

Laser desorption mass spectrometry with an Orbitrap analyser for in situ astrobiology

Ricardo Arevalo, Lori Willhite, Anaïs Bardyn, Ziqin Ni, Soumya Ray, Adrian Southard, Ryan Danell, Andrej Grubisic, Cynthia Gundersen, Niko Minasola,

et al.

▶ To cite this version:

Ricardo Arevalo, Lori Willhite, Anaïs Bardyn, Ziqin Ni, Soumya Ray, et al.. Laser desorption mass spectrometry with an Orbitrap analyser for in situ astrobiology. Nature Astronomy, 2023, 10.1038/s41550-022-01866-x. hal-03991320

HAL Id: hal-03991320 https://hal.science/hal-03991320v1

Submitted on 15 Feb 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 1 Laser Desorption Mass Spectrometry with an Orbitrap Analyzer for *in situ* Astrobiology

- 3 Ricardo Arevalo Jr.^{1,2}, Lori Willhite², Anais Bardyn², Ziqin Ni², Soumya Ray², Adrian Southard³,
- 4 Ryan Danell⁴, Andrej Grubisic⁵, Cynthia Gundersen⁶, Niko Minasola⁶, Anthony Yu⁵, Molly Fahey⁵,
- 5 Emanuel Hernandez⁵, Christelle Briois⁷, Laurent Thirkell⁷, Fabrice Colin⁷, and Alexander
- 6 Makarov⁸
- 7
- 8 ¹Corresponding Author: rarevalo@umd.edu
- 9 ²University of Maryland, College Park, MD USA
- 10 ³CRESST II, College Park, MD USA
- 11 ⁴Danell Consulting, Winterville, NC USA
- 12 ⁵NASA Goddard Space Flight Center, Greenbelt, MD USA
- 13 ⁶AMU Engineering, Miami, FL USA
- 14 ⁷Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, FR
- 15 ⁸Thermo Fisher Scientific, Bremen, DE
- 16
- 17 Title: 85 characters (w/ spaces)
- 18 Abstract: 150 words
- 19 Main text: 3246 words
- 20 Display items: 5 figures
- 21 References: 52 total (50 in main text)
- 22
- 23 Keywords: astrobiology; biomarker; life detection; mass spectrometry; Enceladus; Europa; ocean
- 24 worlds

25 Abstract (limit 150 words unreferenced; currently 150 words)

- 26 Laser desorption mass spectrometry (LDMS) enables in situ characterization of the organic content
- 27 and chemical composition of planetary materials without requiring extensive sample processing.
- 28 Coupled with an OrbitrapTM analyzer capable of ultrahigh mass resolving powers and accuracies,
- 29 LDMS techniques facilitate the orthogonal detection of a wide range of prospective biomarkers and
- 30 classification of host mineralogy. Here, an Orbitrap LDMS instrument that has been miniaturized
- 31 for planetary exploration is shown to meet the performance standards of commercial systems and
- 32 exceed key figures of merit of heritage spaceflight technologies, including those baselined for near-
- 33 term mission opportunities. Biogenic compounds at area densities relevant to prospective missions
- to ocean worlds are identified unambiguously by redundant measurements of molecular ions (with and without salt adducts) and diagnostic fragments. The derivation of collision cross-sections serves
- to corroborate assignments and inform on molecular structure. Access to trace elements down to
- 37 ppmw levels provide insights into geological context.

38 Main text (upper limit 3500 words, excl. abstract, methods, references and legends)

Future astrobiology missions to Europa, Enceladus, and other potentially viable ocean worlds will be 39 challenged to distinguish biological signatures without bias towards features associated with terrestrial 40 41 life [1]. Payload instruments need to support agnostic and discovery-based approaches to distinguish relics of biological processes from the limited complexity and apparent randomness of abiotic sources [2]. 42 A critical capability of next-generation technologies will be the orthogonal (or independent) detection of a 43 variety of biomarkers, including (but not limited to): organic abundance patterns; stable isotope ratios; 44 45 biogenic minerals; and, morphologies indicative of microbial activity [3]. Multiple distinct proxies observed across a range of spatial scales provide a framework to gauge the probability of biogenicity [4]. 46

47 Laser desorption mass spectrometry (LDMS) enables investigations into the organic inventory and the elemental/isotopic composition of planetary materials in situ, providing: i) access to multiple classes of 48 49 biomarkers, most notably refractory organic matter; and, ii) identification of host mineralogy, ergo geological context for detected organic compounds. Unsupervised data-driven approaches can increase 50 operational autonomy and enhance the confidence in organic/inorganic assignments (e.g., [5]). Laser 51 52 microprocessing is well suited for life detection objectives as such methods require minimal sample processing and support 2D chemical imaging without requiring physical contact with the sample; standoff 53 54 instruments reduce the risk of cross-contamination and planetary protection violations. The spatial 55 resolution of an LDMS experiment is controlled by the profile of the beam focused onto the sample 56 surface, allowing for targeted analyses of micron-scale mineral phases, individual dust particles, microfossils, finely laminated biofabrics, and discrete strata captured in sample cores. Each laser shot 57 58 only ablates the uppermost <100 nm of the sample even at elevated fluences (e.g., [6]), resulting in an 59 effective sample mass on the order of ng; thus, LDMS is ideal for surface analysis and/or depth profiling. However, this can be a limiting capability if bulk measurements are required to meet specific planetary 60 science objectives. 61

62 Due to these analytical advantages, a standoff LDMS instrument called LIMA-D was launched onboard

63 Phobos 2 in 1988; however, communication with the spacecraft was lost during the approach towards

64 Phobos, compromising the mission [7]. A derivative of LIMA-D, named LAZMA [8], was later launched

65 in 2011 onboard the Phobos-Grunt mission, but a propulsion failure left the spacecraft stranded in low

Earth orbit. Thus, LDMS techniques have yet to be applied in an extraterrestrial planetary environment.However, LDMS instruments have been developed for the ExoMars rover [9], Dragonfly rotorcraft [10],

and Luna-Glob (Luna-25) and Luna-Resurs-1 (Luna-27) missions [11], illustrating the impetus to exploit

69 such *in situ* techniques to address high-priority science questions in the planetary community.

Here, we describe an LDMS instrument that combines an OrbitrapTM mass analyzer, solid-state UV (266 nm) laser system derived from heritage designs, and custom series of ion optics that accelerate and focus ions generated at the sample surface into the analyzer. A prototype of the LDMS instrument (**Fig. 1**) has been highly miniaturized relative to the proof-of-concept breadboard reported previously [12] but without a compromise in analytical performance (as discussed further below), representing an engineering model of a spaceflight design that fits within the limited resources expected for a mission to the outer Solar System (*e.g.*, the Europa Lander [13]; see Supplement).

77 The Orbitrap analyzer, originally developed for commercial laboratories [14] but recently adapted for 78 planetary applications [12], delivers 100× higher mass resolution and mass accuracy compared to the 79 legacy quadrupole sensors that have explored the inner and outer reaches of the Solar System [15]. Such

analytical capabilities are essential to separate isobaric interferences (defined by the same nominal mass-

81 to-charge ratio, or integer m/z) and unambiguously identify molecular stoichiometry without additional

subsystems (*e.g.*, resonance lasers and gas chromatographs). Because the Orbitrap analyzer uses electrostatic fields to trap ions [16], the sensor does not require magnets, RF electronics, or consumable detectors, limiting failure modes and minimizing resource requirements. The basic operation of the Orbitrap analyzer involves injection and trapping of analyte ions, which then exhibit harmonic axial oscillations at frequencies proportional to $(m/z)^{-\frac{r}{2}}$. Ion motion recorded as image current in the time domain transient can be converted into frequency space via fast Fourier transform (FFT).

88 The effective mass range in a given experiment is influenced by the distance the ions travel from the source to the trap, and the timing and slew rate of the voltages applied to the center and deflector 89 electrodes, which together enable electrodynamic squeezing of the incoming ions [14]. During an LDMS 90 91 analysis, the primary limit to the upper end of the mass range is the capacity of the laser source to ionize macromolecular organic material without incurring excessive fragmentation of the parent molecule. The 92 93 mass resolving power is controlled principally by the observation time (*i.e.*, transient length) and temporal spread within a single m/z ion packet. Given these timing requirements and sensitivity to temporal 94 smearing, a pulsed laser system is a natural choice to serve as an ion source. 95

96 Previously, an Orbitrap analyzer extracted from its commercial packaging and interfaced directly to an 97 industrial laser was shown to characterize the mineralogy of a variety of planetary analog samples and 98 detect amino acids down to < 100 fmol/mm² concentrations (based on signal-to-noise ratios) with only a 99 single laser shot and no spectral stacking [17]. However, this breadboard was not designed to minimize 100 mass, volume, and power requirements, but rather to validate experimentally the scientific reach of 101 LDMS techniques that leverage an ultrahigh resolution mass analyzer.

102 In comparison, the footprint of the LDMS instrument described here has been miniaturized for mission science by interfacing an Orbitrap analyzer with a laser system that leverages the side-pumped 103 104 Cr:Nd:YAG oscillator design flown on the Lunar Orbiter Laser Altimeter (LOLA) [18], with a fundamental wavelength of 1064 nm and nominal pulse width of 5 ns. A fourth harmonic generator 105 produces an output wavelength of 266 nm (4.7 eV/photon), enhancing photon-substrate coupling with 106 107 aromatic organics [19] and many geological phases [20]. The laser generates >450 µJ/pulse at 266 nm 108 [21], more than three times the maximum energy of the laser for the state-of-the-art Mars Organic 109 Molecule Analyzer (MOMA) instrument onboard the ExoMars rover [9]. Fine attenuation control down to 1% of the maximum output energy is achieved by controlling the polarization of incident 532 nm light 110 prior to conversion to 266 nm in the fourth harmonic; for comparison, the MOMA laser output energy can 111 only be reduced to 10% of the maximum value by thermal detuning of the fourth harmonic crystal [22]. 112

113

Fig. 1. A prototype of the highly miniaturized Orbitrap LDMS instrument described here, which has been designed to minimize mass, volume, and power requirements without compromising the capabilities of the proof-of-concept breadboard reported previously [12], exceeds key performance metrics of the MOMA flight instrument [9], including: mass resolution and accuracy; laser output energy; and dual polarity ion detection. (a) Photograph of the Orbitrap analyzer and ion optical lenses mounted within a planetary simulation chamber. (b) Solid model and (c) cross-sectional view showing the orientation and compact geometry of the analyzer, lens stack, and sample plate.

123

124 A longstanding issue for LDMS techniques has been the deduction of quantitative information, particularly relative and absolute abundances of elemental and molecular species. The reproducibility of 125 LDMS peak intensities is limited by: i) the heterogeneity of the sample; ii) shot-to-shot variability of the 126 127 laser output energy; and, iii) dynamic changes in sample morphology induced by extended laser irradiation, which affect photon-substrate coupling. However, the empirical determination of *relative* 128 sensitivity factors of elements with distinct electronic configurations, which have been shown to control 129 130 laser induced fractionation [23], can enable the quantification of concentration ratios (e.g., [24]) in solid samples. Absolute abundances can be further derived if an internal standard is known (e.g., [25]). Such 131 approaches, which are commonplace for laser ablation inductively coupled plasma mass spectrometry 132 133 (LA-ICPMS), offer promise for the quantitation of spectral signals derived from LDMS analysis. However, significant work remains to validate these models. 134

Measuring the relative abundances of organic molecules is even more challenging as observed signal intensities are sensitive to the absorption characteristics, bond strengths, and ionization energy of the compound, as well as the physicochemical properties of the sample matrix and dynamics of the plasma plume. In spite of these challenges, linear responses between analyte concentrations and peak intensities normalized to an internal standard have enabled the quantitative analysis of amino acids [26], oligonucleotides [27], and a range of other organics (*e.g.*, [28]) via LDMS techniques.

Due to their identical electronic configurations and comparable physicochemical properties, isotopes of 141 142 the same element (and isotopologues of the same molecule, to a lesser extent) are more easily preserved 143 during an LDMS experiment. Isotopic precision is controlled largely by signal-to-noise ratios, and thus the dynamic range of the sensor. The Orbitrap analyzer, which can accommodate up to 10^6 elementary 144 charges during a single analysis [29], has been shown to support a linear intrascan dynamic range up to 145 10^4 [30], providing access to low abundance isotopes down to 0.1 mol%. Although space charge effects 146 can incur isotope fractionation during transient acquisition (e.g., [31]), precise and accurate ${}^{13}C/{}^{12}C$ ratios 147 measured for single species (e.g., ${}^{13}C^{12}C_2H_8O_2N^+/{}^{12}C_3H_8O_2N^+$ in nominally pure alanine) within 148

149 multicomponent sample mixtures have been recorded following careful calibration efforts, such as mass

150 pre-filtering, transient length shortening, and/or external standardization with a matrix-matched reference

- 151 material [32].
- 152

153 **Results**

A typical LDMS experiment comprises: i) desorption/ionization of the sample via pulsed laser light; ii) 154 acceleration, focusing, and adjustment of the reference potential of analyte ions through the ion optics 155 lens stack; iii) ion injection and electrodynamic squeezing in the trap; and, iv) detection of ion packets 156 according to their respective axial frequencies, and hence m/z. Tunable laser energy (and by extension 157 158 fluence, J/cm², and irradiance, W/cm²) promotes the ionization of refractory organics and mineral phases 159 via multiphoton absorption, supporting controlled fragmentation and disproportionation reactions to 160 derive molecular structure by in-source decay (e.g., [33]). The beam radius at the sample surface (r) is a customizable parameter within the limits of diffraction; with an effective focal length of 140 mm, nominal 161 UV beam diameter of 3.0 mm, and beam quality factor $M^2 < 1.5$, the 266 nm laser system leveraged in 162 this study could approach a diffraction limited radius of $r < 12 \mu m$. Such fine spatial resolution comes at 163 the expense of total analyte throughput, which tracks with r^2 at a given fluence/irradiance. A MEMS 164 steering mirror inside the laser head, coupled with a set of deflector electrodes within the ion optics, 165 166 allows the construction of 2D chemical images with a nominal 500 µm diameter field of view (see Supplement) without requiring translation/rotation of the sample, facilitating the identification of 167 168 biofabrics in situ.

The measurement of both positively and negatively charged particles provides complementary 169 perspectives of complex chemical mixtures, empowering the detection of organic molecules with acidic 170 and basic side chains, as well as mineralogical indicators with high and low electronegativities. For 171 example, positive and negative mass spectra of a finely ground CsI disc (Fig. 2), a common laboratory 172 standard with identical composition to the calibrant for the MOMA flight instrument, provide multiple 173 molecular fingerprints diagnostic of the substrate. In positive mode, CsI is exemplified by a high intensity 174 Cs^+ peak (*m/z* 132.9054), but also $Cs(CsI)^+$ (*m/z* 392.7153) and $Cs(CsI)^{2+}$ (*m/z* 652.5253) clusters at lower 175 signal intensities. In negative mode, the spectrum is dominated by I⁻ (m/z 126.9045) followed by I(CsI)⁻ 176 $(m/z \ 386.7144)$ and I(CsI)²⁻ $(m/z \ 646.5243)$. The mass resolution (e.g., $m/\Delta m > 100,000$, FWHM at Cs⁺) 177 and ppm-level mass accuracy of these spectra, collected on the miniaturized prototype shown in Fig. 1, 178 meet the performance specifications of commercial instruments; for example, the Thermo O ExactiveTM 179 offers mass resolution up to $m/\Delta m = 140,000$ (FWHM) at m/z 200 with < 3 ppm mass accuracy (RMS 180 181 with external calibration). Such analytical capabilities support the unambiguous identification of

182 elemental and molecular signatures for both commercial and spaceflight applications.

Fig. 2. In both negative and positive mode, the miniaturized Orbitrap LDMS instrument achieves 184 185 mass resolving powers ($m/\Delta m > 10^5$, FWHM at m/z 100) comparable to commercial standards. (a, b) Spectra represent averages of 10 scans in the time domain, each acquired with an 800 ms transient 186 187 (high-resolution) and sampling rate of 5 MHz (see Methods). Reported uncertainties of the mass resolving powers of individual peaks are determined by the fit of a Gaussian curve to the raw data. 188 (c) Using ¹³³Cs⁺ as a single point internal standard, and subsequently ¹³³Cs⁺ and ²⁰⁸Pb⁺ to apply a 189 secondary linear calibration, peaks fall within ppm of exact monoisotopic masses. (d) Ten single 190 191 scans collected in positive mode, acquired sequentially with 200 ms transients (medium-resolution) and 5 MHz sampling rate, illustrate the reproducibility of the experiments (see Supplement). As 192 shown in the inset, the peak intensities of ${}^{39}K^+$, Cs^+ , and $Cs(CsI)^+$ all vary by less than 5% (2SE) 193 across all scans. Irradiance 0.1 GW/cm². 194

195

196 Chloride salts, such as NaCl and KCl, are important planetary materials because they can depress the 197 freezing point of liquid water in cryogenic environments and concentrate dilute monomers of more 198 complex biomolecules (*e.g.*, RNA) via enhanced adsorption onto mineral surfaces [34]. Such salts have 199 been observed on the surface of Europa [35], within the Enceladus plume [36], and inside Occator crater 200 on the dwarf planet Ceres [37]. Consequently, to address high-priority astrobiology mission objectives 201 [38, 39], future payload investigations need to characterize salt-rich sample matrices to gain insights into 202 the provenance of detected organics.

203 Assuming the composition of Enceladus approximates that of a comet, as suggested by comparable 204 volatile abundances and D/H ratios recorded in the plume [40] and those observed in cometary comae [41], measurements provided by the Cassini payload implicate up to ppmw concentrations of individual 205 amino acids in the subsurface ocean [42]. Area densities exceeding 200 pmol/mm² are projected if 1 mL 206 207 of water ice, the sample volume baselined for each instrument onboard the Europa Lander [38], was 208 sublimated onto a cm^2 sample plate. The analysis of a salt-rich planetary analog sample containing similar levels of a proteinogenic amino acid (*i.e.*, histidine) and nucleobase (*i.e.*, thymine) demonstrates the 209 capacity of the Orbitrap LDMS instrument to simultaneously access both organic and inorganic fractions 210 211 of multicomponent sample mixtures representative of those that may be collected by future missions to ocean worlds (Fig. 3). 212

214

215 Fig. 3. Analysis of a residue of a salt-rich (0.32 wt.% KCl) solution doped with trace levels of thymine and histidine, both prospective biomarkers containing aromatic groups that effectively 216 absorb UV radiation (see Supplement), without desalination of the sample. The area densities of 217 218 thymine (180 pmol/mm²) and histidine (210 pmol/mm²) approximate those expected if 1 mL of ice derived from Enceladus' subsurface ocean was sublimated onto a cm² sample plate (see main text). 219 220 Detection of protonated molecular ions ([M+H]⁺ shown with Gaussian fits), diagnostic fragments ([M+H-CHNO]⁺), and potassiated peaks (e.g., [M+K]⁺) provide corroborative identification of the 221 222 analytes. The isotopic composition of K derived from the salt matrix falls within natural values. 223 This spectrum represents a single scan acquired with an 800 ms transient and sampling rate of 5 MHz. ¹³³Cs⁺, sourced from the collocated CsI target, was used as an internal standard; ³⁹K⁺, ¹³³Cs⁺, 224 and ²⁰⁸Pb⁺ were used to apply a linear calibration. Irradiance 0.3 GW/cm². 225

226

227 The elucidation of molecular structure, including the differentiation of structural isomers, represents an orthogonal means to establish the identity of prospective biomarkers and inform on the probability of 228 biogenicity based on molecular complexity [2]. The finely controlled output of the laser source pioneered 229 230 here enables in-source decay, a technique that has been shown to induce molecular fragmentation and 231 facilitate the identification of peptides based on diagnostic amine-bond cleavages [43], and sequencing of proteins from the determination of N-terminal fragments [44] via matrix-assisted LDMS techniques. 232 233 Another emerging capability specific to the Orbitrap analyzer involves determining the distinct decay rate of each compound during time-resolved transient signal acquisition in order to calculate of collision cross 234

section (CCS), a measure of ion size and conformation unique to each chemical species [45]. As a packet of ions of a specific m/z oscillates around the center electrode, individual ions de-phase due primarily to elastic collisions with background gas, ion-ion interactions, and other factors (*e.g.*, high-voltage ripple and field perturbations derived from mechanical imperfections) [46]. The additive effect of these processes results in degradative signal loss of ion packets as a function of time within the analyzer.

240 As shown in Fig. 4, the decay profiles of select chemical species identified in Fig. 3 can be extracted from 241 a single transient spectrum via FFT, followed by inverse FFT. The observed signal losses reflect the 242 specific experimental conditions (e.g., pressure, temperature, and voltages) in addition to the additive decay factors described above. Chemical species that exhibit faster decay rates represent compounds with 243 larger cross-sections, which reflect both m/z and molecular structure. Previous work has shown that the 244 cross-sections of biogenic amino acids directly correlate with molecular weight, but aliphatic and 245 246 aromatic compounds tend to be larger than the average trend due to inefficient folding [47]. Thus, CCS determinations provide a complementary means to identify organic compounds and differentiate 247 molecular structures, supporting agnostic detection techniques for the characterization of putative 248 249 biomarkers.

Fig. 4 (a) The total transient signal (grey) may be decomposed into decay profiles of individual chemical species based on their distinctive frequencies (or m/z) via FFT and subsequent inverse FFT. The signal intensities of select peaks identified in Fig. 3 correlate with ion abundances (and to a lesser extent radial distribution about the center electrode). (b) The decay rates of signal intensities reflect ion losses as a function of time, informing on molecular weight and structure.

257

251

258 The detection of organic compounds alone is insufficient to characterize the habitability potential of a cryogenic environment and/or assign prospects for extant or extinct life with high confidence. Exogenous 259 infall can deliver significant quantities of organic material to the surface of any planetary body; for 260 261 reference, more than 10^7 kg of exogenous material is delivered to the Earth every year [48]. Although infall rates scale with planet mass and interplanetary dust fluxes vary as a function of heliocentric distance 262 [49], significant quantities of organic materials are continually being accumulated on Europa, Enceladus, 263 and other ocean worlds. Associations between detected organic compounds and host mineralogy, 264 informed by major, minor and trace element abundances, are powerful tools for establishing the 265 provenance of organic matter. Rare earth elements (REE; *i.e.*, La through Lu) are particularly valuable 266 proxies for geological sources as this suite of trace elements shares a common valence state (X^{3+}) and 267 systematic contraction in ionic radii, resulting in predictable partitioning behaviors. Consequently, REE 268

are routinely used to understand the chemistry, formation, and evolution of major terrestrial reservoirs [50]. The miniaturized LDMS described here can measure REE down to ppmw levels in solid samples (**Fig. 5**), enabling insights into the sourcing of detected organic molecules, including prospective biomarkers. However, a systematic evaluation is needed to constrain the accuracy of quantified elemental concentrations and the reproducibility of observed abundance patterns of organic molecules.

275

Fig. 5. The Orbitrap LDMS instrument can detect trace elements down to ppmw concentrations, as illustrated by the measurement of REE in NIST SRM610. Observed signal intensities reflect the distinct isotopic compositions and first ionization energies of each element. The detection limit for Pr, which is monoisotopic and has the lowest first ionization energy of the REE, is 1.8 ppmw based on the observed signal-to-noise ratio in this single spectrum. Summing multiple scans can reduce the noise floor and improve detection limits when time and energy resources are available. Irradiance 0.6 GW/cm².

283 Methods

Sample preparation. A 2.2 mm thick CsI finely ground disc (7.49 mm diameter) produced by 284 Almaz Optics, Inc. was secured via interference fit inside a counter bore machined into the 285 stainless sample plate and analyzed daily to tune the voltages applied to the ion optical lenses 286 (see Supplement), verify ion transmission and baseline performance, and monitor for 287 instrumental drift. In order to simulate a salt-rich ice sample from a potentially viable ocean 288 world, a volume of deionized water (Milli-Q, 18.2 M Ω ·cm resistivity at room temperature) was 289 physically admixed with 0.32 wt.% KCl (Sigma-Aldrich P9541; purity \geq 99.0%), approaching 290 the observed alkali salt content of Type III Enceladus plume ice particles collected by the Cassini 291 CDA [36] and modeled salinity levels in Europa's ocean based on brine mobility in the ice crust 292 [51]. The salt solution was doped with 190 ppmw thymine (Alfa Aesar A15879; 97%) and 280 293 ppmw L-histidine (Sigma Aldrich P500108; 99.9%), both prospective biomarkers (see 294 Supplement). The organic-bearing sample was then agitated with a vortex mixer (2800 rpm) to 295 promote dissolution and homogenization. Prior to drop-casting, the sample plate was cleaned 296 with isopropyl alcohol and acetone in sequence. 40 µL of the analog solution were deposited 297 onto the surface of the stainless steel sample plate over an area of 350 mm² and allowed to 298 evaporate on a hot plate (115 °C) in a chemical fume hood; this desiccation step produced a 299 heterogenous residue in line with what might be expected if an aliquot of ice was sublimated on 300 a warm sample plate on a landed mission to Europa or Enceladus. The resultant sample residuum 301 had an average area density of 180 pmol/mm² thymine and 210 pmol/mm² histidine. 302

303

Measurement protocol. The Orbitrap analyzer was located inside a Kimball Physics spherical 304 cube vacuum chamber at pressure conditions found on the surface of Europa (*i.e.*, $< 10^{-6}$ Pa). A 305 306 load lock chamber equipped with a dedicated pumping system and manual gate valve enabled isolation of the stainless steel plate during sample exchange, minimizing communication 307 308 between the simulation chamber and laboratory atmosphere. After the sample was loaded onto the target plate, it was introduced to the Orbitrap chamber through the load lock via a linear-309 rotary actuator. The pressures in both chambers were monitored via hot-cathode ionization 310 vacuum gauges; all analyses were conducted at pressures $\leq 4 \times 10^{-6}$ Pa. Light emitted from the 311 laser source (266 nm) passed through a fused silica viewport window (>90% transmission at 266 312 nm) installed on the main vacuum chamber and irradiated the sample at an incident angle of 45°. 313 The laser beam profile at the sample surface was measured at 80×120 µm, enabling fluences 314 between 0.06 J/cm² (at 1% max energy output) and 6 J/cm² (at 100% max energy output), and 315 irradiances between 0.01 GW/cm² and 1 GW/cm². An external photodiode served to both detect 316 each laser pulse and trigger subsequent operations (e.g., voltage slewing) via a precise timing 317 engine implemented in an FPGA. Different sampling locations on the target plate were accessed 318 by rotating the actuator. 319

320

Data processing. Each spectrum was collected at a sampling rate of 5 MHz for either 200 ms (medium-resolution) or 800 ms (high-resolution) transients. A custom LabVIEW based software package [52] was used to regulate experimental sequences, including timing operations, voltage settings and ramp rates, data acquisition, and data processing. Standard data processing techniques included applying Hanning apodization and zero filling raw transient spectra prior to converting the signals to the frequency domain signal via FFT (see Supplement). Each frequency spectrum was calibrated and translated into a conventional mass spectrum using a single peak

 $(e.g., {}^{133}Cs^+)$ as an internal standard, and two or more well-characterized peaks $(e.g., {}^{133}Cs^+)$ and 328 ²⁰⁸Pb⁺) to apply an additional linear term to the calibration. Mass accuracy was calculated as the 329 deviation of the determined mass from the exact mass in parts per million. Mass resolving 330 powers, calculated at Full Width at Half Maximum (FWHM) peak intensities, were determined 331 using Gaussian peak fitting functions. To determine CCS, a peak of interest was isolated in the 332 frequency domain and moved artificially to a lower frequency (reducing computing 333 requirements); an inverse FFT enabled reconstruction of the decay profile of the selected ion 334 packet. Chemical species with low signal to noise ratios (e.g., S/N < 10) were excluded from this 335 practice because the high noise floor distorted peak shapes, resulting in inaccurate inversions of 336 the decay profiles. 337

338

339 Acknowledgements

This study was supported by NASA ROSES ICEE 2 Grant 80NSSC19K0610 (PI: Arevalo Jr.)

- and DALI Grant 80NSSC19K0768 (PI: Arevalo Jr.).
- 342

343 Author contributions are as follows:

NAME	WRITING	EDITING	DATA COLLECTION	DATA ANALYSIS	INSTRUMENT DESIGN	CONCEPT OF OPERATIONS
Ricardo Arevalo Jr.	Х		X	X	X	X
Lori Willhite	Х	Х	Х	Х		
Anais Bardyn	Х	Х	Х	Х		
Ziqin Ni	Х	Х		Х		
Soumya Ray		Х	Х	Х		
Adrian Southard		Х	Х		Х	Х
Ryan Danell		Х			Х	Х
Andrej Grubisic		Х			Х	Х
Cynthia Gundersen		Х			Х	
Niko Minasola		Х			Х	
Anthony Yu		Х			Х	
Molly Fahey		Х			Х	
Emanuel Hernandez		Х			Х	
Christelle Briois		Х			Х	
Laurent Thirkell					Х	
Fabrice Colin					X	
Alexander Makarov					Х	

References

346 347	1.	Johnson, S.S., et al., <i>Fingerprinting Non-Terran Biosignatures</i> . Astrobiology, 2018. 18 (7): p. 915-922.
348	2.	Marshall, S.M., A.R.G. Murray, and L. Cronin, A probabilistic framework for identifying
349		biosignatures using Pathway Complexity. Philosophical Transactions of the Royal Society A:
350		Mathematical, Physical and Engineering Sciences, 2017, 375 (2109); p. 20160342.
351	3	Chan M.A., et al., Decinhering Biosignatures in Planetary Contexts, Astrobiology, 2019, 19 (9): p.
352	0.	1075-1102
353	4.	Neveu, M., et al., The Ladder of Life Detection, Astrobiology, 2018, 18 (11); p. 1375-1402.
354	5.	Lukmanov, R.A., et al., On Topological Anglysis of fs-LIMS Data, Implications for in Situ Planetary
355	0.	Mass Spectrometry. Frontiers in Artificial Intelligence, 2021. 4 .
356	6.	Johnston, S., et al., Small-volume U–Pb zircon geochronology by laser ablation-multicollector-
357		<i>ICP-MS.</i> Chemical Geology, 2009. 259 (3): p. 218-229.
358	7.	Sagdeev, R.Z. and A.V. Zakharov, Brief history of the Phobos mission. Nature, 1989. 341 (6243): p.
359		581-585.
360	8.	Managadze, G.G., et al., Study of the main geochemical characteristics of Phobos' regolith using
361		laser time-of-flight mass spectrometry. Solar System Research, 2010. 44(5): p. 376-384.
362	9.	Goesmann, F., et al., The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization
363		of Organic Material in Martian Sediments. Astrobiology, 2017. 17 (6-7): p. 655-685.
364	10.	Grubisic, A., et al., Laser Desorption Mass Spectrometry at Saturn's moon Titan. International
365		Journal of Mass Spectrometry, 2021. 470: p. 116707.
366	11.	Chumikov, A.E., et al., LASMA-LR Laser-Ionization Mass Spectrometer Onboard Luna-25 and
367		<i>Luna-27 Missions</i> . Solar System Research, 2021. 55 (6): p. 550-561.
368	12.	Briois, C., et al., Orbitrap mass analyser for in situ characterisation of planetary environments:
369		Performance evaluation of a laboratory prototype. Planetary and Space Science, 2016. 131: p.
370		33-45.
371	13.	Willhite, L., et al., CORALS: A Laser Desorption/Ablation Orbitrap Mass Spectrometer for In Situ
372		Exploration of Europa. IEEE Aerospace, 2021.
373	14.	Makarov, A.A., Mass spectrometer (Patent 5,886,346). 1999, HD Technologies Limited,
374		Manchester, United Kingdom. p. 10.
375	15.	Arevalo Jr, R., Z. Ni, and R.M. Danell, Mass spectrometry and planetary exploration: A brief
376		review and future projection. Journal of Mass Spectrometry, 2020. 55(1): p. e4454.
377	16.	Makarov, A., Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of
378		Mass Analysis. Analytical Chemistry, 2000. 72(6): p. 1156-1162.
379	17.	Arevalo Jr, R., et al., An Orbitrap-based laser desorption/ablation mass spectrometer designed
380		for spaceflight. Rapid Communications in Mass Spectrometry, 2018.
381	18.	Yu, A.W., et al. The Lunar Orbiter Laser Altimeter (LOLA) laser transmitter. in 2011 IEEE
382		International Geoscience and Remote Sensing Symposium. 2011.
383	19.	Malloci, G., G. Mulas, and C. Joblin, Electronic absorption spectra of PAHs up to vacuum UV.
384		A&A, 2004. 426 (1): p. 105-117.
385	20.	Cloutis, E.A., et al., Ultraviolet spectral reflectance properties of common planetary minerals.
386		Icarus, 2008. 197 (1): p. 321-347.
387	21.	Fahey, M., et al., Ultraviolet Laser Development for Planetary Lander Missions. IEEE Aerospace
388		(Big Sky, MT), 2020: p. 11 pp.
389	22.	Büttner, A., et al. Optical design and characterization of the MOMA laser head flight model for
390		the ExoMars 2020 mission. in Proc.SPIE. 2019.

391	23.	Jenner, F.E. and H.S.C. O'Neill, Major and trace analysis of basaltic glasses by laser-ablation ICP-
392		MS. Geochemistry, Geophysics, Geosystems, 2012. 13(3).
393	24.	Humayun, M., F.A. Davis, and M.M. Hirschmann, Major element analysis of natural silicates by
394		laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 2010. 25(7): p. 998-1005.
395	25.	Longerich, H.P., D. Günther, and S.E. Jackson, Elemental fractionation in laser ablation
396		inductively coupled plasma mass spectrometry. Fresenius' Journal of Analytical Chemistry, 1996.
397		355 (5): p. 538-542.
398	26.	Alterman, M.A., N.V. Gogichayeva, and B.A. Kornilayev, Matrix-assisted laser
399		desorption/ionization time-of-flight mass spectrometry-based amino acid analysis. Analytical
400		Biochemistry, 2004. 335 (2): p. 184-191.
401	27.	Sarracino, D. and C. Richert, Quantitative MALDI-TOF MS of oligonucleotides and a nuclease
402		assay. Bioorganic & Medicinal Chemistry Letters, 1996. 6(21): p. 2543-2548.
403	28.	Chumbley, C.W., et al., Absolute Quantitative MALDI Imaging Mass Spectrometry: A Case of
404		Rifampicin in Liver Tissues. Analytical Chemistry, 2016. 88(4): p. 2392-2398.
405	29.	Zubarev, R.A. and A. Makarov, Orbitrap Mass Spectrometry. Analytical Chemistry, 2013. 85(11):
406		p. 5288-5296.
407	30.	Makarov, A., et al., Dynamic range of mass accuracy in LTQ orbitrap hybrid mass spectrometer.
408		Journal of the American Society for Mass Spectrometry, 2006. 17 (7): p. 977-982.
409	31.	Hoegg, E.D., et al., Isotope ratio characteristics and sensitivity for uranium determinations using
410		a liquid sampling-atmospheric pressure glow discharge ion source coupled to an Orbitrap mass
411		analyzer. Journal of Analytical Atomic Spectrometry, 2016. 31 (12): p. 2355-2362.
412	32.	Hofmann, A.E., et al., Using Orbitrap mass spectrometry to assess the isotopic compositions of
413		individual compounds in mixtures. International Journal of Mass Spectrometry, 2020. 457: p.
414		116410.
415	33.	Hardouin, J., Protein sequence information by matrix-assisted laser desorption/ionization in-
416		source decay mass spectrometry. Mass Spectrometry Reviews, 2007. 26(5): p. 672-682.
417	34.	Franchi, M., J.P. Ferris, and E. Gallori, Cations as Mediators of the Adsorption of Nucleic Acids on
418		Clay Surfaces in Prebiotic Environments. Origins of life and evolution of the biosphere, 2003.
419		33 (1): p. 1-16.
420	35.	Trumbo, S.K., M.E. Brown, and K.P. Hand, Sodium chloride on the surface of Europa. Science
421		Advances, 2019. 5(6): p. eaaw7123.
422	36.	Postberg, F., et al., A salt-water reservoir as the source of a compositionally stratified plume on
423		<i>Enceladus</i> . Nature, 2011. 474 : p. 620.
424	37.	De Sanctis, M.C., et al., Fresh emplacement of hydrated sodium chloride on Ceres from ascending
425		salty fluids. Nature Astronomy, 2020. 4 (8): p. 786-793.
426	38.	Hand, K.P., et al., Report of the Europa Lander Science Definition Team. 2017, NASA HQ:
427		Washington, DC.
428	39.	Hendrix, A.R., et al., The NASA Roadmap to Ocean Worlds. Astrobiology, 2018. 19(1): p. 1-27.
429	40.	Waite Jr, J.H., et al., Liquid water on Enceladus from observations of ammonia and 40Ar in the
430		<i>plume.</i> Nature, 2009. 460 (7254): p. 487-490.
431	41.	Altwegg, K., H. Balsiger, and S.A. Fuselier, Cometary Chemistry and the Origin of Icy Solar System
432		Bodies: The View After Rosetta. Annual Review of Astronomy and Astrophysics, 2019. 57(1): p.
433		113-155.
434	42.	Guzman, M., et al., Collecting amino acids in the Enceladus plume. International Journal of
435		Astrobiology, 2018. 18 (1): p. 47-59.
436	43.	Takayama, M., In-source decay characteristics of peptides in matrix-assisted laser
437		desorption/ionization time-of-flight mass spectrometry. Journal of the American Society for
438		Mass Spectrometry, 2001. 12(4): p. 420-427.

- 439 44. Katta, V., D.T. Chow, and M.F. Rohde, *Applications of In-Source Fragmentation of Protein Ions for*440 *Direct Sequence Analysis by Delayed Extraction MALDI-TOF Mass Spectrometry*. Analytical
 441 Chemistry, 1998. **70**(20): p. 4410-4416.
- 442 45. Sanders, J.D., et al., *Determination of Collision Cross-Sections of Protein Ions in an Orbitrap Mass*443 *Analyzer.* Analytical Chemistry, 2018. **90**(9): p. 5896-5902.
- 444 46. Makarov, A. and E. Denisov, *Dynamics of ions of intact proteins in the Orbitrap mass analyzer.*445 Journal of the American Society for Mass Spectrometry, 2009. **20**(8): p. 1486-1495.
- 446 47. Anupriya, C.A. Jones, and D.V. Dearden, *Collision Cross Sections for 20 Protonated Amino Acids:*447 *Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results.* Journal of the American
 448 Society for Mass Spectrometry, 2016. **27**(8): p. 1366-1375.
- 449 48. Chyba, C. and C. Sagan, *Endogenous production, exogenous delivery and impact-shock synthesis* 450 of organic molecules: an inventory for the origins of life. Nature, 1992. **355**(6356): p. 125-132.
- 49. Poppe, A.R., *An improved model for interplanetary dust fluxes in the outer Solar System.* Icarus,
 2016. **264**: p. 369-386.
- Taylor, S.R. and S.M. McLennan, *The significance of the rare earths in geochemistry and cosmochemistry*, in *Handbook on the Physics and Chemistry of Rare Earths*. 1988, Elsevier. p.
 485-578.
- 456 51. Steinbrügge, G., et al., *Brine Migration and Impact-Induced Cryovolcanism on Europa*.
 457 Geophysical Research Letters, 2020. 47(21): p. e2020GL090797.
- 458 52. Danell, R., et al., *A Full Featured, Flexible, and Inexpensive 2D and 3D Ion Trap Control*459 *Architecture and Software Package.* Proceedings of the 58th ASMS Conference on Mass
 460 Spectrometry and Allied Topics (Salt Lake City, UT), 2010.