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Abstract: Treatments for central nervous system diseases with therapeutic antibodies have been
increasingly investigated over the last decades, leading to some approved monoclonal antibodies
for brain disease therapies. The detection of biomarkers for diagnosis purposes with non-invasive
antibody-based imaging approaches has also been explored in brain cancers. However, antibod-
ies generally display a low capability of reaching the brain, as they do not efficiently cross the
blood−brain barrier. As an alternative, recent studies have focused on single-domain antibodies
(sdAbs) that correspond to the antigen-binding fragment. While some reports indicate that the
brain uptake of these small antibodies is still low, the number of studies reporting brain-penetrating
sdAbs is increasing. In this review, we provide an overview of methods used to assess or evaluate
brain penetration of sdAbs and discuss the pros and cons that could affect the identification of
brain-penetrating sdAbs of therapeutic or diagnostic interest.

Keywords: camelid nanobody; VHH; blood-brain barrier; immunotherapy; brain penetration

1. Introduction

The use of monoclonal antibodies (mAbs) is one of the most significant advances of
the last decades in medicine. The effectiveness of therapeutic antibodies has been observed
in oncology and inflammation, where they have become a dominant drug-developing
pipeline [1]. Nevertheless, their development in neurology is only at its beginning. This
delay can be explained by the complexity of brain diseases and by the existence of anatomi-
cal physical barriers, mainly the blood-brain barrier (BBB) [2,3], hiding behind therapeutic
targets. Access to the brain by antibodies, which are high molecular weight molecules, is
limited by this BBB [4,5]. Thus, the use of antibody fragments represents a good alterna-
tive. Several reviews have already reported the advantageous features that single-domain
antibodies (sdAbs) possess over traditional antibodies in terms of size—they are 10-fold
smaller (2.5 nm × 4 nm, 12–15 kDa)—also in terms of cost of production, conformational
specificity, and engineering [6–11]. The use of single-domain antibodies VHH (also called
Nanobody®, Ablynx Sanofi, Ghent, Belgium), VNAR (variable domain of new antigen
receptor), and VH were also highlighted in the treatment of central nervous pathologies.
VHH [12] and VNAR [13] correspond to the smallest antigen binding domain derived from
the heavy-chain-only antibody naturally present in camelids and sharks, while VH is from
conventional antibodies present in mammals. Their molecular features and functional
mechanisms have been well described in the literature [14–19]. If there are more and more
reports on sdAb engineering in order to reach the brain through different mechanisms,
there is a need for better approaches to evaluate and rapidly identify a lead sdAb with a
better starting probability of reaching clinical trials.

In this review, we aim first to illustrate the progressive use of mAbs in neurodegen-
erative diseases and neuro-oncology therapy and the promising applications of sdAbs
in the same field. Second, we will describe the methods used to assess the ability of the

Int. J. Mol. Sci. 2023, 24, 2632. https://doi.org/10.3390/ijms24032632 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032632
https://doi.org/10.3390/ijms24032632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-5176-3102
https://orcid.org/0000-0003-1134-2738
https://doi.org/10.3390/ijms24032632
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032632?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 2632 2 of 28

sdAbs to enter the brain parenchyma, with a special emphasis on new rapid and effi-
cient technical approaches to accelerate and improve the screening and development of
single-chain domains.

2. Application of Antibodies in Brain Diseases

In seeking new therapies to treat neurological, neurodegenerative, and psychiatric
diseases, small molecules have been the drugs of choice for many years. However, while
lots of them display efficient beneficial action, they often display strong secondary side
effects that counteract the benefits or the health of the patients. Off-targets, lack of selectivity,
tolerance, and receptor desensitization are mechanisms reported for their side effects [20,21].
Antibodies and nanobodies have then emerged as promising therapeutic biomolecules,
thanks to their high affinity to their target and their high selectivity. They are now developed
for treating more and more neurological and neurodegenerative diseases. Due to their
convex paratope, nanobodies share a propensity for recognizing cryptic allosteric epitopes
(sites topographically different from where the endogenous ligand binds). Therefore, they
are particularly prone to recognize specific conformations, stabilize them, distinguish
between homo and heterodimers [10,22–24], and exert a fine allosteric modulation of the
receptors’ activity in the presence of the endogenous ligand. Recently, a lot of effort in drug
discovery programs focused on allostery to modulate neuroreceptors for the treatment of
central nervous system (CNS) disorders [25]. Thus, although there could be a limitation
for both antibodies and nanobodies because of their low ability to penetrate the brain by
themselves, nanobodies emerge as a more promising tool compared with mAbs. Note that
most of the mAbs that will be cited thereafter exert their pharmacological effects outside
the brain or in regions the BBB does not protect.

2.1. Multiple Sclerosis

The first monoclonal antibody, called natalizumab (Tysabri®, Biogen Idec/ELAN),
was approved for a neurological indication in 2004 by the United States Food and Drug
Administration (FDA) and in 2009 by the European Medicines Agency (EMA) (Table 1). It
is indicated for the treatment of multiple sclerosis (MS), a neurodegenerative disease of
the CNS in which inflammation and autoimmunity are involved. Natalizumab prevents
lymphocyte transport across the BBB by blocking the binding of α4β1 integrin (or VLA-4
for very late antigen-4) present on the surface of T cells to the adhesion molecule VCAM
(vascular cell adhesion protein) expressed by endothelial cells in the BBB. Thereby, it
plays an anti-inflammatory role in the CNS [26]. Used off-label, another monoclonal
antibody, rituximab (RituxanTM, phase III trial), showed efficacy in reducing recurrences
by lysing circulating B cells via binding to CD20 [27–29]. Since then, several mAbs have
been developed both for relapsing and primary progressive forms of MS or for repairing
damage: ocrelizumab (OcrevusTM, approved in 2017) [30], ofatumumab (approved in 2020),
ublituximab (in phase III studies, pending FDA approval) [31], alemtuzumab (LemtradaTM,
approved in 2014) [32], opicinumab (BIIB033, phase II trials) [33], elezanumab (ABT-555, in
phase II trials) [34], and temelimab (GNbAC1, phase II studies) [27,35] (Table 1). Unlike the
majority, opicinumab aims at penetrating the brain parenchyma to act like an antagonistic
antibody on LINGO-1, a transmembrane cell-surface glycoprotein expressed on neurons
and oligodendrocytes [36]. It reached phase II studies [37,38], but its development has been
stopped due to its failure to improve patient conditions [39]. Nevertheless, mAbs have
become the preferred therapy for MS [27], and this disease remained for a long time the
only pathology for which they were used in the field of neurology.
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Table 1. Selected examples of antibodies used for multiple sclerosis. i.v., intravenous; s.c., subcutaneous.

Antibody Target Clinical Status Dose Key Findings/Mode of
Action References

Natalizumab
(Tysabri®)

Humanized mAb

α4β1
integrin

Approved by
FDA and EMA

i.v. infusion of 300 mg
every 4 weeks

Blocks binding of α4β1
integrin to VCAM [26]

Rituximab
(RituxanTM)

Chimeric mAb

CD20

Phase III
i.v. infusion of 500 or

1000 mg every
6–12 months

Reduced recurrences by
lysing circulating B cells and

stops MS inflammation

[28,29]

Ocrelizumab
(OcrevusTM)

Humanized mAb

Approved by
FDA and EMA

i.v. infusion of 300 mg day
1 and 5 and 600 mg every

6 months
[30]

Ofatumumab
(Kesimpta®)

Humanized mAb

Approved by
FDA and EMA

s.c. injection 20 mg
on weeks 0, 1, and 2, and

20 mg each month
[40]

Ublituximab
(TG-1101)

Chimeric IgG1 mAb

Phase III
Pending FDA

approval

i.v. infusion of 150 mg day
1, 450 mg day 15 and

450 mg every 6 months
[31]

Alemtuzumab
(LemtradaTM)

Humanized mAb
CD52 Approved by

FDA and EMA

i.v. infusion 12 mg/day
for 5 days and 1 year later

12 mg/day for 3 days

Lysis of T and B
lymphocytes [32]

Opicinumab
(BIIB033)

Human mAb
LINGO-1

Phase II
Development

stopped

i.v. infusion 750 mg every
4 weeks for 96 weeks

Inhibition of LINGO-1,
differentiation of

oligodendrocyte precursor
cells into mature

oligodendrocytes allowing
remyelination

[33]

Elezanumab
(ABT-555)

Human mAb
RMGa Phase II i.v. infusion of 1.800 mg

monthly or bimonthly
Inhibition of RMGa

promoting regeneration [34]

Temelimab
(GNbAC1)

Humanized IgG4 mAb

MSRV-Env
protein Phase II

i.v. infusion of a single
dose of 36, 60, 85 or

110 mg/kg

Expected inhibition of
MSRV-Env decreasing
proinflammatory and
autoimmune cascades

[35]

2.2. Migraine

The use of mAbs in treating neurological conditions has expanded to migraine. Due
to its severity and its high prevalence worldwide (15–18% in a year) [41,42], migraine is the
most disabling neurological disorder [43]. It triggers a huge economic cost to society, which
is estimated to be billions of dollars or euros per year in the United States and the European
Union, respectively [44,45]. This financial burden derives from the cost of medical care,
absence from work, and reduced productivity.

In the hope of proposing an effective therapy, researchers have investigated the patho-
physiology of migraine for several centuries. It led to two main theories—one attributing
migraine pain to vasodilatation of cerebral arteries and meningeal arteries (also called “the
vascular theory”); and the other one, to neural disorders of the CNS (also called ‘the central
neuronal theory’) [46]. While there is still a debate on these two opposing hypotheses, re-
search progress permitted the identification of neuropeptide calcitonin gene-related protein
(CGRP) and its receptors in the trigeminal ganglion and the paraventricular structures as
a key player in the disease [47]. Studies revealed that the level of CGRP increases during
migraine attacks. Besides, its administration for migraine patients triggers headaches,
while no effect was observed in healthy volunteers. Experimental results also suggest that
CGRP is a potent vasodilator and can modulate pain by enhancing neurotransmission
in the migraine circuit [46,48]. This discovery has offered new possibilities to overcome
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the limited efficacy of the available drugs with the arrival of four mAbs blocking the
CGRP receptor or ligand [47]. Erenumab (Aimovig®), fremanezumab (AjovyTM), and gal-
canezumab (Emgality®) received regulatory approval as prophylaxis treatment in 2018, and
eptinezumab (VyeptyTM) in 2020 [49–56] (Table 2). These therapies demonstrated efficacy
in phase II and III trials by reducing the frequency of migraine attacks and improving
patients’ ability to carry out daily activities [57]. However, a cure therapy is still awaited.

Table 2. Approved therapeutic antibodies for migraine.

Antibody Target Clinical
Status Dose Key Findings/Mode

of Action References

Erenumab
(Aimovig®)
Human mAb

CGRP
receptor

Approved by
FDA and

EMA

s.c. injection of 70 mg
once per month

Blocks the CGRP receptor and
inhibits the activity of CGRP,
preventing the onset of pain

[53]

Fremanezumab
(AjovyTM)

Humanized IgG2 mAb

α and β

isoforms of
CGRP

s.c. injection of 225 mg
once per month or

675 mg every 3 months

Targets the CGRP ligand and
blocks its binding to

the receptor

[51]

Galcanezumab
(Emgality®)

Humanized mAb

s.c. injection of 120 mg
once per month [50,54,55]

Eptinezumab
(VyeptyTM)

Humanized IgG1 mAb

Infusion of 100 mg every
3 months [49,56]

CGRP antagonism requires clinical vigilance, notably because of the ubiquitous feature
of CGRP and its receptors. Indeed, they are expressed throughout the body, not only in
the trigeminal system. Thus, off-targets are possible, and this may engender inflammatory
complications, as reported in 2021 by clinical case series [58]. To deal with this issue, we
can think of using sdAbs. With their rapid elimination rate from the systemic circulation, a
lesser accumulation in peripheral organs could limit their binding to off-targets. However,
this must go along with rapid and prolonged CNS distribution. CNS-directed sdAbs are
likely needed. This approach may require a lot of engineering. That may explain why, to
our knowledge, no sdAb has been tested so far for this pathology.

2.3. Brain Tumors

The success of mAbs against many cancers has naturally led to their use in brain
tumors such as glioblastoma, primary central nervous system lymphoma (PCNSL), and
brain metastases. Glioblastoma is the most common and deadliest type of primary brain
tumor (a tumor that arises within the brain). It develops from glial cells or their precursors.
Along with its growth, it induces a local formation of new vasculature characterized by
a high expression of vascular endothelial growth factor (VEGF). The approach used to
slow down its progression is to deprive tumoral cells of their increasing blood supply
by targeting circulating VEGF and thus blocking its binding to the VEGF receptor with
bevacizumab (Avastin®) [59,60] (Table 3).

However, the efficacy of angiogenesis inhibitors is insufficient to prolong survival, and
patients experience tumor relapses. This could be explained by the diffusive progression of
angiogenesis-independent infiltrating tumor cells thriving on matured vessels. Therefore,
strategies to starve cancer cells by directly targeting vasculature in the brain tumor have
been investigated. To identify VHHs selective for tumor vessels, a VHH displaying phage
library was administered intravenously (i.v.) to mice bearing orthotopic E98 human glioma
xenografts. This led to the identification of VHH C-C7, which selectively recognizes a
subpopulation of tumor vessels [61] (Table 3). However, the pharmacological activity of
C-C7 on the tumor progression remains to be assessed, as well as its brain penetrance ability.
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Glioblastoma stem-like cells (GSC) are hypothesized to trigger therapy resistance and
tumor relapse. They contribute to poor patient survival. VH-9.7, a VH fragment, has been
identified to selectively target GSC [62,63] (Table 3). It recognizes five patient-derived GSC
lines, which are named 12.1 GSC (generating focal tumor xenograft in NOD-SCID mice),
22 GSC, 33 GSC (minimally invasive), 44 GSC, and 99 GSC (highly infiltrative). Unlike
with an immunoglobulin G (IgG) and a single-chain variable fragment (scFv), a local
tumor accumulation was observed by infrared spectroscopy 30 min after an intravenous
administration of VH-9.7 (300 pmol) in a mouse model carrying a 22 GSC intracerebral
xenograft [63]. This opens the field to diagnostic and therapeutic perspectives of this VH
(patent WO 2019/074892 A1) [62].

In the case of PCNSL, the monoclonal antibody rituximab (Rituxan™) is incorpo-
rated into treatment regimens [64,65] to block B lymphocytes’ extravasation following the
mechanism described in the multiple sclerosis section (Table 3).

Anti-HER2 (epidermal growth factor receptor-2) trastuzumab (Herceptin®) has been
tested in brain metastasis associated with HER-2-positive breast cancer. It could delay the
onset of brain symptoms; however, it cannot stop the tumor progression in the brain [66].

Table 3. Antibodies under investigation or approved for brain tumors.

Antibody Target Clinical Status Dose Key Findings/Mode
of Action References

Bevacizumab
(Avastin®)

Humanized IgG1 mAb
VEGF Approved by

FDA and EMA

i.v. injection 15 mg/kg
every 3 weeks

In combination with other
antibodies

Binds to circulating
VEGF and inhibits its

binding to VEGFR
[59,60]

C-C7
sdAb

Dynactin-1-
p150Glued

Preclinical
stages /

Targets selectively a
subpopulation of

tumor vessels
[61]

VH-9.7
VH fragment

Human GSC
xenografts.

Specific target
unknown

Preclinical
stages

i.v. injection of 300 pmol
in a mouse model with
intracerebral xenograft

Localizes local tumor
accumulation [63]

Rituximab
(Rituxan™)

Chimeric mAb
CD20 Phase III Infusion of 500 or 1000 mg

every 6–12 months
Blocks B lymphocytes’

extravasation [64,65]

Trastuzumab
(Herceptin®)

Humanized IgG1 mAb
HER2 receptor Approved by

FDA and EMA

Loading dose of 8 mg/kg
and 6 mg/kg every

3 weeks for 52 weeks
(infusion)

Delays the onset of brain
symptoms of metastasis

from breast cancer
[66]

2.4. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common neurodegenerative disorder, contribut-
ing to 60–70% of dementia cases [67,68]. It is characterized by two major brain changes:
accumulation of amyloid-β (Aβ) peptides leading to extracellular senile plaques and accu-
mulation of intracellular hyper-phosphorylated Tau proteins called neurofibrillary tangles
(NFT) [69,70]. Accumulation of both protein markers in the brain leads to progressive
memory loss and, ultimately, to dementia. The pathology is multifactorial, and the un-
derlying mechanisms involved in its progression are not yet fully elucidated. Current
drugs approved for its treatment are only symptomatic, have modest benefits, and do not
prevent the progression of the pathology [69,70]. In 2018, the French National Authority
for Health stopped reimbursing the four main drugs available on the market (Memantine®,
Donepezil®, Galantamine®, and Rivastigmine®), arguing that these treatments present
insufficient medical interest to justify their reimbursement.

For the last 25 years, therapeutic research on AD has focused on developing Aβ-targeting
drugs, but they have mainly failed to demonstrate clinical efficacy [71]. Thus, there is still an
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enormous need to develop therapies with the potential to slow down or stop AD progression.
A promising breakthrough in reaching these objectives has been the use of mAbs. Among
the different strategies tested, six mAbs have reached phase III trials: bapineuzumab (AAB-
001) [72], solanezumab (LY2062430) [73], crenezumab (MABT5102A) [74,75], gantenerumab
(RO4909832) [76,77], aducanumab (AlduhemTM) [78,79], and lecanemab (BAN2401) [80]
(Table 4). However, the early excitement was quickly replaced by disappointment when
it became clear that most of them did not exhibit the expected great success [70]. While
research on bapineuzumab was terminated due to safety concerns [81–83], clinical trials
with solanezumab [73] and crenezumab [84] were stopped because of the absence of cog-
nitive or functional improvement. Concerning gantenerumab, a phase III clinical trial is
still ongoing (NCT03444870, NCT03443973, NCT03887455) [85–87]. To date, aducanumab
(AduhelmTM) [88] obtained controversial approval from the FDA [89] but was rejected by the
EMA. This provisional regulatory decision was taken under an accelerated approval pathway.
It requires the validation of clinical benefit in a post-approval trial to be held [90,91]. Adu-
canumab was demonstrated to reduce both Aβ and Tau aggregates [88,92,93] and to improve
cognitive deficits in the early stages of the pathology [89], representing a hope to slow down
the progression of AD. However, repeated injections and high doses have reported incidents
of amyloid-related imaging abnormalities (ARIA), such as micro-hemorrhages and oedemas,
in 43% of patients treated with aducanumab [92]. These ARIAs are due to the production of
anti-aducanumab antibodies in the blood and cerebrospinal fluid of AD patients, reflecting an
immunogenic response towards these IgGs. More recently, lecanemab was approved by the
FDA in January 2023 [94].

Anti-Tau therapies have also been explored, and four mAbs reached phase II trials:
gosuranemab (BIIB092) [95], tilavonemab (ABBV-8E12) [96], semorinemab (RO7105705) [97,98],
and zagotenemab (LY3303560) [70] (Table 4). The failure of gosuranemab [95], tilavonemab [99],
and zagotenemab [100] has recently been reported (Table 4).

To possibly overcome the immunogenic side effects of therapeutic mAbs, sdAbs
could constitute a real breakthrough for the treatment of AD. Indeed, VHHs are supposed
to have a low or non-existent capacity to produce immunogenicity reactions after injec-
tion [101]. A dozen sdAbs have shown their potential therapeutic or diagnostic value for
AD in vitro [102]. We can cite two of them which reached in vivo investigations: R3VQ and
A2 that bind brain Aβ deposits and Tau inclusions, respectively [103]. Staining throughout
the brain was observed in PS2APP mice (a genetic model harboring β-amyloid lesions)
4 h after intravenous administration of 50 mg/kg of fluorescently labeled R3VQ (noted
R3VQ-S-AF488). In contrast, only a few plaques were positively stained with a fluorescently
labeled IgG, suggesting that VHH could better penetrate the brain and more easily reach its
target (Table 4). The intensity of the labeling was reduced when using a lower dose of R3VQ-
S-AF488 (10 mg/kg). Extravasation of R3VQ-S-AF488 from blood to brain parenchyma was
observed in vivo using transcranial two-photon laser scanning microscopy on the superfi-
cial cortex. Amyloid deposits started to be visualized 30 min post-intravenous injection and
stayed up to 4 h post-injection [103]. In wild-type mice, extravasation of R3VQ-S-AF488
was also observed by administrating 50 mg/kg via the intravenous route but then rapidly
vanished—likely because it was not retained in the brain in the absence of its cerebral
target. VHH A2, on the other hand, labels NFT-like structures within neurons of Tg4510
mice (a genetic model bearing NFT) following an intravenous administration (10 mg/kg).
Real-time imaging showed a delay in the staining of this NFT-like structure that can be
explained by the intracellular localization of the target. No labeling was observed in control
animals: wild-type mice and mice that received a conventional anti-phosphorylated Tau
antibody [103] (Table 4). Even though these sdAbs, targeting Aβ and hyperphosphory-
lated Tau, are still barely studied, their preclinical development could constitute a real
breakthrough in the immunotherapy field.
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Table 4. Nonexhaustive list of antibodies tested in Alzheimer’s disease therapy.

Antibody Target Clinical Status Dose Key Findings/Mode
of Action References

Bapineuzumab
(AAB-001)

Humanized IgG1 mAb

N-terminal region
of Aβ

Targets fibrillar
and soluble

monomeric forms

Phase III—
discontinued

0.5, 1.5, or 5 mg/kg
through i.v. injection,

every 13 weeks for
78 weeks

No differences
observed compared to
placebo groups. Slight

clearance of fibrillar
cerebral Aβ

[72,81–83]

Solanezumab
(LY2062430)

Humanized IgG1 mAb

Mid-domain of Aβ

Targets soluble
monomeric forms

Phase III—
discontinued

i.v. infusion of 400 mg
once a month for

80 weeks

No reduced cognitive
decline in mild AD

patients versus
placebo

[73]

Crenezumab
(MABT5102A)

Humanized IgG4 mAb

Aggregated Aβ

forms (oligomeric,
fibrillar and

plaques)

Phase III—
discontinued

i.v. infusion of
60 mg/kg every

4 weeks for 100 weeks

Lowering of 20% of
cognitive decline.

Stabilization of Aβ42
and rise of Aβ40 levels

[74,75]

Gantenerumab
(RO4909832)

Human IgG1 mAb

N-terminal and
mid-domain of Aβ.
Targets Aβ fibrils

Phase III s.c. injection of 255 mg
or 510 mg every week

Reduces Aβ plaques,
CSF total Tau, and
phospho-Tau181

[76,77]

Aducanumab
(AlduhemTM)

Human IgG1 mAb

Aggregated Aβ

forms

Approved by
FDA—Phase IV

confirmatory
trial ongoing

Monthly i.v. infusion.
Titrated dosing

reaching 10 mg/kg at
the 7th infusion

Reduction in cognitive
decline, Aβ and Tau

levels

[78,79,88,
89,92,93]

Lecanemab
(BAN2401)

Humanized IgG1 mAb

Large and soluble
Aβ protofibrils

Approved by
FDA

i.v. infusion of
5 mg/kg or 10 mg/kg
every 2 or 4 weeks for

18 months

Reduction of brain Aβ

and decreased
cognitive decline

[80,94]

Gosuranemab
(BIIB092)

Humanized IgG4 mAb

N-terminal
domain of Tau

Phase
II—discontinued

i.v. infusion of
2100 mg every 4 weeks

for 1.5 years

Increased cognitive
decline [95]

Tilavonemab
(ABBV-8E12)

Humanized IgG4 mAb

N-terminal domain
of extracellular
aggregated Tau

Phase
II—discontinued

i.v. infusion of 2000 or
4000 mg at days 1, 15

and 29, and every
28 days for 1 year

No benefit of antibody
over placebo [96,99]

Semorinemab
(RO7105705)

Humanized IgG4 mAb

Extracellular
aggregated Tau Phase II

i.v. infusion of
1500 mg, 4500 mg, or

8100 mg every 2 weeks
for the 3 first infusions,
and every 4 weeks for

73 weeks

No changes observed
between

antibody-treated and
placebo patients

[97,98]

Zagotenemab
(LY3303560)

Humanized mAb

N-terminal
domain of Tau

Phase
II—discontinued

i.v. infusion of 1400 or
5600 mg every 4 weeks

for 100 weeks

No benefit of antibody
over placebo [70]

R3VQ
sdAb

Aβ brain
aggregates Preclinical stages

i.v. infusion of
50 mg/kg to PS2APP

mouse model

Crosses the BBB and
binds to amyloid

aggregates
[103]

A2
sdAb Tau inclusions Preclinical stages

i.v. infusion of
10 mg/kg to Tg4510

mouse model

Crosses the BBB and
binds to NFTs [103]

2.5. Parkinson’s Disease

After AD, Parkinson’s disease (PD) is the most prevalent neurodegenerative disorder.
It is characterized by a loss in dopamine-producing neurons in the substantia nigra (in the
midbrain). The pathology is associated, in most cases, with intracellular inclusions—called
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Lewy bodies [104]—containing pathogenic α-synuclein protein abnormally folded [105,106].
Aggregates of α-synuclein are also observed abundantly in the extracellular space of the
pathological environment [107]. These oligomers are thought to mediate the propagation
of the disease by neuron-to-neuron transmission [107]. To halt PD progression, several
antibodies against the oligomeric form of α-synuclein have been tested [106] (Table 5):
prasinezumab (PRX002), cinpanemab (BIIB054) [108], MEDI1341, and a dozen of other anti-
bodies that, so far, have been tested in preclinical studies only. Prasinezumab was the first
to undergo clinical studies in 2017. Phase I and 1b trials in healthy and mild idiopathic PD
patients treated with prasinezumab showed favorable results regarding safety, tolerability,
and pharmacokinetics. The treatment reduced the level of free α-synuclein in the blood.
Besides, no serious adverse effects nor immunogenicity were observed [109,110]. However,
the results of the phase II trial (NCT03100149) are less positive [111]. No significant changes
were seen in the symptoms of PD nor the imaging measures of the disease’s progression.
However, despite this failure, studies on safety and efficacy in early-stage PD patients are
continuing (phase 2b; NCT04777331) [112]. Cinpanemab was also reported as negative
after a phase II trial (NCT03318523) [108]. Several adverse effects were observed and led
its developer to discontinue the study [108]. Regarding the third antibody MEDI1341, it is
currently in a phase I trial (NCT04449484) [113].

Table 5. Monoclonal antibodies tested for Parkinson’s disease.

Antibody Target Clinical Status Dose Key Findings/Mode
of Action References

Prasinezumab
(PRX002)

Humanized IgG1 mAb

Aggregated
α-synuclein Phase II

i.v. infusion of 1500 or
4500 mg every 4 weeks for

52 weeks

Trend toward benefit in
motor functions [105]

Cinpanemab
(BIIB054)

Human-derived mAb

Aggregated
α-synuclein

Phase II—
discontinued

i.v. infusion of 250, 1250 or
2500 mg every 4 weeks for

52 weeks

No improvement in
motor functions [108]

MEDI1341
(TAK-341)

mAb

Monomeric
and aggregated
α-synuclein

Phase I i.v. infusion of 3 doses
given at 4 weeks interval No results released /

PFFNB2
sdAb

α-synuclein
preformed

fibrils

Preclinical
stages

Intraventricular injection
of AAV encoding PFFNB2

in the transgenic mouse
model PACTg(SNCAWT)

In vitro dissociation of
fibrils. Prevents the

spreading of
pathological α-synuclein

to the cortex

[114]

NbSyn2
sdAb Monomeric

and fibrillar
α-synuclein

/ Inhibit the formation of
fibrils and converts toxic

oligomers into less
toxic species

[115–120]
NbSyn87

sdAb

Injection in the substantia
nigra of AAV encoding

NbSyn87 into rats

In the same idea of targeting α-synuclein aggregates, VHHs have been generated;
however, the strategy is different. Here, the authors try to target intracellular α-synuclein
oligomers [114]. Moreover, to do so, they use genetic material to express the VHHs directly
in the cytoplasm. Since this review focuses on purified sdAbs administered extracellularly,
we will not develop this administration technique for antibody fragments. However, it is
interesting to know that the VHH PFFNB2, for example, specifically binds to α-synuclein
preformed fibrils and does not recognize the monomers in vitro. It can also significantly
dissociate the fibrils. Its expression in animals prevented the spreading of the α-synuclein
pathology to the cortex [114] (Table 5). Other studies have biochemically well-characterized
NbSyn2 [115] and NbSyn87 [116]. They have also assessed their therapeutic [117,118] and
diagnostic potentials [119]. These two VHHs recognize monomeric and fibrillar forms of
α-synuclein. They were found to inhibit the formation of fibrils and convert toxic oligomers
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into less toxic species [120] (Table 5). These effects dramatically reduced the oligomers’
toxicity in cell lines overexpressing α-synuclein.

PD has long been considered a non-genetic disorder. However, genetics research has
revealed that at least nine genes are incriminated in 5–10% of patients with the monogenic
form of the pathology [121]. One can cite the gene encoding for leucine-rich-repeat kinase 2
(LRRK2). Mutations in LRRK2 are among the most common causes of inherited PD, while
an overactivation of LRRK2 has also been associated with the more frequent idiopathic form
of the pathology. Following these observations, its inhibition appears to be an appealing
approach for drug development. In 2022, Singh and colleagues reported the identification
of seven VHHs acting as a negative allosteric modulator of LRRK2 [122]. Their modulation
activity is wide. Three of them exert a total inhibition of the tested kinase activities of
LRRK2: autophosphorylation and Rab phosphorylation in cells, as well as LRRK2 peptide
substrate and Rab phosphorylation using a commercialized assay (PhosphoSens Protein
Kinase Assay). Three others only inhibit Rab phosphorylation in cells and with the protein
kinase assay, while the last one only acts on autophosphorylation and Rab phosphorylation
in cells. Further investigation into their therapeutic use is ongoing.

2.6. Creutzfeldt-Jacob Disease

Creutzfeldt-Jacob’s disease (CJD) is associated with the conversion of the cellular prion
protein (PrPC), rich in alpha helices, into a beta-rich structure conformer, the PrPSc [123].
The use of antibody fragments as diagnostic and therapeutic tools has grown in interest over
the years [102,124,125]. It is not surprising that their application has been tested in protein-
misfolding diseases with a rapid fatal fate, such as CJD’s disease. Despite the disappointing
outcomes of most immunotherapies tested on other neurodegenerative diseases, CJD and
prion diseases, in general, have unique features. Indeed, PrPSc is a well-characterized
causing agent [126,127], which makes it a highly valid therapeutic target. In addition, the
conversion of the PrPC into PrPSc takes place at the cell surface [128], making these targets
easily reachable by antibodies. Several mAbs have been produced and tested in vitro and
in vivo [129–131], but only one mAb was tested on CJD patients [132]. Indeed, a humanized
anti-PrPC monoclonal antibody (PRN100), able to reach the brain, has been used to treat six
patients with CJD and administered intravenously [133] (Table 6). No significant adverse
outcomes have been noticed during the treatment of the patients. Even if the progression
of the disease has not been halted or reversed, neuropathological examinations revealed
modifications of the PrPSc deposition in brains [133]. These encouraging results with the
PRN100 will now need to be evaluated in the phase II clinical study with patients enrolled
at the earliest clinical stages.

Table 6. Tested antibodies for Creutzfeldt-Jakob’s disease. i.p., intraperitoneal.

Antibody Target Clinical Status Dose Key Findings/Mode
of Action References

PRN100
Humanized IgG4κ mAb

PrPSc

No clinical
trial—“special

exemption”

i.v. infusion of
80–120 mg/kg every
2 weeks until death

Treatment is safe and reached
CSF and brain tissue

concentrations expected
[133]

PrioV3
sdAb Preclinical stages i.p. injection of 5 mg/kg

in WT mice Crosses the BBB [134]

In parallel, a VHH, PrioV3, targeting the PrPC, is currently being developed at a
preclinical stage [134]. Its brain uptake ability was assessed in adult wild-type FVB/N mice
following an intraperitoneal administration (100 µg per mouse representing an approxi-
mative dose of 5 mg/kg). Immunodetection of PrioV3 showed a biphasic pattern in brain
homogenates. It peaked at 12 h before resurging at 72 h, while no signal was detected in the
saline-treated mice. Its brain distribution showed an accumulation in the hippocampus and
alveus at 4 to 12 h and in the cerebellar cortex after 24 h post-injection [134] (Table 6 and
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Table 7). Nevertheless, the efficacy of PrioV3 in abrogating prion propagation in infected
mouse brains is lacking in the mentioned study. However, a decreased prion replication in
the spleen was observed.

3. Methods to Assess Brain Penetration of sdAbs

Many studies have demonstrated the ability of sdAbs to reach deep brain tissue
compared to conventional antibodies [103]. They brought to light well-known VHHs and
VNARs, which became carriers for biologics to increase BBB transport upon peripheral
administration. One can cite E9, FC5, TXB4, and IGF1R5 that target the intracellular GFAP,
the extracellular TMEM-30A, transferrin receptor, and insulin-like growth factor 1 receptor
(IGF-1R), respectively [125] (Table 7). While their transport across the BBB is attributed to a
receptor or adsorptive-mediated transcytosis, some additional brain-penetrating sdAbs
identified can reach the brain by an unclear mechanism. Unlike the dogma, sdAbs seem
to have great potential in crossing the BBB. Pursuing the development of sdAbs into
clinical stages for brain pathologies requires validating their brain penetration ability after
a peripheral administration. Here we review the methods used to do so, either directly or
indirectly, and discuss their pros and cons.

3.1. Transmigration across In Vitro BBB Models

The exchange of molecules between blood and the brain is tightly and mainly con-
trolled by the BBB located within the cerebral microvessels. Briefly, the BBB is made up of
a layer of endothelial cells surrounded by astrocytic endfeet and pericytes. The whole is
called a neurovascular unit. It plays a physiological role in maintaining the proper func-
tioning of the brain. However, it hampers the delivery of neuropharmaceuticals. In 2002,
Muruganandam and colleagues studied the transmigration of sdAbs across an in vitro
model of the human BBB obtained by seeding human cerebromicroventricular endothelial
cells (HCEC) onto a porous membrane (1 µm-size pores) (Figure 1A). Below, a second
chamber containing medium conditioned by fetal-human astrocytes was used to induce a
BBB-like phenotype. The ability of soluble cMyc-His tagged sdAbs to transmigrate was
then assessed by adding 100 µg of sdAbs into this monolayer of endothelial cells and
measuring the concentration obtained in the bottom chamber by using enzyme-linked
immunosorbent assay (ELISA). This BBB model is impermeable to 10 kDa-dextran, as
observed when assessing BBB integrity. This approach resulted in the identification of FC5
and FC44, two distinct ~14 kDa-camelid sdAbs recognizing HCEC (Table 7). These two can
transmigrate across this human in vitro BBB by a transcellular passage [135].

Transport of FC5 and FC44 has also been evaluated in an in vitro BBB consisting of
immortalized adult rat brain microvascular endothelial cells (SV-ARBEC) grown with a
rat-conditioned medium on a semipermeable membrane. FC5, FC44, EG2 (a VHH targeting
EGFR), and A20.1 (a VHH targeting Clostridium difficile toxin A) were co-administered to
the top chamber (20 µg/mL each) [136] (Table 7). Then the transmigrated VHHs were
quantified at 5, 30, and 60 min by a highly sensitive and specific mass spectrometry-
based method: the multiple reaction monitoring (MRM or SRM)–isotype labeled internal
standards (ILIS). A time-dependent accumulation of FC5 and FC44 in the bottom chamber
was observed, whereas EG2 could not be detected, and only a small amount of A20.1,
which did not accumulate over time, was obtained. FC5 was the first detected at 15 min. It
ended up with the highest accumulation level at 60 min [136].

Using a similar experimental procedure, a VHH recognizing IGF-1R, which shows a
3-fold higher apparent permeability coefficient than FC5, was identified by Stanimirovic
et al. [137] (Table 7).
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Figure 1. A schematic representation of the methods previously reported to detect and quantify
the passage of the BBB of single-domain antibodies. (A) Brain uptake measurement using in vitro
endothelial cell layers-based BBB model followed by ELISA or MRM-ILIS assays. (B) Detection
in brain homogenates by western blot after peripheral administration in animal. (C) Detection on
brain slices using optical microscopy or autoradiography after peripheral administration in animal.
(D) Quantification in punctioned brain fluids using ELISA, or a highly sensitive mass spectrometry
method (NanoLC-MRM-ILIS), or by an energy transfer-based assay (AlphaScreenTM), after peripheral
administration in animal. (E) Brain entry after peripheral administration assessed by a real-time
PET/CT, SPECT or different physiological readouts in living animals. Created with BioRender.com
(accessed on 2 November 2022).

In addition, a VHH E9 targeting cytosolic human GFAP was reported for its ability
to cross a monolayer of immortalized human cerebral microvascular endothelial cells/D3
(hCMEC/D3) (Table 7). From the 1 µM of E9 VHH added onto the cells, 7.8% were detected
by ELISA at 60 min in the lower chamber [138].

BBB in vitro models could be practical for screening, but they have some limitations.
It can be illustrated with VHHs found unable to cross the BBB while, after systemic admin-
istration, they could actually be detected in the brain parenchyma [136]. Indeed, that is the
case with the fluorescently labeled EG2 and A20.1, described above, injected intravenously
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(two injections, 7 mg/kg each, given 1 h apart), although their brain accumulations remain
lower than that of the fluorescently labeled FC5 (Table 7). Note that in this study, we cannot
exclude the possible role of a dose-effect relationship in brain accumulation.

There are also cases with the VHHs ni3a and pa2H which were tested with FC5 as a
positive control [139]. These three undergo an active transport in vitro with a higher BBB
crossing efficiency for ni3a and pa2H (Table 7). However, once tested in animal models,
they did not show apparent accumulation on their target, β-amyloid deposits. The absence
of the BBB uptake in vivo is hypothesized to be due to a lower dose injected or the absence
of the active transporters in the mouse model chosen [139,140]. Thus, the prediction of
VHH brain penetration through BBB models does not always provide accurate information
on real brain entry.

3.2. Detection in Brain Homogenates and Slices

Being aware of the limitations of in vitro models, the capacity of sdAbs to penetrate the
brain has been assessed either in the whole brain (Figure 1B) or on brain sections (Figure 1C)
after peripheral administration in animals. Regarding the first approach, C57BL/6 mice
were injected intravenously with soluble FC5 and FC44 at 30 µg per mouse (approximately
1.7 mg/kg). Four hours later, unbound sdAbs were eliminated by intracardiac perfusion of
the animals with saline. Capillaries were depleted, and brain dissections snap-freezed. FC5
and FC44 were then extracted from the brain homogenates by Ni2+-affinity purification.
Both FC5 and FC44 were detected by western blot [135] (Table 7). The respective concentra-
tions were not determined in that study. Performing ion affinity chromatography to extract
the sdAbs is beneficial to clarify the substrate from irrelevant proteins. However, this can
lead to a certain loss. sdAbs can be degraded or left trapped in the sample. To limit this
loss, one possible way is to inject radiolabeled sdAbs and measure the radioactive emission
directly from the total brain homogenate. However, in this case, a controlled number of
radioisotopes per sdAb is preferable for correct quantification.

The presence of sdAbs after systemic administration can also be assessed by ex vivo
fluorescence imaging on a total perfused brain. The scanning of the intact brain with
imaging systems allows a more visual detection of the brain-penetrated sdAbs. This was
tested with VHHs coupled with a near-infrared fluorescent imaging probe NHS-IR800
(LiCor, Lincoln, NE, USA), which covalently binds to the primary amines of the protein
(N-terminus and/or accessible lysine side chains) [136]. To obtain more details on brain
biodistribution, studies can be done on brain sections, as with the VHHs FC5-IR800,
EG2-IR800, and A20.1-IR800 (two consecutive injections of 7 mg/kg given 1 h apart) [136]
(Table 7). Apart from fluorescence, autoradiography is also possible. It is more sensitive and
reduces the background signal that one can have because of the tissue’s autofluorescence.
However, this technique may require a long-time exposure to the radiolabeled sdAb to
obtain results (around a three-week exposition) [141].

However, chemical coupling can trigger a loss of binding affinity and/or functional
activity, as observed with FC44-IR800 [136]. It may alter the BBB crossing efficiency or
the brain accumulation of the VHH and then compromise the study. The same goes for
radiolabeling.

To avoid this chemical coupling, one way is to perform immunofluorescence or im-
munohistochemistry on the brain slices with an anti-VHH antibody or directed against a
tag present in the sdAb construct (such as histidine, cMyc or Flag tags). To demonstrate the
capacity of VHH E9 to reach its cytosolic astrocytic target GFAP, mice were perfused with
400 µg, 4 mg, or 25 mg of E9 for 60 min via the carotid artery to limit plasma clearance. Clear
immunostaining of astrocytes was obtained with 4 mg and 25 mg 1 h after the intracarotid
infusion. Staining was observed intensely in the ipsilateral hemisphere in the astrocytic
endfeet adjacent to blood vessels (Table 7). It was also observed in the corpus of astrocytes
located in several regions: the corpus callosum, the hippocampus, the olfactory bulb, and
the gray matter. When injected intravenously (2 mg), the immunostaining was specifically
observed in the proximity of ventricular regions. This confirmed the in vivo brain uptake
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of E9 VHH. It also demonstrated that it can still reach its cytoplasmic target and acts like
an intracellular antibody fragment (also called intrabody) [138].

3.3. Quantification in Brain Fluids

Molecules administered systemically can enter brain parenchyma by reaching the
cerebrospinal fluid (CSF) first via passage across the blood-CSF barrier. They can cross
the fenestrated capillaries (60–80 nm fenestrations [142]) and the surrounding epithelial
cell monolayers that form the choroid plexus and other circumventricular organs [143].
However, the amount of this passage is limited by the relatively low surface exchange
compared to that of the BBB. Thus, the main brain route from the blood is crossing the BBB.
The molecules are then transported by diffusion or convection from the interstitial fluid
(ISF) to the CSF (for review see [143]). Whether it is directly through the choroid plexus
or indirectly through the BBB, at a certain point, molecules end up in the CSF. They move
along with CSF’s flow throughout the CNS: from lateral and third ventricles to the fourth
ventricles; then into the cerebral and spinal subarachnoid spaces; and finally, undergo a
re-absorption into venous blood. Thus, brain-penetrating molecules can be detected in
the CSF compartment. Given that the precise site of action of a neurotherapeutic is likely
unknown and that the accumulation site could rather correspond to a sequestration zone,
CSF was thought to be a good surrogate. It is not surprising that many studies have used
CSF concentration as an indicator of drug brain access. Traditional concentration-effect
studies using lipophilic compounds provided evidence that supports CSF concentration
as a reference for examining the pharmacodynamic characteristic of a pharmacological
agent. The sampling is practical. It can easily be performed through catheters inserted in
the cisterna magna (Figure 1D) [143]. However, the experimenter has to be careful not to
compromise the sample with blood contamination. This approach was used by Haqqani
and colleagues in 2013 to quantify the brain delivery of four VHHs: FC5, FC44, EG2, and
A20.1, described above (Table 7). They were co-administered in 3 consecutive injections
of 7 mg/kg given 1 h apart. The CSF was collected 15 min after the last injection. The
sensitivity of liquid chromatography coupled with mass spectrometry method (NanoLC-
SRM-ILIS) allowed the detection of unlabeled nanobodies at 1.7 ng/mL without removing
proteins naturally abundant in the CSF [136].

However, opinions differ within the scientific community concerning the relevance
of using the antibody or sdAb’s concentration in the CSF in assessing its entry into the
brain. Indeed, some argue that all blood proteins can be found in a size-dependent manner
in the CSF due to the permeability of the choroid plexus. Therefore, this might not be
evidence of transport into the brain, unlike a direct quantification from the brain interstitial
space [144]. Such a detection way could be possible with the development of cerebral
microdialysis (Figure 1D) (Table 7). Initially used to collect free monoamines and other
small molecules from neural tissues, this technique is being extended to macromolecule
samplings such as sdAbs and IgGs [145–147]. This is due to the recent development of
probes with larger pore membranes and an adapted push−pull system [148–150]. In
cerebral microdialysis experiments, it is important that the probe implantation does not
significantly alter the integrity of the BBB. This could compromise the concentration values.
Thus, a delay of 16–24 h after probe implantation is given before starting the experimental
procedure to allow the BBB to recover. The integrity of the BBB can be inspected by
the extravasation of Evans Blue or FITC-dextran in the vicinity of the probe by using
fluorescence microscopy [145,146].

To investigate the brain uptake of monovalent nanobodies, the concentration of the
VHH An-33 against the Trypanosoma brucei brucei variant-specific surface glycoprotein was
determined in hippocampal microdialysates of both healthy rats and rats with encephalitic
stages of African trypanosomiasis [145] (Table 7). The ELISA analysis of unlabeled Nb An-33
administered intravenously (4 mg/kg bolus) showed only a limited proportion (~0.0005%)
of the injected dose, corresponding to 50 ng/mL. This concentration is significantly below
the therapeutic concentration needed (≥0.5 µg/mL), as determined in vitro.
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In another study, the concentration of VHHs from hippocampal microdialysates was
determined for a bispecific nanobody (Nb105) consisting of an anti-transferrin nanobody
(Nb62) fused to a nanobody targeting the green fluorescent protein (GFP) (Table 7). The
same anti-GFP nanobody fused to an irrelevant nanobody raised against a chicken lysozyme
was used as a negative control. Mice received a first dose of 250 pmol/g of either Nb105
or control intraperitoneally, followed by a higher dose (750 pmol/g) 240 min later. The
quantification by a wash-free assay named AlphaScreen™ showed a peak concentration
of Nb105 at 150 min. After the second injection, the negative control bispecific nanobody
was also detected. This could be explained by a partial recovery of the BBB. It could also
support the idea that circulating macromolecules can nonspecifically enter through the
choroid plexus. This observation was confirmed by a recent in vivo sampling technique,
cerebral open-flow microperfusion (Figure 1D and Table 7). It is similar to microdialysis,
except the probe has a 100 µm-wide open exchange area instead of a membrane. With this
technique, the delay between probe implantation and sampling could be prolonged to 14
days, which gave more time for BBB recovery [146].

Moving from relative detection to absolute quantification in a brain parenchyma re-
gion can help to predict the therapeutic effectiveness of an antibody candidate and adapt
the dosage. As discussed by Shen et al. (2004) [143], based on data from a dozen published
preclinical pharmacokinetic studies on small molecule drugs (antibiotics, analgesics, an-
tidepressants, anticancer and antiepileptics), the CSF-to-ISF ratio may be greater than 1
(CSF > ISF) or the expected less than 1 (CSF < ISF). The first case could be explained by
a favored efflux transport at the BBB or the choroid plexus. It could also be attributed to
active intracellular uptake or sequestration. In the second case, the lower CSF concentration
is consistent with a sink action of CSF. It could also reflect a slower kinetic equilibration in
the CSF space. The determination of ISF concentration appears to be more relevant in both
cases since the CSF level would overestimate or underestimate the actual concentration of
the candidate molecule in the site of action. However, the molecule partitioning among
the different brain compartments can be complex. Regional variation in brain ISF and
along the CSF flow path has been reported. To our knowledge, no published study has
investigated the pharmacokinetics of sdAbs in different brain regions in a simultaneous
manner. However, there is a study on endogenous rat IgG and the exogenous human-
specific antibody trastuzumab that tends to confirm this difference in brain compartment
distribution. At steady-state, the endogenous IgG is more concentrated in the cisterna
magna CSF (CSFCM) than in the lateral ventricle CSF (CSFLV), while the concentration in the
CSFLV is similar to the one in the striatum ISF (ISFST). Regarding the antibody trastuzumab,
which has no target in rats, CSFLV concentration was found to be higher compared to that
of the ISFST at the initial time points following its systemic administration. This suggests
a first entrance through the choroid plexus. On average, the CSFCM and CSFLV were not
statistically different. At the same time, CSFCM was slightly lower than ISTST, which is the
opposite of the previous findings on endogenous IgG. These observations provide insights
into the importance of the sampling site.

3.4. Evaluation in Living Animals

Imaging techniques, such as positron emission tomography (PET) and single photon
emission computed tomography (SPECT), are extensively used in clinical neuroscience.
They significantly contributed to the understanding of the cellular and molecular mecha-
nisms underlying CNS pathophysiology. For preclinical research, these technologies have
been adapted for small laboratory animal models. It gave the possibility to visualize in real-
time the brain uptake of radiolabeled VHHs as demonstrated by Lesniak and colleagues
by PET imaging [151] (Figure 1E). The authors showed that a [89Zr]nanobody without a
specific target in mouse brain elicits a negligible brain-uptake upon intravenous administra-
tion in comparison with an intracarotid route (Table 7). The intracarotid infusion resulted
in a peak concentration of 25.79 ± 15.79 %ID/cc (% of injected dose per cubic centimeter
of tissue) in the ipsilateral hemisphere. However, no accumulation was observed in the
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contralateral one. At 24 h post-infusion, half of the nanobody still remained. In addition to
that study, we can also mention the µ-SPECT and PET analyses of [99mTc]VHH An-33 and
[125I]VHH-E9, respectively [141,145] (Table 7).

Selecting a suitable physiological readout is a key to helping assess the potential
of a candidate sdAbs to validate both the brain penetration and the therapeutic value
of a candidate sdAb. It is provided by physiological readouts which are known to be
modulated by the intracerebral target (Figure 1E) (Table 7). It can be hypersensitive to
thermal stimuli, as observed in inflammatory pain models such as the Hargreaves model.
The paw withdrawal latency is reduced in sick animals because of thermal hyperalgesia. A
single intravenous injection of FC5 (7 mg/kg) does not increase the latency [137]. Neither
does 1 mg/kg of galanin, a neuropeptide that is known to produce analgesia by binding to
GalR1 and GalR2 receptors expressed in the brain. This means that FC5 has no effect on
thermal analgesia, and that galanin cannot cross the BBB on its own when given systemically.
Interestingly, galanin chemically conjugates to FC5 (6 mg/kg) or to an IGF1R-targeting
VHH (IGF1R-4) (3 mg/kg), exhibiting an analgesic effect. It is 4-fold more pronounced
with IGF1R-4-galanin, suggesting a better brain uptake of IGF1R-4 in comparison with
FC5 [137].

In the same pain model, the brain penetration of FC5 fused with the human Fc domain
was evaluated by using dalagrin and neuropeptide Y as BBB-impermeable neuropep-
tides [152]. This approach could be tested on VHH targeting G-protein coupled receptors
(GPCRs) involved in pain alleviation, such as the metabotropic glutamate receptor type 1.
Inhibiting its function with an engineered BBB-crossing antibody triggered an analgesic
effect on the Hargreaves model [153]. It could be interesting to test unmodified sdAbs.
The large group of GPCRs represents more than 30% of therapeutic drug targets and still
constitutes a niche for future drug discovery [154] (Table 7).

Monitoring body temperature can also be a good readout to assess brain delivery. As
an example, the work of Wouters and his colleagues in 2020 on an anti-transferrin receptor
nanobody Nb62, described above, fused with neurotensin [155]. Neurotensin is a BBB-
impermeable neuropeptide, which elicits hypothermia when present in the brain. A body
temperature drop was observed in mice that received a dose of 250 pmol/g intraperitoneally.
A peak was obtained 150 min after the injection. In contrast, no functional response was
observed with the negative control VHH (Table 7).

Of note, the choice of readout can impact the delay in obtaining results or its relevance
for the therapeutic purpose of the sdAb. For instance, cognitive-related behavior will
require a more complex and longer experimental procedure.

4. Conclusions

In summary, immunotherapy continues to grow in the field of neurology. Among the
antibodies, sdAbs are a promising breakthrough in the therapeutic field as they have a
better capacity to penetrate the brain. Depending on the pathology, the integrity of the BBB
can be modified, facilitating more or less this brain diffusion. Upon systemic administration,
sdAbs are able to cross the BBB without any additional strategy (BBB disruption or chemical
coupling or modifications), even though the mechanisms of entry into the brain are still
unclear for some. To help predict rapidly promising sdAb drug candidates for brain
disorders, the development of sensitive and adequate detection methods in the brain may
be crucial. Hence, investigations on a good technique in terms of short completion time,
high sensitivity, and relevance of models are progressing (Table 7).
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Table 7. Nonexhaustive list of techniques used to assess brain penetration of sdAbs.

Evaluation
Method Protocol Assay Used sdAb

Evaluated
sdAb

Format Target Key Findings References

Transmigration
across in vitro

BBB model

HCEC + medium
conditioned by

fetal human
astrocytes

ELISA
* FC5

VHH

TMEM-
30A

Both FC5 and FC44
cross the in vitro

BBB in an
energy-dependent

manner

[135]

** FC44 HCEC
proteins

SV-ARBEC

Mass
spectrometry
(MRM-ILIS)

FC5 TMEM-
30A

FC5 crosses more
rapidly than FC44
and A20.1. A20.1

did not accumulate
over time while
FC5 reached the

highest
accumulation level

at 60 min time
point

[136]

FC44 HCEC
proteins

A20.1
Clostridium

difficile
toxin A

SV-ARBEC
IGF1R3,
IGF1R4,
IGF1R5

Extracellular
domain of
the human

IGF-1R

The three VHHs
cross the in vitro
BBB, while A20.1
cannot. IGF1R3
shows a 3-fold

higher apparent
permeability value
compared to FC5

[137,156]

HCMEC/D3

ELISA

E9
Cytosolic
human
GFAP

7.8% of the applied
quantity of E9 was
detected at 60 min

time point

[138]

BCEC + newborn
rat astrocytes

ni3a,
pa2H

Aβ brain
aggregates

VHHs cross the
in vitro BBB in an
energy-dependent
manner and with a

higher
transmigration

velocity than FC5

[139,140]

Ex vivo
detection after

peripheral
administration

i.v.
administration +

brain
homogenization

Western blot
FC5

VHH

TMEM-
30A

Both FC5 and FC44
could be detected
by western blot

after their
extraction from

brain homogenates
by ion affinity

chromatography

[135]

FC44 HCEC
proteins

i.v.
administration +

optical
tomography
sectioning

of brain

Fluorescence
imaging FC5 TMEM-

30A

FC5-injected
animals showed

higher
fluorescence in the
brain compared to

control VHHs
(EG2 and A20.1)

[136]
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Table 7. Cont.

Evaluation
Method Protocol Assay Used sdAb

Evaluated
sdAb

Format Target Key Findings References

intracarotid
infusion or i.v.

administration +
brain slicing

Immunostaining E9
Cytosolic
human
GFAP

Astrocytes were
immunostained at

1 h
post-intracarotid
injection (4 and
25 mg/kg). An

administration by
i.v. route showed

immunostaining in
the proximity of

ventricular regions

[138]

i.v.
administration in

P2APP mice +
brain slicing

Fluorescence
imaging

R3VQ Aβ brain
aggregates

Amyloid plaques
were labeled

throughout the
brain 4 h

post-injection

[103]

i.v.
administration in
Tg4510 + brain

slicing

A2 Tau
inclusions

Neurofibrillary
tangle-like

structures were
stained throughout

the brain 4 h
post-injection

[103]

i.p.
administration in

FVB/N mice +
brain

homogenization
or brain slicing

ELISA and
immunohisto-

chemistry
PrioV3

Isoform
scrapie
prion

protein
PrPSc

The
immunodetection
showed a biphasic

pattern in brain
homogenates.

PrioV3
accumulated in the
hippocampus, the

alveus, and the
cerebellar cortex

from 4 to 24 h
post-injection

[134]

i.v.
administration in

wild type and
and ArcSwe mice

Autoradiography E9
Cytosolic
human
GFAP

The radiolabeling
signal was more

intense throughout
the brain of

ArcSwe mice at 8 h,
but did not show a

clear association
with the target

(GFAP) staining

[141]



Int. J. Mol. Sci. 2023, 24, 2632 18 of 28

Table 7. Cont.

Evaluation
Method Protocol Assay Used sdAb

Evaluated
sdAb

Format Target Key Findings References

i.v.
administration +

brain
homogenization
or brain slicing

ELISA and
immunohisto-

chemistry

*** TXB2
fused
with

human Fc
domain

Fc-
fused

VNAR

Transferrin
receptor

A brain
concentration of

6 nM was found at
18 h.

Immunoreactivity
was observed in
endothelial cells,
choroid plexus

epithelial cells and
neurons in

different regions of
the brain

[157]

i.v.
administration in
a mouse model

of brain cancer +
brain slicing

Fluorescence
imaging VH-9.7 VH

Glioblastoma
stem-like

cells (GSC)

VH-9.7 was
localized to the
human 22 GSC

orthotopic
xenografts

[62,64]

Detection in
brain fluids

after peripheral
administration

i.v.
administration in

rats + CSF
sampling

Mass
spectrometry

(NanoLC
-MRM-ILIS)

FC5

VHH

TMEM-
30A

The unlabeled
VHHs could be
detected at very

low amount
(1.7 ng/mL)

without removing
proteins naturally
occurring in the

matrix.

[136]
FC44 HCEC

proteins

EG.2 EGFR

A20.1
Clostridium

difficile
toxin A

i.v.
administration in
both healthy and

rats with
encephalitis +
hippocampal

microdialysate
sampling

ELISA +
radioactivity
measurement

An-33

Trypanosoma
brucei brucei

variant-
specific

surface gly-
coprotein

Approximately
0.0005% of the

administered dose
was detected,

which is below the
therapeutic

concentration

[145]

i.p.
administration in
mice + followed

by
microdialysate

collection

Alpha-Screen Nb105 bi-
VHH

Transferrin
receptor

and green
fluorescent

protein

A peak
concentration was

observed at 150
min time point

[146]

i.v.
administration or

intracarotid
infusion in

healthy
C3HeB/FeJ mice

PET/CT Nb11

No specific
target in
mouse
brain

The nanobody
showed a higher
brain-uptake via
intracarotid route

but did not
accumulate in the
controlateral side.

Half of the
nanobody still

remained at 24 h

[151]
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Table 7. Cont.

Evaluation
Method Protocol Assay Used sdAb

Evaluated
sdAb

Format Target Key Findings References

i.v.
administration in
both healthy and

rats with
encephalitis

µ-SPECT An-33

Trypanosoma
brucei brucei

variant-
specific

surface gly-
coprotein

Only a small
portion of the

VHH reaches the
brain parenchyma
in healthy animals
(∼0.0005% of the
initial dose). This

passage is
increased in the

pathological
condition

[145]

i.v.
administration in

wild-type and
ArcSwe mice

PET E9
Cytosolic
human
GFAP

VHH E9 displayed
a brain average
concentration of

0.15% ID/g at 2 h
post-injection in
wild-type mice.

The radiolabeling
was detected in the

brains of both
wild-type and

ArcSwe mice up to
24 h

[141]

i.v.
administration in

P2APP mice

in vivo
two-photon

imaging
R3VQ Aβ brain

aggregates

Both plaques and
vascular Aβ were

stained in the
cortical surface up
to 350 µm deep at

30 min
post-injection. It
persisted up to

4 h post-injection

[103]

i.v.
administration in

Tg4510
A2 Tau

inclusions

Neurofibrillary
tangle-like

structures were
stained in the

cortical surface up
to 350 µm at 2 h
post-injection. It
persisted up to

4 h post-injection

[133]

i.v. bolus
injection in

wild-type and
APP/PS1

transgenic mice

PET/SPECT ni3a,
pa2H

Aβ brain
aggregates

Both ni3a and
pa2H show lower
brain uptake than

FC5

[140]
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Table 7. Cont.

Evaluation
Method Protocol Assay Used sdAb

Evaluated
sdAb

Format Target Key Findings References

Physiological
readout

i.v.
administration of
the sdAb fused
with galanin in
the Hargreaves

model

Analgesic effect

FC5
VHH

TMEM-
30A

IGF1R4-galanin
exhibited a more

pronounced
analgesic effect

than FC5-galanin.
This suggests a
better uptake of

IGF1R4

[137]

IGF1R4 IGF-1R

i.v.
administration of
the sdAb fused
with galanin or
neuropeptide Y

in the
Hargreaves

model

FC5
fused
with

human Fc
domain

FC-
fused
VHH

TMEM-
30A

Systemic
administration of

FC5-dalagrin
induced an

analgesic response
with a maximal
effect obtained

after three
injections of

7 mg/kg separated
1h apart. Systemic

dosing of
FC5-neuropeptide

Y suppressed
thermal

hyperalgesia

[152]

i.v., i.p. and s.c.
administration of
the sdAb fused

with neurotensin
in TLR4-/- mice

Hypothermia Nb62 VHH Transferrin
receptor

A peak effect was
obtained at

100–110 min and
120–180 min after

i.v. and i.p.
injections,

respectively. The
drop amplitude is
doubled by the i.p.
route (–6 ◦C) and
the hypothermic
effect lasted 7 h

compared to 3 h by
i.v. route. The
subcutaneous

route showed the
more prolonged

effect

[155]

i.v.
administration of
the sdAb fused

with neurotensin
in mice

Hypothermia

*** TXB2
fused
with

human Fc
domain

Fc-
fused

VNAR

Transferrin
receptor

TXB2-hFc induces
a drop in

temperature in a
dose-dependent

manner at 2 h time
point and returned

to normal by 6 h.
The minimal dose

required to
produce

hypothermic effect
is 10 nmol/kg
(0.75 mg/kg)

[157]

* GenBank no. AF441486. ** GenBank no. AF441487. *** VNAR TXB2 fused to human IgG1 Fc likely corresponds
to TXB4.
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Abbreviations

%ID/cc Percentage of injected dose per cubic centimeter of tissue
AAV Adeno-associated virus
AD Alzheimer’s disease
ARIA Amyloid-related imaging abnormalities
Aβ Amyloid-β peptides
BBB Blood-brain barrier
BCEC Brain capillary endothelial cells
CD20 B-lymphocyte antigen named “cluster of differentiate 20”
CD52 B-lymphocyte antigen named “cluster of differentiate 52”
CGRP Calcitonin gene-related protein
CJD Creutzfeldt-Jakob’s disease
CNS Central nervous system
cOFM Cerebral open flow microperfusion
CSF Cerebrospinal fluid
CSFCM Cerebrospinal fluid of cisterna magma
CSFLV Cerebrospinal fluid of lateral ventricle
ELISA Enzyme-linked immunosorbent assay
EMA European medicines agency
Fc Fragment crystallizable of classical antibodies
FDA Food and drug administration
GFAP Glial fibrillary acidic protein
GPCR G protein-coupled receptor
GSC Glioblastoma stem-like cells
HCEC Human cerebromicroventricular endothelial cells
hCMEC/D3 Human cerebral microvascular endothelial cell line hCMEC/D3
HER2 Human epidermal growth factor recptor-2
i.p. Intraperitoneal
i.v. Intravenous
IGF1R Insulin-like growth factor 1 receptor
IgG Immunoglobulin G
ILIS Isotype labeled internal standards
ISF Interstitial fluid
ISFST Interstitial fluid of striatum
LINGO-1 Leucine-rich repeat and immunoglobulin domain-containing protein 1
LRRK2 Leucine rich-repeat kinase 2
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mAb Monoclonal antibody
MRM Multiple reaction monitoring (also known as SRM)
MS Multiple sclerosis
MSRV-Env protein Multiple sclerosis associated retrovirus envelope protein

NanoLC-SRM-ILIS
Nano-liquid chromatography coupled with selective reaction monitoring
and isotype labeled internal standards

NFT Neurofibrillary tangles
PCNSL Primary central nervous system lymphoma
PD Parkinson’s disease
PET/CT Positron emission tomography/computed tomography
PET Positron emission tomography
PrPC Cellular isoform of the prion protein
PrPSc Scrapie isoform of the prion protein
RMGa Repulsive guidance molecule A
s.c. Subcutaneous
sdAb Single-domain antibody
SPECT Single-photon emission computed tomography
SRM Selective reaction monitoring (also known as MRM)
SV-ARBEC SV40-immortalized adult rat brain endothelial cells
TLR4 Toll-like receptor 4
TMEM-30A Transmembrane protein 30A
VCAM Vascular cell adhesion molecule
VEGF Vascular endothelial growth factor
VEGFR Vascular endothelial growth factor receptor
VH Heavy chain variable domain of mammalian antibody
VHH Heavy chain variable domain of camelid’s antibody
VLA-4 Very late antigen-4

VNAR
Heavy chain variable domain of sharks’ antibody, also known as variable
domain of new antigen receptor
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