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Abstract

The suspension of a heavy sphere by an upward jet is a classical fluid

mechanics experiment to demonstrate the fluid forces acting on an object.

In the range of the parameter space where the sphere can be suspended,

the dynamics can either be regular, i.e., with oscillations around an equi-

librium position, or chaotic, with extreme events leading to large deviations

from that equilibrium region. The existence and characteristics of suspen-

sion regimes of several heavy spheres in such flow configurations remain open

questions. Spheres compete for the equilibrium position and come very close

to each other, resulting in large local particle concentrations that prevent

direct imaging. Relatively high speed X-ray radiography along with the

radioSphere analysis technique is leveraged here to study the time-resolved

3D trajectory of each individual sphere in a vertical jet. radioSphere is an
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X-ray analysis method that retrieves the 3D information out of a single 2D

radiography using a priori knowledge of the imaging geometry (E. Andò et

al., Measurement Science and Technology, 32(9), 095405, 2021), which due to

the imaging modality imposes no limitations on the optical properties of the

water. The 3D + time kinematics yield the evolution of the statistics of the

position and velocity of the spheres as a function of the number of spheres

and for two jet Reynolds numbers. Drastic changes in behavior occur when

many spheres are present, leaving a clear signature on the temporal dynam-

ics and on the exploration of the flow volume, where spheres can remain on

the bottom of the vessel for long periods of time, resulting in only partial

suspension. In addition to the suspension capacity, the interactions between

spheres are explored with statistics of pair separation distances, which, to-

gether, allow for quantitative arguments to introduce suspension regimes of

a collection of spheres in an upward vertical jet.

Keywords: particle suspension, particle-laden turbulence, X-ray

radiography, 3D tracking, 4D kinematics

1. Introduction

The suspension of a sphere by a jet of a fluid lighter than the sphere is a

problem whose study dates back to O. Reynolds [1]. Despite its widespread

use in fluid mechanics education and outreach [2; 3; 4], this situation received

fairly little attention. The sphere’s suspension is explained in terms of the

Coandă effect [5], through an attractive force exerted on the sphere resulting

from the deflection of the jet by the sphere [6]. Since the early studies, ex-

perimental and theoretical approaches have been led for upward vertical and
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tilted jets with heavy spheres and a vertical downward jet with light spheres

[7; 8; 9; 10], up to recent studies [11]. This work investigates heavy spheres

suspended in a vertical upward jet, but with several spheres interacting in

the fluid, a situation which has not been explored in the literature to the

best of the authors’ knowledge.

Determining the existence and location of the equilibrium position of a

single sphere in a jet poses an apparently simple and canonical problem,

which is not easily resolved. Already with a vertical jet, i.e., when the buoy-

ancy force and the drag force are in the same plane with opposite directions,

the flow inhomogeneity around the sphere prevents the use of readily avail-

able drag coefficients (e.g., Schiller-Naumann model [12]).

Using the empirical knowledge of the incoming flow below the sphere, [8]

derived a formulation to predict the equilibrium position of the sphere in

the vertical jet, but failed at capturing the dynamics when extreme events

are present. While it is generally accepted that the equilibrium position

cannot exist very far from the jet exit, they classified the existing equilibrium

positions in different regimes. In the first two regimes, the sphere oscillates

around an equilibrium position, with a larger frequency in the horizontal

plane than in the vertical plane, as predicted by [13]. Both regimes are

distinguished by the size of the sphere compared to the jet’s width at the

sphere equilibrium location. This ratio decreases as the equilibrium position

moves away from the jet exit, e.g., by increasing the mean jet exit velocity

or by changing the sphere-to-fluid density ratio toward lower values. In the

first regime, termed large sphere behavior, the sphere is larger than the local

jet width, while it is smaller in the second regime, referred to as the regular
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regime. As the sphere equilibrium position moves further away and the

attractive force further decreases, extreme events are observed, resulting in

large deviations with respect to the equilibrium point; this regime is termed

“chaotic”. The decay of the attractive force along the jet axis can be seen as a

decrease in the equilibrium region’s characteristic size. At large jet velocities,

the sphere is hence suspended far from the nozzle and turbulent fluctuations

can easily push the sphere away from the stable region and create chaotic

dynamics. The first motivation of this work is to study the competition of

several spheres for this equilibrium region, as the number of spheres increases

and as the size of this region decreases, spanning the regular and chaotic

regimes of a single sphere.

The current study poses the experimental issue of measuring the time-

resolved 3D dynamics of multiple objects that evolve in close vicinity. While

tracking many thousands of particles in 3D is possible with modern high-

speed cameras and algorithms (e.g., [14]), as long as the inter-particle dis-

tance remains relatively small with respect to their apparent diameter and

their frame-to-frame displacement, this is not the case here. When several

spheres are suspended in a turbulent jet, contacts between spheres occur of-

ten and typically involve more than just two spheres. The approach chosen

here is hence to leverage a recently proposed X-ray radiography algorithm,

radioSphere [15], that retrieves the full 3D information from a single 2D

projection under certain assumptions. In X-ray radiography, an X-ray beam

is partially attenuated as it passes through a sample and this attenuation

is recorded onto a 2D plane. While X-ray radiography is often resorted

to for the study of multiphase flows [16; 17], it is mostly used and devel-
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oped in solid mechanics and material science, with applications ranging from

manufacturing to medicine. In particular, tomography reconstructs the 3D

map of the internal structure of complex systems through many 2D projec-

tions obtained by X-ray radiography at various angles around the sample

(e.g., [18; 19]). However, the number of projections needed in this method

greatly limits the acquisition rate; reconstruction the slice radiographies into

a single 3D volume is under the assumption of no movement. To overcome

this limitation, radioSphere uses prior knowledge of the sample (spheres)

and imaging geometry to retrieve a 3D particle position from a single 2D ra-

diograph. In particular, it is suited to the study of mono-dispersed spheres of

known diameter in a typical laboratory X-ray set-up, in any complex arrange-

ment, and uses the geometrical magnification resulting in the combination of

a divergent X-ray beam and the relative distance between each sphere and

the detector. The second motivation of this work is to validate and use this

approach in a dynamic particle-laden flow setting, as radioSphere was so

far only validated using synthetic data and a static granular assembly [15].

Section 2 presents the experimental set-up and measurements methods.

The application of radioSphere for the analysis of the radiographs and the

characterization of the suspension regimes are detailed in Section 3. Section

4 reports the dynamics of the suspended spheres and changes in regime from

freely advected spheres to collision-driven motions. The results are discussed

in Section 5, drawing a general qualitative picture and introducing a frame-

work for the establishment of suspension regimes of a collection of spheres

suspended in a jet. This is followed by a conclusion (Section 6).
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2. Experimental methods

2.1. Materials

The experiment aims to study the 4D kinematics of the suspension of

spheres in a turbulent jet inside a cylindrical tank. The choice of the fluid

and the sphere properties is a compromise between their relative density and

the jet velocity. From an imaging point of view, a material that attenuates

more X-rays compared to its surrounding fluid is needed, so as to be clearly

visible in the radiographs. From a fluid mechanics point of view, the drag

force applied from the fluid to the spheres should be large enough to exceed

Archimedes’ force and in turn suspend the spheres. The best compromise

between the above lead to the selection of 10mm soda lime glass spheres sus-

pended in water, although compared to Refractive Index Matched Scanning

(RIMS) this is more flexible considering that contrast agents can be used in

particles and there is no need to match refractive indices.

2.2. Experimental set-up

The in-situ acquisition is performed inside the X-ray scanner of Labora-

toire 3SR (Grenoble, France), as shown in the schematic set-up of Fig. 1. A

cylindrical PMMA (i.e., low X-ray absorption) tank of 50 cm in height and

6 cm inner diameter is bolted on top of the rotation table and sealed with an

O-ring. The top of the tank is left open, while a hole is drilled at 4/5 of its

height to allow the circulation of water in the system. A 3D-printed piece

is placed at the bottom, which has a 4.5mm cylindrical hole in the middle.

This base controls the input velocity, while it retains the beads inside the

container. It is also slightly tapered, with an angle of 6.3◦ to prevent stag-
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Figure 1: (color online) Schematic representation of the set-up inside the X-ray scanner.

Note that the system is not rotated and radiographs are acquired only in the orientation

illustrated. Spheres that are at altitudes z < ds are labeled as grounded, while spheres at

higher altitudes are deemed suspended.

nation of spheres at the bottom of the tank against the cylinder’s wall. This

ensures a constant number of spheres during the entire duration of a given

experiment.

A magnetically driven centrifugal pump is used, connected in parallel, to

produce the water flow. The input velocity is measured through a flowmeter,

placed before the tank entrance. Two flow rates are examined: 1.7L/min

and 2.2L/min, resulting in jet mean exit velocities Uj = 1.8 and 2.3 m/s

and jet Reynolds numbers Rej = Ujdj/νl = 8950 and 11600, with νl the
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kinematic viscosity of water, exploring two suspension regimes in the case of

a single sphere (regular and chaotic, see Section 3.2). Note that the maximum

number of spheres that can be suspended at 1.7L/min is 12, and this will

be the configuration with the maximum number of spheres tested for both

injection rates. Other experimental parameters remain fixed, so the results

will be presented in terms of jet Reynolds numbers, but Table 1 provides

alternative dimensionless numbers for comparison. In addition, the sphere-

to-fluid density ratio isK = ρs/ρl = 2.51 and the sphere-to-jet diameter ratio

is D = ds/dj = 2.22. The sphere Reynolds number Res = Usds/νl = 7010 is

based on the sphere diameter ds and terminal velocity based on free-fall in

quiescent water Us =
√
4/3ds/Cdg(ρs − ρl)/ρl ≃ 0.63 m/s, where the drag

coefficient Cd is approximated to be 0.5 and g is the gravitational acceleration.

2.3. Scanning geometry and acquisition parameters

The current and voltage of the X-ray source are set to 500 µA and 150 kV,

respectively, while the source operates at a large spot mode. The beam

is strongly hardened with a 2.4mm Cu filter. Radiographic acquisition is

performed at the detector’s highest speed setting, which is 60 Hz, imposing

a 4× 4 binning and an effective pixel size of 0.598mm on the detector panel.

The time resolution limitation unavoidably causes motion blur artifacts in the

acquired radiographic projections, especially for the highest injection rate.

The treatment of the motion blur is specifically taken into account during

the 4D sphere tracking, as discussed in Section 3.1.

For both input velocities, the source-detector distance is 766.3mm, with

the source-object distance (i.e., center of cylindrical tank) set to 272.7mm

for the lowest and to 400.7mm for the highest. The latter requires a larger
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Regime Uj (m/s) Rej Res V Fr

Regular 1.8 8950 2560 0.35 6.30

Chaotic 2.3 11600 1780 0.27 8.16

Table 1: Suspension regimes explored (see Section 3.2) and their associated non-

dimensional parameters. Rej = Ujdj/νl is the jet Reynolds number based on the jet

diameter dj and the mean exit velocity Uj . Res = Rejdj/ ⟨z⟩ is a lower bound of the

sphere Reynolds number, where the slip velocity is estimated as the fluid velocity at the

equilibrium position of a single sphere ⟨z⟩ through a linear decrease starting at z = 0

(ignoring the potential core). A higher bound is approximated by DRej ≃ 2Rej which

applies to the at-rest sphere meeting the jet. V = Us/Uj is the sphere-to-jet velocity

ratio, with Us =
√
4/3ds/Cdg(ρs − ρl)/ρl terminal velocity based on free-fall in quiescent

water, where the drag coefficient Cd is approximated to be 0.5, and g is the gravitational

acceleration. The Froude number, comparing the free-fall timescale of the sphere to the

jet’s timescale is Fr = dsUj/djUs = D/V . The fluid is distilled water, at an ambient

temperature of 25◦C, with a kinematic viscosity of νl = 8.96 10−7 m2 s−1 and density of

ρg = 1.18 kg m−3. The soda lime glass spheres have a density of ρg = 2.5 kg m−3.
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field of view since spheres are suspended at higher distances from the tank’s

bottom. This means that a smaller magnification level is achieved for this

configuration, resulting in smaller variation in the projected sphere sizes.

In particular, for the lowest velocity the minimum and maximum projected

diameters are 49 and 60 px, while for the highest one they are 31 and 35 px,

respectively. These small size variations are leveraged by the radioSphere

technique to position the spheres in 3D space, as discussed in Section 3.1.

2.4. Test procedure

In the beginning of each test, the tank is filled with water and a “flat-

field” image of the entire system without spheres is acquired by averaging

100 projections. Spheres are then inserted into the tank, and with the pumps

still off, another set of 100 images is recorded. This averaged projection with

optimal imaging conditions (very long effective exposure for noise reduction,

no motion artifacts) enables a good first 3D guess of the static spheres’

position, as discussed in the following Section. Pumps are then turned on

and 2000 radiographs are continuously recorded at 60 Hz.

The acquisition encompassed both the transient from static spheres at

rest in the quiescent fluid and the steady state, where the spheres are sus-

pended in the turbulent jet. The acquisition duration in the steady state

is approximately 17 s. In this experimental configuration, this means that

the very first part of the acquired data corresponds to a transient, where the

jet velocity starts at zero until reaching a constant value. This transient is

removed from the analysis, which focuses on the steady-state dynamics.
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3. Analysis

3.1. Application of the radioSphere technique

A recently developed X-ray radiography-based technique is employed to

reconstruct the 3D position of each sphere: radioSphere [15]. It is a two-

step approach that enables the 3D positioning of assemblies of spheres from

only a single radiograph. radioSphere is based on the strong a-priori knowl-

edge of the particles’ shape (spherical) and size (mono-dispersed), combined

with the imaging geometry. In the tested granular assemblies, naturally,

some spheres are positioned closer to the X-ray source with respect to the

others. Thanks to the geometrical magnification resulting from the divergent

X-ray beam, this means that despite having the same physical size (mono-

dispersed) their projected sizes on the detector are different. radioSphere

leverages these small size variations to position spheres along each beam ray.

A flowchart of the technique is shown in Fig. 2 for the assembly of 12

stationary spheres at the lower input velocity. First, the recorded projec-

tion is converted into a calibrated path length image (in mm) through a

calibration procedure described in Sec. 6. The first step of radioSphere

is based on a set of fast Fourier transform (FFT) deconvolutions between

the measured radiograph and a series of structuring elements. For a given

magnification level, a structuring element is a full-scale projection of a sin-

gle disk (same physical size as the tested spheres) centered on the detector

panel (see Fig. 2d). The structuring element can be considered as a template

to be matched, or a shape function (which here only varies in its size) for

the Fourier deconvolution. The position of a sphere along the X-ray beam

can be detected by performing a number of FFT-based deconvolutions for
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Figure 2: (color online) Schematic representation of the radioSphere technique. The

input projection is transformed into a calibrated path length image, which is then decon-

voluted with a series of structuring elements. The estimated projection is then refined

through a residual minimization iterative algorithm. The x and y axes on insets c) and

e) correspond to the frequencies per image length, centered on the middle of the image,

which means the axes span from [−LX/2, LX/2 − 1] and [−LY /2, LY /2 − 1], where LX

and LY are the size of the image, in pixels, in the x and y directions. Since the recorded

images are not on a square detector the rings created in Fourier space are distorted by

this aspect ratio.
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different magnification levels, which requires a series of structuring elements

of varying projected sizes accounting for positions from closer to the source

to closer to the detector1. Here, the limits of the examined zoom positions

are directly given by the scanning geometry and the physical limits of the

cylindrical tank. At the end of this first step, a 3D initial guess of the particle

centers is obtained which, based on the scanning geometry, is projected to

yield an estimated synthetic radiograph (see Fig. 2 top right).

The second step consists in refining this initial guess through an itera-

tive minimization algorithm. The quantity to be minimized is the pixel-wise

squared residual, defined as the difference between the measured radiograph

and the gradually updated synthetic one. More precisely, the iterative algo-

rithm aims to minimize the current residual as a linear combination of three

synthetic residual fields, which are the perturbations of the current guess of

each sphere in each orthogonal direction. The convergence criterion is set as

the norm of the difference between the 3D position guess of two successive

iterations, which is set here as 1/10 of the sphere diameter. Given a good

initial guess, the algorithm converges after a few iterations.

As already mentioned, the minimization step requires an initial guess of

the particles’ positions. A source of initialization can be a 3D X-ray tomo-

graphic scan, which here would have been very impractical given the flow

loop arrangement. Another source of initialization can be the deconvolution

step, or in the case of a time series analysis, the previous time frame. For the

1The structuring element series can be either synthetic (as used here) or experimental

by acquiring a set of radiographs of a single centered sphere while varying its position

along the X-ray beam.
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presented experiments, an initial guess coming from the previous frame is

sufficient to achieve a good convergence for the current one. This means that

for each tested configuration, the deconvolution step is only run once, for the

initial frame containing the stationary spheres. This choice is justified by the

fact that there is no motion blur present, but also a higher signal-to-noise

ratio (SNR), since 100 images are averaged to produce the standing frame.

For all the remaining frames the optimization step is directly run, using as

an initial guess the position of the previously converged frame.

The identification of particle positions in subsequent time steps directly

leads to 3D time-resolved particle traces. The measured particle displace-

ments can be used as additional constraints in the minimization process to

overcome the potential motion blur artifacts caused by the detector speed

limit. For this, a second optimization round is run, where before calculating

the pixel-wise residual, the modelled projection of each sphere is convoluted

with a unique step (or hat) kernel, the size of which corresponds to the

magnitude of the sphere’s displacement, while its direction corresponds to

the one of the displacement vector. This second run of the optimization

accounting for the spheres’ displacements leads to clearly reduced residuals

reaching values of 1/10 of the sphere diameter, as shown in Fig. 3.

The described application and adaption of the radioSphere technique

is its first implementation in a dynamical system. It should be noted here,

that mainly for the highest input velocity, the tracking procedure required a

certain degree of manual verification in its implementation. More specifically,

for frames in which some spheres exhibited large displacement increments,

a trial and error approach was necessary to select the right amount of the
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Figure 3: (color online) a) Measured radiography (normalised by the flat-field), b) cali-

brated path length image, (c) residual after the first run of optimization, d) residual after

the second run of optimization accounting for motion blur.

applied perturbation around the sphere’s current position to ensure the con-

vergence of the minimization, and, in turn, a successful tracking. A potential

development of the technique for similar dynamic cases will be to include the

velocity vector directly inside the minimization functional of the pixel-wise

residual, improving the generality and robustness of the method.

Applying radioSphere on the radiograph time-series results in a 3d tra-

jectory for every individual sphere. The output data, Ns time-series of x, y,

and z for each operating condition, is available at https://doi.org/10.5281/zenodo.7438422

[20].

3.2. Suspension regimes

A parametric study considered the suspension of spheres in a vertical

upward jet with variations of the jet and spheres diameters, mean jet exit

velocity, and exploring two different spheres densities [8]. They reduced the

number of parameters into a single non-dimensional group, a jet-based Froude
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number Fj = Uj/
√

gdj (different from the Froude number Fr defined above,

see Table 1), varied in the range 100 < Fj < 500, to establish the following

suspension regimes:

� 120 < Fj < 175: large sphere behavior,

� 175 < Fj < 250: regular regime,

� Fj > 250: chaotic regime.

The trajectory of a single sphere in the considered configuration reveals a

regular regime for Rej = 8950 and a chaotic one for Rej = 11600 (Fig. 4a)).

While the mean altitudes, respectively ⟨z/dj⟩ = 9 and 15.5, corresponding

to ⟨z/ds⟩ = 4 and 7, are compatible with the ones reported in [8] for these

regimes (see Fig. 4 in [8]), the regimes occur in a very different region of the

parameter space. Here, the sphere-to-jet density ratio is K = ρs/ρl = 2.51

and diameter ratio is D = ds/dj = 2.22, while they considered K = 85 or

700 and 1.5 < D < 7, resulting in high jet Reynolds and Froude numbers.

In the current study, Fj = 5.7 results in a regular regime, and a value of 7.4

leads to a chaotic regime, well below the transition values indicated above.

Note that a regular regime is found in a similar region of the parameter

space for a downward jet and light spheres [10]. This suggests that for small

values of K, the jet Froude number may not be the most pertinent non-

dimensional group to distinguish transitions among suspension regimes (or

that the transition values have a non-trivial dependency on K). In what

follows, the jet Reynolds number will be used for simplicity to distinguish

between regular and chaotic regimes, as only two values are explored here,
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Figure 4: (color online) a) 2D projections of the 3D trajectory of a single sphere at a jet

Reynolds number of Rej = 8950 (◦) and 11600 (□) respectively (alternatively Fr = 6.3

and 8.16). The dark to light colors indicate the trajectory evolution with time, from

start to end. b) Corresponding power spectral densities (PSD) for a cylindrical coordinate

system, normalized by the variance (square of the standard deviation i′, where i = r, z).

For the radial position r, a broad peak around fr = 6.75 Hz is highlighted for the lower

Reynolds number, while a small peak for the vertical position z is shown around fz = 2.1

Hz.

Rej = 8950 and 11600 respectively, and the focus is on the effect of varying

the number of spheres in both cases.

In the regular regime at a jet Reynolds number Rej = 8950, the single

sphere remains in the close vicinity of the equilibrium position, and oscilla-

tions are observed. Figure 4 reports the power spectral densities (PSD) of

the radial r and vertical z time series. The radial position is obtained from

the two horizontal positions x and y resulting from the 3D tracking, through
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a change from a cartesian (z, y, x) to a cylindrical (z, r, θ) coordinate sys-

tem. The PSD of the radial position shows a broad peak centered around

fr = 6.75 Hz. The vertical position spectrum appears as monotonously de-

creasing, but a small peak can be visible at fz = 2.1 Hz which corresponds

to the vertical oscillations. While a vertical oscillation frequency lower than

the horizontal one is expected, the ratio fr/fz is approximately twice that in

the prediction of [13] (3.2 versus 1.4), but smaller than the ratio of about 5

found in [8].

For a higher jet Reynolds number value, Rej = 11600, the sphere explores

a large region around the equilibrium positions, and at times exits the stable

jet region completely until being entrapped again (see for instance the left-

most part of the trajectory in Fig 4a) where the sphere exited the jet’s core

at a high altitude, fell almost vertically, rebounded, and joined the jet’s

axis again). These extreme events are the signature of the chaotic regime

and strongly affect the position power spectral densities. While the vertical

PSD may have retained a small peak around fz = 2.2 Hz, the broad large-

amplitude peak on the radial PSD is completely lost. The spectrum shows

a plateau at low frequency, characteristic of fully decorrelated dynamics at

long times, followed by a steep decay at high frequencies. Note that both

radial and vertical spectra contain more energy at high frequencies in the

chaotic regime than in the regular one.
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4. Collective suspension dynamics

4.1. Observations and global metrics

The use of radioSphere on the time-resolved X-ray radiography mea-

surements yields the 3D trajectory for each sphere present in a given mea-

surement run. Fig. 5a) presents such trajectories, arbitrarily color-coded to

distinguish different spheres, in the case of 3 spheres at a jet Reynolds num-

ber Rej = 11600. The presence of more than one sphere results in a much

broader exploration of the flow volume. While not directly visible, already

with only 3 spheres, the spheres are often found in close vicinity and even in

direct contact, which will be further discussed in Sec 4.2.

As visualizing many concomitant 3D trajectories over long durations is

not straightforward (long meaning tens of oscillation periods 1/fz ≃ 0.5 s

here), two complementary approaches are proposed. On the one hand, Figure

5b-c) displays a single 2D trajectory from each measurement run with 1, 3,

6, and 12 spheres being suspended. This number is later referred to as the

number of spheres, noted Ns. In the example of Ns = 6, one trajectory out

of 6 is selected at random to be plotted in Fig. 5b-c), for both jet Reynolds

numbers Rej = 8950 (b) and 11600 (c). On the other hand, Figure 6 only

plots the time series of the vertical position but for every sphere present in

a given measurement run. Note the change of scales between sub-figures of

Fig. 5 and 6 when Rej is increased. In addition, Figure 5 uses a cartesian

frame of reference to represent the trajectories.

Figure 5b-c), while only showing a subset of the 4D kinematics, readily

allows for observations of the change in dynamics as the number of spheres

Ns increases at a fixed jet Reynolds number. For Rej = 8950, the most
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Figure 5: (color online) a) 3D trajectories for 3 spheres at Rej = 11600 (Fr = 8.16) over

approximately 17 s. Each trajectory is marked by a different color and the endpoint is

symbolized by a marker whose size corresponds to the sphere diameter. 2D projection

of a single trajectory for each explored sphere number Ns condition at Rej = 8950 (b)

and 11600 (c) (Fr = 6.3 and 8.16). The vertical axis is adapted as the jet velocity is

increased, but the horizontal axes are fixed (extended up to the cylinder walls minus the

sphere radius, so a marker on the axis corresponds to a sphere contacting the wall).
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apparent change is that extreme events are present as soon as Ns ⩾ 3, indi-

cating a transition to a chaotic regime, induced by the competition for the

equilibrium position. For Ns = 3, while vertical positions below the equilib-

rium position (⟨z/dj⟩ = 9 for a single sphere) and at larger radial positions

(| y |> dj) are observed, high altitudes seem easily reached. However, the

vertical exploration happens in a smaller range for Ns = 6, with the onset

of a radial exploration at moderate altitudes. These changes are even more

apparent when Ns = 12, where only half of the previous altitude range is

explored for that trajectory, and a large part of it is spent on the cylinder’s

bottom wall. This change of behavior, with reduced vertical exploration and

increased radial exploration, is also observable for Rej = 11600. However,

the larger jet velocity associated with an already chaotic dynamic for a single

sphere leads to extreme events where high altitudes (comparable or greater

than ⟨z/dj⟩ = 15.5 for a single sphere) can be reached at times even for

conditions with a large number of spheres.

By focusing on the vertical coordinate, Figure 6 shows the simultaneous

dynamics of every sphere present in a given run, and qualitative comparisons

can be made as the number of spheres (rows) and the jet Reynolds number

(column) increase. The maximum altitude reached by a single sphere (dotted

line) is only surpassed by an extreme event at Ns = 3 and Rej = 8950

resulting from the collision between two spheres. At this condition, a sphere

can still oscillate for a certain duration around the equilibrium position, but

even here it is most often seen to visit its vicinity only shortly before falling

back toward lower altitudes region (if not to the cylinder’s bottom wall).

For the other conditions, with the exception of several extreme events, the
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Figure 6: (color online) Time series of the vertical position normalized by the jet diameter,

z/dj , along the non-dimensional time tfz, where fz = 2.1 Hz is the vertical oscillation

frequency in the regular regime (Rej = 8950). Each sphere trajectory is represented as

the number of spheres Ns is increased along the row and for both jet Reynolds numbers

considered (columns; alternatively Fr = 6.3 and 8.16). A sphere laying on the base of the

cylinder is at z/dj ≃ 1.1 and the dashed and dash-dotted lines respectively represent the

mean and maximum altitude reached in the case of a single sphere suspended in the jet.

spheres evolve at altitudes found below the average position of a single sphere

(dashed line). While contacts to the ground and rebounds can be observed

for Ns = 3, they become more and more present for a larger number of

spheres. At the highest number of spheres, Ns = 12, many spheres can be

found on the ground, but the typical residence time appears smaller than

what is displayed for 3 spheres, especially for Rej = 11600 (Fig. 6e) where

spheres can remain close to the cylinder’s bottom wall for a duration of

approximately 1.5/fz ≃ 0.7 s).

The observations made on the sphere trajectories are confirmed by global

quantities such as the average positions, with z and y shown in Fig. 7. The
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decrease of the mean altitude with respect to the number of spheres is appar-

ent at both jet Reynolds numbers. As expected with the studied geometry,

the mean transverse position is approximately zero independently of the case

considered. While ensemble averages are represented in solid lines to show

the general trend, large deviations are observed between trajectories of a

given experimental run. This is most obvious for the transverse coordinate,

where the maximum and minimum among the set of values obtained by a

time average of each trajectory are growing more and more apart as Ns in-

creases. This means that certain spheres moved within a given region of the

flow volume (e.g., y < 0) while others remained further away (e.g., y > 0).

This behavior is not observed for the vertical position, where the decreasing

trend with an increasing number of spheres is followed by every sphere. In

addition, this trend is independent of the jet velocity, as seen by the renor-

malization in Fig. 7c). The mean altitude is known to be driven by the

drag force exerted by the jet on the sphere, which scales along FD ∼ U2
j .

The mean altitude rescaled by (Us/Uj)
2 (where Us is merely introduced to

keep the quantity non-dimensional, as it is a constant here) collapses for the

two studied jet Reynolds numbers, showing, in addition, independence to the

suspension regime. In what follows, a cylindrical coordinate system, (z, r, θ),

is adopted and the motions in the horizontal plane are discussed in terms of

the radial coordinate r. Figure 7d) reports the mean radial position, which,

as described, increases with Ns. The change in the coordinate system brings

a similar trend for the maximum and minimum of the time-average values,

that surround well the ensemble average trend, despite showing a spread that

increases with the number of spheres, in agreement with previous comments.
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Figure 7: (color online) Average vertical z (a), transverse y (b), and radial r (d) positions

normalized by the jet diameter dj as a function of the number of spheres Ns. c) is a

normalization of a) by the square of the ratio of the sphere terminal velocity Us and the

jet mean exit velocity Uj . Similarly, e) and f) display the standard deviations of the

vertical and radial positions, z′ and r′. Once a mean or standard deviation is obtained

from each individual sphere trajectory, it is averaged to produce the solid lines, while

the dashed lines are obtained from the minimum and maximum of these sets of values.

The symbols indicate the jet Reynolds number values: Rej = 8950 (•) and 11600 (■)

respectively (alternatively Fr = 6.3 and 8.16).
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The mean value of the radial and vertical coordinates can serve as a

proxy for the location of the equilibrium position for the collection of spheres.

Similarly, the associated standard deviations can inform on the spatial extent

of these regions. For a single sphere at Rej = 8950, this region is stable so the

vertical and radial position standard deviations, z′ and r′, are close to zero

and correspond to (1/
√
2 times) the oscillation amplitudes. These values are

much smaller than for a single sphere in the chaotic regimes, due to a larger

spatial exploration and the extreme events. The vertical standard deviation

peaks for Ns = 3 in both regimes, as the vertical exploration of the vessel

is the largest, as observed in Fig. 6a-b). As the typical highest altitudes

reached decreases with Ns, a similar, approximately linear, decrease of z′

is then observed for both jet Reynolds numbers. While z′ is approximately

double in the chaotic regime for Ns = 3 than in the regular one, it is six

times larger than for a single sphere, and the linear decrease for Ns > 3 is

slightly less steep in that case. In addition, the disparities among the different

trajectories, depicted by the minimum and maximum of the time-averaged

values around the ensemble average one, are also larger at Rej = 11600. The

standard deviation of the radial position r′ is found to be increasing with Ns,

monotonously in the chaotic regime, and possibly reaching a plateau in the

regular one. The disparities among trajectories are small for Rej = 8950 and

Ns ≤ 6, much smaller than for Ns = 12, while they are moderately large and

constant at Rej = 11600.

The changes in the spheres’ spatial exploration of the flow volume are

summarized in Fig. 8a-b), where the vertical and radial position probability

density functions (PDF) are displayed. At low jet Reynolds number, the most
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Figure 8: (color online) Probability density functions (PDF) of the vertical z (a) and radial

r (b) positions normalized by the jet diameter dj at different number of spheres Ns and

jet Reynolds number Rej . c-f) Power spectral densities (PSD) of the vertical z (left) and

radial r (right) positions, normalized by the corresponding variances, at different number

of spheres Ns, and for jet Reynolds numbers Rej = 8950 (middle) and 11600 (bottom),

alternatively Froude numbers Fr = 6.3 and 8.16.
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probable position is in the vicinity of the cylinder’s bottom wall, except in the

case of a single sphere which shows a bell curve centered on the equilibrium

position. The PDF for Ns ≥ 3 presents roughly decreasing exponential tails,

with more and more pronounced slopes with increasing Ns. In opposition, at

the higher value of the jet Reynolds number, the PDF for a single sphere is

characterized by a broad peak around the equilibrium position and a small

one at a much lower altitude. This peak increases in value for Ns ≥ 3 and

moves closer to the bottom wall, and a plateau is observed for larger altitudes.

This plateau, showing equiprobability, extends up to 15dj for Ns = 3, where

a steep decay is found. As the number of spheres increases, this plateau

ends at lower and lower altitudes, and the decay becomes slightly less steep.

This results in a probability of finding the spheres around z = 15dj that is

respectively 0.23, 0.07, and 0.02 times the one of a single sphere for Ns = 3,

6, and 12 (similar comparisons can be made for Rej = 8950 around z = 9dj,

showing even smaller ratios as the collection of spheres does not reach high

altitudes in that case).

While the radial position PDF are very different between both regimes for

a single sphere, they have a similar shape for several spheres independently

of Ns and Rej, with a slow monotonous exponential decrease. Note that the

left-most point, centered at r = 0, is probably underestimated due to mea-

surement and binning biases. For a single sphere, half a bell curve centered

around r = 0 is observed in the regular regime, while a much broader distri-

bution is found for the chaotic regime, almost flat up to r = dj, followed by

a steep decay. The exponential decay for several spheres is the steepest for

Ns = 3 at Rej = 8950 and the rate decreases with increasing both Ns and
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Rej, so that 12 spheres in the chaotic regime have a probability of exploring

r = 5dj that is only 4 times less than exploring r = 0.5dj (to be compared

to a ratio of 90 for Ns = 3 in the regular regime).

For completeness, Figure 8c-f) shows the power spectral densities (PSD)

of the vertical and radial positions in both regimes. The vertical position PSD

show little change with respect to the number of spheres, with the exception

of an increase of energy in the high-frequency range for Rej = 8950, which

is reminiscent of the behavior observed for a single sphere as Rej increases

(Fig. 4b)). This is the signature of the onset of a chaotic regime when several

spheres are present in the flow configuration that yields a regular regime for

a single sphere. This is also seen in Fig. 8d), where the high amplitude peak

is lost for Ns ≥ 3, as the spectra show a plateau followed by a power law

decay. This decay becomes slightly less steep as Ns increases so that the

plateau is found in a lower and lower frequency range (to the point of not

being observed for Ns = 12, indicating that the dynamics remain correlated

for longer duration). At a higher jet Reynolds number, the decay is even

more moderate, and the behavior along Ns is also similar, but in a lesser

extent, and no plateau is observed over the acquisition duration explored.

The change in the particles’ dynamics and in their sampling of the flow

volume can be understood in the light of the velocity statistics. The mean

velocity does not carry much information in a closed flow, as it should be

zero if the spheres sample a large enough portion of the flow volume (by

conservation of mass and as the mean particle velocity is independent of the

particle characteristics [21; 22]). Despite a moderate spread, this holds true

here (see Fig. 9a-b)). The track-by-track disparities around the mean value

28



1 3 6 12
-2

-1

0

1

2

8950

11600

a) 

1 3 6 12
-1

0

1

8950

11600

b) 

-0.2 0 0.2
10

-2

10
0

10
2

1

3

6

12

e) 

-0.2 0 0.2
10

-2

10
0

10
2

1

3

6

12

f) 
Rej=8950 Rej=11600

1 3 6 12
0

2

4

6

8

8950

11600

c) 

1 3 6 12
0

1

2

3

4

5

8950

11600

d) 

Rej

Ns

Figure 9: (color online) Mean vertical (a) and radial (b) velocities normalized by the jet

mean exit velocity Uj as a function of the number of spheres Ns, and similarly with the

standard deviation of the vertical (c) and radial (d) velocities. The mean and standard

deviations values have respectively been multiplied by 102 and 103 for visibility. Once a

mean or standard deviation is obtained from each individual sphere trajectory, it is aver-

aged to produce the solid lines, while the dashed lines are obtained from the minimum and

maximum of these sets of values. Probability density functions (PDF) of the normalized

vertical velocity for jet Reynolds numbers Rej = 8950 (e) and 11600 (f), alternatively

Froude numbers Fr = 6.3 and 8.16.
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are a growing function of the jet Reynolds number, and also of the number of

spheres for the r coordinate. The standard deviation of the spheres’ velocity

show less disparities, with the exception of the vertical coordinate at high

Rej and Ns (Fig. 9c-d)). The standard deviation of the vertical velocity

shows a trend that is very similar to the one of the vertical position (Fig.

7e)), with higher values in the chaotic regime and a peak for Ns = 3 followed

by a fast decrease. The slope is less steep at Rej = 11600, resulting in

values of v′z almost three times larger than in the regular regime for Ns = 12.

The trend displayed by the radial coordinate is overall similar, but the slope

at Rej = 8950 is much more moderate, and the chaotic regime presents a

plateau. The values of v′r are hence larger in the regular regime for Ns = 3

and 6 but become smaller than in the chaotic regime when 12 spheres are

present. The high values of the radial velocity standard deviation are at

the origin of the extreme events that lead to the wide radial exploration of

the vessel, which leaves a clear signature with the monotonously growing

radial position standard deviations (Fig. 7e)) or alternatively with the radial

position PDF presenting wider and wider exponential tails (Fig. 8b)).

The velocity of the radial and azimuthal coordinates, r and θ, are approx-

imately Gaussian and their shapes do not show a strong dependence on the

number of spheres (not shown here for conciseness). Because the upward drag

exerted by the jet on the sphere is strongly inhomogeneous in the cylinder,

the competition between suspension (drag) and settling (buoyancy) strongly

vary spatially and hence the vertical velocity distributions are asymmetric,

except for the single sphere in the regular regime, where both forces remain

in balance at all times (Fig. 9e-f)). While this asymmetry persists when the
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jet Reynolds number is increased, the distribution for Ns = 12 resembles the

ones at lower numbers of spheres (while a slight ordering of the distributions

is still visible with respect to Ns, especially for positive velocity values). The

suspension for Rej = 8950 and Ns = 12 being only partial, the vertical veloc-

ity PDF presents much narrower tails in that case, as the spheres do not get

advected to high altitudes, resulting in both lower upward velocity increases

during rising events and lower velocity decreases during falling events. This

explains the strong differences in vertical position PDF observed in Fig. 8a),

which is not necessarily observable in the evolution of the average vertical

position with Ns, a monotonously decreasing function (Fig. 7a)) that results

from the ordering of the vertical velocity PDF.

4.2. Residence times, collisions, and contacts

Velocity auto-correlation functions are used to probe the particle short-

time dynamics, to complement the high-frequency range of the power spec-

tral densities presented in Fig. 8c-f). As indicated by the spectra, the

short-time dynamics show different behaviors along increases of Ns for the

different coordinates and jet Reynolds numbers. This is well illustrated

by the radial velocity auto-correlation functions (Fig. 10a-b)), defined as

Rvr(τ) = ⟨vr(t)vr(t+ τ)⟩, where τ is a time lag and ⟨·⟩ is an ensemble av-

erage. Symbols marking 75% decorrelation are added to help illustrate the

short-time decorrelation dynamics. For Rej = 8950, a short-time decorre-

lation, as well as oscillations, are observed for a single sphere, due to the

oscillatory motion in the regular regime. The behaviors are almost indistin-

guishable for Ns ≥ 3, as only a slight ordering towards longer decorrelation

is visible as Ns increases (much smaller than the increase in correlation time
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compared to the single sphere case). On the contrary, at Rej = 11600, the

short-time decorrelation becomes faster as Ns increases, starting from the

single sphere case that shows the longest correlation time. The decrease of

the correlation time seems monotonous but appears to saturate for Ns = 12.

However, the auto-correlation functions change shapes, much more than for

Rej = 8950, so that a correlation time extracted from 100% decorrelation

(i.e., first instance of Rvr = 0), through the value of τ for this given threshold

or through an integral up to this point, would give a much different result.

This means extracting a timescale of the particle dynamics would yield trends

that heavily depend on the decorrelation threshold.

To quantitatively investigate the partial suspension of the spheres for

Ns = 12 and Rej = 8950, associated with narrow-tailed vertical velocity

PDF (Fig. 9e)), the long-time dynamics is explored through a residence time

analysis. For that purpose, two “regions” are defined, namely the ground and

the rest of the flow volume. A loose definition of a grounded sphere is taken,

to account for the slightly slanted bottom wall of the cylinder and for the

possibility of having two spheres on top of each other, with z < ds (while

a sphere sitting at the very bottom of the vessel presents z = ds/2). This

definition is chosen for its simplicity and as it only biases towards slightly

longer residence times on the ground (by only a couple times the temporal

resolution as a sphere lands on or is suspended away from the ground), instead

of missing grounded events by exclusion. The remainder of the time series is

set to belong to the suspended sphere category.

Figure 10c-d) reports the probability density functions of consecutive pe-

riods of time spent on the ground or suspended, respectively in dashed or
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Figure 10: (color online) Auto-correlation functions of the radial (a) and vertical (b) veloc-

ity for Rej = 8950 and 11600 respectively (alternatively Fr = 6.3 and 8.16). Probability

density functions (PDF) of the residence time, spent grounded (solid lines) or suspended

(dashed lines) for Rej = 8950 (c) and 11600 (d). The two dots in (d) correspond to the

counts for the 3 measurable grounded events in the case of a single sphere (counts are used

instead of PDF so the data stay on a compatible scale). The time axes are normalized

by the vertical oscillation frequency in the regular regime fz = 2.1 Hz. e) Average (solid

lines) and maximum (dashed lines) ratio of the number of suspended spheres to the total

number of spheres Ns (errorbars stand for the standard deviation) as a function of Ns. f)

Percentage of the time where N spheres are kept suspended, for N = Ns and N = Ns/2

in solid and dashed lines.
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solid lines. No data is available for the single sphere case in the regular

regimes as the sphere remains suspended as long as the jet is on, and only

three grounded events are observed in the chaotic regime. The time intervals

of the suspended events in between these grounds events are too long to be

visible on the axes displayed here, except for one event, and the count for

each time is reported instead of a PDF for the same reason. This shows two

ground events of the shortest duration possible (dt = 1/60 s, the inverse of

the acquisition frequency), corresponding to direct rebounds, separated by a

suspension of 0.1 s, and a later ground event that lasts 10 times longer than

the other rebounds (dt = 1/6 s), before the sphere gets lifted up by the jet.

When several spheres are present, many grounded and suspended sphere

events occur. The most probable residence time, in both cases, remains

the shortest time measurable. However, while for Rej = 8950 and Ns ≤ 6

secondary peaks are present at long times (around 1.5 and 1/fz for Ns = 3

and 6), the PDF decays from this value onward for Ns = 12, showing the lack

of suspension of the spheres in that case. This is accompanied by a broad

secondary peak at long times for grounded events (1.5 ≤ dtfz ≤ 4.5) (while

no such peak is visible for lower numbers of spheres, as only a small peak

at 1.5/fz appears for Ns = 6). A peak for dt/fz = 5 and at a probability

of 0.15 % also exists but is not displayed for visibility. For Rej = 11600,

while the suspension probability is smaller at long times and higher at small

times for Ns = 12 compared to 3 and 6, no sphere remain grounded for more

than dt/fz = 2.5. Figure 6e) seemed to imply that longer residence times

on the ground could be found for Ns = 3 than Ns = 12. However, this

was caused by many rebound events that translate to higher probabilities
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of short-time grounded events (that can happen subsequently) compared to

the dynamics at Ns = 12, while this latter case presents as expected much

higher probabilities of long grounded events.

The overall changes in suspension capacity are measured in Fig. 10e-

f), showing respectively the average number of suspended spheres and the

percentage of the time where N spheres are suspended. The average number

of suspended spheres, normalized by Ns, decreases almost linearly with Ns,

with a steeper slope at the lower jet Reynolds number value. In addition, the

dashed lines report the maximum number of spheres suspended, showing that

all the spheres can be suspended up to respectively Ns = 3 and 6 for Rej =

8950 and 11600, while only approximately 60 and 80% of the spheres can

be suspended at once when 12 spheres are present. To complement this, the

dashed lines in Fig. 10f) report the percentage of the measurement duration

that presents a suspension of at least half of the spheres, a value almost

constant and always above 90% for the high jet Reynolds value for Ns ≤ 6,

while a linear decay is seen for the lower Rej value over the whole range of

Ns. The suspension percentage of all the spheres is on the contrary a very

quickly decaying function, already lower than 5% at Ns = 6 independently of

the jet Reynolds number. An alternate probing of the suspension capacity of

the jet is done by studying the statistic of the cumulative altitude, defined as

Zc =
∑Ns

n=1 zn with zn the altitude of each sphere. The cumulative altitude

presents statistics that are close to a Normal distribution, with a standard

deviation that mostly depends on the jet velocity, while the average value

increases both with Ns and Rej (not shown here for conciseness). For both

Reynolds numbers, the increase of Zc with Ns is approximately linear and
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equal to more than twice the value of ⟨z⟩ in the case of a single sphere. This

means that the total potential energy of the collection of spheres increases

with Ns, which is thought to be due to a better harnessing of the jet’s kinetic

energy by the spheres as they experience an upward drag force surpassing

their buoyancy a region of the flow that is larger than the vicinity of the

equilibrium position.

In addition to grounded sphere events, the collective dynamics change the

inter-particle distances as Ns increases. At each frame, the distance in 3D

between pairs among the Ns spheres, dr, is computed, and the probability

density functions are reported in Fig. 11a-b). The probability of dr = ds,

i.e., two spheres touching, increases drastically with Ns, only after Ns = 6

for Rej = 8950 and monotonously for Rej = 11600. For long distances, the

probability is larger at Ns = 3 in both cases, but is followed by Ns = 12 at

low Reynolds number instead of the expected Ns = 6 found for the higher

value of Rej. This can be explained by the fact that 12 spheres occupy

each other vicinity in a more compact fashion, so several spheres in contact

are separated by distances greater than dr = ds. This is well illustrated by

the peak of probability at dr = 2ds, indicating three spheres aligned and

touching (e.g., A is in contact with B which is in contact with C). As more

suspension is found for that case at Rej = 11600, this secondary peak is

very broad and almost merges with the peak at dr = ds. In addition, for

this jet Reynolds number, the PDF is almost flat at Ns = 3, indicating an

equiprobability up to distances of 6ds that corresponds to a dynamics almost

void of particle-to-particle interactions.

Such interactions are explored by analyzing the probability of spheres
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Figure 11: (color online) Probability density function (PDF) of the distance r between

pairs of spheres, normalized by the sphere diameter ds for Rej = 8950 (a) and 11600

(b) (alternatively Fr = 6.3 and 8.16). PDF of the number of collisions (solid lines) and

contacts (dashed line) happening simultaneously for Rej = 8950 (c) and 11600 (d). e)

Mean pair separation as a function of the number of spheres Ns. f) Collision (solid lines)

and contact (dashed lines) frequency, normalized by the vertical oscillation frequency in

the regular regime fz = 2.1 Hz and Ns, as a function of Ns. Frequencies are obtained as

the number of events divided by the measurement duration.
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touching each other, divided into two categories: contacts and collisions.

Contacts are defined as events happening for grounded spheres, where low

velocity values are expected, while collisions occur between two suspended

spheres, often associated with large momentum transfers (e.g., collision be-

tween the black and brown colored spheres in Fig 6a) resulting in a high al-

titude reached by the black sphere while the brown one becomes grounded).

The numbers of contacts and collisions occurring at a given time, Nc, are

computed and their PDF are reported in Fig. 11c-d). Contacts are found to

be always less likely (or as likely for Ns = 12 at Rej = 11600) than collisions,

with the exception of Ns = 12 at Rej = 8950. In this case, there is a high

probability of having several spheres on the ground, in contact with each

other (showing almost an equiprobability up to 3 contacts before a decay)

and hence unlikely to be easily resuspended. This explains the occurrence

of very long residence times with non-negligible probabilities. The PDF of

the number of simultaneous contacts or collisions Nc are approximately ex-

ponentially decreasing, and the slopes are decreasing functions of Ns.

On average, the inter-particle distance is constant along Ns in the regular

regime, at a low value (⟨dr/ds⟩ ≃ 2), and is found higher and only slightly

decreasing in the chaotic regime (between 4.5 and 3 ds, Fig. 11e)). However,

the numbers of contacts and collisions are linearly increasing with Ns. The

rate of increase is approximately the same for collisions at both jet Reynolds

numbers (with collisions being always about twice more frequent than at

the lower Rej value). On the contrary, the slope along Ns is much bigger

for contacts at a low Reynolds number than at the higher value, so the

frequencies are about equal for Ns = 3, but three times larger when 12
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spheres are present. In this case, contacts are 1.45 times more likely than

collisions, while they are as likely for Rej = 11600.

5. Discussion

The increase of probability in larger (negative or positive) vertical velocity

values compared to the single sphere case deserves to be discussed further

(Fig. 9e-f)). For the regular regime, a very narrow PDF is observed for vz as

the sphere only oscillates at small amplitudes. The typical velocity can be

estimated as z′, the oscillation amplitude, times fz, its frequency, resulting

in vOz /Uj = z′fz/Uj ≃ ±0.02. This value is in very good agreement with the

largest (absolute) values displayed in Fig. 9e), up to 10 times smaller than

the ones found when more than one sphere is present. For Ns ≥ 3, a large

decrease of the zero vertical velocity probability is found, and both large

negative and positive values become much more probable. Collisions lead to

fast and drastic upward velocity increase, leading to very high altitudes (Fig.

6a)), that are followed by falling events with slow growth of the downward

velocity. This difference in timescale between both events explains partially

the wider negative tail on the velocity PDF, compared to the positive one.

In addition, this is also due to the fact that the jet, where upward fluid

drag is imparted on the spheres, occupies only a small portion of the flow

volume2. At this low jet Reynolds number value, spheres can spend longer

periods of time on the bottom wall of the vessel for Ns ≥ 6 (Fig. 10c)), so

2A cylinder of height 40 mm and radius 30 mm is 1.1 10−4 m3, while a cone of the same

height and of full angle of 22◦, based on twice the spreading rate of the velocity half-width

radius, see [23], only contains 2.7 10−6 m3, i.e., a bit less than 2% of the cylinder’s volume.
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that the zero vertical velocity probability increases drastically. The dynamics

become largely modified by the many contacts at Ns = 12 (Fig. 11), 50%

more likely than collisions in the same flow regime, and 3 times more likely

than contacts at Rej = 11600. This explains the much narrower tails on the

vertical velocity PDF in this case (Fig. 9e)). The behavior along Ns in the

chaotic regime observed in Fig. 9f) shares some similarities, with broad tails

for Ns ≥ 3 and a lower zero vertical velocity probability compared to the

single sphere case, but the conditions at Ns = 12 do not stand out as all the

spheres remain moderately well suspended (Fig. 10e-f)). The PDF are all

ordered along Ns, with a narrowing of the tails and an increase of the zero

velocity probability. Note that due to the chaotic dynamics at Rej = 11600,

the single-sphere vertical velocity PDF already displays moderate tails, wider

for negative values, similar to the case of several spheres (while in a less

pronounced fashion).

The studied system, unlike the case of a single sphere, is multistable,

with each sphere evolving around a metastable position, until it switches

for another one, through large fluctuations in the fluid’s forces or by a col-

lision with another sphere. In addition, when more and more spheres are

present, contacts increase the stability of positions on the ground, in the

sense that it requires events of even larger magnitudes to move the spheres.

The global metrics report on the sum of the metastable positions, so this

framework retains the system axisymmetry (where the word global indicates

obtained through an ensemble average here). However, some deviations are

observed, as on the mean velocity where a zero value is expected for a closed

flow (Fig. 9a-b). This is not due to a lack of statistical convergence, but
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rather to the fact that only a few tens of metastable positions are summed,

and even a slight dissymmetry in the number of such events can result in

deviations from axisymmetry. The difficulty in retaining symmetries in the

experimental measurements of such multistable systems is a well documented

challenge, that is very common in the general contexts of physics, chemistry,

or biology[24; 25], and has been many times reported in fluid mechanics with

fluctuation-driven bi-stable systems (e.g., [26; 27; 28; 29; 30]) as well as other

particle-laden flows [31; 32; 33; 34; 22].

One objective of this study is to explore the competition between several

spheres for a given equilibrium position in the jet and to characterize its in-

fluence on the suspension regimes. While both regular and chaotic regimes

are explored for a single sphere in this configuration, the dynamics are always

chaotic as soon as 3 spheres are present. However, drastic changes in behav-

ior were highlighted by change in the jet Reynolds number and the number of

spheres, requiring the definition of other suspension regimes, that adequately

describe the collective suspension dynamics. Since the main mechanism mod-

ifying the dynamics is the interaction between spheres, this definition should

be based on collisions and contacts. The change in the exploration of the

flow volume, the velocity statistics, and the residence times all appear to be

linked to the occurrence of these events.

When almost no contact or collision exists, the spheres evolve indepen-

dently of each other, by definition in an uncoupled way, as the probability of

spheres being far from each other is large (Fig. 11b). This is only found for

Ns = 3 and Rej = 11600 and the dynamics remain chaotic, as even a sin-

gle sphere shows extreme events here (due to hydrodynamics fluctuations).
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This defines an “uncoupled chaotic” regime. When the frequency of contacts,

divided by the number of spheres, becomes close to or larger than the os-

cillation frequency, this onsets a “collision-driven” regime. It occurs for the

lower jet Reynolds number with 3 and 6 spheres and for the higher Reynolds

number at 6 and 12 spheres. In this regime, collisions occur as much or

more than contacts, and the suspension of half the spheres occurs more than

50% of the time (Fig. 10f). In the case of respectively Ns = 3 and 6 for

Rej = 8950 and 11600, this rate is in the vicinity of 90% and all the spheres

can be suspended at times, defining a high-suspension sub-regime, while the

other cases are only moderately suspended. Finally, when 12 spheres are

present at the lower jet Reynolds number value, contacts are more likely

than collisions, and long residence times of grounded spheres are not rare, as

groups of spheres occupy the bottom wall of the cylinder and only a quarter

of the spheres are suspended in average, and even suspending only half the

spheres is very rare (Fig. 10e-f). This defines a “contact-driven” regime,

and the various regimes are summarized in Table 2. The uncoupled chaotic

and contact-driven regimes are illustrated in the Supplementary Materials

(videos).

For the single-sphere case, the occurrence of a chaotic regime at higher jet

velocities explored by [8] is generalized by the current study. The exploration

of the parameter space differing widely, the onset of this regime cannot be

presented along a unified non-dimensional-group (e.g., the Froude number as

proposed by [8]), and a parametric study would be required to answer this

question. The orders of magnitude of the mean altitudes in both the regular

and chaotic regimes are however in good agreement. When a collection of
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HH
HHH

HHHH
Rej

Ns
1 3 6 12

8950 Regular Collision-driven∗ Collision-driven Contact-driven

11600 Chaotic Uncoupled chaotic Collision-driven∗ Collision-driven

Table 2: Collective suspension regimes as functions of the jet Reynolds number Rej =

Ujdj/νl and the number of spheres Ns: the regular and chaotic regime are defined only for

a single sphere, while several spheres can be in an “uncoupled chaotic” regime, a “collision-

driven” regime (associated with a high suspension percentage, marked here by the ∗, or

with moderate suspension), and a “contact-driven” regime. The regimes are termed and

distinguished based on the quantitative measurements of suspension rates, contacts and

collisions from Fig. 10 and 11

spheres is suspended in the jet, the drastic changes in dynamics lead to more

time spent on the ground, both with more frequent and longer events, in

opposition to only quick rebounds in the single-sphere case. This means that

the geometry of the studied system can play an important role (comparatively

to the role played by the jet), in particular for the dynamics of grounded

events. For instance, changes in the current geometry (e.g., value of the

slope of the cylinder base, change in the cylinder’s diameter) could result

in differences in the values reported here such as the distributions of the

ground residence times or the contact frequencies. In addition, when many

spheres are present, such as in the contact-driven regime, the size of the

container becomes only slightly larger than the pile formed by the spheres,

and confinement effects play a role as well. However, beyond the exact values

of the metrics and their scaling laws, which are prone to such biases and are

unlikely to be directly transposable to other systems, the qualitative picture
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is presumably very general. In the case of a single sphere, the changes of

regimes are explained by a competition between the apparent size of the jet

at a given altitude and the sphere diameter, and such confinement balance

is solely caused by the base flow geometry and therefore independent of the

surrounding system geometry. Similarly, the transition to the collision-driven

regime is not likely to be influenced by the system geometry, as it is governed

by how many spheres can be sustained in the vicinity of the stable region, a

function of the sphere diameter and the jet apparent size (at a given altitude,

which adds a dependence on the fluid’s and spheres’ densities). The threshold

of the onset of the contact-driven regime is probably heavily influenced by

the geometry, but its existence is most likely universal. In addition, the

experimental methodology and the analysis framework presented here are

general and can be used to study such systems in various variations of the

parameters space and geometry, as well as broader aspects of particle-laden

flows.

6. Conclusion

X-ray radiography was used with a divergent X-ray source and a planar

detector to record time series of attenuation maps resulting from a collection

of mono-dispersed glass spheres immersed in water. With the knowledge of

the system geometry and the spheres’ diameter, radioSphere was leveraged

to retrieve the 3D trajectory of each sphere, yielding the 4D kinematics of the

collection of spheres. This stands as the first implementation of radioSphere

in a dynamical system, as its use had been limited to synthetic data and a

static granular assembly [15]. The combination of the X-ray measurement
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technique and the developed analysis method allowed for the investigation of

the suspension of a collection of heavy spheres in an upward vertical jet. Such

configuration is well described for a single sphere, and the use of two different

jet velocities led to the exploration of two suspension regimes, namely the

regular and chaotic regimes [8]. In both cases, the sphere has an equilibrium

position at a certain distance from the jet and along the jet’s axis, but can

present either regular oscillations or large deviations associated with extreme

events. The number of spheres was varied in the range 3 ≤ Ns ≤ 12 at each

jet Reynolds number value, exploring 6 conditions for a collection of spheres,

to investigate the competition of many spheres for an equilibrium position.

While the trajectories could have been retrieved using multiple cameras in

direct visible-light imaging in the case of a few spheres, the conditions ex-

plored led to many collisions and prolonged contacts between several spheres

which necessitated the use of X-rays. In addition, a cylindrical vessel, with

a slightly downward slanted base, contained the working fluid and main-

tained a constant number of spheres throughout the measurements. While

the specifics of the geometry (strong confinement and slanted base in par-

ticular) may prevent direct transposition of the results to other systems, the

qualitative picture is presumably very general, and that the methodology to

characterize the different regimes is also of broad applicability.

The exploration of the flow volume by the spheres was investigated using

the statistics of the spheres’ positions, namely with the first two moments

and the probability density functions, while the dynamics were presented

in terms of power spectral densities and auto-correlation functions. Wide

changes occur as Ns increases, which can be explained by the spheres’ veloc-
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ity statistics. In particular, the vertical velocity probability density functions

present broad tails that narrow with Ns, resulting in a decrease in the alti-

tudes reached and an increase in the radial exploration. The tails originate

from collisions between spheres, yielding large positive and negative vertical

velocity values. As more spheres are present in the vessel, some spheres exit

completely the suspension region created by the jet for some time, and the

probability of finding a sphere at the bottom wall of the vessel increases.

Spheres can be found in contact with each other there, decreasing the likeli-

hood of a resuspension. The suspension rate and the occurrence of collisions

and contacts led to the introduction of three suspension regimes of a collec-

tion of spheres, listed in decreasing degree of agitation: “uncoupled chaotic”

regime, “collision-driven” regime (split into a high or moderate level of sus-

pension), and “contact-driven” regime. As only two parameters were varied

in the current study, extending this framework and the existence of these

suspension regimes in a wider parameter space would pose a natural future

direction. In particular, variation of the sphere-to-jet diameter and density

ratios are possible with the current approach, but they would require an

adaptation of the imaging configuration, namely of the distances between

the source, object, and detector, as higher altitudes would be reached and

the apparent magnification range would change.
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Figure .12: Fitted calibration of normalized attenuation versus path length for a single

10mm sphere (a) and 12 stationary spheres at lowest input velocity (b).

Appendix: Calibration of raw attenuation into path length images

An essential initial step of radioSphere is the transformation of the

raw attenuation radiographic projections into calibrated path length images

(expressed in mm). For the presented experiments, this was done along a two-

step approach. First, a set of 100 radiographies of a single sphere centered

on the detector panel were averaged, and the relationship between the path

length inside the sphere and the measured attenuation on the detector panel

was calculated, as shown in Fig. .12a). This calibration curve for a single

sphere follows the Beer-Lambert law. However, for an assembly of spheres

the linearity of the simple Beer-Lambert attenuation law is violated, mainly

due to beam-hardening and scattering artifacts [35; 36].

To account for a non-linear attenuation law beyond one particle diameter,

a second calibration step is performed. For this, the stationary projection

of each experimental configuration is transformed into a path length image

(expressed in mm) based on the single sphere linear attenuation fit obtained
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previously. radioSphere is then run to reconstruct the 3D position of the

stationary spheres, which are, in turn, used to produce a synthetic projection

of the spheres assembly, expressed in mm. The synthetic and the acquired

projections of the stationary spheres are then used to fit a new attenuation

law, as shown in Fig. .12b).

In summary, for each experimental configuration, a non-linear calibration

curve is estimated and used to transform the set of acquired radiographs to

path length images. This law corresponds to the studied spheres material,

specific acquisition settings, and imaging geometry, accounting at the same

time for any non-linearity caused by beam-hardening and scattering artifacts.

It should be noted here that alternatively a more automatic parametric func-

tion fit between the scatter plot of the measured detector attenuation vs.

path length for each pixel can be performed through a least-squares method

in the style of [37].
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