

Modeling T lymphocyte dynamics: From physiology to perturbations of immune system

Véronique Thomas-Vaslin, PhD CNRS

Immunology, Immunopathology, Immunotherapy UPMC INSERM UMRS959 Labex Trans*i*mmunom Pitié-Salpêtrière - Paris

veronique.thomas-vaslin@sorbonne-universite.fr

ImmunoComplexiT network http://www.immunocomplexit.net/

International symposium on T cells and T-cell lymphomas University Hospital– Essen 20-21/09/2019

(m)

DEPUIS 1257

Werner Dubitzky Olaf Wolkenhauer Kwang-Hyun Cho Hiroki Yokota *Editors*

VOLUME 1

SPRINGER

Encyclopedia of Systems Biology

🖄 Springer

Encyclopedia of Systems Biology 2013, pp 1145-1149

Lymphocyte Dynamics and Repertoires, Biological Methods

Dr. Véronique Thomas-Vaslin, Dr. Adrien Six, Bertrand Bellier, Dr. David Klatzmann

Encyclopedia of Systems Biology 2013, pp 1149-1152

Lymphocyte Dynamics and Repertoires, Modeling

Dr. Véronique Thomas-Vaslin, Dr. Adrien Six, Bertrand Bellier, Dr. David Klatzmann

Dynamics and selection of lymphocytes

- Naive/memoryFunctionRepertoire
- Regulation

Perturbations

- •Aging •Diseases
- •Treatments

•...

Define components, rules, granularity...

Thomas-Vaslin Immunosuppression Inteck book 2012

Provide definitions

Estimation of cell population dynamics

- Input/output in a compartment
- Number of cell generation
- Production rates
- Death rate
- Selection rates
- Migration rates
- Time of residence

Estimation of cell division in a population

- Proliferation rate/day (p) = percentage of cells entering division per day
- % of cell in division (at a *t* time)
- Time between two divisions = intermitotic time = division time = 1/p
- Doubling time: time to double the cell number.

Quantify cell division with various methods:

Consider 1 of 10 cells start to divide with symetric clonal proliferation (5 division cycles)

2

N division

1

3

4

5

0

Cnrs

% cells in division on day 0 (DNA labelling or cyclin) : 10%

Intermitotic time: 1.4 days

CFSE de-labeling

41 cells

Cell division and turnover methods

Thomas-Vaslin & al (2013). Lymphocyte Dynamics and Repertoires, Biological Methods Encyclopedia of Systems Biology.

Methodology	Molecule	Level of detection	Administration	Time		Investigation level	Method of detection	Result G2
Active labelling during cell division	lsotopes			Pulse	Chase			Rate of division
	3H-thymidine	DNA	In vitro/ in vivo	Hours	Hours, days	Cell population	ß counter	cpm/time
	2D-Glucose	DNA	In vivo	Hours	Days	Cell population	Sprectromass	Fraction DNA labeled/time
	2H2O	DNA	In vivo	Days	Days	Cell population	Sprectromass	Fraction DNA labeled/time
	14-Carbone	DNA	ln vivo 1960- 1967	Days	Years	Cell population	Sprectromass	Decrease/time
	Nucleotide analogue							
	BrDU EDU	DNA	In vivo/ in vitro	minutes to days	Days	Cell	Flow cytometry Histology	% cell in division/time
Passive labeling DNA content	Fluorescent dye (e.g. PI, 7AAD)	DNA	In vitro	instant		Cell	Flow cytometry	% cell in G0/G1 S, G2/ M at a time point
Passive labeling Dilution of dye with division	Fluorescent dye (e.g. CFSE)	cytoplasm	In vitro In vivo	Days		Cell	Flow cytometry	% cells that have divided in a given time and number of cell cycles
Detection of Cyclin	e.g. KI67	Nucleus	In vitro	instant		Cell	Flow cytometry Histology	% cell in division at a given time
Depletion of dividing cells	e.g. Ganciclovir in transgenic cells expressing HSV-1 TK; Hydroxyurea	DNA	In vivo	Days		Cell	Flow cytometry	% cell depletion

Multi-level organisation & approach

V. Thomas-Vaslin

Reconstructing lymphocyte proliferation, differentiation, selection

FROM POPULATION ODE TO STATE TRANSITION DIAGRAMS

Modeling T cell dynamics & homeostasis in young FVB adult mice

Perturbation: transient depletion of dividing T cells for 7 days

des le

Systèmes Complex

UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257

Modeling T cell dynamics & homeostasis in young FVB mice

Thomas-Vaslin & al. JI 2008

V. Thomas-Vaslin

Thomas-Vaslin JI 2008

Modeling of T cell population dynamics at steady-state in young FVB mice

Number of cells at steadystate

and differentiating, at each division stage

Cell compartment	Division stage	Number of cells (millions) ¹	Number of cells differentiating to next compartment
Thymus			
DN	No	0.09	0.00
	N ₁	0.18	0.00
	N ₂	0.36	0.00
	N 3	0.72	0.00
	N4	3×10-3	0.32
Total DN		1.34	
Early DP	Po	0.07	0.00 ²
	P ₁	0.14	0.00 ⁶
	P2	0.29	0.00 ^b
	P3	0.58	0.00 ^b
	P4	1.16	0.00 ^b
	P₅	0.94	6.18 ^b
	P6	0.08	8.14 ^b
Last stage DP	P73	40.29	15.054
Total DP		43.57	
SP4	S4 ₀	4.02	0.00
	S41	2.49	1.26
	S42	0.01	1.13
Total SP4		6.53	
SP8	S8 ₀	0.77	0.00
	S81	0.48	0.24
	S8 2	2×10-3	0.22
Total SP8		1.25	
Total thy mocytes		52.69	

Naive spleen cells

CD4 RTE	R40	3.79	0.00 ⁸
	R41	7.27	0.07°
	R42	0.03	3.30 *
Total CD4 RTE		11.09	
Long-lived naïve CD4		14.50	
Total CD4 CD44 ^{low}		25.59	
CD8 RTE	R8 ₀	1.49	0.00 *
	R81	2.86	0.03 °
	R82	0.01	1.30 *
Total CD8 RTE		4.36	
Long-lived naïve CD8		4.50	
Total CD8 CD44 ^{low}		8.86	

>quantitative parameter values at steady state

- •Cell fluxes
- •Residence times
- •Rates of import, export, proliferation, death
- •Time /space
- •Quantification of selection and post-selection
- peripheral expansion

Production and death of cells ⁱ								
Thymocytes dying ⁱⁱ	14.0 million							
Thymocytes export	ed (/day)		2.9 million					
Thymocytes produ	ced by division (/day)		16.8 million					
Cells produced by	division before SP stage (/d	day)	15.0 million					
Percentage cells pr	oduced in thymus dying (/d	lay)	83.1 %					
Percentage cells pro thymus (/day)	oduced before SP stage dy	ing in the	92.9 %					
Splenic RTEs prod	uced by division (/day)		3.5 million					
Thymocytes export	Thymocytes exported to spleen (/day)							
Contribution thymu	RTE	25.5%						
Percentage thymoc		5.4%						
Percentage positive	SP (/day)							
		CD4	2.3%					
		CD8	0.4%					
	nent time (days)							
DN	DN 0.24							
DP)P 0.35							
SP4	SP4 0.37							
SP8	0.37		1.3					
CD4 RTE	0.30		1.7					
CD8 RTE	0.30		1.7					

V. Thomas-Vaslin

Institut des large transce Systèmes Complexes

UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257

Thymocyte differentiation, interactions, migration

AGENT BASED MODEL: DISCRETE TIME

[t % t_entry == 0]

Double Negative

Differentiation

SORBONNE

UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257 Location

Dynamical and mechanistic reconstructive approaches of T lymphocyte dynamics: using visual modeling languages to bridge the gap between immunologists, theoreticians, and programmers

Véronique Thomas-Vaslin^{1,2}*, Adrien Six^{1,2}, Jean-Gabriel Ganascia^{3,4} and Hugues Bersini⁵

Single cell-based model- Discrete-Stochastic

Thymocyte

MHC binding

Executable Statechart Model (UML) with parralel description of the biological processes

Agent

 $\times =$

V=

DP

105-024

Thymic epithelial network =pattern organization

Perturbations: Oriented versus stochastic T cell migration in thymus

VIVERSITE

DÉATEURS DE EUTURS

<u>Thomas-Vaslin, V.,</u> A. Six, J. G. Ganascia and H. Bersini (2013). "Dynamical and mechanistic reconstructive approaches of T lymphocyte dynamics: Using visual modelling languages to bridge the gap between immunologists, theoreticians and programmers." **Frontiers in Immunology**

Bersini, H., D. Klatzmann, A. Six and V. Thomas-Vaslin (2012). "State-Transition Diagrams for Biologists." PloS one 7 (7), e41165.

<u>Thomas-Vaslin, V</u>., Altes, H. K., de Boer, R. J., and Klatzmann, D. (2008). *Comprehensive assessment and mathematical modeling of T cell population dynamics and homeostasis*. <u>J Immunol</u>

POSITIVE AND NEGATIVE FEEDBACK LOOPS CONTROL TOLERANCE OR IMMUNITY

Immune response in peripheral tissues

McEwanICARIS 2011 Bersini Plos One 2012 Thomas-Vaslin Frontier's Immunol 2013

Mathematical and computer modeling of T cell dynamics

Thomas-Vaslin 2015, le vivant critique et chaotique, Ed Matériologiques

Microbe/ self antigen/allergen ...

V. Thomas-Vaslin

des liede trai Systèmes Complex

JNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257 V. Thomas-Vaslin

Evolution of lymphocytes in mice with aging, phenotype, repertoire

QUALITATIVE AND QUANTITATIVE DESCRIPTION OF CELL POPULATIONS THROUGH TIME

Alterations at various levels contribute to immune system aging

- Organism level
 - Increase susceptibility to infection, tumors, autoimmunity
 - Decrease vaccinale response and protection
- Organ level
 - Involution of primary lymphoid organs (bone marrow, thymus)
 - Desorganisation of thymic architecture
 - Alteration of germinal centers
- Cell population level
 - Decrease of precursor differentiation
 - Decrease of lymphoid repertoire diversity
 - Chronic or repeated stimulation of lymphoid cell by pathogen.
 - Accumulation of effector and memory cells
 - Decrease of naive /memory cell ratio
 - Decrease of CD4/ CD8 ratio
 - Increase of Treg cell numbers
 - Cell level
 - Decrease of cell activation (defect of presentation or migration of APC, TLR Activation, Ag presentation)
 - Decrease of Antibody production
 - Decrease of IL-2 production
 - Alteration of stimulation signaling through the TCR
 - Decreased proliferation
 - Accumulation of non functional senescent T cells
 - Molecular level
 - Shortening of telomere in lymphoid naive and memory T cells
 - Alteration in lipid raft in lymphoid cells
 - Altered gene and protein expression
 - Altered apoptosis and proliferation
 - Increased SHP-1 expression

Thomas-Vaslin Immunosuppression Inteck book 2012

Variation in T cells according to tissues, age, genetics

SORBONNE

UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257 Institut des Paris Frede Fran Systèmes Complexe

CINIS

Variation in T cells according to tissues, age, genetics

Decrease of lymphocyte repertoire diversity with aging, in FVB mice

Thomas-Vaslin, Immunosuppression Inteck book 2012

Aging increases perturbations and decreases repertoire diversity in B6, BALB/c and FVB mice

Perturbation score

C

des le de Fran Systèmes Complexe

UNIVERSITE CRÉATEURS DE FUTURS DEPUIS 1257

Diversity index

Transient depletion of dividing T cells at 18 months (middle life) accelerates aging, with oligoclonal CD8 T cell expansions in FVB mice

CRÉATEURS DE FUTURS DEPUIS 1257

Transient depletion of dividing T cells at middle life accelerates aging, with oligoclonal CD8 T cell expansions in FVB mice

Immunodepression alter the TCR repertoire diversity landscape accelerates immunological aging

SORBONNE

UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257 des leiteres Systèmes Complex CINIS

T cell repertoire: % Vb in spleen cells

OPEN ACCESS PUBLISHER

Thomas-Vaslin Immunosuppression Inteck book 2012

QUANTIFY CELL DIVISION, DEATH ESTIMATE PROLIFERATION RATES, CELL CYCLE PHASES DURATION

Proliferating cell populations and heterogeneity

Cycling cells

- G1
- S
- G2/M

Quiescent cells G0 Dead cells

Different cell generations

How to identify and quantify these cell states? Compare the dynamics of heterogeneous proliferating cell populations ? Compare tissues, effet of age and genetic origin of the organims ?

=> estimate rates/day

Cell division and turnover methods

Thomas-Vaslin & al (2013). Lymphocyte Dynamics and Repertoires, Biological Methods Encyclopedia of Systems Biology.

Methodology	Molecule	Level of detection	Administration	Time		Investigation level	Method of detection	Result G2
Active labelling during cell division	lsotopes			Pulse	Chase			Rate of division
	3H-thymidine	DNA	In vitro/ in vivo	Hours	Hours, days	Cell population	ß counter	cpm/time
	2D-Glucose	DNA	In vivo	Hours	Days	Cell population	Sprectromass	Fraction DNA labeled/time
	2H2O	DNA	In vivo	Days	Days	Cell population	Sprectromass	Fraction DNA labeled/time
	14-Carbone	DNA	In vivo 1960- 1967	Days	Years	Cell population	Sprectromass	Decrease/time
	Nucleotide analogue							
	BrDU EDU	DNA	In vivo/ in vitro	minutes to days	Days	Cell	Flow cytometry Histology	% cell in division/time
Passive labeling DNA content	Fluorescent dye (e.g. PI, 7AAD)	DNA	In vitro	instant		Cell	Flow cytometry	% cell in G0/G1 S, G2/ M at a time point
Passive labeling Dilution of dye with division	Fluorescent dye (e.g. CFSE)	cytoplasm	In vitro In vivo	Days		Cell	Flow cytometry	% cells that have divided in a given time and number of cell cycles
Detection of Cyclin	e.g. KI67	Nucleus	In vitro	instant		Cell	Flow cytometry Histology	% cell in division at a given time
Depletion of dividing cells	e.g. Ganciclovir in transgenic cells expressing HSV-1 TK; Hydroxyurea	DNA	In vivo	Days		Cell	Flow cytometry	% cell depletion

Quantification of cell proliferation in vivo

Nucleotide analog (EdU) pulse chase incorporation in DNA of dividing cells Single cell multi-parameter analysis

V. Thomas-Vaslin

Single cell multi-parameter flow cytometry analysis

Thymus of B6 2 months old mouse

Thymocyte proliferation in mice according to cell differentiation stage, age and genetic

Vibert & Thomas-Vaslin 2017

UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257

(m)

Institut des Paris Rede Frans Systèmes Complexe

State Transition model of the cell cycle - EdU labeling through time

SORBONNE

UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257 Institut des Paris Rede Frans Systèmes Complexe

CNIS

1. Cell populations described in the model and initial values used in the fit ing to our hypotheses.							
tion	Population description	Initial value used for the fit					
	Cells in G0 or G1 phase, unlabelled	$(G + G')_{ss} = \frac{200a_M(a_S + d_S)}{2a_M(a_S + d_S) + 2a_Ma_G + (a_G + d_G)(a_S + d_S)}$					
	Cells in S phase, unlabelled	$(S+S')_{SS} = \frac{200a_M a_G}{2a_M (a_S + d_S) + 2a_M a_G + (a_G + d_G)(a_S + d_S)}$					
	Cells in G2 or M phase, unlabelled	$(M + M')_{ss} = \frac{100(a_G + d_G)(a_S + d_S)}{2a_M(a_S + d_S) + 2a_Ma_G + (a_G + d_G)(a_S + d_S)}$					
	Cells in G0 or G1 phase, labelled	0					
	Cells in S phase, labelled	0					
	Cells in G2 or M phase, labelled	0					

$$\begin{aligned} \frac{dG}{dt} &= 2a_{M}M + 2\alpha a_{M'}M' - (a_{G} + d_{G})G \\ &\frac{dS}{dt} = a_{G}G - (a_{S} + d_{S})S - [0,\beta]S \\ &\frac{dM}{dt} = a_{S}S - (a_{M} + d_{M})M \\ \frac{dG'}{dt} &= 2(1 - \alpha)a_{M'}M' - (a_{G'} + d_{G'})G' \\ \frac{dS'}{dt} &= a_{G'}G' - (a_{S'} + d_{S'})S' + [0,\beta]S \\ &\frac{dM'}{dt} &= a_{S'}S' - (a_{M'} + d_{M'})M' \end{aligned}$$

Define parameter model constraints

Table 2. M conditions.	odel parameters and values used for the	fit in our experimental	Table 3. Biological and experimental hypotheses, allowing for constraint of parameter values.						
Parameter name	Parameter description	Value used for the fit	Hypothesis	Hypothesis description	Consequence for parameters				
a _G , a _{G'}	Rate of entry into S phase of G1 phase unlabelled, labelled cells	$\underline{\mathbf{a}}_{\mathbf{G}} = \underline{\mathbf{a}}_{\mathbf{G}} = \mathbf{parameter}$ to fit	1	EdU labelling does not affect cell-	$(a_G, a_S, a_M, d_G, d_S, d_M) = (a_G, a_S, a_M, d_G, d_S, d_M)$				
a _S , a _{S'}	Rate of entry into G2 phase of S phase unlabelled, labelled cells	$a_{S} = a_{S'} = 1/6.5$	2	cycle kinetics	ß=~				
a _M , a _{M'}	Rate of entry into cell division of M phase unlabelled, labelled cells	$\underline{a}_{M} = \underline{a}_{M'} = parameter$ to fit	2	instantaneous during the pulse phase	p w				
$\mathbf{d}_{\mathrm{G}},\mathbf{d}_{\mathrm{G}'}$	Rate of cell death, differentiation or migration of G0/G1 phase unlabelled, labelled cells	$\mathbf{d}_{\mathbf{G}} = \mathbf{d}_{\mathbf{G}'} = \mathbf{a}_{\mathbf{G}}$	3	Labelled cells do not divide enough times during the experiment to shed label	α=0				
d _s , d _{s'}	Rate of cell death, differentiation or migration of S phase unlabelled, labelled cells	$\underline{\mathbf{d}}_{\mathbf{S}} = \underline{\mathbf{d}}_{\mathbf{S}'} = 0$	4	No dynamics perturbation under physiological conditions: steady-	$(G_0=(G+G')_{SS}, S_0=(S+S')_{SS}, M_0=(M+M')_{SS})$				
d _M , d _{M'}	Rate of cell death, differentiation or migration of G2/M phase unlabelled, labelled cells	$\underline{\mathbf{d}}_{\mathbf{M}} = \underline{\mathbf{d}}_{\mathbf{M}'} = 0$		cell cycle and in each cell population	$\begin{array}{l} a_M M + a_M M' = d_G G + \ d_S S + \ d_M M + \ d_G' G' + \\ d_S S' + \ d_{M'} M' \end{array}$				
α	Proportion ($0 \le \alpha \le 1$) of labelled M phase cells shedding label during cell division	$\alpha = 0$ (no cell loses its label with cell	5	No cell death or differentiation during S phase and G2/M phase	$d_S = d_M = d_S = d_M = 0$				
		division)	6	Bio-disponibility of EdU is one	None				
β	Rate of labelling of S phase cells during the pulse phase	$\beta = \infty$ (instant labelling by EdU)	7	hour after an injection	o -1/6 5				
р	Proliferation rate	Result of the fit	/	5 phase lasts 0.5 hours	as=1/0.5				

Vibert & Thomas-Vaslin 2017

Vibert & Thomas-Vaslin 2017

Multidimension heterogeneity of proliferation rates of T lymphocytes

Vibert & Thomas-Vaslin 2017

Proliferation rates and cell cycle phase durations in total thymus and spleen.

UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257

Multi-dimension heterogeneity of cycle phase duration and intermitotic time

- According to differentiation stage of T lymphocytes
- Across aging
- Across genetics origins
- Across their migration though thymus and spleen

Quantification of dividing cells during thymocyte differentiation

UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257

Quantification of cell proliferation and death in thymus

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005417

				organs thymus								
							p	opulation				
			DN_C	D3lo_DN1 DN	CD3lo_DN2	DN_CD3Io_DN3	DN	CD3lo_DN4	DP_CD3lo	DP_CD3hi	CD4_CD3	3hi CD8_CD3hi
	strain	age		Moyenne	Moyenne	Moyenne		Moyenne	Moyenne	Moyenne	Moyen	ne Moyenne
Proliferation (%/day)	B6	2		16,56	48,96	19,62		27,27	25,20	38,88	9,	99 45,90
		18		6,21	38,70	9,72		17,91	11,70	18,90	4,	14 21,60
	FVB	2		3,33	28,98	30,33		19,26	22,14	7,11	4,	23 2,07
	2.0	18		1,17	7,38	13,32		6,93	20,43	8,55	1.	35 0.41
intermitotic time (days)	86	2		8,18	2,57	6,37		4,02	3,98	2,60	13,	15 2,19
	EV.P	18		59,09	3,80	12,64		11,78	15,62	6,10	42,	3/ 5,81
	FVB	10		33,71	4,15	3,89		3,23	4,57	15,32	23,	12 74,10
C2/M (d)	RG	10		100,03	10,48	7,94		51,78	4,91	13,91		200,53
G2/M (0)	БО	18		0,03	0,03	0,02		0,01	0,05	0,13	0,	36 0.17
	EVR	10		0.18	0,03	0.15		0.05	0,05	0,47	0,	29 0.62
	1 40	18		0.86	0.95	0.04		0,03	0.18	2.48	0	52 0.53
G0/G1 (d)	R6	2		7.87	2,26	6.07		3 74	3.67	2,18	12	76 1.86
00,01(0)		18		58,78	3.50	12.29		11.49	15,29	5.35	41	73 5.37
	FVB	2		33.25	3,84	3.46		4,91	4.20	14.36	24.	55 73.21
		18		99,56	15.25	7.62		31,48	4,46	11.14	76.	74 279.73
								spleen				
				CD4	CD4 CD44	lo CD4 CD4	4hi	CD4 FoxP3	C	D8 CD8 C	D44lo	CD8 CD44hi
	str	ain	age	Moyenne	Moyenn	e Moyen	ne	Moyenne	Moyenr	ne Moy	enne	Moyenne
Proliferation (%/dav)	B6		2	2.25	0.3	37 6	.39	21.15	3.	87	0.60	8.82
			18	2 25	0	51 3	06	11.07	5	58	0.82	7 38
	EV	2	2	1 35	0	34 6	75	1.26	2	88	0.47	7.02
			19	1,00	0,1	25 2	15	1,20	2,	70	0,70	2.07
intermitatic time (day	(c) P6		10	44.64	226	47 16	06	5.22	20	07	0,29	12,37
intermitotic time (day	5) 00		10	44,04	330,	10 20	,00	3,23	29,	97	20,52	12,55
	-		18	62,28	238,	10 38	,33	11,91	18,	64	09,08	13,00
	FVI	в	2	75,23	295,	14 14	,87	86,81	47,	74	300,93	19,04
			18	71,76	376,	16 32	,30	83,33	44,	75	578,70	37,83
G2/M (d)	B6		2	1,13	1,0	00 1	,09	0,18	2,	11	1,97	2,11
			18	1,83	0,1	75 1	,74	0,51	0,	96	12,44	0,87
	FVI	В	2	2,61	7,1	81 0	,91	4,05	5,	79	6,16	5,57
			18	0.91	1.	41 0	.81	1.39	4.	39	12.86	4.94
G0/G1 (d)	B6		2	43.23	335	19 14	70	4 76	27	58	24.28	9 94
	00		18	60.19	237	06 36	32	11 12	17	41	756.96	12 51
	EV/	2	10	72.24	207,0	13	60	97.49	41	67	04 40	12,51
	FVI		10	72,34	207,0	13	,00	02,48	41,	00	54,49	15,19
			18	70,58	3/4,4	47 31	,21	81,66	40,	08	16,600	32,61

Chrs

des le de tran Systèmes Complexe

UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257

Signatures of lymphocyte proliferation according to strains and ages

Conclusions

Modelling the biological heterogeneity, from T cell proliferation up to organisms

System biology methods

- In vivo transient conditional immunosuppression with T cell depletion/reconstitution
- In vivo Pulse chase labelling of DNA, and modeling to reveal the cell cycle transition
- Multi-parameter cell investigation by single cell flow cytometry -> T cell phenotype, cell cycle, repertoire
- Maths models using transition diagrams-> estimate cell state transition, as parrallel processes
- Provide cell cycle phase duration, intermitoc time, proliferation/ death rates of various T cell populations
- ⇒ Organisms heterogeneity according to age, genetic origins that influence the T cell proliferation rates/death
 - Young mice
 - At steady-state display low inter-individual variability, typical signatures, according to strains
 - Homeostasis is preserved, when the thymus is productive
 - Old mice
 - Increased inter-individual variability, loss of strain signature
 - Thymic involution associated with decrease of cell division, and increase of death
 - In periphery decrease of TCR repertoire diversity, occurrence of CD8 cell oligoclonal expansions/extinctions

\Rightarrow Genetic origins influence the proliferation/death of lymphocytes

- FVB mice as compared to B6, display
 - Accelerated thymic involution & aging
 - Lower proliferative capacities, highest mortality in thymus
 - Accumulation of CD8 oligoclonal expansions in periphery
 - Accumulation of anergic Treg, lack of feedback control on T cell proliferation
 - Low-dose IL-2 or Treg cell injections prevent aging: preserve the TCR repertoire diversity and avoid clonal expansions
- ⇒ Immunosuppression, accelerates immunological aging, through loss of TCR diversity and oligoclonal expansions

Immunology, Immunopat LABI	hology, Immunotherapy EX TransImmunom, DHU David Klatzmann		Theoretical Biology and Bioinformatics, Utrecht University
Véronique Thomas-Vaslin, Im	nmunoComplexiT		Rob de Boer
Adrien Six Chris McEwan Alaa Abi-Haidar Phuong Pham Walid Bedhiafi Wahiba Chaara Cira Dansokho		GOAML Graphical ODE and	Université Libre de Bruxelles- IRIDIA Hugues Bersini Benjamin Horsmanns Florence Giesen François Remy Lip6-UPMC- PARIS Jean Gabriel Ganascia Alaa Abi-Haidar
Claire Lhuillier Benjamin Zerrath Zakia Lakhdar Barka Julien Vibert Afef Bouchouicha Florence Giesen		Agent-based Modeling Language software UPMC	Magali Roux : SIDR INSB-CNRS-INIST ISC-PIF Jonathan Pascalie Virginia Communwealth University Tarynn Witten
Pierre Loap Sleh Kastalli	Bruno Gouritin Christophe Huret Pierric Parent	 Biosys UPMC RNSC ATC vieillissement INSERM Programme interdisciplinaire C 	CNRS
Centre d'Experimentation Fond Pitié-Salpêtrière-Paris, France IFR113	ctionelle	 Emergence UPMC Exchange South Africa NRF/ CN DIM ISC-PIF Complex systems PHC Tournesol PEPS BMI ERC Labex TransImmunom 	NRS ECONFERENCE ECONFERENCE ENDERNEL ENDERNE
SORBONNE UNIVERSITÉ CRÉATEURS DE FUTURS CRÉATEURS DE FUTURS COMPLEXES	cnrs		V. Thomas-Vaslin

http://www.immunocomplexit.net/

-Vibert J, Thomas-Vaslin V (2017) Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background. PLOS Computational Biology

-Thomas-Vaslin (2015) <u>Complexité multi-échelle du système</u> <u>immunitaire: Evolution, du chaos aux fractales</u>. Le vivant critique et chaotique. E. matériologiques

http://www.materiologiques.com/Le-vivant-critique-et-chaotique

-Thomas-Vaslin et al (2013). "<u>Dynamical and mechanistic</u> reconstructive approaches of T lymphocyte dynamics: Using visual modelling languages to bridge the gap between immunologists, theoreticians and programmers." Frontiers in Immunology

-Thomas-Vaslin, et al (2012)<u>Immunodepression &</u>

Immunosuppression in aging mice "Immunosuppression" InTech

