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Abstract—The prospect of outsourcing an increasing amount of
data to a third party and the abstract nature of the cloud promote
the proliferation of security and privacy challenges, namely, the
remote data possession checking.
This work addresses this security concern, while supporting the
verification of several data blocks outsourced across multiple
storing nodes. We propose a set homomorphic proof of data pos-
session, called SHoPS, supporting the verification of aggregated
proofs. It proposes a deterministic Proof of Data Possession (PDP)
scheme based on interactive proof protocols. Our approach has
several advantages. First, it supports public verifiability where
the data owner delegates the verification process to another entity,
thus releasing him from the burden of periodical verifications.
Second, it allows the aggregation of several proofs and the
verification of a subset of data files’ proofs while providing an
attractive communication overhead.

I. INTRODUCTION

The explosive growth of data continues to rise the demand
for new storage and network capacities, along with an increas-
ing need for cost effective architectures [4]. Thus, recent years
have witnessed the trend of leveraging cloud data storage.
However, these promising data storage services bring many
challenging design issues, mainly due to the loss of control
on outsourced data. That is, cloud data are often subject
to a large number of attack vectors and the responsibility
of securely managing these data is splitting across multiple
storage capacities. Nonetheless, in order to reduce operating
costs and save storage capacities, dishonest providers might
intentionally slight these replication procedures, resulting in
unrecoverable data errors or even data loss. Even when cloud
providers implement a fault tolerant policy, clients have no
technical means of verifying that their files are not vulnerable,
for instance, to drive-crashes. There is an implementation of
remote data checking at the three following levels:
(1) between a client and a CSP – a cloud client should have
an efficient way to perform periodical integrity verifications,
without keeping the data locally. This client’s concern is mag-
nified by his constrained storage and computation capabilities
and the large size of outsourced data.
(2) within a CSP – for the CSP to check the integrity of
data blocks stored across multiple storage nodes, in order to
mitigate byzantine failures and drive-crashes.
(3) between two CSPs – in the case of the cloud of clouds

scenarios, where data are divided on different cloud infras-
tructures. Therefore, a CSP, through its cloud gate, should
periodically verify the authenticity of data blocks hosted by
another cloud platform.
Many approaches have been proposed, in order to ensure
remote data checking [1], [5], [3], [2], [7]. These schemes
are referred to as Provable Data Possession PDP schemes.
Under different security models, several schemes ensure in-
tegrity verifications of stored data on untrusted remote servers.
They are designed to guarantee several requirements, namely
lightweight and robust verification, computation efficiency
and constant communication cost. These PDP techniques are
widely analyzed into two categories, according to the role of
the verifier: private verifiability, where only the data owner
can verify the server’s data possession, and public verifiability,
where any authorized entity can perform the verification
procedure.

In this work, we present SHoPS, a Set-Homomorphic Proof
of data possession Scheme, supporting the 3 levels of data veri-
fication. That is, stored across multiple storage nodes, SHoPS
takes advantage of the computation and storage capabilities
of the storage nodes. Each node has to provide proofs of
local data block sets. Then, the cloud gate is responsible for
performing operations on received proofs, while preserving the
authenticity of the resulting proof.
Indeed, we introduce the set homomorphism property, as our
scheme allows verifying sets in a way that any authorized
verifier can check the union of two proof sets, while con-
sidering the whole data file, or the intersection between two
data blocks, while checking integrity proofs over versions of
logging files, as conversations on social networks.
In addition, in the key role of public verifiability and the
privacy preservation support, our proposed scheme aims to
address the issue of provable data possession in cloud storage
environments, following three substantial aspects: security
level, public verifiability and performances.

Paper Organization– the remainder of this paper is or-
ganized as follows. First, Section II introduces the security
requirements. Then, Section III gives a SHoPS overview and
presents our construction. Finally, Section IV discusses the
set-homomorphic operations, before concluding in Section V.



II. SECURITY REQUIREMENT ANALYSIS

The Proof of Data Possession is a challenge response
protocol enabling a client to check whether a file data D
stored on a remote cloud server is available in its original form.
The simplest solution to design a PDP scheme is based on a
hash function H . That is, the client pre-calculates k random
challenges ci, i ∈ {1, k} and computes the corresponding
proofs, pi = H(ci||D). During the challenging procedure, the
client sends ci to the server which computes p′i = H(ci||D).
If the comparison holds, the client assumes that the server
preserves the correct data file. This solution is concretely
unfeasible because the client can verify the authenticity of
the files on the server only k times.
Additionally, stored across multiple storage nodes, each node
has to compute the related possession proof, based on a
received challenge. As such, the aggregation process results
in the removal of some redundant proofs transmitted from
different nodes, in order to minimize the communication
latency. Generally, the processing overhead at the client side
is also reduced, but the new proof is longer than the original
generated proofs. As such, to guarantee the authenticity of the
resulting proof while avoiding the shortcuts of the classical
forwarding, we propose an aggregate proof scheme, using set-
homomorphic properties.

The design of our protocol is motivated by providing
support of both robustness and efficiency. SHoPS has to fulfill
the following requirements:
• Public verifiability– the public verification is an impor-

tant requirement, allowing an authorized entity to verify
the correctness of data. Thus, the data owner is relieved
from the burden of storage and computation.

• Unlimited challenges– the number of challenges should
be unlimited. This condition is considered as important
to the efficiency of a PDP scheme.

• Low computation complexity– on one hand, for scala-
bility reasons, the amount of computation at the cloud
server should be minimized, as it may be involved in
concurrent interactions. On the other hand, the proposed
scheme should also have low processing complexity, at
the client side.

• Low communication overhead– an efficient PDP should
minimize the usage of bandwidth.

• Low storage cost– the limited storage capacities of the
user devices has a critical importance in designing our
solution. As such, low storage cost at the client side is
highly recommended.

III. SHOPS: A SET-HOMOMORPHIC PDP SCHEME

A. Model

We now describe the following main algorithms related to
a homomorphic proof of data possession scheme, where λ is
a security parameter. We first give the generation algorithm.
• gen : {1}λ → Kpub2 × Kpr × G2

2q−1 – given a
security parameter λ, this algorithm outputs the data
owner public and secret keys (pk, p̂k, sk), and a set

of public credentials, with respect to the Diffie-Hellman
Exponent assumption.

To tolerate drive failures, each data file F is stored with
redundancy, based on n-block erasure coding algorithm: F =
B1‖ · · · ‖Bn. Hence, each outsourced data file F is divided
into n blocks, and each block Bi is divided into q subblocks,
where q is part of the param output by the pgen algorithm
above. We now consider the file storing part. The following
algorithm should be executed for each block Bi of a file F .
• stp : (pk, sk,B) → (ID,$) – given the key pair

(pk, sk) and a data block B ∈ {0, 1}∗ sent to the cloud
service provider, the setup algorithm generates a block
identifier ID and a corresponding tag $ that are both
published.

The last phase occurs when the verifier wants to check that
the cloud service provider is in possession of a given data
block file. This phase is divided into 3 mandatory algorithms
(challenge clg, proof prf and verification vrf) and 1 optional
(homomorphic operation homop). The verification algorithm
vrf has two different variants.
• clg : (pk, ID) → (c, η) – this algorithm is computed

by the verifier (client or user) and takes as input the
public key pk and the identifier ID of a block of a file.
It generates a challenge c (sent to the prover, i.e., the
cloud service provider) and a nonce η (kept secret by the
verifier).

• prf : (pk, ID, c) → σ – this algorithm computes the
cloud service provider’s response σ to a challenge c, using
the encoded file blocks B stored on the server disks and
related to the identifier ID.

• homop : (pk, c, σi, σj , f)→ σh – this algorithm permits,
using pk, a proof σi related to a block Bi and a challenge
c and a proof σj related to a block Bj and the challenge
c, to obtain the proof σh related to f(Bi, Bj) and the
challenge c, where f is a function on the two blocks Bi
and Bj .

• vrfc : (pk, sk, ID,$, c, η, σ) → (0/1) – this is a
verification algorithm, executed by the client, taking on
input the key pair (pk, sk), the identifier ID of a block
B, the tag $ generated during the stp algorithm, the
challenge c and nonce η and using the cloud server’s
response σ. The output 1 denotes accept, i.e., the client
has successfully verified correct storage by the cloud
storage provider. Conversely, 0 denotes reject.

• vrfu : (pk, ID,$, c, η, σ) → (0/1) – this is a veri-
fication algorithm, executed by an authorized user, and
similar to the previous one vrfc, except that it does not
take on input the secret key sk.

The correctness of a homomorphic proof of data possession
scheme states that, after:
– the execution of the generation algorithms to obtain (pk, sk);
– the creation of two tags tagi and tagj , for a block Bi (resp.
Bj), by the stp algorithm together with the creation of a
challenge and nonce (c, n) for the same block;
– the creation of a proof σi (resp. σj), on input the challenge



c and the block Bi (resp.Bj) ;
– the creation of σh on input σi and σj for any function f ;
the verification algorithms vrfc and vrfu necessarily outputs
1 for the proofs σi, σj and σh.

B. Construction

SHoPS is based on techniques closely related to the well-
known Pederson commitment scheme [6]. That is, we ex-
tend the Pederson scheme to obtain a kind of a generalized
commitment, in a subblock-index manner, providing fault-
tolerance stateless verification. As such, for each verification
session, the verifier generates a new pseudo random value
and new index challenge position of the considered data file
block, thus making messages personalized for each session.
Additionally, we propose two verification processes. The first
scheme restricts the verification to the data owner using only
his private key. The second applies when the verification is
performed using public credentials.

In this section, we presents SHoPS single block PDP
scheme. The single data block proof is a PDP scheme
restricted to a single block. The proofs correspond to all
subblocks of a data block. In the following, we provide a
detailed description of the steps, introduced in Section III-A,
that are conducted in each of the two aforementioned phases.
The gen and stp are, respectively, presented by Algorithm 2

Algorithm 1 gen procedure
1: Input: system security parameter (λ)
2: Output: public keys (pk, p̂k), master secret key pr and

public parameters param = {gi}1≤i≤2q;i6=q+1

3: Choose a multiplicative group G1 of a prime order q,
4: Select g a generator of G1;
5: α

R←− Zp∗; param = {g};
6: for all j ∈ [1 . . . 2q] do
7: param← param ∪ {gαj}
8: end for
9: s

R←− Zp; pr ← s; pk ← gs; p̂k ← gsq+1;
10: return (pk, p̂k, pr, {gi}1≤i≤2q;i 6=q+1)

and Algorithm 1. That is, each set of subblocks πi,j of Bi is
presented by an accumulator $i =

∏q
j=1 g

πi,j

q+1−j
pr.

Algorithm 2 stp procedure
1: Input: Data block (Bi), private key pr and param
2: Output: Data block accumulator $

3: $i = 1;
4: for all j ∈ [1 . . . q] do
5: $i ← $i ∗ g

πi,j

q+1−j
pr;

6: end for
7: return (IDBi

, $i)

1) clg procedure: The clg procedure is executed by the
client and yields a challenge for the cloud server. The client
chooses at random a subblock position k ∈ {1, q} and a nonce

η. The challenge c ∈ C consists on a random block index and
the public key element p̂k hidden with a random nonce η as
c = (k, p̂k

η
).

2) prf procedure: The prf, executed by the server, has
to generate a valid proof of data possession of a given data
block Bi. That is, in his response, the server has to provide a
new valid accumulator using the random η sent by the client.
In our construction, the prf is presented by Algorithm 3. For
the sake of consistency, we suppose that the server possesses
a version of the data block file which is potentially altered.
Hereafter, this version is denoted by B̂i.

Algorithm 3 prf procedure

1: Input: File data block (Bi), public keys (pk, p̂k), the
public parameters param and the challenge c = (k, p̂k

η
)

2: Output: Proof P = (σ1, σ2)

3: σ1 ← (p̂k
η
)πi,k ;

4: $̂i = 1;
5: for all j ∈ [1 . . . q] do
6: if j 6= k then
7: $̂i ← $̂i ∗ g

πi,j

q+1−j+k;
8: end if
9: end for

10: σ2 ← $̂i;
11: return (σ1, σ2)

3) vrf procedure: In this section, we first present the
public verification correctness. Then, we introduce the private
verification process, which restricts the verification to the
data owner.

Public Single Data Block Verification – An authorized
verifier checks the correctness of the server response, based
on public parameters. It is worth noticing that the client does
not store any additional information for the proof verification.
That is, the verification procedure makes only use of param.
The verifier checks the following equality, using the random
secret η, the challenge c, and the server response P = (σ1, σ2),
as presented in Equation 1.

[ê(gk, $i)ê(pk, σ2)
−1

]η ê(g, σ1)
−1

= 1 (1)

If the equality holds, the verifier has a proof that the data block
Bi exists and that it has not been altered.

Lemma 3.1: Public Single Data Block Verification – The
verification procedure of Equation 1 holds if, and only if the
data block file B̂i = Bi.

Private Single Data Block Verification – SHoPS proposes
a lightweight private verification variant, relying on the private
key of the data owner. For this purpose, we squeeze the
proposed checking algorithm, presented in Equation 1, in order
to support only two pairing functions computation. As such the
private verification of a single data block Bi is as follows:

ê(gk
η, $i) ? ê(g, σ1σ2

sη)
−1

= 1 (2)



IV. SET-HOMOMORPHIC PROPERTIES OF SHOPS

We now extend the design of the single PDP scheme, in
order to support subsets of data blocks. That is, the verifier
requests the cloud for data correctness proofs, while consid-
ering a sequence of set-homomorphism properties1.

In the following, we refer to the proof aggregation, every
set-operation over multiple proofs, namely, the union, the
intersection and the inclusion operator.

Definition 4.1: Set-Homomorphic based Proof –
We consider a message space M, a proof space P , a pri-
vate key space Kpr and a public key space Kpub. A set
homomorphic based proof scheme is defined as follows.
There exist two operations such as: � : P × P → P and
} : Kpub × Kpub → Kpub, that satisfy the homomorphism
and the correctness properties, for a set operation • for any
messages Bi and Bj in 2M, such that

prf2(Bi •Bj , c) = prf2(Bi, c)� prf2(Bj , c) (3)

In order to prove that our scheme is set-homomorphic with
regard to the union operator, we use the received proofs
prf(c,Bi) and prf(c,Bj) corresponding to Bi and Bj , re-
spectively, to express prf(c,Bi ∪ Bj), based on the same
challenge c.

Lemma 4.2: For every data block Bi and Bj , the union
operator is defined as: Bi ∪Bj = Bi +Bj −Bi ∩Bj
First, we express $Bi∪Bj

, using $Bi
and $Bj

, such as:
Lemma 4.3: For every data blocks Bi = {πi,1, · · · , πi,q}

and Bj = {πj,1, · · · , πj,q}, where πi,k ∈ 2M and 1 ≤ k ≤ q;
and given the accumulators $ presented in Algorithm 3, the
union accumulator is such that :$Bi∪Bj = lcm($Bi , $Bj )

Proof 4.4: The computation of $Bi∪Bj
, is performed as:

$Bi∪Bj
=

∏
πk,l∈Bi∪Bj ;l∈[1,q];k∈{i,j}

g
πk,l

q+1−l
pr

= lcm(
∏

πi,l∈Bi;l∈[1,q]

g
pr∗πi,l

q+1−l ,
∏

πj,l∈Bj ;l∈[1,q]

g
pr∗πj,l

q+1−l )

= lcm($Bi
, $Bj

)

To compute the least common multiple of Bi and Bj , we
use the relation between gcd and lcm, as: gcd($Bi

, $Bj
) ∗

lcm($Bi
, $Bj

) = $Bi
$Bj

.
In the sequel, we have:

$Bi∪Bj
= lcm($Bi

, $Bj
) =

$Bi ? $Bj

gcd($Bi , $Bj )
(4)

For instance, using the Bézout’s lemma, there exist unique
integers a and b, such that:

a$Bi + b$Bj = gcd($Bi , $Bj ) (5)

As such, using the Equation 4 and Equation 5, we find the
lcm of the two data blocks Bi and Bj as follows:

$Bi∪Bj = lcm($Bi , $Bj ) =
$Bi

? $Bj

a$Bi + b$Bj

(6)

1For ease of presentation, we prove the different properties, using two
different data blocks Bi and Bj . Our operations can be extended easily to
support multiple data blocks checking.

Therefore, we obtain the proof of the lemma 4.3.
Theorem 4.5: Union Operator – SHoPS considers the

algorithms clg, prf and vrf defined above. Let homop be
the algorithm, presented in section III-A, such that • is the set
union operator, as follows.

prf2(Bi •Bj , c) = prf2(Bi, c)� prf2(Bj , c) =

prf2(Bi, c)?prf2(Bj , c)(a∗prf2(Bi, c)+b∗prf2(Bj , c))
−1

(7)
where a and b satisfy : aprf2(Bi, c) + bprf2(Bj , c) =
gcd(prf2(Bi, c), prf2(Bj , c))

Proof 4.6: we know that aprf2(Bi, c) + bprf2(Bj , c) =
a$̂Bi +b$̂Bj . Thus, we can write: b$̂−1Bi

+a$̂−1Bj
= $̂−1Bi∪Bj

.
Consequently, using Equation 6, we can write that:

a$̂Bi
+ b$̂Bj

=
(a$̂Bi

+ b$̂Bj
) ? $̂−1Bi

$̂−1Bj

$̂−1Bi
$̂−1Bj

=
a$̂Bi

$̂−1Bi
$̂−1Bj

+ b$̂Bj
$̂−1Bi

$̂−1Bj

$̂−1Bi
$̂−1Bj

= $̂−1Bi∪Bj
? $̂Bi ? $̂Bj

As such, we demonstrate that $̂−1Bi∪Bj
=

a$̂Bi
+b$̂Bj

$̂Bi
?$̂Bj

.

V. CONCLUSION AND FUTURE WORK

In this work, we presented SHoPS, a Set-Homomorphic
Proof of Data Possession scheme, supporting the 3 levels of
data verification. Indeed, we presented the set-union homomor-
phism property, which extends malleability to set operations
properties. Additionally, our proposal is deliberately designed
to support public verifiability and constant communication
and storage cost. That is, SHoPS allows an implementation
of remote data checking at the three networking interfaces,
that ensures the flexibility of SHoPS application and enables
fulfilling each verifier request. Our future work consists of
proving that SHoPS is resistant to data leakage attacks, while
considering either a fraudulent prover or a cheating verifier,
on the basis of a Data Possession game. In addition, an
experimental study has to be conducted in order to show the
feasibility of our proposal and gives support to theoretical
performance measurements.
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