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Abstract. Speed reducers with input shafts spinning at very high
speeds (up to 42 000 rpm) are generally associated to electric motors,
which are more and more used especially in the automotive field, in
order to bring the rotational speed to the most efficient window. Accu-
rate modeling of those rotating machinary behavior is crucial to improve
product reliability and to prolong machinery life. Many studies are con-
ducted with an imposed angular speed, which is in most of the cases
considered as constant or, in best cases, which follows a given variation
law. In this paper, the study is performed with no assumption on the
rotational speed. A variable driving torque is induced to the input shaft
and the instantaneous angular speed (IAS) is deduced from the dynamic
problem coupled to an angular approach. As a result, the IAS takes into
account not only the induced torque perturbations but also the periodic
geometry of the whole structure (e.g.: bearings and gears). The aim of
this work is to extend the existing model based on the Finite Element
Method by introducing an enhancement of the gyroscopic effect matrices
without any assumption on the spinning speed. This model will lead to
the introduction of coupling between the flexural and torsional degrees
of freedom as well as to a non-linearity in the modeling of the studied
system. The aim is to improve the accuracy of simulations for the rotor
dynamics in non-stationary conditions especially when getting through
critical speeds.

Keywords: Rotor dynamics · Gyroscopic effect
Non-stationary conditions · Very-high speed
Instantanious angualr speed (IAS)

1 Introduction

The dynamic behavior of rotating machinery is often made on the assumption
of constant speed. The angular speed follows then a given law of variation dur-
ing the time. Some were interested in studying the rotor’s behavior in transient
motion during start up and shutdown operations [1]. They impose a perfect linear
or exponential law of variation for the speed of rotation. It was demonstrated
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that the amplitude of the unbalance response of a rotor which runs through
critical speed can be reduced by increasing the rate of acceleration. Genta and
Delprete [2] were interested in the case of torsionnally stiff rotor running with
a given law. They extended the formulation of a multi-degree-of-freedom rotors
operating at variable speeds to include the effects of non-linearities and the lack
of axial symmetry. Al-Bedoor [3], in his works, studied the coupled torsional and
lateral vibrations of unbalanced Jeffcot rotors. He considered the rotor rigid-body
rotation and the torsional deformation angle as two seperate degrees of freedom.
Gyroscopic effects due to disk spinning were neglected and his mathematical
model was limited to speed of rotations below the second lateral critical speed.
Roques et al. [4] studied the case of transient response induced by rotor-to-stator
rubbing caused by a sudden blade-off. They considered that the angular position
is an unknown of the dynamic problem in order to assess the angular decelera-
tion and characterize the transient reponse of the shaft during rubbing. However,
they assume that the torsional vibrations are negligible and they are not con-
sidered in the governing equations of motion of the rotor. Li et al. [5] developed
an analytical closed-form solutions for the transient envelopes corresponding
to the amplification of the solution of displacement, velocity and acceleration
through the critical speed during run-up or run down process. Yamamoto [6]
considered a rotor with a periodically fluctuating rotational speed. He assumed
that there is no coupling between torsional and lateral vibrations and examined
the forced response to an external effort. Under those assumptions his dynamic
model resulted on equations of motion with time varying coeffiecients. He showed
that, contrary to expectations, this time varying coefficients do not necessarily
lead to unstable behavior of the rotor.

In this study, we suggest not to make any assumption on the angular speed.
The rotor shaft is flexible in traction, bending and torsion. A driving torque
is induced to the shaft and the angular displacement including both the rigid
body motion and the torsional deformation is assessed. Nevertheless, we keep
the assumption of small displacements and ‘rotations’ and small unbalance. The
model accounts for the effects of rotating inertia, shear deformation and gyro-
scopic effect. A main emphasis is put on the new formulation of the gyroscopic
effect under non-stationary working conditions.

2 Dynamic Behavior of the Rotor

The basic elements of the rotor are the disk, the shaft and the bearings. A mass
unbalance, which is unavoidable in the manufacturing process, is also considered.
The calculation of the kinetic and strain energy leads to the governing equations
of the dynamic behavior of the rotor by the application of Lagrange equations.
The bending and torsional vibrational behavior of the rotor, passing its critical
speeds under a driving torque is considered.
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Fig. 1. Studied system

2.1 System Description

The coordinate systems used in developing the model are shown in the following
figure, wherein, (XYZ) is the fixed reference frame and (UVW) is the rotating
reference frame which coincides with the principle axis of the cross section of
the shaft. To describe the general orientation of the cross-section of the shaft
element one first rotates by an angle Φ about the Z−axis then by an angle θ

about the new X’-axis and finally by an angle Ψ about the final W’-axis. This
choice of Euler angles was used by Hsieh et al. [7] to describe the orientation of
the rotating element (Fig. 1).

Fig. 2. The rotor coordinate systems

The angular displacement about the X and Y axis are calculated using Euler
angles as follows (Fig. 2):

θx = θ.cos(φ) (1a)

θy = θ.sin(φ) (1b)

The spinning angle about the axis Z is given by:

θz = φ + ψ (2)

It is very important to notice here that θz accounts for both the free body
rotating motion as well as for the torsional deformation.
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The instantaneous angular velocity vector, projected on the rotating frame
(UVW), may be expressed as:

ωu = θ̇cos(ψ) + φ̇sin(θ)sin(ψ) (3a)

ωv = −θ̇sin(ψ) + φ̇sin(θ)cos(ψ) (3b)

ωw = ψ̇ + φ̇cos(θ) (3c)

Using this angular velocity description in the frame described by the direc-
tions of the principle axis, the kinetic energy part related to the rotating motion
is calculated.

2.2 Disk Equations

We assume that the disk is rigid. It is then fully characterized by its kinetic
energy associated to the displacement of its center of mass C (uc, vc, wc) and to
the rotational motion of its section. It is found to be:

TD =
1

2
[mD(u̇c

2+v̇c
2+ẇc

2)+IDwθ̇2
zc

+IDwθ̇zc
(θ̇xc

θyc
−θ̇yc

θxc
)+IDu( ˙θxc

2
+ ˙θyc

2
)]

(4)
Equation (4) exhibits explicitly the anti-symmetry of the rotor’s flexural

behavior in both of (xoz) and (yoz) planes.
The displacement vector of the mass center C, denoted {δc}, is modeled with

six degrees of freedom, three translations and three rotations, as follows:

{δc}
t
= {uc, vc, wc, θxc

, θyc
, θzc

}{1,6} (5)

The application of Lagrange equation leads to the following matrix equation:

d

dt

(

∂TD

∂δ̇

)

−
∂TD

∂δ
= [MD({δc})]

{

δ̈
}

+
[

CD(θ̇zc
)
] {

δ̇
}

(6)

such as:

[MD({δc})](6,6) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

mD 0 0 0 0 0
0 mD 0 0 0 0
0 0 mD 0 0 0
0 0 0 IDu 0 IDw

2 θyc

0 0 0 0 IDu − IDw

2 θxc

0 0 0 IDw

2 θyc
− IDw

2 θxc
IDw

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and
[

CD(θ̇zc
)
]

is the classical skew-matrix related to the gyroscopic effects.

The matrix [MD] is no longer a diagonal matrix as it is the case when studying
the stationary regime, it has extra-diagonal terms variable with time due to the
assumption of non-stationary regime inducing coupling between flexural and
torsional behavior. This matrix is dissociated to a constant diagonal matrix and
a time varying matrix with only time-varying extra-diagonal terms as follows:

[MD({δc})]{6,6} = [MDconst]{6,6} + [MDvar({δc})]{6,6} (7)
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Fig. 3. Illustration for the mass unbalance

2.3 Mass Unbalance

The mass unbalance is defined by its mass mu situated at a distance d from
the geometric center of the shaft C(uc, vc). The calculation of the kinetic energy
related to the presence of a mass unbalance Tu and the application of Lagrange
equations lead to the following matrix form (Fig. 3):

d

dt

(

∂Tu

∂δ̇

)

−
∂Tu

∂δ
= [Mu(θzc

)]
{

δ̈
}

+ {Fnlu(θzc
)} (8)

where

[Mu(θzc
)] = dmu

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 cos(θzc
)

0 0 0 0 0 −sin(θzc
)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

cos(θzc
) −sin(θzc

) 0 0 0 d

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

{6,6}

{FNLu
(θzc

)} = −dmu θ̇2
zc

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

sin(θzc
)

cos(θzc
)

0
0
0
0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

{6,1}

In addition to the classical centrifugal force, due to the non-stationary regime
working condition, an additional mass matrix with time varying components is
also obtained. Again, this matrix reflects a coupling between the flexural behav-
ior and the torsional one.
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2.4 The Shaft Element Equations

The element shaft is flexible in traction-compression, bending and torsion. It has
a cylindrical cross-section. The equation of the dynamic behavior are obtained,
as previously, by writing the Lagrange equations.

We first calculate the kinetic energy, which, over a shaft element, is obtained
by integrating over the length element l as follows:

Ts =
ρS

2

∫ l

0

(u̇c
2 + v̇c

2 + ẇc
2) dz + ρIp

∫ l

0

θ̇2
z dz + ρIp

∫ l

0

θ̇z(θ̇xθy − θ̇yθx) dz

+
ρId

2

∫ l

0

(θ̇x

2
+ θ̇y

2
) dz

(9)
In order to describe, using the finite element method, the flexural motion

of the shaft in both of the lateral directions, we define, for each elemet shaft
both vectors {δu}t = 〈u1, θy1, u2, θy2〉 and {δv}t = 〈v1, θx1, v2, θx2〉 as shown
in Figs. 4 and 5. Whereas the axial and torsional displacements are descritized
using respectively both vectors {δw}t = 〈w1, w2〉 and {δθz}

t = 〈θz1, θz2〉.

Fig. 4. Flexural degrees of freedom on the XZ plane of a beam element

Fig. 5. Flexural degrees of freedom on the YZ plane of a beam element

We also define the nodal displacement vector accounting at once for transla-
tion, flexion and torsion as:

{δe}
t
= {u1, v1, w1, θx1, θy1, θz1, u2, v2, w2, θx2, θy2, θz2}

t

(1,12) (10)

Using the finite element method, we obtain the following expression for the
kinetic energy over a shaft element:

Tse
=

1

2
˙{δe}

t
[Mse

] ˙{δe} + Tgyr
e

(11)
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where [Mse
] is the elementary mass matrix including both the classical mass

matrix and the secondary effects of the rotatory inertia matrix. Tgyr
e

is the
gyroscopic effect expression such as:

Tgyr
e

= −ρIp

∫ l

0

〈N3〉
{

δθ̇z

}

〈

∂N2

∂z

〉

{δv̇}

〈

∂N1

∂z

〉

{δu} dz

+ ρIp

∫ l

0

〈N3〉
{

δθ̇z

}

〈

∂N1

∂z

〉

{δu̇}

〈

∂N2

∂z

〉

{δv} dz

(12)

〈N1〉, 〈N2〉 are vectors with cubic shape functions and 〈N3〉 is a vector with
linear ones.

In order to be able to write the kinetic energy related to the gyroscopic effect
under a matrix form, we proceed by an integration by parts, which leads to the
following formulation for the gyroscopic effects:

d

dt

(

∂Tgyr
e

∂δ̇e

)

−
∂Tgyr

e

∂δe

= [Sgyre
({δe})]{δ̈e} + {Fnlgyre

( ˙{δe})} (13)

where:
[

Sgyre
({δe})

]

= − 〈N3(l)〉
t
{δe}

t
[Mg

67(l)]
t − [Mg

67(l)] {δe} 〈N3(l)〉

+

〈

∂N3

∂z

〉t

{δe}
t
[Mg∗

67 (l)]t + [Mg∗
67 (l)] {δe}

〈

∂N3

∂z

〉 (14)

{Fnlgyre
( ˙{δe}, ˙{δe})} = − 〈N3(l)〉

t
(

˙{δe}
t
[Mg

67(l)]
˙{δe}

)

− 2
(

〈N3(l)〉 ˙{δe}
)(

[Mg
67(l)]

˙{δe}
)

+

〈

∂N3

∂z

〉t
(

˙{δe}
t
[Mg∗

67 (l)] ˙{δe}
)

+ 2

(〈

∂N3

∂z

〉

˙{δe}

)

(

[Mg∗
67 (l)] ˙{δe}

)

(15)

such as

[Mg
67(l)]e = ρIp

∫ l

0

(

〈

∂N2

∂z

〉t 〈

∂N1

∂z

〉

−

〈

∂N1

∂z

〉t 〈

∂N2

∂z

〉

)

dz (16a)

[Mg∗
67 (l)]e = ρIp

∫ l

0

(

∫ z

0

(

〈

∂N2

∂z

〉t 〈

∂N1

∂z

〉

−

〈

∂N1

∂z

〉t 〈

∂N2

∂z

〉

)

dz

)

dz

(16b)
The application of the Lagrange equations on the kinetic energy of the shaft

element leads to:

d

dt

(

∂Tse

∂δ̇e

)

−
∂Tse

∂δe

= [Mse
] ¨{δe} + [Sgyre

({δe})]{δ̈e} + {Fnlgyre
( ˙{δe})} (17)
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[Sgyre
({δe})] and {Fnlgyre

( ˙{δe}) induce a strong non linearity to the system
and coupling between the lateral and torsional degrees of freedom.

The calculation of the strain energy of the shaft and the virtual works of the
bearings, assumed to be with linear stiffness and damping, leads to the classical
stiffness matrix and we finally write the equation of the dynamics of rotating
shaft element such as:

[Mse
] ¨{δe}+[Cse

] ˙{δe}+[Kce
]{δe} = −[Sgyre

({δe})]{δ̈e}−{Fnlgyre
( ˙{δe})} (18)

2.5 Equations of the Rotor

Once the contribution of each of the constitutive elements of the rotor calculated,
we consider them thoroughly to write the equation of the dynamic behavior of the
rotor. As we have seen previously, the vector and matrix related to the gyroscopic
effect depends explicitly on the displacement and velocity vectors {δe} and ˙{δe}
. We need then, to evaluate those vectors at each time step before doing the
assembly over all the shaft elements. The choice of an explicit integration scheme
is made. At each time step ti+1, vectors {δ}ti

and ˙{δ}ti
are assumed to be known

and then the gyroscopic effect terms over an element, namely [Sgyre
({δe})] and

{Fnlgyre
( ˙{δe})} are calculated and assembled over the whole shaft.

Finally, the equation of motion, in the presence of external efforts can be
written as follows:

([Ms] + [MDconst
]) ¨{δ}i+1 + [Cs] ˙{δ}i + [Kc]{δ}i =

− ([Sgyr({δ}i)] + [MDvar
({δ}i)] + [Mu(θzc

)]i)
¨{δ}i+1

−
[

CD(θ̇zc
)
]

i

˙{δ}i

−
(

{Fnlgyr( ˙{δ}i)} + {Fnlu(θzc
)}i

)

+ {Fext}i

(19)

where in the left side of the equation, the terms which are constant at each time
step and, in the right side, the ones which need to be updated at every time
step.

3 Exemple of a Rotor at Non-stationary Working

Conditions

We consider a rotor made of a shaft and a disk with a mass unbalance (Fig. 6)
with the properties summerized in Table 1. The shaft is descritized into 10 finite
elements and the disk is situated at the node number 7 ( from the left) as well
as the mss unbalance.

We calculate the response of the rotor to a mass unbalance when it is driven
by a torque which is constant in the beginning and then, after 1 s, follows a
linear low as a function of time (Fig. 7).
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Fig. 6. Rotor model

Table 1. Proprieties of the rotor

Symbol Quantity Value

L Shaft length 0.6 m

R1 Shaft radius 0.01 m

R2 Disk radius 0.08 m

h Thickness of the disk 0.03 m

ρ Mass per unit volume 7800 kg.m−3

E Young modulus 2.1011 N.m−2

mu Mass unbalance 1% of the mass of the disk

d Eccentricity of the mass unbalance 0.1m

kxx1, kxx2 Stiffness along x-axis of the left
and right bearings

1.e8 N.m−1

kyy1, kyy2 Stiffness along y-axis of the left
and right bearings

1.e8 N.m−1

cxx1, cxx2 Damping along x-axis of the left
and right bearings

2e2 N.s.m−1

cyy1, cyy2 Damping along y-axis of the left
and right bearings

2e2 N.s.m−1

As it is highlighted by Srinivasan et al. [8], it is very important to provide
a sufficient torque so that the rotating machinary doesn’t stall below the target
speed. They explained that, when the speed of rotation coincides with a lateral
critical speed the amplitude of the vibrations may increase to levels high enough
to trip the machine. They called this phenomenon limited torque-acceleration of
rotors through the critical speed.

When spinning at very high speeds, rotors may encounter more than one
critical speed. If the rotor passes easily through the first one, it can have more
difficulties going through the second one as showed in Fig. 8: The instantanious
angular velocity is slightly disturbed when crossing the first critical speed at
2 527 rpm. But when crossing the second critical speed at 26 364 rpm, the rotor
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Fig. 7. Torque law as a function of time

Fig. 8. Instantanious angular speed as a response for the applied torque
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Fig. 9. Lateral displacement when going through two critical speeds

stalls temporarily and then, due to the damping of the system, succeeds on going
through this critical speed.

Since the rotor spends longer time around the second critical speed, the
amplification of the lateral amplitude is much more important than the ampli-
fication of the amplitude when crossing the first critical speed (Fig. 9).

4 Conclusion

The new mathematical model for the dynamic behavior of the rotating machines
at non-stationary regime shows coupling between the lateral and torsional
degrees of freedom. It also shows strong non-linearities. The results of the sim-
ulations show that the model help to better understand the behavior of the
rotating machinary. It shows the interaction between the rotational behavior
and the lateral one especially in the vicinity of the critical speed. This inter-
action is usually neglected when considering a given law for the instantanious
angular speed. The second step of the presented work will be the establishing of
new techniques based on the IAS (Instantaneous Angular Speed) for characteriz-
ing the machine behavior and identifing the model parameters at non-stationary
working conditions.
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