(e3)

⎤⎦ , (41)

then the triple (T , G2(T ), ̃�T ) is a unisolvent element if and only if

det(N) �= 0. (42)

Proof. Let assume that det(N) �= 0. Let f ∈ G2(T ) be a function satisfying

Li( f ) = f (v i) = 0, i = 1,2,3, (43)

Ii( f ) = 1

|�i |
∫
�i

f dσ = 0, i = 1,2,3. (44)

By (40), f can be decomposed into the sum of a linear polynomial p ∈ P1(T ) and an enriched part, that is

f = p + α1e1 + α2e2 + α3e3, αi ∈ R, i = 1,2,3.

The vanishing conditions (39) for the enrichment functions imply that

p(v i) = 0, i = 1,2,3,

and therefore, since p is linear, p ≡ 0 and f coincides with its enriched part

f = α1e1 + α2e2 + α3e3.

Consequently, equations (43) and (44) imply that⎡⎣ I1(e1) I1(e2) I1(e3)

I2(e1) I2(e2) I2(e3)

I3(e1) I3(e2) I3(e3)

⎤⎦⎡⎣α1
α2
α3

⎤⎦=
⎡⎣0

0
0

⎤⎦ . (45)

As the determinant of N is non zero, this system has the unique solution α1 = α2 = α3 = 0. Hence f = 0.
Now, let assume that det(N) = 0. Therefore, there exist three real numbers γ1, γ2, γ3, not all zero, for which the function

e :=
3∑

i=1

γiei

satisfies

I j(e) = 0, j = 1,2,3.

Moreover the vanishing conditions (39) imply that

L j(e) = 0, j = 1,2,3,

therefore, we can exhibit a linear combination of the basis functions of G2(T ) with coefficient not all zero in which all 
degrees of freedom vanish. Then �̃T is not G2(T )-unisolvent. �

There exists a large class of admissible enrichment functions, as the following example shows.
9
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Example 3.2. Let us consider the three functions

e1 = (1 − λ1)
α1−1λ

β1−1
2 λ

γ1−1
3 ,

e2 = (1 − λ2)
α2−1λ

β2−1
1 λ

γ2−1
3 , (46)

e3 = (1 − λ3)
α3−1λ

β3−1
1 λ

γ3−1
2 ,

with αi, βi, γi > 1, i = 1, 2, 3. It is easy to see that e1, e2, e3 satisfy conditions (39). Moreover, by using (27) we get

Ii(e j) = 1

|�i |
∫
�i

e j dσ = δi j B(βi, γi), i, j = 1,2,3 (47)

and then the matrix N defined in (42) is a diagonal matrix with determinant different from zero. This implies that the 
functions ei, i = 1, 2, 3, are linearly independent and therefore, by Theorem 3.1 we can enrich P1 to the unisolvent element 
(T , G2(T ), ̃�T ) by using (46) as enrichment functions.

As in Section 2, we can obtain simple explicit expressions for the basis {ϕi, φi, i = 1, 2, 3} of G2(T ), associated to a 
unisolvent G F 3 element, which satisfy (13), (14). To this aim we denote by

N−1 = [c1 c2 c3], (48)

the inverse matrix of N , where ci ∈R3, i = 1, 2, 3, are column vectors.

Theorem 3.3. The basis functions ϕi, φi , i = 1, 2, 3, of (T , G2(T ), ̃�T ) satisfying (13) and (14) have the following expressions

ϕi = λi − 1

2

3∑
j=1
j �=i

〈
e, c j

〉
, i = 1,2,3, (49)

φi = 〈e, c i〉 , i = 1,2,3, (50)

where

e = [e1, e2, e3]T . (51)

Proof. We start by showing the validity of (49) in the case i = 1. We set

I j(e) = [I j(e1), I j(e2), I j(e3)]T , j = 1,2,3

hence, since N N−1 = I , we easily get〈
I j(e), c i

〉= δi j. (52)

Moreover, by Lemma 2.1, we get

I j(λi) = 1

2
(1 − δi j). (53)

As an element of G2(T ), ϕ1 can be represented as

ϕ1 = p + β1e1 + β2e2 + β3e3 = p + 〈e,β〉 , (54)

where p ∈ P1(T ) and β = [β1, β2, β3]T ∈R3. By using (13) and the vanishing conditions (39) we have

λ1(v j) = δ1 j = L j(ϕ1) = p(v j), j = 1,2,3,

so that p = λ1, since they are linear polynomials. Therefore (54) becomes

ϕ1 = λ1 + 〈e,β〉 , (55)

and by applying I j , j = 1, 2, 3, to both members of (55), by (13) and (53), we get

0 = 1

2
(1 − δ1 j) + 〈I j(e),β

〉
, j = 1,2,3,

or, in matrix form,
10
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⎡⎣0
0
0

⎤⎦= 1

2

⎡⎣0
1
1

⎤⎦+ Nβ.

Consequently

β = −1

2
N−1

⎡⎣0
1
1

⎤⎦= −1

2
(c2 + c3) ,

which, substituted in (55), gives the required expression (49) for ϕ1. Now we show the validity of (50) for i = 1. We proceed 
in analogy to previous case and then we set

φ1 = q + 〈e,γ
〉
,

where q ∈ P1(T ) and [γ1, γ2, γ3]T ∈R3. Since φ1(v j) = 0 for j = 1, 2, 3, this function can be expressed as

φ1 = 〈e,γ
〉
. (56)

By applying Ii , i = 1, 2, 3, to both members of (56), by (14), we get

δi1 = 〈Ii(e),γ
〉
, i = 1,2,3,

or, in matrix form,⎡⎣1
0
0

⎤⎦= Nγ .

Consequently

γ = N−1

⎡⎣1
0
0

⎤⎦= c1,

which, substituted in (56), gives the required expression (50) for φ1. The expression of the other functions can be obtained 
using symmetry arguments. �
3.2. An explicit error representation

In analogy to the case of polynomial enrichment described in previous section, we are interested in evaluating or esti-
mating the error

E[ f ] = f − �[ f ] (57)

of the approximation operator

�[ f ] =
3∑

i=1

Li( f )ϕi +
3∑

i=1

Ii( f )φi, (58)

where the basis functions ϕi, φi , i = 1, 2, 3 are now given as in (49) and (50). As before, we start by proving a decomposition 
of the error E[ f ] as a sum of the error of the (non-enriched) linear triangular element plus an additional term which 
depends both on the enrichment functions ei , i = 1, 2, 3 and the error (35) of the generalization of the classical trapezoidal 
formula to the case of line integrals (34). This representation will play an important role in the derivation of explicit bounds 
for the error in L1-norm.

Proposition 3.4. Let ei ∈ C(T ), i = 1, 2, 3 be enrichment functions such that �̃T is G2(T )-unisolvent. Then, for all f ∈ C(T ), the 
approximation error E[ f ] at any point x ∈ T is given by

E[ f ](x) = Elin[ f ](x) +
3∑

j=1

〈
e(x), c j

〉
E tra

j ( f ), (59)

where Elin[ f ](x), E tra( f ), e(x) and c j , j = 1, 2, 3 are defined as in (37), (35), (51) and (48), respectively.
j

11
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Proof. By (57) and (58)

E[ f ] = f −
3∑

i=1

Li( f )ϕi −
3∑

i=1

Ii( f )φi .

By (49) and by changing the order of the summation, we get

3∑
i=1

Li( f )ϕi =
3∑

i=1

Li( f )

⎛⎜⎜⎝λi − 1

2

3∑
j=1
j �=i

〈
e, c j

〉⎞⎟⎟⎠
=

3∑
i=1

Li( f )λi −
3∑

i=1

Li( f )
1

2

3∑
j=1

〈
e, c j

〉
(1 − δi j)

=
3∑

i=1

Li( f )λi −
3∑

j=1

〈
e, c j

〉 1

2

3∑
i=1

Li( f )(1 − δi j)

=
3∑

i=1

Li( f )λi −
3∑

j=1

〈
e, c j

〉 1

2

3∑
i=1
i �= j

Li( f ).

Consequently, for each x ∈ T , we get

E[ f ](x) = f (x) −
3∑

i=1

Li( f )ϕi(x) −
3∑

j=1

I j( f )φ j(x)

= f (x) −

⎛⎜⎜⎝ 3∑
i=1

Li( f )λi(x) −
3∑

j=1

〈
e, c j

〉 1

2

3∑
i=1
i �= j

Li( f )

⎞⎟⎟⎠−
3∑

j=1

I j( f )
〈
e(x), c j

〉

= E lin[ f ](x) +
3∑

j=1

〈
e(x), c j

〉⎛⎜⎜⎝1

2

3∑
i=1
i �= j

Li( f ) − I j( f )

⎞⎟⎟⎠
= E lin[ f ](x) +

3∑
j=1

〈
e(x), c j

〉 (
L j( f ) − I j( f )

)
, (60)

as required. �
Remark 3.5. It may be interesting to compare the proposed approximation operator � and the standard three node trian-
gular approximation operator

�lin[ f ](x) =
3∑

i=1

Li( f )λi(x). (61)

Using the representation of the error (60), the operator � can be formulated in an subtractive form more convenient for 
practical computation

�[ f ](x) = �lin[ f ](x) − Eenr[ f ](x), (62)

where

Eenr[ f ](x) :=
3∑

j=1

〈
e(x), c j

〉 (
L j( f ) − I j( f )

)
.

Indeed, as shown in equation (62), the operator � may be computed by simply subtracting the enriched approximation 
operator Eenr from the operator �lin, so that the two contributions can be evaluated separately.
12
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3.3. Error bounds

The decomposition (59) is the key result to get the estimate of the error E[ f ] in the case of a particular class of functions 
with continuous gradient. As usually, we say that f is continuously differentiable on T if it is continuously differentiable on 
an open set containing T . Other useful terminology and notations are clarified in the following.

Definition 3.6. A differentiable function f is said to have a Lipschitz continuous gradient on T , if there exists a constant 
ρ > 0 such that

‖∇ f (x) − ∇ f (y)‖ ≤ ρ ‖x − y‖ , ∀x, y ∈ T . (63)

By C1,1(�) we denote the subclass of all functions f which are continuously differentiable with Lipschitz continuous 
gradient on T . We call the smallest possible ρ such that (63) holds Lipschitz constant for ∇ f and we denote it by L(∇ f ).

The following result (see [17, Theorem 2.3]) will be useful in the following.

Theorem 3.7. Let A : C1(T ) → C(T ) be a linear operator. The following statements are equivalent:

(i) for every convex function g ∈ C1(T ), we have

g(x) ≤ A[g](x), x ∈ T ; (64)

(ii) for every f ∈ C1,1(T ) we have

| f (x) − A[ f ](x)| ≤ L(∇ f )

2

(
A[‖·‖2](x) − ‖x‖2

)
, x ∈ T . (65)

Equality is attained for all functions of the form

f (x) = a(x) + c ‖x‖2 ,

where c ∈R and a(x) is any affine function.

Remark 3.8. We notice that the results of Theorem 3.7 hold true, with the needed changes, in the case of standard simplex 
in Rd , d ∈N (see [17, Theorem 2.3]).

Since each x ∈ T can be expressed as x =
3∑

i=1
λi(x)v i , then for every convex function f on T we have

f (x) ≤
3∑

i=1

λi(x) f (v i) =: �1[ f ](x), x ∈ T , (66)

that is, the linear interpolation operator �1 satisfies condition (64), i.e. it approximates every convex function from above. 
Then, the following result holds.

Theorem 3.9. For every f ∈ C1,1(T ) we have∣∣∣Elin[ f ](x)

∣∣∣= | f − �1[ f ]| ≤ L(∇ f )

2

3∑
i=1

λi(x)‖x − v i‖2 , x ∈ T .

Equality is attained for all functions f of the form

f (x) := a(x) + c ‖x‖2 ,

where c ∈R and a(x) is any affine function.

Proof. From (66) we can apply Theorem 3.7 to the linear operator �1 so that (65) becomes

| f (x) − �1[ f ](x)| ≤ L(∇ f )

2

(
3∑

i=1

λi(x)‖v i‖2 − ‖x‖2

)
, x ∈ T .

It remains to show that
13
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3∑
i=1

λi(x)‖v i‖2 − ‖x‖2 =
3∑

i=1

λi(x)‖x − v i‖2 .

Indeed, we have

‖x − v i‖2 = ‖x‖2 − 2 〈x, v i〉 + ‖v i‖2 , i = 1,2,3.

By multiplying each of the above equalities by λi(x) and summing over all i = 1, 2, 3, we immediately get

3∑
i=1

λi(x)‖x − v i‖2 =
3∑

i=1

λi(x)‖x‖2 − 2

〈
x,

3∑
i=1

λi(x)v i

〉
+

3∑
i=1

λi(x)‖v i‖2 .

The desired result now follows from the partition of unity and the linear precision properties of the barycentric coordinates. 
The last statement of the theorem follows directly by Theorem 3.7. �

With reference to the formula (59), it remains to bound the error E tra
j ( f ) defined in (35).

Theorem 3.10. For every f ∈ C1,1(T ) we have∣∣∣∣∣∣∣L j( f ) − 1∣∣� j
∣∣
∫
� j

f dσ

∣∣∣∣∣∣∣≤
L(∇ f )

12

∣∣� j
∣∣2 , j = 1,2,3. (67)

Equality in (67) is attained for all functions of the form

f (x) := a(x) + c ‖x‖2 , (68)

where c ∈R and a(x) is any affine function.

Proof. We prove (67) in the particular case j = 1 since the remaining cases can be proved by analogy. Let us denote by f̃
the map

f̃ (t) = f ((1 − t)v2 + t v3), t ∈ [0,1] (69)

and by

�̃1[ f̃ ](t) = (1 − t) f̃ (0) + t f̃ (1) (70)

its linear interpolant at the end points of the interval [0, 1]. Therefore, we have

E tra
1 [ f ] = 1

2
( f (v2) + f (v3)) − 1

|�1|
∫
�1

f dσ

= 1

2

(
f̃ (0) + f̃ (1)

)−
1∫

0

f̃ (t)dt

=
1∫

0

(
�̃1[ f̃ ](t) − f̃ (t)

)
dt. (71)

Consequently

∣∣E tra
1 [ f ]∣∣≤ 1∫

0

∣∣�̃1[ f̃ ](t) − f̃ (t)
∣∣ dt. (72)

Since �̃1 approximates from above any convex function on [0, 1], from Remark 3.8 we have∣∣�̃1[ f̃ ](t) − f̃ (t)
∣∣≤ L( f̃ ′)

2

(
�̃1[| · |2](t) − |t|2

)
= L( f̃ ′)

2

(
t − t2

)
,

and therefore, from (72) we get
14



F. Dell’Accio, F. Di Tommaso, A. Guessab et al. Applied Numerical Mathematics 187 (2023) 1–23
∣∣E tra
1 [ f ]∣∣≤ L( f̃ ′)

12
. (73)

Moreover, for each s, t ∈ [0, 1], we have∣∣ f̃ ′(s) − f̃ ′(t)
∣∣= |〈∇ f (sv2 + (1 − s)v3) − ∇ f (t v2 + (1 − t)v3), v2 − v3〉 |
≤ ‖∇ f (sv2 + (1 − s)v3) − ∇ f (t v2 + (1 − t)v3)‖‖v2 − v3‖
≤ L(∇ f )‖v2 − v3‖2 |s − t| , (74)

and then, by definition of Lipschitz constant, we get

L( f̃ ′) ≤ L(∇ f )‖v2 − v3‖2 = L(∇ f )|�1|2 (75)

which concludes the proof of the inequality (67). Let assume that the function f (x) has the form (68) with c = 0. Therefore 
the function f̃ defined in (69) is affine and then �̃1[ f̃ ] = f̃ and L( f̃ ′) = 0. Consequently, (67) holds with equality in this 
case. Now let assume that f (x) = ‖x‖2. In this case the function in (69)

f̃ (t) = ‖t v2 + (1 − t)v3‖2 , t ∈ [0,1],
is a univariate quadratic polynomial satisfying

f̃ ′′(t) = 2‖v2 − v3‖2 . (76)

We expand f̃ (0) and f̃ (1) in Taylor series centered in t and we get, from (76),

f̃ (0) = f̃ (t) − t f̃ ′(t) + t2 ‖v2 − v3‖2 , (77)

f̃ (1) = f̃ (t) + (1 − t) f̃ ′(t) + (1 − t)2 ‖v2 − v3‖2 . (78)

Multiplying (77) by 1 − t , (78) by t and summing yields

(1 − t) f̃ (0) + t f̃ (1) = f̃ (t) +
(
(1 − t)t2 + t(1 − t)2

)
‖v2 − v3‖2 , (79)

or equivalently

�̃1[ f̃ ](t) − f̃ (t) =
(
(1 − t)t2 + t(1 − t)2

)
‖v2 − v3‖2 . (80)

Hence, by integrating (80), we get from (71)

E tra
1 [‖·‖2] = ‖v2 − v3‖2

1∫
0

(
(1 − t)t2 + t(1 − t)2

)
dt,

= ‖v2 − v3‖2 (B(3,2) + B(2,3)) ,

= 1

6
‖v2 − v3‖2 ,

which is exactly the term on the right hand side in (67), since L 
(∇ (‖·‖2))= 2. Finally, if f (x) has the general form (68), 

then the equality (67) easily follows. �
Combining Proposition 3.4, Theorem 3.9 and Theorem 3.10, we arrive at the main error estimate.

Theorem 3.11. For any v ∈ C1,1(T ), the following explicit error estimate holds

| f (x) − �[ f ](x)| ≤ L(∇ f )

2

(
3∑

λi(x)‖x − v i‖2 + 1

6

3∑
|�i |2 |〈c i, e(x)〉|

)
, x ∈ T . (81)
i=1 i=1

15
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3.4. The L∞ error estimate

The bound of the point-wise error given in Theorem 3.11 allows us to get a bound in L∞-norm

‖ f ‖L∞(T ) = max
x∈T

| f (x)|
of the error E[ f ] defined in (57). As shown in the following result, this bound is proportional to the square of the radius of 
the circumcircle of the triangle T , by a constant factor which depends on f and on the enrichment functions ei , i = 1, 2, 3.

Corollary 3.12. For any f ∈ C1,1(T ), the following explicit error estimate holds

‖ f − �[ f ]‖L∞(T ) ≤ L(∇ f )

2

(
1 + 3

2
max

i=1,2,3
‖〈c i, e〉‖L∞(T )

)
R2, (82)

where ci , i = 1, 2, 3 and e are defined in (48) and (51), respectively, and R is the circumradius of T .

Proof. We bound the two terms inside the bracket appearing on the right hand side of equation (81) separately. With 
regard to the first term, we show that

sup
x∈T

3∑
i=1

λi(x)‖x − v i‖2 ≤ R2. (83)

Indeed, if c is the circumcenter of T , by using the linear precision and partition of unity properties of barycentric coordi-
nates, we have

3∑
i=1

λi(x)‖x − v i‖2 =
3∑

i=1

λi(x)‖x − c − (v i − c)‖2

=
3∑

i=1

λi(x)
(
‖x − c‖2 − 2 〈x − c, v i − c〉 + ‖v i − c‖2

)

= ‖x − c‖2 − 2

〈
x − c,

3∑
i=1

λi(x)v i − c

〉
+

3∑
i=1

λi(x)‖v i − c‖2

= ‖x − c‖2 − 2 〈x − c, x − c〉 + R2

= R2 − ‖x − c‖2 .

Therefore, for each x ∈ T

3∑
i=1

λi(x)‖x − v i‖2 ≤ R2 − min
x∈T

‖x − c‖2 ≤ R2, x ∈ T , (84)

and so (83) is valid. With regard to the second term inside the bracket, we use Leibniz’s inequality to bound the sum of the 
squares of edge lengths of the triangle in terms of its circumradius [24], i.e.

3∑
i=1

|�i |2 ≤ 9R2. (85)

Combining the last estimate with (83) gives us the desired inequality (82). �
Remark 3.13. We notice that, for x = c we get

3∑
i=1

λi(c)‖c − v i‖2 = R2,

then inequality (84) holds with equality if and only if the circumcenter c belongs to T . This property characterizes acute 
triangles, i.e. triangles having all angles less than π/2.

Remark 3.14. Let X be a set of discrete points in a general position, e.g. a set of scattered points, and assume that we need 
to triangulate X . Inequality (82) suggests us the use of a triangulation T which minimizes the maximum of the squares of 
the circumradii over all triangles of T . The Delaunay triangulation has this property.
16
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Remark 3.15. For any triangle T , it is possible to obtain a more precise L∞-error bound in terms of the square of the circum-
radius minus a nonnegative quantity. Indeed, denoting by c , b and R the circumcenter, the barycenter and the circumradius 
of T , respectively, then the following bound holds, see [22, Theorem 2.4.4 ]

1

9

3∑
i=1

|�i |2 = R2 − ‖b − c‖2 ≤ R2 − min
x∈T

‖x − c‖2 .

The last step follows because b belong to T . Therefore, in Corollary 3.12, R2 can be replaced by the smaller value R2 −
min
x∈T

‖c − x‖2.

Remark 3.16. Let �3 be the longest side of T and let v12 be its midpoint. The line segment joining c with v12 is a perpen-
dicular bisector of �3. Denoting by h = sup

v,w∈T
‖v − w‖ the diameter of T , by the Pythagorean Theorem we get

(
h

2

)2

+ min
x∈T

‖x − c‖2 = R2,

and then

R2 − min
x∈T

‖x − c‖2 = 1

4
h2.

From Remark 3.15 and Remark 3.16, the Corollary 3.12 becomes

Corollary 3.17. For any f ∈ C1,1(T ), the following explicit error estimate holds

‖ f − �[ f ]‖L∞(T ) ≤ L(∇ f )

8

(
1 + 3

2
max

i=1,2,3
‖〈c i, e〉‖L∞(T )

)
h2, (86)

where h is the diameter of T .

3.5. The L1 error estimate

The bound of the point-wise error given in Theorem 3.11 allows us to get a bound in L1-norm

‖ f ‖L1(T ) =
∫
T

| f (x)|dx

of the error E[ f ] defined in (57).

Theorem 3.18. For any f ∈ C1,1(T ), the following explicit error estimate holds

‖ f − �[ f ]‖L1(T ) ≤ L(∇ f )

24
(1 + emax) |T |ω(T ), (87)

where |T | is the area of the triangle T ,

emax := max
i=1,2,3

2

|T | ‖〈c i, e〉‖L1(T ) (88)

and

ω(T ) :=
3∑

i=1

|�i |2 .

Proof. We start by proving the identity∫
T

3∑
i=1

λi(x)‖x − v i‖2 dx = |T |
12

3∑
i=1

|�i |2 . (89)

Since 
∑3

i=1 λi(x) ‖x − v i‖2 is a quadratic polynomial which vanishes at all vertices of T , by [20, Theorem 5.1], we get
17
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∫
T

3∑
i=1

λi(x)‖x − v i‖2 dx = |T |
4

3∑
i=1

‖b − v i‖2 , (90)

where b is the barycenter of T . Moreover, since∥∥v i − v j
∥∥2 = ‖v i‖2 + ∥∥v j

∥∥2 − 2
〈
v i, v j

〉
, i, j = 1,2,3,∥∥b − v j

∥∥2 = ‖b‖2 + ∥∥v j
∥∥2 − 2

〈
b, v j

〉
, j = 1,2,3,∥∥v i − v j

∥∥2 − ∥∥b − v j
∥∥2 = ‖v i‖2 − ‖b‖2 + 2

〈
b − v i, v j

〉
i, j = 1,2,3,

and then, by summing over all j = 1, 2, 3, both members of the last equality, we immediately get

3∑
j=1

∥∥v i − v j
∥∥2 −

3∑
j=1

∥∥b − v j
∥∥2 = 3

(
‖v i‖2 − ‖b‖2

)
+ 6 〈b − v i,b〉

= 3
(
‖v i‖2 − ‖b‖2 + 2 〈b − v i,b〉

)
= 3‖b − v i‖2 , i = 1,2,3,

or equivalently,

3∑
j=1

∥∥v i − v j
∥∥2 =

3∑
j=1

∥∥b − v j
∥∥2 + 3‖b − v i‖2 , i = 1,2,3.

Now we sum both members of the above equality over all i = 1, 2, 3 and we get

3∑
i=1

3∑
j=1

∥∥v i − v j
∥∥2 = 6

3∑
i=1

‖b − v i‖2 ,

or equivalently

3∑
i=1

‖b − v i‖2 = 1

6

3∑
i=1

3∑
j=1

∥∥v i − v j
∥∥2 = 1

3

3∑
i=1

|�i |2 . (91)

The identity (89) follows by substituting (91) in (90). Finally, by integrating (81) and by using (89), we get (87) and then 
the thesis. �

In the following, we further analyze the case of the enrichment functions are

e1 = λ
α1−1
2 λ

β1−1
3 , e2 = λ

α2−1
1 λ

β2−1
3 , e3 = λ

α3−1
1 λ

β3−1
2 , (92)

with αi, βi > 1. In particular, we determine the ‘best’ parameters αi, βi , in order to minimize the approximation error (87).

Theorem 3.19. Let ei , i = 1, 2, 3, be the enrichment functions defined in (92). Then, for any f ∈ C1,1(T ), we get

‖ f − �[ f ]‖L1(T ) ≤ L(∇ f )

24

(
1 + 4

μ

)
|T |ω(T ), (93)

where μ = min
i=1,2,3

(αi + βi).

Proof. Let us compute emax defined in (88), relative to the enrichment functions (92). In this case, from (27), the matrix N
defined in (41) is a diagonal matrix and

N−1 = [c1, c2, c3] =
⎡⎢⎣

1
B(α1,β1)

0 0

0 1
B(α2,β2)

0

0 0 1
B(α3,β3)

⎤⎥⎦ .

Consequently we get
18
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2

|T |
∫
T

|〈c1, e(x)〉|dx = 2

|T | B(α1, β1)

∫
T

λ
α1−1
2 (x)λ

β1−1
3 (x)dx,

2

|T |
∫
T

|〈c2, e(x)〉|dx = 2

|T | B(α2, β2)

∫
T

λ
α2−1
1 (x)λ

β2−1
3 (x)dx, (94)

2

|T |
∫
T

|〈c3, e(x)〉|dx = 2

|T | B(α3, β3)

∫
T

λ
α3−1
1 (x)λ

β3−1
2 (x)dx.

In order to compute the integrals at the right side of (94) we denote by

T̂ =
{̂

x = (̂x, ŷ) ∈R2, x̂ ≥ 0, ŷ ≥ 0, x̂ + ŷ ≤ 1
}

, (95)

the triangle of vertices v̂1 = (1, 0), v̂2 = (0, 1) and v̂3 = (0, 0) and by F : T̂ → T the affine map defined as

F (̂x) = λ̂1(̂x)v1 + λ̂2(̂x)v2 + λ̂3(̂x)v3,

where λ̂1(̂x), λ̂2(̂x), λ̂3(̂x) are the barycentric coordinates of T̂ . Since F preserves the ratio of areas of two triangles, by 
definition of barycenter coordinates we get

λi ◦ F (̂x) = λ̂i (̂x).

Therefore, by using F as change of variables, we get∫
T

λ
α1−1
2 (x)λ

β1−1
3 (x)dx = 2|T |

∫
T̂

λ̂
α1−1
2 (̂x)̂λ

β1−1
3 (̂x) d̂x,

∫
T

λ
α2−1
1 (x)λ

β2−1
3 (x)dx = 2|T |

∫
T̂

λ̂
α2−1
1 (̂x)̂λ

β2−1
3 (̂x) d̂x, (96)

∫
T

λ
α3−1
1 (x)λ

β3−1
2 (x)dx = 2|T |

∫
T̂

λ̂
α3−1
1 (̂x)̂λ

β3−1
2 (̂x) d̂x,

where 2 |T | is the Jacobian determinant of F . The integrals at right member of equalities (96) can be computed by using 
the powerful formula presented in [5]∫

T̂

λ̂α
1 (̂x)̂λ

β

2 (̂x)̂λ
γ
3 (̂x) d̂x = �(α + 1)�(β + 1)�(γ + 1)

�(α + β + γ + 3)
, (97)

valid for each α, β, γ > −1. By combining equalities (94), (96), (97) and (25), we get (93). �
Now we consider the more general enrichment functions, already introduced in Example 3.2,

ẽi := (1 − λi)
γi ei, i = 1,2,3, γi ≥ 0, (98)

where ei , i = 1, 2, 3, are defined in (92). In analogy to the Theorem 3.19, in Theorem 3.21 we determine, by using the 
enrichment functions (98), the ‘best’ parameters αi , βi , γi which minimize the approximation error (87). To this aim we 
consider the triangle T̂ with vertices v̂1 = (1, 0), v̂2 = (0, 1) and v̂3 = (0, 0) and barycentric coordinates ̂λ1 (̂x), ̂λ2(̂x), ̂λ3(̂x).

Lemma 3.20. For each i = 1, 2, 3, the following equality holds∫
T̂

(1 − λ̂i (̂x))γi λ̂
α1−1
1 (̂x)̂λ

α2−1
2 (̂x)̂λ

α3−1
3 (̂x) d̂x = �(α1)�(α2)�(α3)

�
(∑3

j=1, j �=i α j

) μi, (99)

where

μi :=
�
(
γi +∑3

j=1, j �=i α j

)
�
(
γi +∑3

j=1 αi

) , γi ≥ 0, αi > 1, i = 1,2,3.
19
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Proof. It is well known that the barycentric coordinates of T̂ in terms of Cartesian coordinates are

λ̂1(̂x) = x̂, λ̂2(̂x) = ŷ, λ̂3(̂x) = 1 − x̂ − ŷ.

We use them to prove the formula (99) for i = 1. We note that

∫
T̂

(1 − x̂)γi x̂α1−1 ŷα2−1(1 − x̂ − ŷ)α3−1 d̂xd ŷ =
1∫

0

(1 − x̂)γi x̂α1−1 I (̂x) d̂x, (100)

where

I (̂x) =
1−̂x∫
0

ŷα2−1(1 − x̂ − ŷ)α3−1 dŷ. (101)

In order to compute the integral (101) we consider the change of variable

ẑ = ŷ

1 − x̂
,

and then

I (̂x) = (1 − x̂)α2+α3−1

1∫
0

ẑα2−1(1 − ẑ)α3−1 d̂z (102)

= (1 − x̂)α2+α3−1 �(α2)�(α3)

�(α2 + α3)
. (103)

Finally, the right side of (100) becomes

1∫
0

x̂α1−1(1 − x̂)γ1+α2+α3−1 dx = �(α1)�(γ1 + α2 + α3)

�(α1 + α2 + α3 + γ1)
. (104)

The result follows by combining (100), (103) and (104). By the same arguments we can prove formula (99) for i = 2. In 
order to prove (99) for i = 3, we consider the coordinate transformations

π : T̂ → T̂ , π(x, y) = (y, x),
θ : T̂ → T̂ , θ(x, y) = (1 − x − y, y) =: (u, v),

and the change of variables π ◦ θ whose Jacobian determinant is equal to 1. Then we get∫
T̂

(x + y)γi xα1−1 yα2−1(1 − x − y)α3−1 dxdy =
∫
T̂

(1 − u)γi G(u, v)dudv,

where G(u, v) := uα3−1 vα2−1(1 − u − v)α1−1. The result now follows from the case i = 1. �
Theorem 3.21. Let ̃ei , i = 1, 2, 3, be the enrichment functions defined in (98). Then, for any f ∈ C1,1(T ), we get

‖ f − �[ f ]‖L1(T ) ≤ L(∇ f )

24

(
1 + 4

μ

)
|T |ω(T ), (105)

where μ = min
i=1,2,3

(αi + βi + γi).

Proof. Let us compute emax defined in (88), relative to the enrichment functions (98). By (47), the matrix N defined in (41)
is a diagonal matrix and

N−1 = [c1, c2, c3] =
⎡⎢⎣

1
B(α1,β1)

0 0

0 1
B(α2,β2)

0

0 0 1
B(α3,β3)

⎤⎥⎦ .

Consequently we get
20
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2

|T |
∫
T

|〈c1, e(x)〉|dx = 2

|T | B(α1, β1)

∫
T

(1 − λ1(x))γ1λ
α1−1
2 (x)λ

β1−1
3 (x)dx,

2

|T |
∫
T

|〈c2, e(x)〉|dx = 2

|T | B(α2, β2)

∫
T

(1 − λ2(x))γ2λ
α2−1
1 (x)λ

β2−1
3 (x)dx,

2

|T |
∫
T

|〈c3, e(x)〉|dx = 2

|T | B(α3, β3)

∫
T

(1 − λ3(x))γ3λ
α3−1
1 (x)λ

β3−1
2 (x)dx.

By using the same strategy of the proof of Theorem 3.19, we get∫
T

(1 − λ1(x))γ1λ
α1−1
2 (x)λ

β1−1
3 (x)dx = 2|T |

∫
T̂

(1 − λ̂1(̂x))γ1 λ̂
α1−1
2 (̂x)̂λ

β1−1
3 (̂x) d̂x,

∫
T

(1 − λ2(x))γ2λ
α2−1
1 (x)λ

β2−1
3 (x)dx = 2|T |

∫
T̂

(1 − λ̂2(̂x))γ2 λ̂
α2−1
1 (̂x)̂λ

β2−1
3 (̂x) d̂x,

∫
T

(1 − λ3(x))γ3λ
α3−1
1 (x)λ

β3−1
2 (x)dx = 2|T |

∫
T̂

(1 − λ̂3(̂x))γ3 λ̂
α3−1
1 (̂x)̂λ

β3−1
2 (̂x) d̂x.

The result follows from Lemma 3.20. �
The following result shows that the bound (105) is proportional to the fourth power of the circumradius of the triangle 

T .

Corollary 3.22. Let ei , i = 1, 2, 3, be the enrichment functions defined in (98). Then, for any f ∈ C1,1(T ), we get

‖ f − �[ f ]‖L1(T ) ≤ 9
√

3L(∇ f )

32

(
1 + 4

μ

)
R4,

where R is the circumradius of T and μ = min
i=1,2,3

(αi + βi + γi).

Proof. By Theorem 3.21 and Leibniz’s inequality, it suffices to bound the area of T in terms of its circumradius. To this end, 
we use Weitzenböck’s inequality [24], which states that for any triangle T of sides �1, �2, �3, the following inequality holds

4
√

3 |T | ≤
3∑

i=1

|�i |2 .

With the aid of this estimate and Leibniz’s inequality, it is easily seen that

|T | ≤ 9

4
√

3
R2. (106)

The result follows by (85), (106) and (105). �
By Remark 3.15, it is possible to obtain a more precise L1-error bound in terms of the diameter of T .

Corollary 3.23. Let ei , i = 1, 2, 3, be the enrichment functions defined in (98). Then, for any f ∈ C1,1(T ), we have

‖ f − �[ f ]‖L1(T ) ≤ 9
√

3L(∇ f )

512

(
1 + 4

μ

)
h4,

where h is the diameter of T and μ = min
i=1,2,3

(αi + βi + γi).

3.6. Practical consideration

Let Xn = {xi, i = 1 . . . ,n} be a set of n scattered data in R2 and let Tm = {Tα, α = 1, . . . , m} be a triangulation of Xn . 
We denote by C = conv(Xn) the convex hull of Xn . We define the global approximation operator �Tm by setting, for any 
f ∈ C1,1(C) and x ∈ C ,
21
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�Tm [ f ](x) = �[ f , Tα](x), if x ∈ Tα, α = 1, . . . ,m,

where �[ f , Tα] is the approximation operator defined in (58), based on the triangular element (Tα, G2(Tα), ̃�Tα ). In this 
case, Theorem 3.19 gives the following global L1-error bound

∥∥ f − �Tm

∥∥
L1(C)

=
∫
C

∣∣ f (x) − �Tm [ f ](x)
∣∣ dx =

m∑
α=1

∫
Tα

| f (x) − �[ f , Tα](x)| dx

≤ L(∇ f )

24

(
1 + 4

μ

) m∑
α=1

|Tα |ω(Tα). (107)

For any triangulation Tm we denote by

E1(Tm) :=
m∑

α=1

|T |ω(Tα).

The global error bound (107) is proportional to E1, by a constant factor which is independent on the triangulation Tm . In 
analogy, by using the results of Corollaries 3.12 and 3.22 we denote by

E2(Tm) :=
m∑

α=1

R2
α,

E3(Tm) :=
m∑

α=1

R4
α,

where Rα is the circumradius of the triangle Tα ∈ Tm . By using the optimality results of Delaunay triangulation, which can 
be found in [15] and [17], it is possible to prove the following result.

Theorem 3.24. Let Xn be a set of n scattered data in R2 and let Tm be a triangulation of Xn. Then Ei(Tm), i = 1, 2, 3 achieve their 
minimum if and only if Tm is the Delaunay triangulation.

In this paper we have introduced a new class of nonconforming finite elements by enriching the standard triangular 
linear element with additional functions which are not necessarily polynomials. We provide a simple condition on the 
enrichment functions, which is both necessary and sufficient, that guarantees the existence of a family of such enriched 
elements. We have also derived an error bound in both L∞ and L1 norms. Future researches can be carried out in order to 
extend the proposed here technique to triangular element with one curved side (see for example [7,9,23,26]).
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[6] T. Cătinaş, The bivariate Shepard operator of Bernoulli type, Calcolo 44 (4) (2007) 189–202.
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