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Abstract. Mass customization is a business strategy that aims at satisfying indi-

vidual customer needs and provides them a large product mix. To achieve this goal,

it is necessary to manage the product life cycle activities especially the volume

and variety of products which have to be easily customizable. Designing modular

products increases the possibility of obtaining customizable products. The mod-

ular design consists of breaking down a product into more or less independent

sub-elements called modules. This paper focuses on setting up a Genetic-based

automatic product variants generator. The product used as the testbed is a LEGO

plane composed of bricks. Different operators are used for selection, crossover and

mutation of genes. Each final plane assembly is qualified based on some criteria

to respect pre-defined constraints. The obtained final assemblies are discussed at

the end of the paper to highlights future challenges.
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1 Introduction

Today, a product exists in several variants. The Renault Megane II, for example, is

produced in a few thousand variants. Mass customization is a business strategy that aims

at satisfying individual customer needs by providing a large product mix. Consumer

demand for ever more differentiated products, generated the notion of a variety in early

80s. During the product design, it is therefore necessary to take into account of product

variety and modularity. The modular design consists of breaking down a product into

more or less independent sub-elements called modules that are bundled as a unit, and

which serve identifiable functions. The differentiation of the finished product is obtained

by defining modules and their interfaces.

In this context, this work focuses on the design of a computer tool for the generation

of variants of a product composed of LEGO bricks using MATLAB language. These

bricks of LEGO represent the modules to assemble. Of course, this research work does

not take account more sophisticated concepts such as architecture determination, various

types of exchanges between modules and so on; it remains focused on some aspects
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of a product definition. The following section will present the general idea about the

concept of product variety as well as its advantages and disadvantages. The proposed

methodology is introduced in Sect. 3 followed by presentation of the case study in Sect. 4.

Section 5 focuses on the resolution technique which is the genetic algorithm, with some

modifications. Finally, we discuss the obtained results before concluding by research

perspectives.

2 Product Variety

Over the past decade, many research activities have been deployed to develop methods

and tools to facilitate the design of product platforms and product families to provide

cost-effective product variety and customization. The product platform is a relatively

broad set of components, physically connected and forming a stable subset, common

to different finished products [1]. Similarity in products configuration can led us to the

notion of product family. A product family is a class, and variant products are instances

of that family. Each instance is obtained by choosing different values of attributes [2].

According to [3] the term product family is defined as a group of interrelated products

that are derivatives of a platform produced to satisfy a variety in the marketplace. The

variety of products is a fundamental element of the commercial offer. However, it is

subject to positive and negative pressures. Business objectives, such as the fight against

competition and the arrival of new technologies, are pushing for an increase in variety to

best meet customer needs. On the other hand, a variety that is too high becomes a brake on

economic growth, particularly due to, for example, too much confusion that it can induce.

Nevertheless, above all are the concerns of production in favor of the variety mastery.

A too high variety generates too many references items to procure, store, manage, etc.

Negative pressures therefore come mainly from manufacturing concerns.

Industrialists are therefore seeking to find a solution to this. In the literature [4],

the modularity of products is considered among the best solutions. From a commercial

point of view, a modular product presents several varieties by combining the different

possible configurations of the modules. In addition, modularity reduces the complexity

of the operations of the production process.

A huge number of modular methods have been proposed in the literature such as the

graph and matrix partitioning method by [5], the mathematical programming method

[6], the clustering methods, Genetic Algorithm [7] or Artificial Intelligence.

Generally, in previous researches, there are two main steps: (1) regroup components

or identify all the modules of the product and (2) produce different product variants

by testing different configurations. In addition, a technique such as UML diagrams,

DSMs, IDEF0 and OPM is used to model the product architecture. But, we think that

each different architecture representation is best suited for a specific purpose and not fit

exactly to our need and requirements in some cases.

That’s why in this paper we propose a new modular methodology for product variety

generation with definition of a modular architecture representation. This study aims

to contribute to this growing area of research by exploring the modularity in LEGO

modelling which we consider as another way of seeing the product from a modular point

of view. To our knowledge, the use and building of products in LEGO is conventionally
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done with the aim of designing prototypes for products and models, and this paper is

the first attempt to generate alternatives or varieties of product using different design

constraints. Problem resolution is done by modified GA.

3 Product Architecture and Variety: General Methodology

As said previously, we need first to define and model the Product architecture. Inspired

by the definition given by [8] as “The structure (in terms of components, connections,

and constraints) of a product”, we propose in Fig. 1 our approach. A Product is a set of

physical (components), logical (constraints) and functions connected together. In other

words, Product architecture is considered as the scheme by which the functions of the

product are arranged into physical chunks controlled via the existence of constraints and

interacted via connections.

Fig. 1. Product architecture representation (Color figure online)

Four types of connections are identified here (represented in different colors in Fig. 1).

One or more physical component(s) can be regrouped with single or multiple function(s)

in one block called ‘Module’. The Module includes also the different connections that

link these functions and physical components together (type (a), (b) or (c)). And two

modules are connected together if there are connections type (a), (b) or (c) between two

elements (function or physical component) where each element belong to one of these

modules. The steps of our methodology for variety generation are:

1. Identify the different modules, their physical and functional composition, interaction

between them and connection with the constraints

2. Model modules as LEGO bricks and translate the different constraints and connec-

tions into equations

3. Simulate different combinations and find new product variants.
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4 LEGO Plane

We consider that a product P that can be modelled into LEGO bricks, is the result of the

assembly of a set of blocks, called “modules” Mi on a platform (a set of LEGO bricks

that are fixed in specific position).

P = Plat f orm +
∑

i
Mi (1)

Our case of study is a LEGO plane, modelled in Fig. 2 composed by a platform

and 18 modules. We denote nm the number of modules in one solution. The goal is to

generate new plane variants respecting defined criteria.

Fig. 2. 3D LEGO plane model

Each module can contain one or more LEGO bricks and it is characterized by a func-

tion and a geometric structure. For example, an “engine” module contains two bricks has a

rectangular structure of defined dimensions and performs the energy transformation. We

consider a discrete space of three dimensions (x, y, z); with xmax , ymax , zmax standing

for the maximum dimensions of the space along the axis; O(1, 1, 1) is the point of origin.

A product can therefore be represented within the solution space (xmax × ymax × zmax ).

Each module Mi of dimension (ni × mi × pi ) is represented by a matrix Mati of having

the same dimension and containing the value i in all the cells.

Mati (x, y, z) = i∀x ∈ [[1, ni ]],∀y ∈ [[1, mi ]],∀z ∈ [[1, pi ]] (2)

A module Mi is characterized by:

• Geometric dimensions: (ni × mi × pi ) length, width and height.

• A position vector P(i) = [xi , yi , zi ] that represents its position in the solution S,

where xi , yi and zi represent coordinates of the Module Mi in the solution space

along the 3 dimensions.

• An orientation O(i) signifying its orientation (‘H’ for horizontal or ‘V’ for vertical)

in the solution S.
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So, inserting the same module, we can get two different solutions depending on the

orientation value.

Given a Module where

{

Mati (x, y, z)= i∀x ∈ [[1, ni ]],∀y∈ [[1, mi ]],∀z∈ [[1, pi ]]

P(i) = [xi , yi , zi ]

If O(i) = ‘H’ then

S(x + xi − 1, y + yi − 1, z + zi − 1) = i∀x ∈ [[1, ni ]],∀y ∈ [[1, mi ]],∀z ∈ [[1, pi ]]

(3)

Suppose now a solution where O(i) = ‘V ’, we get:

S(x + xi − 1, y + yi − 1, z + zi − 1) = i∀x ∈ [[1, mi ]], ∀y ∈ [[1, ni ]], ∀z ∈ [[1, pi ]]

(4)

Now, if we generalize for all the solution matrix values:
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(5)

The platform represents the modules that are fixed (their position vector and orien-

tation have a unique value that cannot be changed) and that exist in the chromosome.

A solution is defined as a combination of placement of these matrices Mati in solu-

tion space fitting constraints. Design rules and assembly constraints must be defined to

ensure compliance of generated products with expected functions and specifications.

Mathematical modelling of different Lego pieces, constraints and rules can be done

using Matrices. These constraints are classified under 3 categories:

• Constraints on the modules (type (d)): for each module, attributes are defined

– rotational constraint (Mi can be rotated horizontally, vertically or both) (H , V ,

H/V )

– assembly constraint above (assemble another module above Mi ) (Y E S, N O)

– assembly constraint below (assemble another module below Mi ) (Y E S, N O)

– assembly constraint on the right (assemble another module on the right side of Mi )

(Y E S, N O)

• Constraints between the modules (type (a) or (b)), such as:

– Plane wings must be in the front of the plane and distance between wings M2 and

the nose M4 must be less than 50% of M1 the platform length,

– distance between M1 and M4 is null,
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– each module Mi ,∀i �= 4 must have at least one module M j j �= i assembled below

or above,

– the red light M5 must be at the left side of the wing M2 and the green one M4 must

be at right, etc…

• Constraints on the solution: The solution is a (ns × ms × ps) matrix

– ns ≤ xmax , ms ≤ ymax and ps ≤ zmax

– All modules exist in the matrix and there is no overlap between modules

– Each module exists ones a time

All these constraints are necessary to define a plane, but not sufficient to get a good

plane. The goal is to design a computer tool using MATLAB and relying on the notion

of the GA to generate from these Lego pieces all possible plane variants.

5 Genetic Algorithm Principle

Genetic Algorithm (GA) is an evolutionary algorithm inspired by Darwin’s theory of

species evolution developed by [9]. It has proved its effectiveness in solving a wide

variety of problems in various fields: robotics [10], facility layout problem, planning

problem [11] and others [12–14]. For this reason, the GA is adopted in this paper.

Fig. 3. Genetic Algorithm principle

The Genetic Algorithm starts with an initial population consisting of a set of individ-

uals. Each individual is represented by a chromosome. This population evolves during

a succession of iterations, called generations. At each iteration, three types of operators

(selection, crossover and mutation) are applied to individuals in order to obtain new indi-

viduals. Several different operators can be used. This process of evolution is repeated
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until the satisfaction of a stopping criterion. The flow chart of different GA steps is

shown in Fig. 3. In our case, we will focus particularly on the generation of a variety of

LEGO products (an assembly of LEGO bricks).

– Step 1: chromosome encoding: Each individual is represented by a vector with

(n × m × p) columns as illustrated in Fig. 4. With n, m and p represent respectively

the dimensions of a matrix S: number of rows, number of columns and number of

layers. This matrix S represents the matrix model of the product in a 3D space. Each

cell of the matrix S can have either the value 0 (if there are no Lego bricks in the

position (i, j, k)) or the value x where x is the index of the module Mx which exists

in the position (i, j, k).

Fig. 4. Encoding of chromosome

– Step 2: Selection: The selection consists in choosing the individuals who will partic-

ipate in the reproduction of the future generation. The selection operator adopted in

this work is the random selection. It consists of choosing an individual in a random

manner according to a uniform distribution.

– Step 3: Crossover: The crossover operator is used to combine the different parts of

each parent. This operator plays a key role for the diversity of the population. It is

applied with a certain probability named crossover probability. The crossing operator

adopted here is specific to our case study. It has not been used before in other research

works. As illustrated in Fig. 5, it is necessary to randomly choose two different cut-off

points x1 and x2. The first child C1 is created by keeping the first part of the first parent

P1 and the second part of P2. The block between x1 and x2 consists of the random

arrangement of the missing modules. The second child C2 is made in the opposite

way. NB: If a module is divided into two part: for example a part of module is before

x1 and the other is after x1, as a result, the module belongs to the first part of the first

child. As shown in Fig. 5, the cutoff point x1 divides the module M1 (yellow color)

into two parts. So this module belongs to the first part of E1.
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Fig. 5. Crossover operator (Color figure online)

– Step 4: Mutation: The mutation operator is used to apply some transformations on the

chromosome structure with a low probability noted pm . Its main objective is to keep

the diversity of solutions. The mutation operator applied in this study is the “exchange

operator”. The principle is to choose any random module to change its position as

well as all the modules that are above it in the 3D matrix S. The new position of these

modules will be randomly chosen from one of the vacant boxes following a random

order.

– Step 5: Evaluation: The evaluation of solutions is done by assigning an X-weighting

that measures the performance of each individual by taking into account criteria. Here

we chose the feasibility (A), symmetry (B) and the stability (C). The score is computed

as below:

SC O RE = A × (1 + B) − Coe f f icient × C (6)

Where A =

{

1 if the solution represents a plane

0 otherwise

}

And B =

{

2 if the plane is symmetrical

1 otherwise

}

C =

{

0 if the plane is stable

>0 otherwise

}

and Coe f f icient = 1
/

1000

A solution is considered as a plane if it responds to all constraints. Symmetry is defined

here by the horizontal plane that cuts the matrix S in half and passes through the point

of gravity of the plane. Stability is computed by the difference of plane weight at right

and left of the vertical plane that cuts the matrix S in half and passes through the point

of gravity of the plane.

– Step 6: Stopping criterion: The genetic algorithm evolves in several generations

until the satisfaction of a stopping criterion. The criterion chosen in our case is a

maximum number of iterations fixed at 100000 iterations.
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6 Results and Discussion

After execution of 100000 iterations (in Table 1, the specification of our study), the

developed algorithm have generated 22 different variants of LEGO plane. They obey

to all the constraints defined before. Some of them is symmetric, and others are stable

planes (Different results are shown in Fig. 6 and represented as stars). Plane B represents

the initial design which is symmetric and not stable with a score equal to 1.9933. Plane A

has the best score (score = 2) and represents the best variant that fit to the requirements

of symmetry and stability. Some results (such as PlaneC) are symmetric but not stable

and others are stable but not symmetric (example PlaneD with a score = 1). The rest

of solutions are planes also, and they are neither symmetric neither stable (the case of

Plane E with a score = 0.9933). What is surprising is that the six Planes that we have

provided to the algorithm as an input and considered as the initial population, are not

the best alternatives in terms of score.

Table 1. Study specifications

Steps of Genetic algorithm Specifications

Initial population Solutions known in

advance

Selection operator Random selection

Crossover Crossover operator Modified crossover

operator

Crossover probability 0.6

Mutation Mutation operator Exchange operator

Mutation probability 1

Stopping criterion 100000

New population Elitist strategy

Fig. 6. Evaluation of different solutions
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7 Conclusion

Product variety continues to be a major goal for companies, and architecting modular

or platform-based product is becoming crucial in helping designers accomplish this.

The aim of the present research was to generate new variants for a modular product.

A LEGO model was used to express the modularity of the Plane. Based on a modified

Genetic Algorithm (with new operators), a MATLAB program has been implemented

to generate these new product variants. Results show that even if we use a small number

of modules, the Genetic Algorithm is able to find in a short time (less than half an hour)

product new alternatives. In this work we have chosen only three criteria to evaluate

the product performances; further research might explore more criteria linked together

in another combination. Some hypothesis may be considered as restrictive and need to

be generalized in order to increase the degree of complexity, such as the possibility to

generate solutions that contain more than 18 modules and where modules are used more

than one time. In future work, the authors aim to compare different resolution techniques,

such as particle swarm optimization “PSO” rather than Genetic Algorithm.
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