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Abstract

In a solar micro-grid, a hybrid renewable energy system generates electricity for a building’s onsite use. The battery storage
nd the main power grid connection are used to facilitate the matching between the demand and production. To control
nergy flows optimally, an accurate day-ahead prediction of the photovoltaic (PV) panels output is required. However, this
s a challenging task due to the fluctuating nature of solar radiation availability. The accuracy of the prediction is influenced
y the modelling method and input parameters. In this study, the measured power and weather data is gathered from an
xperimental installation of PV panels to predict PV output for a 24-hours horizon in 15 min intervals. The multiple linear
egression (MLR) and artificial neural network (ANN) methods are considered in the prediction modelling and compared using
erformance indicators. The micro-inverter technology is used to gather the individual PV panel output in addition to the
verall system output. The results show that the modelling methods have different accuracy performances and the ANN model
uilt with the individual PV output data results in the highest accuracy. Utilizing the micro-inverter technology leads to an
dvantage of having more accurate PV prediction for the control purpose.
2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Solar energy is an inexhaustible source of renewable energy. Additionally, it is free of charge and any emissions.
owever, the availability of solar energy is strongly fluctuating and depends on the changing weather conditions,

ime of the day and location. That creates significant uncertainty in the power output of solar systems. The
hotovoltaic panel is a silent device without moving parts and can convert sunlight into electricity through the
hotovoltaic effect.

The electrical efficiency of the crystalline silicon PV panels varies from 11% to 22% [1]. An increasing amount
f distributed PV installations in the building sector enables building owners to act as a prosumer by generating
nd storing their own electricity onsite or selling it to the grid [2]. A solar micro-grid can be used to generate profit
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Nomenclature

GHI global horizontal irradiation, W/m2

GTI global tilted irradiation, W/m2

P power, W
p pressure, hPa
RH relative humidity, %
T temperature, ◦C
WS wind speed, m/s

for the building owner, and through the optimal control of hybrid renewable energy systems reviewed in [3], the
profit and self-consumption can be maximized. However, PV power output has uncontrollable and abrupt nature.
Thus, an accurate forecast of the output is required for optimal energy management in the solar micro-grid as well
as in the other levels of the electric grid [4].

In the literature, different PV power prediction methods have been proposed with different data inputs. The most
sed methods are deterministic, machine learning (ML) and hybrid techniques [5,6]. The deterministic methods
re based on the physical model of the PV to predict the power output, and the artificial intelligence-based ML
ethods, such as multiple linear regression (MLR), artificial neural network (ANN) and support vector machine

SVM), aim to form a relationship between input and output without any further knowledge of the system [5].
alogirou [7] conducted a comprehensive review on the ANN method in renewable energy systems considering
V systems. Zazoum [8] compared different ML techniques for PV power prediction. He concluded that the ML
ethods are suitable and fast to predict the PV power of any system.
The scientific literature has aimed to improve the accuracy of the PV power forecasting models in terms of

ifferent prediction algorithms and input data. Different sets of weather and PV operation parameters have been
nvestigated to increase the accuracy [9]. However, to the best of the author’s knowledge, there is no work focusing
n the different ML methods using as an input parameter the PV power data measured by the individual micro-
nverters to increase the accuracy of the day-ahead power prediction. In this study, the MLR and ANN prediction

odels are built for each PV panel and the overall system using the input data measured from the micro-inverter
nd aggregated system level. The study aims to reveal if using the data of the micro-inverter level can increase the
rediction accuracy of the whole PV system.

. Methodology

A comparative study of different PV power prediction models is conducted. First, the experimental set-up of
V panels is presented with data gathering methods. Next, the monitored data is pre-processed and used to create
ifferent data-driven models for the PV power prediction. The first method is a multiple linear regression (MLR)
ith interaction terms which is compared to a method called Artificial Neural Network (ANN). Both models are

egression models, and the monitored data from the PV installation and weather station are used to train and validate
he models in the MATLAB environment. The training data was collected from 27.9.2021 to 31.3.2022 and includes
arge variation of different weather conditions. The different prediction models are built by using as input the weather
ata and power output data from the micro-inverter and aggregated system level.

.1. Experimental set-up

The installation of four PV panels in Fig. 1 was realized on the rooftop of the INSA ICUBE Laboratory in
trasbourg, France (48◦N and 7◦E) in September 2021. Strasbourg is classified to have an oceanic and semi-
ontinental climate according to the Köppen climate classification [10]. Each PERC (Passivated Emitter & Rear
ontact) monocrystalline PV panel has a peak power of 300 W, and micro-inverters are used to convert each panel’s
C output to AC power individually. The energy production is maximized by a Maximum Power Point Tracking

MPPT) of each micro-inverter. Two of the panels have a tilt angle of 7◦, and the rest is set to an 18◦ angle. The PV
anels were installed on the available roof area which has a clear face with the sun during a part of the day. The
595
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Fig. 1. The PV installation with the weather station and data collection process.

hading from the surrounding buildings during the day cannot be avoided. However, the micro-inverter technology
nables the independent operation of each panel and partial shading has an impact only on the shaded panels. Using
he micro-inverter technology has also several other advantages over traditional inverters discussed in [11].

The four micro-inverters are connected to a gateway which is used to communicate measured system data to
he web-based monitoring and analysis software provided by Enphase company [12]. The power output of each
anel (Pinv,1-4) and the whole system (Pagg) is measured every 15 min and uploaded into Excel file from the online
oftware. The installation includes also Lithium-Ion AC battery storage to store the PV production if not used
irectly in the building. The optimal battery use is managed by the gateway.

In addition to the PV panels, the installation includes a weather station to measure the local weather parameters
lobal horizontal irradiance (GHI), ambient temperature (Ta), dew point temperature (Td), pressure (pat), wind speed
WS) and relative humidity (RH) in 15 min intervals. A data logger is used to transfer the weather data to a computer
or further analysis.

.2. Correlation analysis

The PV power production correlates with the surrounding weather conditions. The Pearson correlation analysis
as used to find out the correlation between the PV power output and individual weather variables. Generally, this

nalysis method reveals how strong are the linear relationship between the different variables in a given data set.
he analysis shows the correlation coefficients that vary from −1 to 1. The magnitude of the absolute value of the
oefficient indicates the strength of proportionality between two variables. This indicator is used to select the most
ignificant variables for the prediction model. The high number of parameters can result in lower accuracy of the
odel.

.3. Multiple linear regression model

In this study, the measured historical data of both the PV power output and weather variables were used as an
nput to create a multiple regression model with interaction effects. The interaction effect occurs when the effect
f the independent weather variable on the PV production changes depending on the other weather variables. This
nteraction is presented as a product of the independent weather variables. The regression model with interaction
ffects is an extension of the general regression presented as follows [5]:

ŷ = β0 + β1x1 + β2x2 + · · · + βn xn + ε (1)

here β0 is the intercept and x represents each independent weather variables. The other β parameters present the
lope coefficient of the variable. All β parameters are defined in the model creation process to minimize the error
. The interaction effects are added to the general form of the multiple regression model as follows:

ŷ = β0 + β1x1 + β2x2 + β3x1x2 . . . + βn xn + βl xn xm + ε (2)
here x1x2 is the interaction between two variables.
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2.4. Artificial neural network model

The ANN algorithms are commonly used to solve time series prediction tasks because they have the ability to
learn the behaviour of variables from historical measurements, such as PV power output and weather data in terms
of the PV prediction modelling [13]. The ANN is based on supervised learning, and the prediction performance
increases with the amount of historical data used in the training of the model. In addition to the training dataset,
a part of the historical dataset is used only for the test and validation of the model to show the generalization
capability of the prediction model. The learning or training process is based on continuously improving the weights
and biases within the neural network to reach the desired output, which minimizes MSE in Eq. (2) (or RMSE in
Eq. (3)) between the actual and predicted output. This is performed by using a learning algorithm, such as gradient
descent, error back-propagation or Levenberg–Marquardt [13]. The back-propagation algorithms are the most used
and powerful in terms of learning [14]. In this study, the MATLAB software is used to train the ANN model and
the limited-memory Broyden–Fletcher–Goldfarb–Shanno quasi-Newton (LBFGS) optimization algorithm is used to
minimize the MSE [15].

The number of inputs to the ANN model indicates the “neurons” in the input layer presented in Fig. 2. The
layer structure includes the input layer, a certain number of hidden layers with hidden neurons and the output
layer. In the case of PV power prediction, the input layer includes the selected weather variables (x1, x2,x3 . . . , xn),
and the output is the power prediction. Generally, the ANN model can include any number of hidden layers and
neurons. However, the accuracy of the model depends on the right number of layers and neurons. In this study,
the Multi-Layer-Feed-Forward Neural Network (MLFFNN) structure is used in which the information flows only
in one direction from the input to the output layer. The outputs of the previous layer are the inputs for each neuron
on the next layer. The inputs of each neuron are multiplied by weights (w1, w2, w3 . . . , wn) and combined using

weighted linear combination [9]. Before the outputs of the neurons are ready, a nonlinear activation function fac,
uch as Hyperbolic tangent or Sigmoid function, is applied to the results of the layer. In this study, the Rectified
inear unit function is used to perform a threshold operation on the input values to set the values less than zero to
e zero [15].

Fig. 2. The structure of a simple ANN model with one hidden layer.

After training, the ANN is a quick method to provide predictions for complex non-linear problems and it can
each good accuracy also with smaller data set used in the training and validation [9].

.5. Model performance indicators

To conduct a comparative study between different models, certain performance indicators are used to evaluate the
ccuracy of the prediction models. In addition to a simple absolute error between the actual and predicted value, the
ollowing commonly used performance indicators for the forecasting models are used in this study: Mean Absolute
rror (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Coefficient of Determination

COD) [9,16].

M AE =
1
n

n∑ ⏐⏐yi − ŷi
⏐⏐ (3)
i=1
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n
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)2 (5)

C O D = R2
= 1 −

∑ (
yi − ŷi

)2∑
(yi − y)2 (6)

here n is the number of observations, y is the mean value of the observations, y and ŷ are the actual and predicted
values of the PV power, respectively.

In the regression analysis, the COD is used to present how close the prediction model output is compared to the
observed data and it results in values between zero and 1. To evaluate the overfitting of the prediction model, the
COD requires the other indicators alongside it. In the evaluating process, the COD should be closer to 1 and the
other indicators closer to zero [9].

3. Results and discussion

In this section, the performance results of the MLR and ANN model are presented. The training data was collected
from the PV installation between September 2021 and March 2022. In addition to the performance indicators, a
representative day in April was selected and the prediction was computed and compared to the actual power output
of the system.

3.1. Correlation coefficient analysis

To evaluate the significance of the individual weather variables to the PV power, a correlation coefficient analysis
was conducted. The results of the analysis were used to select the most relevant weather variables for the modelling.
The weather variables under the investigation were the ambient temperature Ta, relative humidity RH, dew point
temperature Td, wind speed WS, atmospheric pressure pat, global horizontal irradiance GHI and global tilted
irradiation GTI for both panel arrays in the tilt angle of 7◦ and 18◦. The GTI values were calculated based on
he measured GHI, number of a day, latitude and tilt angle of the panels. The PV power output P was recorded
er panel and overall system. The correlation coefficients between the weather variables and PV power output are
resented in Table 1.

Table 1. The correlation coefficients.

Variable Correlation with PV power

Ambient temperature 0.27
Relative humidity −0.39
Dew point temperature 0.01
Wind speed 0.15
Atmospheric pressure 0.11
GHI 0.94
GTI_up 0.94
GTI_down 0.94

The highest correlation was recognized between solar irradiation on the horizontal and tilted surface (GHI and
TI) and the PV power. The coefficient for each solar irradiation variable was 0.94. The second highest significance
as shown by the RH followed by the ambient temperature. The impact of the RH was negative, which decreased
V power when the RH increased. This was caused by the increased amount of water vapour particles in the air
educing the solar insolation such as dust. The dew point temperature Td showed the lowest significance by the

value of 0.01 and was excluded from the modelling. The other variables in Table 1 were included in the prediction
modelling by MLR and ANN.
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3.2. Multiple linear regression model performance

To predict the PV power, an MLR model was trained in the MATLAB software environment. The performance
indicators presented in Section 2.5 were used to evaluate the accuracy of the model.

First, the regression model was trained with the weather data and the aggregated PV power output of the system.
Next, the PV power output data of each micro-inverter was used to predict the output of each panel. The predictions
of each panel were summed up to have a prediction of the whole system. The performance of the prediction models
generated by the aggregated PV output data and by the individual micro-inverter data was compared.

The overall performance results in Table 2 show that the MLR, which was based on the micro-inverter data,
showed better performance with 13.86 MAE, 1438 MSE, 37.92 RMSE and 0.938 COD than the model based on
the aggregated PV power data with 16.32 MAE, 2160 MSE, 46.48 RMSE and 0.907 COD. The results revealed
that a more accurate prediction model was achieved if the micro-inverter data was used first to model each panel
output and then summed up to have PV power prediction for the whole system. This method can help to predict
more accurately the PV power of the system if all the panels are not positioned equally to the sun during the day,
for example, if some shading occurs.

Table 2. The overall performance comparison of the models based on the different methods and
PV data input.

Model Performance indicator

MAE MSE RMSE COD (R2)

Multiple regression Overall 16.32 2161 46.485 0.9074
Micro-inv. 13.86 1438 37.919 0.9376

ANN Overall 13.34 1517 38.96 0.935
Micro-inv. 9.87 930 30.497 0.9596

The MLR model based on the micro-inverter data was used to predict the PV power for the representative day
n April, shown in Fig. 3a. This day was not used in the training dataset. Fig. 3b presents the correlation between
he actual and predicted values. In this case, the model was able to perform as follows: 43.4 MAE, 7552 MSE, 86.9
MSE and 0.91 COD.

Fig. 3. (a) The predicted and actual PV power using the micro-inverter based MRL model. (b) Actual vs. predicted PV power correlation
with the linear trendline from the MRL model.

3.3. Artificial neural network model performance

The same dataset, as for the MLR model, was used to train an ANN model. Again both aggregated and micro-
nverter based PV power data were used to train the model to see if the micro-inverter data can be used to have a

ore accurate prediction model for the installation.
The overall performance results in Table 2 show that the ANN model, which was based on the micro-inverter

ata, showed again better performance with 9.87 MAE, 930 MSE, 30.497 RMSE and 0.9596 COD than the model
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based on the aggregated PV power data with 13.34 MAE, 1517 MSE, 38.96 RMSE and 0.935 COD. However, in
both cases, the ANN model showed the better overall performance than the MLR models.

The ANN model based on the micro-inverter data was used to predict the PV power for the representative day
in April, shown in Fig. 4a. Fig. 4b presents the correlation between the actual and predicted values. The model was
able to perform as follows: 32.26 MAE, 4632 MSE, 68.06 RMSE and 0.9471 COD.

Fig. 4. (a) The predicted and actual PV power using the micro-inverter based ANN model. (b) Actual vs. predicted PV power correlation
with the linear trendline from the ANN model.

4. Conclusion

In this paper, the PV panel installation using micro-inverter technology was realized in INSA ICUBE Laboratory
n Strasbourg to build a PV power prediction model using two different methods: multiple linear regression and
rtificial neural network. The weather station was used to collect the weather data. The correlation analysis was
sed to select the most significant weather parameters correlating with the PV power output. The parameters were
he ambient temperature, relative humidity, pressure, wind speed and solar irradiation.

In addition to the two different modelling methods, the prediction models were built using two different
pproaches to collect the PV power output data from the installation. First, the aggregated PV power was used
n the modelling process. Next, the PV power data, detected by each individual micro-inverter, was used to model
ach PV panel output to get a more accurate model of the whole system.

The results showed that the overall performance of the ANN models was better than the MLR models resulting
n lower MAE, RMSE and MSE and higher COD. Additionally, the results revealed that building a model of each
anel by using the PV power data from the micro-inverters resulted in more accurate prediction models. Due to
his, it is recommended to use the micro-inverter technology in the PV installations to facilitate the prediction of
he system output power.

For future work, the PV prediction model based on the ANN and micro-inverter data will be enhanced by
ollecting more data from the installation. The comparison between different models will be extended with other
ethods, such as Support Vector Machine, Fuzzy prediction and Regression Tree. Additionally, the prediction model
ill be used in the model predictive control of a hybrid renewable energy system.
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