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Abstract: Data provenance refers to records of the inputs, entities, systems, and processes that influence data of in-
terest, providing a historical record of the data and its origins. Secure data provenance is vital to ensure
accountability, forensics investigation of security attacks and privacy preservation. In this paper, we propose
Prov-Trust, a decentralized and auditable SGX-based data provenance system relying on highly distributed
ledgers. This consensually shared and synchronized database allows anchored data to have public witness,
providing tamper-proof provenance data, enabling the transparency of data accountability, and enhancing the
secrecy and availability of the provenance data. Prov-Trust relies on Intel SGX enclave to ensure a trusted
execution of the provenance kernel to collect, store and query provenance records. The use of SGX enclave
protects data provenance and users’ credentials against malicious hosting and processing parties. Prov-Trust
does not rely on a trusted third party to store provenance data while performing their verification using smart
contracts and voting process. The storage of the provenance data in Prov-Trust is done using either the log
events of Smart Contracts or blockchain’s transactions depending on the provenance change event, which en-
ables low storage costs. Finally, Prov-Trust ensures an accurate privacy-preserving auditing process based on
blockchain traces and achieved thanks to events’ logs that are signed by SGX enclaves, transactions being
registered after each vote session, and sealing the linking information using encryption schemes.

1 INTRODUCTION

Data provenance refers to the chain of ownership
of a piece of data that covers who created it, who
modified and accessed it (Moreau et al., 2010).
Data provenance is important to investigate security
incidents where these data are analysed to detect
malicious actions, data breaches and access policy
violations. Many solutions have been proposed to
collect, store and manage provenance data (Zafar
et al., 2017). However, many challenges have been
raised by these systems as they need to ensure both
(i) a secure collection and verifiability/integrity of
provenance data, and (ii) the confidentiality and
secure storage of collected data.

The increased use of cloud computing services
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adds new challenges to data provenance systems. Se-
curity of data stored in clouds is of great importance,
as the user delegates the management of his data to
a service provider who is not considered as a fully
trusted entity. Therefore, data provenance is more
and more needed in cloud computing services to en-
sure users’ data auditing and accountability. Man-
aging data provenance in clouds is challenging as
these data may reveal private information about the
stored data or the users. Thus, there is a need to
protect the provenance data against unauthorized ac-
cess while preserving the privacy of users. To address
these challenges, several secure provenance systems
have been introduced. Some systems have imple-
mented cryptographic mechanisms such as homomor-
phic encryption to search over provenance data (As-
ghar et al., 2012) or attribute based encryption to en-
sure encrypted access control over provenance data
(Belguith et al., ). Some other research works have
addressed the secure collection of provenance data re-
lying on trusted software and/or hardware tools such



as Trusted Platform Module (TPM) (Taha et al., 2015;
Ko and Will, 2014). Recently, Blockchain technol-
ogy have been leveraged to ensure a tamper-proof and
available data provenance systems (Li et al., 2019;
Ramachandran and Kantarcioglu, 2018).
Contributions — In this paper, we present Prov-
Trust, an Intel SGX and blockchain based data prove-
nance architecture that provides a secure and privacy
preserving data provenance generation and storage.

Prov-Trust relies on the distributed tamper-proof
nature of the blockchain technology, cryptographic
techniques and trusted hardware, i.e, Intel SGX to se-
curely collect and store data provenance while pre-
serving the privacy of sensitive information. Opera-
tions over data are monitored in real time to collect
provenance data, that support the compliance of ac-
cess control policy enforcement and intrusion detec-
tion based on provenance middlewares (Gehani and
Tariq, 2012).

Prov-Trust relies on Intel SGX enclave to ensure a
trusted execution of the provenance kernel to collect,
store and query provenance records. The use of SGX
enclave protects data provenance and users’ creden-
tials against malicious hosting and processing parties.
The Prov-Trust framework does not rely on a trusted
third party to store provenance data while perform-
ing their verification using smart contracts and voting
process. Indeed, a smart contract is used to monitor
the changes performed over a document while imple-
menting access control policies and maintaining all
users’ accesses/modification to the document. The
vote contract allows a set of designated users to vote
for/against the change of a set of defined provenance
change events, namely ”download” and ”transfer”.
The storage of the provenance data in Prov-Trust is
done using either the log events of Smart Contracts
or blockchain’s transactions depending on the prove-
nance change event, which enables low storage costs.

Finally, Prov-Trust ensures an accurate privacy-
preserving auditing process based on blockchain
traces and achieved thanks to events’ logs are signed
by SGX enclaves, transactions being registered after
each vote session, and enciphering of linking infor-
mation with respect to an attribute based encryption
and re-randomizable encryption schemes (Kaaniche
and Laurent, 2018).

Paper organization — This paper is organized
as follows. Section 2 presents a literature review of
data provenance solutions while defining security and
functional requirements for the proposed architecture.
An overview of Prov-Trust underlying technologies
namely, Blockchain and Intel SGX is introduced in
Section 3. Afterwards, we define the network model
and we present an overview of Prov-Trust phases in

Section 4. The detailed phases of Prov-trust are pre-
sented in Section 5 before introducing the security
and privacy analysis in Section 6. The paper is con-
cluded and future works are presented in Section 8.

2 Related Work and Requirements

In this section, we first review data provenance so-
lutions. Then, we details the security and privacy re-
quirements that have to be fulfilled by the proposed
solution.

2.1 Data Provenance Solutions

Data provenance refers to the chain of ownership of a
piece of data that covers who created it, who modified
and accessed it (Moreau et al., 2010). Data prove-
nance is used to investigate security incidents where
data provenance is analysed to detect malicious ac-
tions, data breaches and access policy violations. Ex-
tensive research has been conducted on data prove-
nance in database, file workflow and operating sys-
tems (Suen et al., 2013) and many provenance man-
agement systems have been proposed (Zafar et al.,
2017). PASS is one of the first systems that have been
designed to provide automatic collection and mainte-
nance of provenance data (Muniswamy-Reddy et al.,
2006). Improved versions of PASS that supports
the integration of multiple levels of abstractions have
been introduced after its first release (Muniswamy-
Reddy et al., 2008). PASSv2 operates within the
three levels of abstraction: the system call bound-
ary, a workflow specification language, and a domain-
specific application level. HiFi is a kernel level prove-
nance system that uses Linux Security Modules to
gather provenance data (Pohly et al., 2012). These
generated data can be forensically analysed to detect
malicious activities thanks to the tracking of the ker-
nel and application actions within the Linux system.
SPADE (Gehani, 2016) is a provenance middleware
providing users with a framework to collect, store and
query provenance data that are generally data graphs
describing the history of processes ran over a piece of
data. Open Provenance Model (OPM) is a methodol-
ogy representing the provenance graphs in three types
of nodes: artifacts, processes and agents (Moreau
et al., 2011).

The emergence of cloud computing created a need
to adapt/develop provenance systems to track data
changes in such highly distributed systems. Col-
lecting provenance data is particularly challenging
in complex systems such as cloud computing that
presents multiple layers of interacting software and



hardware. Cloud computing systems are dynamic and
heterogeneous systems involving several components
provided by different providers. Many data prove-
nance systems have been designed for cloud comput-
ing. SPADEv2 (Gehani, 2016) has been introduced
as an open source tool supporting both graph and re-
lational database storage and querying in a distributed
system which makes it adapted for cloud computing.
S2Logger is a solution designed to capture and visu-
alise end-to-end provenance data across all guest and
host physical machines in distributed virtualised envi-
ronments such as cloud computing (Suen et al., 2013).

As provenance data usually contain sensitive in-
formation that should be kept secure. Additionally,
provenance data can be modified or forged by a mali-
cious attacker to mislead investigation and analysis of
events logs. Assuring a trusted data provenance will
enable users to verify the operations performed over
their data. Therefore, provenance data should fulfill
a set of security criteria such as confidentiality, in-
tegrity, unforgeability,non-repudiation and availabil-
ity (Zafar et al., 2017). The Secure Provenance
(SPROV) scheme is one of the first provenance solu-
tions that considered security features (Hasan et al.,
2009). SPROV automatically collects data prove-
nance besides providing security assurances of con-
fidentiality and integrity of these data. Asghar et al.
(Asghar et al., 2012) designed a secure data prove-
nance storage system that enables secure and pri-
vacy preserving search over provenance data based on
cryptographic algorithms.

To fulfill availability and integrity requirements,
Blockchain systems have been used to store and man-
age provenance data. Blockchain has been first lever-
aged in data provenance systems in 2017 by intro-
ducing Provchain (Liang et al., 2017). Provchain is
a data provenance system based on blockchain for a
cloud applications. In Provchain, OPM has been used
to collect provenance data in real-time. Afterwards,
operations history are saved in blockchain transac-
tions. This enables auditors to validate the operations
by consulting the transactions receipts. BlockCloud
(Shetty et al., 2017) monitors users activities in real
time using special classes of events namely, hooks and
listeners that enables the generation of provenance
data. The provenance data are stored in transactions
that are broadcasted to the core of blockchain net-
work created by a specific set of validating virtual ma-
chines. Similar to Provchain solution, the provenance
auditor validates the data using the transactions re-
ceipts. SmartProvenance (Ramachandran and Kantar-
cioglu, 2018) applies Ethereum Smart Contracts to
provide data provenance. SmartProvenance is based
on two smart contracts, namely Document Tracker

contract and Vote contract. The Document Tracker
smart contract is used to monitor the operations per-
formed over a given document while the vote contract
specifies the voting protocol. A voting process is used
to validate every provenance change event.

These solutions do not address a trusted genera-
tion of the provenance data, yet unforgeability is a
security requirement that needs to be achieved while
generating and storing provenance data. The unforge-
ability means that an adversary cannot forge a valid
provenance record either by modifying any existing
one or directly introducing a new forged provenance
record without being detected. Hence, unforgeability
guarantees the tamper evidence (Asghar et al., 2012;
Taha et al., 2015). A first attempt to use Trusted Plat-
form Module to ensure trust in provenance genera-
tion had been introduced by Bock et al. (Böck et al.,
2010). This solution presented a data provenance col-
lection solution using a TPM chip and the AMD Se-
cure Virtual Machine (SVM) technology. This solu-
tion has been enhanced further by Taha et al. (Taha
et al., 2015) by adding the integrity and availability of
the provenance data to the solution.

In our proposed solution Prov-Trust, we leverage
Blockchain technology and trusted hardware; the In-
tel SGX to provide trustworthy and secure provenance
data.

2.2 Security and Functional
Requirements

Prov-Trust has to fulfill the following security and
functional requirements, defined as:

• data confidentiality of provenance data — the
proposed framework has to ensure the secrecy of
collected provenance data as well as associated
meta-data.

• verifiability/integrity — the integrity of prove-
nance records is important during their storage,
processing, and transport. Given the nature of
most of the provenance data, integrity is gener-
ally considered as the most important assurance
to achieve trustworthy provenance.

• accountability — accountability refers to the
traceability capability. In fact, as data are stored
and processed in remote servers, a data owner
should be provided with a complete transparent
view over data collection, access and processing
operations.

• auditability — the proposed solution has to en-
able authorized auditing authorities to initiate an
investigation and obtain consistent proofs when
non-compliant activities have been recorded.



• privacy preservation — the privacy requirement
mainly refers to the unlinkability. For instance,
Prov-Trust has to guarantee that created smart
contracts by the same data owner can not be linked
by public verifiers as well as non-authorized ser-
vice providers or/and users. Furthermore, BC-
transactions associated to the same data should
not be linked.

3 Background

In the following, we introduce the technologies
that we use to develop Prov-Trust. We first detail the
trusted hardware Intel SGX in subsection 3.1, then the
Blockchain technology in subsection 3.2.

3.1 Intel SGX

The trusted hardware has been introduced to solve
the issue of secure remote computation, which means
that a user can securely execute a software on a dis-
tant untrusted party. The trusted hardware creates a
secure container enabling a user to upload his soft-
ware and data to the secure container where compu-
tations are performed while protecting their confiden-
tiality and integrity. Trusted hardware solutions have
been introduced such as TPM (Main, 2007) and TXT
(Grawrock, 2009).

Intel’s Software Guard Extensions (SGX) is the
latest iteration of designing trusted hardware solu-
tions (McKeen et al., 2013). Intel SGX is a set of
CPU extensions enabling the creation of a trusted iso-
lated execution environments. This isolated execu-
tion environment which is referred to as Enclave, en-
ables running an application residing in the enclave
while protecting its confidentiality and integrity from
other software including an untrusted operating sys-
tem. Physically, the enclave is located inside a hard-
ware guarded area of memory called Enclave Page
Cache (EPC).

Besides isolated code and execution, Intel SGX
enables two more functionalities which are sealing
and attestation. Sealing is defined as the procedures of
storing and encrypting private data on a storage disk
(Intel, 2016; Cui et al., 2018; Kaaniche et al., 2020).
The SGX processor uses a secret key denoted by Root
Seal Key that is physically embedded in the hardware
by the manufacturer. Upon creating the enclave, a seal
key is derived from the root seal key, which will be
used to encrypt and store the existent data once the
enclave is deleted. The second property is the attesta-
tion that is used to prove to a user that his communica-
tion is being performed with a software residing and

running inside the enclave hosted by the Intel SGX
hardware. This attestation is a cryptographic signa-
ture certifying the hash of the contents of the enclave.
The user verifies the attestation key used to generate
the signature against an endorsement certificate cre-
ated by the trusted hardware’s manufacturer. In a nut-
shell, the SGX attestation enables the user to verify
the creation of the enclave in a trusted SXG, the in-
tegrity of the data and the code loaded into the en-
clave, and creating a secure communication channel
between the enclave and an external user.

3.2 Blockchain Technology

Blockchain has been very popular since its intro-
duction in 2008. Bitcoin1 was the first blockchain
technology appeared as a means to transfer cryp-
tocurrency without reliance on a central entity which
makes it the first fully decentralised transfer system.

Blockchain is a set of transactions grouped to-
gether in a distributed ledger that is relying on a
combination of technologies such as digital signature,
peer to peer networking and cryptographic proof of
work (Swan, 2015). Blockchain is a number of trans-
actions or event recorded and saved in a public ledger
(Crosby et al., 2016). These records are shared by all
network nodes, updated by miners, monitored by ev-
eryone, and owned and controlled by no one (Swan,
2015). These network nodes are end-users using their
personal computers or mobiles while the miners are
nodes that have an extensive computational resources
used to validate the transaction.

In order to implement the decentralised ser-
vices and applications of blockchain, two types of
blockchain exist currently on the market: public
or permissionless blockchain and private or permis-
sioned blockchain. Permissionless blockchain is a
framework built on the existent blockchain technol-
ogy: Bitcoin. This enables the framework to be
more resilient, transparent and secure as Bitcoin is
already utilised by many users. However, permis-
sionless blockchain needs to mine the blocks every 10
minutes and the used scripting language is not Turing-
complete (Swan, 2015).

Permissioned blockchain is a blockchain enabling
the same functionalities as the permissionless one
such as mining the cyptocurrency, full decentralisa-
tion and transactions validation. On top of these func-
tionalities, permissioned blockchain enables estab-
lishing contracts referred to as smart contract along
with an automated and expressive language to write
the smart contracts.

1https://bitcoin.org/en/



Recently, permissioned blockchains are witness-
ing an increased interest across multiple domains.
This type of blockchain is considered as a promising
solution to apply blockchain technology in multiple
business applications where end-users do not need to
trust each other neither to be identified. Ethereum2

and the Hyperledger 3 are among the most known
permissionless blockchains (Wood, 2014). In permis-
sioned blockchain, there exists a central entity that
manages read/write rights operations among partici-
pating peers.

In our proposed solution, Prov-Trust, we rely
on the Hyperledger to store and manage the prove-
nance data. The Hyperledger project is an initiative
launched to facilitate the application of blockchain
technologies in business applications. It provides a
modular consensus protocol ensuring efficient scal-
ability and enhanced performances while executing
thousands of transactions per second (Vukolic, 2017).
It is actually developed and supported by a large con-
sortium of world-leading companies.

4 Prov-Trust: A SGX/Blockchain
based Data Provenance Scheme

In this section, we first define the network model
by detailing the different entities involved in Prov-
Trust, in subsection 4.1. Afterwards, we present an
overview of the proposed solution 4.2.

4.1 Network Model

As shown in Figure 1, Prov-Trust involves seven en-
tities, defined as follows:
• Data Owner (DO) — who owns data con-

tents and has sharing relationship on other users’
data, may opt for the provenance service, where
the provenance data is stored on the public
blockchain. A data owner can be a data user in the
case he accesses and makes changes on the doc-
ument where these changes are logged as prove-
nance data.

• Data User (DU) — has access to the document/-
data granted by the owner. He is able to change
the document and log the changes as provenance
trails on the blockchain. Data changes made by
the user can be monitored and validated by vote
nodes, depending on requested changes, but the
nodes may not know about details of other users’
activities.

2https://www.ethereum.org/
3https://www.hyperledger.org/

• Provenance Auditor (PA) — can retrieve all the
provenance data from the blockchain transactions
and registered events’ logs, w.r.t. associated cre-
dentials. Indeed, only authorized PAs can deci-
pher linking information, re-construct the whole
provenance graphs and correlate the provenance
entry to the data owner.

• Validators (V) — are participants, also referred to
as voters, who vote for/against the change of a set
of provenance change events, namely ”download”
and ”transfer”, using a vote protocol. We assume
that validators may be chosen based on a reputa-
tion system.

• Blockchain Network (BC) — consists of glob-
ally participating nodes. All the provenance data
will be recorded in form of blocks and verified by
blockchain nodes.

• SGX enclave — is responsible for processing
user queries and returning results to users with-
out leaking any content and access pattern to the
CS. SGX enclave is also considered to be trusted.
In particular, both integrity and confidentiality of
the code and data inside the enclave are protected
with inherent cryptographic mechanisms. Based
on the cryptographic signature provided by the
SGX, information provided by SPADE client are
certified to be generated by a trusted software.

• Cloud Service Provider (CSP) — offers a cloud
storage service and is responsible for user regis-
tration. CSPs can benefit from the Prov-Trust sys-
tem in the following aspects. First, they are able
to audit the publicly available data changes. In ad-
dition, through provenance data, they can also de-
tect intrusion from anomalous behaviours, when
privileges are granted .

4.2 Overview

Prov-Trust relies on three main layers, supporting dif-
ferent execution steps (i) the system initialisation, de-
noted as SYS INIT, (ii) the data provenance storage
phase, i.e., STORAGE, and (iii) the auditing process,
referred to as AUDIT. In the following, we provide an
overview of different execution layers and detail the
interaction flow between entities (Figure 2):

During the SYS INIT phase, the system is set up
and each entity is assigned with a pair public and pri-
vate keys. Indeed, SGX enclaves are installed on their
respective hosting devices and provided with associ-
ated keys.

The STORAGE phase encompasses two main pro-
tocols, namely the Create and Evt.
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Figure 1: Prov-Trust Architecture

During the Create protocol, the DO has first to cre-
ate a smart contract (SC), denoted by prov-doc, per
data file that he intends to track its change/access
events. The prov-doc contains the Access Control
List (ACL) on the data content, i.e., which actions
and/or entities are authorized. It also contains the
ACL on the events’ logs of the associated smart con-
tract. Note that the creation of prov-doc has to be
anchored into a BC transaction.
The DO may also –optionally– createa vote smart
contract associated with the prov-doc smart contract.
The vote SC, referred to as vote-doc, describes the
voting protocol associated with the related data file. It
specifies the process of voting and the choice of vot-
ers.
The vote-doc smart contract is mainly required to
validate both the download and transfer actions.
Note that the vote is not necessary as the data owner
may directly grant the permission to the requesting
entity.

For the Evt, two sub-cases are considered, de-
pending on the design choice of the DO. On one
hand, when a DU wants to perform some actions on a
data file, excluding the download and transfer ac-
tions, an event log will be added to the thread of the
prov-doc smart contract. Note that each event log
has to be signed by the SGX enclave of the requesting
entity. On the other hand, when DU wants to do ei-
ther a download or a transfer action, the vote-doc
smart contract is called. At the end of the vote pro-
cess, a BC transaction needs to be added including
the vote result, and signed by a chosen voter.

For the AUDIT phase, Prov-Trust considers two
auditing processes. In fact, the auditing process can
be performed either by the DO or an authorized prove-
nance auditor. As several parts of the event logs and
BC transactions are encrypted, the chaining process,
permitting the PA to reconstruct the provenance graph
associated to a specific data file, is ensured as de-
scribed in (Kaaniche and Laurent, 2018).

5 Prov-Trust Phases

In this section, we present the concrete construc-
tion of Prov-Trust phases.

5.1 System Initialisation

The SYS INIT phase includes two different algo-
rithms, defined as follows:

• Setup(ξ)→ (pp,msk) – given the security param-
eter ξ, this algorithm generates the public param-
eters pp.

• KeyGen(pp,Ei)→ (pkEi ,skEi) – derives the pub-
lic and private keys of an entity Ei, where E ∈
{DO,DU,PA,V}, i ∈ {1,N}; N is the number
of actors supported by the system. It takes
as input pp and the entity’s identifier Ei. The
KeyGen algorithm returns the entity’s pair of keys
(pkEi ,skEi).

We assume that each device di, running the
SPADE tool, i.e., data provenance algorithm, has a
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private key denoted by kEi . This proprietary key is
used to sign events associated to DO’s data files. Note
that a DO may have several devices, thus running dif-
ferent enclaves on each device. Similarly, the CSP
runs a different SGX enclave with respect to each
storage server.

5.2 Data Provenance Storage

As introduced above, the data provenance STORAGE
phase relies on the Create and Evt protocols.

5.2.1 The Create Process

The Create protocol defines the process of creating
smart contracts associated to data contents. First, the
DO first creates the prov-doc smart contract, per data
file that he intends to track its access and processing
events. The prov-doc contains two main parts : the
Access Control List (ACL) on both the data content,
i.e., which actions and/or entities are authorized, and
the events’ logs. Note that for ease of presentation,
we refer to ACLs to any access control mechanism se-
lected by the DO, to be enforced on his data. ACLs on
data contents may be encrypted, however, they have
to be accessible to the CSP, the PA as well as vot-
ers, if a voting smart contract was created. ACLs on
provenance data should ensure the access to involved
parties, with respective privileges, as implied by legis-
lation, namely data owners, data processors and con-
trollers, and auditing authorities.

For this purpose, DO establishes a direct secure
channel with the CSP, where CSP and DO authenti-
cate each other thanks to their respective (pkEi ,skEi)
pair of keys (cf. Section 5.1). The creation of
prov-doc has to be anchored into a BC transaction.
The transaction is identified with a Tid parameter.

Through this channel, DO might initiate a data storage
request to the CSP, to infer some parameters for the
smart contract prior to launching the smart contract
into the blockchain, up-to the approval of the contract
by the CSP and transmission of data to its servers.

This process is then registered in the blockchain
by the involved CSP, such as a SC creation transaction
is added. It is defined as follows:

TC = {Tid,C,C,SCid ,σkCSP}
• Tid,C – denotes the transaction identifier, which

contains a unique fresh random and a binary iden-
tifier associated with the SC generation process.

• C – refers to the type of the transaction: it corre-
sponds here to the creation of a smart contract.

• SCid – is the smart contract identifier.
• σkCSP – is the signature of all the above fields, by

the SGX enclave of the storing server, approving
the SC as well as the associated ACLs.
Note that the transaction identifier idT is then

shared with the server S and the corresponding user
DO. As presented in section 4.2, the DO may also cre-
ate a vote-doc contract that defines the voting proto-
col associated with the corresponding data file and the
process of voting and the choice of voters 4 (Remark
1). The vote-doc smart contract is mainly required
to validate both the download and transfer actions,
detailed in subsection 5.2.2.
Remark 1. Blockchain-based reputation systems—
Reputation systems are important for distributed
applications in which users have to be made account-
able for their actions, namely e-commerce websites.

4For ease of presentation, we will not detail the process
of the voting process. Note that, in our proof of concept,
we implemented a threshold-based voting protocols, while
precisely identifying the voting nodes



The Blockchain technology is suitable for supporting
reputation systems thanks to its intrinsic properties,
namely integrity and availability of registered in-
formation (Li et al., 2018). Thus, Prov-Trust may
employ a reputation system for validators, i.e., voters,
where raters are BC clients. That is, each validator’s
rate depends on the set of performed honest rating
and detected malicious actions.
Prov-Trust considers the behavior of all participating
raters for the reliability of the data. If a validator has
high reputation value, it will be frequently selected
by owners, users and service providers. For this
purpose, we set t as the threshold value of reputation,
such that if the validator’s reputation is greater than
t, so it is considered as honest. The reputation value
assigned to each validator is multi-dimensional,
which is based on clients and providers’ positive and
negative rates as well as on rates given by authorized
auditors (c.f., Table 1). As such, two weight values α

and β are defined to calculate the resulting rate for
each validator as RV = αRaud +βRint , where Raud is
the score computed based on auditors rates and Rint
is the score computed based on users and servers
rates. The Rint is based on the positive activity,

Table 1: Validator’s Score Table

Type Activity Score
continuous selection 1.0

positive recommended selection 0.75
favorite 0.25
blacklist −1.0

negative not recommended −0.5

denoted by pos and negative activity, denoted by
neg, computed as:

pos= ∑
nDO
i=1 ∑

nCSP
j=1 ∑

np
k=1 posi jk

neg= ∑
nDO
i=1 ∑

nCSP
j=1 ∑

nn
k=1 negi jk

Rint =
1
2 [

pos
nDO+nCSP

]+ 1
2 [

neg
nDO+nCSP

]

where: nDO is the number of participating own-
ers, nCSP is the number of participating servers, np is
the number of positive activities, nn is the number of
negative activities

5.2.2 The Evt Process

The Evt process defines the chronological steps for
(i) endorsing transactions associated with the retrieval
and transfer of data contents, and (ii) prov-doc logs
associated with data files’ access and versioning.
Note that these logs are not anchored as transactions,
however, they are pinned as SGX-based provenance
data and associated to the corresponding SC.

The vote-doc SC is performed, once a download

or transfer query is initiated. Note that both queries
refer to the transfer of data contents to another en-
tity, i.e., download corresponds to the transfer for
data users, transfer is related to data processors’
queries. The transfer query launches the execution
of the vote-doc smart contract, w.r.t. the requesting
CSP and a transaction is added by the CSP to the BC
defined as:

TT : (Tid,T ;T ;sid , idCSPB ;VR;σV ,enc(MCSPA);σkCSPA
)

• Tid,T – denotes the transaction identifier, which
contains a unique fresh random and a binary iden-
tifier associated with the transfer process.

• T – refers to the type of the transaction, i.e., trans-
fer query.

• (sid , idCSPB) – sid is the transfer session identifier
with the corresponding processing entity, where
idCSPB denotes its associated identifier.

• VR – represents the result of the voting process.

• σV – is the signature of the voting process’s result
concatenated with the session identifier sid .

• enc(MCSPA) – represents the encryption of a mes-
sage MCSPA , based on an ABE mechanism, i.e.,
encABE , where MCSPA contains two different mes-
sages as MCSPA = Tid,C||Tid,T/D, where Tid,C is the
creation transaction identifier and Tid,T/D is the
previous transaction identifier added by the SGX
enclave of the processing server, w.r.t. the process
on the DO’s outsourced or collected data. Notice
that Tid,C enables PA to check granted privileges
w.r.t. outsourced data contents in CSP servers.

• σkCSPA
– is the signature of all the above fields, by

the SGX enclave of the storing server.

Remark 2. Multi-level encryption of data usage
transaction’s history— Note that CSPs may rely on
a multi-level ABE scheme (Kaaniche and Laurent,
2017),(Kaaniche et al., 2018), to encrypt their mes-
sages MCSPA and MCSPB respectively. That is, de-
pending on their associated credentials (i.e; certi-
fied attributes), authorized authorities can access to
a sub-sets of the encrypted message MCSPi defined as
MCSPi = Tid,C||Tid,T/D. For instance, the authorized
provenance auditor PA may be allowed to only check
the consistency of the actual transaction.

Similarly, the download query is anchored in a
transaction such as

TD : (Tid,D;D;sid , idDU ;VR,σV ,enc(MCSP);σkCSP)

• Tid,D – denotes the transaction identifier, which
contains a unique fresh random and a binary iden-
tifier associated with the download process.



• D – refers to the type of the transaction, i.e., down-
load query.

• (sid , idDU ) – sid is the download session identifier
with the corresponding user, where idDU denotes
its DU identity. Note that DU identity can be re-
placed by authorized users group identifier.

• VR – represents the result of the voting process.

• σV – is the signature of the voting process’s result
concatenated with the session identifier sid .

• enc(MCSP) – represents the encryption of MCSP,
i.e., containing two messages such as MCSP =
Tid,C||Tid,T/D, where Tid,C is the creation transac-
tion identifier and Tid,T/D is the previous transac-
tion identifier added by the SGX enclave of the
processing server, w.r.t. the process on the DO’s
outsourced or collected data.

• σkCSP – is the signature of all the above fields, by
the SGX enclave of the storing server.

Remark 3. Update of granted privileges —
When a data owner DO wants to change granted
privileges to a given CSP, a consent negoti-
ation should be conducted and a new trans-
action is added to the blockchain, such that
{Tid,U ,U,suid ,encABE(ACLup||Tid,C),σkCSP}, such
that Tid,U is the transaction update identifier, suid
is the session identifier, encABE(ACLup||Tid,C) is the
encryption of updated access privileges associated
with the creation transaction identifier and σkCSP is
the signature of all the previous fields, by the SGX
enclave of the storing server.

5.3 Auditing

Prov-Trust supports three levels of auditing capabili-
ties, referred to as, public auditing, data owner audit-
ing, data provenance auditing.

First, the public auditing may be run by end-users,
while investigating the consistency between different
BC transactions. The main public process relies on
verifying enclaves’ signatures across endorsed trans-
actions. Note that relying on their granted privileges,
certain users may access related data, for instance, by
deciphering the first level of ABE scheme, associated
with the previous process transaction.

Second, the data owner auditing consists of veri-
fying the storage and processing of his own data con-
tents, outsourced to different CSPs. Note that DOs
are not able neither to link other DOs’ transactions,
nor identify them.

Finally, the data provenance auditing permits
provenance auditors to audit service providers, i.e.,
verifying the fulfilment of ACLs’ requirements, the

compliance with legislation, the consideration of
clients’ given consents, · · · . For this purpose, the
authorized PA identify the creation transactions, as
well as associated processing and granted privileges
update transactions, and compare the consistency of
information with SC history logs and provenance
database. On the other side, when a data owner re-
quests a private audit for a misuse of his personal
data, he shares the creation identifiers of the suspected
smart contracts with the PA. As such, the auditing au-
thority is able to lead an investigation, i.e., interpret
the content of blockchain transactions associated by
the provenance database and to detect non-compliant
activities, while crawling blockchain transactions cor-
responding to the provided smart contracts’ identi-
fiers, We note that private auditing has to be paid by
the audited service provider, if non-compliant activi-
ties are reported.

6 Security and Privacy Discussion

This section first introduces the considered adver-
saries. Then, it discusses the security and privacy
guarantees, as detailed in subsection 2.

6.1 Threat Model

The Prov-Trust system considers two types of attack-
ers: an external adversary and an internal adversary,
defined as follows:

• The external adversary is a user who is not au-
thorized to the document in the system, but is able
to modify the provenance data of the outsourced
document, i.e., including SC events and history
logs. The external adversary does not have neither
access to the location of the storing server nor the
deciphering key. The attacker can only know the
document identifier and exploit it to launch an at-
tack against the blockchain based data provenance
system. We assume that the adversary can not cor-
rupt the information transmitted between SGX en-
clave and users.

• The internal adversary is an entity who is
granted access to the document by the owner in
the Prov-Trust system. This adversary is able to
makes changes over the document and therefore
log these operations on the blockchain as prove-
nance data. An internal attacker is unable to grant
access to another user over this document which
is assumed not his own document. However, this
attacker can try to log corrupted provenance data
in the blockchain.



We assume that the cloud provider is not fully
trusted and all the outsourced data files are encrypted.
Once the data provenance service is enabled, the user
will be able to trace the data and the provenance au-
ditor is allowed to access all the provenance trails.

6.2 Security and Privacy Analysis

This section discusses the security properties, with
respect to the defined threat model. Indeed, the pri-
vacy preservation (subsection 6.2.1), confidentiality
(subsection 6.2.2), auditability (subsection 6.2.3) and
availability (subsection 6.2.4) are analysed while con-
sidering different adversaries.

6.2.1 Privacy Preservation

As detailed in subsection 2.2, the privacy property is
beyond the confidentiality guarantee and mainly con-
siders the unlinkability feature and is ensured in the
Prov-Trust approach thanks to the following features:

• signed transactions with several SGX-enclaves –
linking smart contracts in between as issued by
the same owner is not possible, as smart con-
tracts’ creation transaction are signed by the SGX-
enclaves of the processing servers. As such, a
search over the blockchain ledger for the same
signing enclaves (assumed to match the same
owner) is inconclusive, as the processing server is
storing data contents of different owners and the
same data content can be stored by several servers
(for replication purposes).

• one smart contract per a data file – each smart con-
tract is specific to a data file and has its own iden-
tifier, a randomly generated value. Thus, it is even
not possible to link two smart contracts provided
with two different IDs to the same owner.

6.2.2 Confidentiality

Prov-Trust is resistant against data secrecy attacks
against data provenance trials, as discussed here-after:

• only freshly and randomly generated identifiers
and enciphered information are published in the
BC infrastructure – the DO is in charge of spec-
ifying the ACLs w.r.t. the data file and its re-
lated provenance trials, while associating a ran-
dom identifier. The data file identifier is pub-
lished only once, in the creation transaction of the
prov-doc smart contract. For other processing
transaction, the file identifier is enciphered using a
-multi-level- ABE scheme (Belguith et al., 2018a;
Belguith et al., 2018c; Belguith et al., 2018b), and

is only accessible by a group of authorized enti-
ties.

• fine-grained encrypted access to data – data con-
tents and provenance trials are protected thanks to
the usage of both ACLs and a -multi-level- ABE
scheme (Kaaniche and Laurent, 2017). Recall
that, on one side, ACLs refer to any access control
mechanism selected by the DO, to be enforced on
his data. ACLs on data contents may be encrypted
-up-to the DO-, however, they have to be accessi-
ble to the CSP, the PA as well as voters, if a voting
smart contract was created. ACLs on provenance
data ensure the access to involved parties, with
respective privileges. On the other side, multi-
level ABE applied on processing transactions en-
sure fine-grained access to data provenance trails
by authorized PAs, and enhance unlinkability of
processing actions on DO’s data by external ad-
versaries.

As the public ledger only registers random values
or encrypted information, no significant information
can be learnt from the blockchain.

6.2.3 Auditability

The proposed approach ensures the auditability re-
quirement as follows:

• signed transactions – the Prov-Trust solution re-
lies on signed transactions, by the SGX-enclaves
of the storing server. Thus, both smart contract
creation and data processing transactions must be
signed by the involved entities, i.e, SGX enclaves
and validators respectively. Signed transactions
ensure that each activity has been efficiently per-
formed by the holder of the used private key,
which is certified by the device’s manufacturer.
As such, the resistance of the chosen signature
scheme against forgery attacks has a direct impact
on the fulfillment of the auditability requirement
(Intel, 2016), (Laurent et al., 2018).

• approval of smart contracts creation – the service
provider is requested to approve each smart con-
tract creation by the data owner DO, by using the
secret key associated with the SGX enclave of the
involved storing server. More precisely, the signa-
ture σkCSP associated with the creation of a partic-
ular smart contract, and to prove its authenticity
and its legitimacy.

• tamper-proof architecture – as emphasized above,
all blockchain-specific operations, such as trans-
action anchoring activities, are considered as
secure and non-corruptible, thus ensuring non-
tamper proofs of data processing and managing



events (Laurent et al., 2018).

• transparent usage – the proposed approach is
based on a consortium blockchain infrastructure,
that permits public access (i.e; read privilege) the
contract and its associated transactions, to anyone.
Thus, it provides a transparent view over how data
are collected and accessed.

6.2.4 Availability

The Prov-Trust solution ensures availability assur-
ance and liveness guarantees of data usage, as re-
lying on a highly decentralized infrastructure. We
also point out the similarity between the well known
double spending problem in bitcoin architectures
(Karame et al., 2015) and the attack aiming at pre-
venting a valid transaction to be registered in the
blockchain. Indeed, both assume that an adversary
has control over more than a half of the blockchain
nodes, the achievement of which is assumed difficult
(Karame et al., 2015).

7 Proof of Concept

In order to evaluate the performances and the de-
ployment of the proposed Prov-Trust solution, we
first created a BC-testing environment for our prove-
nance architecture and started by implementing the
vote protocol along with the Access Control func-
tionality. For our implementation, we had to choose
one of two blockchain options: Ethereum or the Hy-
perledger. We have chosen the second as it enables
a general description of transactions while provid-
ing users with tools to develop their own personal-
ized blockchains adapted to the needs of their busi-
nesses. Hyperledger 5 is an open source collabora-
tive project hosted by The Linux Foundation. It is
not a blockchain technology on itself but it is more a
strategy combining multiple blockchain platforms to
develop enterprise-oriented solutions. We have cho-
sen Hyperledger Composer to be deployed the Trust-
Prov underlying technology as it is more adapted to
create the access control functions and to evaluate
the solution smoothly. Hyperledger Composer sup-
ports the existing Hyperledger Fabric blockchain in-
frastructure and runtime, which supports pluggable
blockchain consensus protocols to ensure that trans-
actions are validated according to policy by the des-
ignated business network participants. Hyperledger is
built with javascript language and supports modern
tools including node.js, npm, and CLI.

5https://www.hyperledger.org

In the following, we introduce the proof-of-
concept implemented by developing the vote protocol
based on the Hyperledger Composer framework while
defining an access control list that is checked by the
voters to grant access to the different users.

To implement the vote-doc smart contract, we
start by defining the access rights for different types
of entities where we differentiate between two types:
data users and data owners, also called clients. Clients
creates the data file and upload it on the cloud storage
service while users access, read or modify it. Both are
identified with two different identifiers: clientId for
data owners and userId for data users. An example of
the defined access control list is shown in Listing 1.

Listing 1: An example of the Access Control List
r u l e P a r t i c i p a n t S y s t e m {

d e s c r i p t i o n : ” Gran t any p a r t i c i p a n t s t h e r i g h t t o s e e
e v e r y r e s o u r c e ”
p a r t i c i p a n t : ” o rg . v o t e . U t i l i s a t e u r ”
o p e r a t i o n : READ
r e s o u r c e : ”∗∗”
a c t i o n : ALLOW

}
r u l e C o n t r i b u t o r H a s R i g h t T o R e a d {

d e s c r i p t i o n : ” I f a u s e r c o n t r i b u t e s t o a document , he has
a c c e s s t o
t h e document ”
p a r t i c i p a n t ( u s e r ) : ” o rg . v o t e . U t i l i s a t e u r ”
o p e r a t i o n : READ, UPDATE
r e s o u r c e ( doc ) : ” o rg . v o t e . Document ”
c o n d i t i o n : ( doc i n u s e r . d o c u m e n t s M o d i f i a b l e s )
a c t i o n : ALLOW

}
r u l e OwnerHasRightToReadAndUpdate {

d e s c r i p t i o n : ” The c l i e n t has a lways t h e r i g h t t o s e e and
u p d a t e t o
a c c e s s i t s own document ”
p a r t i c i p a n t ( c l i e n t ) : ” o rg . v o t e . C l i e n t ”
o p e r a t i o n : READ, UPDATE
r e s o u r c e ( doc ) : ” o rg . v o t e . Document ”
c o n d i t i o n : ( c l i e n t . g e t I d e n t i f i e r ( )== doc . owner .
g e t I d e n t i f i e r ( ) )
a c t i o n : ALLOW
}

r u l e UserHasRigh tToCrea teABlock {
d e s c r i p t i o n : ” Use r s can r i g h t i n t h e b l o c k c h a i n ”
p a r t i c i p a n t : ” o rg . v o t e . U t i l i s a t e u r ”
o p e r a t i o n : CREATE
r e s o u r c e : ” org . v o t e . modi f i e rDocument ”
a c t i o n : ALLOW

}

We define assets by the documents created by a
user, where each document is identified by its unique
identifier documentId. We also define two events re-
lated to the type of actions performed on the data file.
The first event is related to the modification of the
document while the second is related to the update
of granted privileges, i.e., addition of a user to the list
of participants authorized to access the data content.
we also define two transactions related to either the
modification of the assets, i.e., the document or the
modification of the list of participants. Each transac-
tion is followed by the related event. In other words,
one transaction is related to the change in the access
rights of users by adding new users. The second trans-
action initiates the vote protocol and implement the
modification (i.e., download) of the data file based on



the vote result as shown in Figure2. If the vote is suc-
cessful the event is published in the blockchain (c.f.,
Listing 3)

Listing 2: The event publication
l e t d o c u m e n t M o d i f i c a t i o n E v e n t = g e t F a c t o r y ( ) . newEvent (NS ,
’ d o c u m e n t M o d i f i c a t i o n ’ ) ;

d o c u m e n t M o d i f i c a t i o n E v e n t . r e s u l t a t = f a l s e ;
d o c u m e n t M o d i f i c a t i o n E v e n t . p r o t o c o l e V o t e =maj . p r o t o c o l e V o t e ;

i f ( maj . p r o t o c o l e V o t e ==”MAJORITE” ){
i f ( nbOui>nbNon ){

d o c u m e n t M o d i f i c a t i o n E v e n t . r e s u l t a t = t r u e ;
}
}
i f ( maj . p r o t o c o l e V o t e ==”UNANIMITE” ){

i f ( nbNon ==0){
d o c u m e n t M o d i f i c a t i o n E v e n t . r e s u l t a t = t r u e ;

}
}

Listing 3: The vote protocol implementation
i f ( d o c u m e n t M o d i f i c a t i o n E v e n t . r e s u l t a t == t r u e ){
a w a i t d o c u m e n t R e g i s t r y . u p d a t e ( document ) ;
}
d o c u m e n t M o d i f i c a t i o n E v e n t . document Id =document .
g e t I d e n t i f i e r ( ) ;
d o c u m e n t M o d i f i c a t i o n E v e n t . u t i l i s a t e u r I d = c o n t r i b u t e u r I d ;
d o c u m e n t M o d i f i c a t i o n E v e n t . cha ineRemplacee = cha ineRemplacee ;
d o c u m e n t M o d i f i c a t i o n E v e n t . c h a i n e I n s e r e e =maj . c h a i n e I n s e r e e ;

emi t ( d o c u m e n t M o d i f i c a t i o n E v e n t ) ;
}

The solution can be tested using the graphic in-
terface provided by Composer Playground. It is nec-
essary to load the different files such as permission,
query and transaction files. For more information, the
implementation files are accessible in Github6.

8 Conclusion

Prov-Trust is a distributed data provenance archi-
tecture designed to ensure a secure, tamper-proof and
privacy preserving provenance data in cloud com-
puting systems. It is relying on a novel use of In-
tel SGX trusted hardware to collect provenance data
while storing them in Blockchain using transactions
and smart contracts. Prov-Trust provides a secure and
authorized auditing function to enable an auditor or
the data owner to verify the operations performed over
the data stored in cloud storage services. A security
and privacy analysis has been detailed to prove the
fulfillment of the defined requirements. We have also
presented a proof of concept of the proposed system
by implementing the vote system.

As future work, we aim to finish the implemen-
tation of Prov-Trust and test the performance of the

6https://github.com/nathanael-denis/blockchain-
vote/blob/master/blockchain-based-voting-
system/lib/logic.js

data provenance generation within the Intel SGX be-
sides adding more sophisticated encryption and pri-
vacy preserving schemes while storing and auditing
the data stored in blockchain.
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