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Abstract

The Clifford+T gate set is commonly used to perform universal quantum computation. In
such setup the T gate is typically much more expensive to implement in a fault-tolerant way
than Clifford gates. To improve the feasibility of fault-tolerant quantum computing it is then
crucial to minimize the number of T gates. Many algorithms, yielding effective results, have been
designed to address this problem. It has been demonstrated that performing a pre-processing
step consisting of reducing the number of Hadamard gates in the circuit can help to exploit the
full potential of these algorithms and thereby lead to a substantial T -count reduction. Moreover,
minimizing the number of Hadamard gates also restrains the number of additional qubits and
operations resulting from the gadgetization of Hadamard gates, a procedure used by some
compilers to further reduce the number of T gates. In this work we tackle the Hadamard gate
reduction problem, and propose an algorithm for synthesizing a sequence of π/4 Pauli rotations
with a minimal number of Hadamard gates. Based on this result, we present an algorithm which
optimally minimizes the number of Hadamard gates lying between the first and the last T gate
of the circuit.

1 Introduction

Fault-tolerant quantum computing enables reliable and large-scale quantum computation at the
cost of an important resource overhead when compared to an error-free model. Much work has
been put into quantum circuit optimization in order to reduce this additional cost and make fault-
tolerant quantum computing more practical and scalable. In particular, numerous algorithms have
been designed to minimize the number of T gates in a quantum circuit [1–12]. This focus on T -count
minimization is primarily due to the sizable amount of resources, in terms of time and number of
qubits, generally required by fault-tolerance protocols, such as magic state distillation [13], to im-
plement the T gate. In contrast, Clifford operations can typically be implemented at little expense
in most common quantum error correcting codes via transversal operations, code deformation [14]
or lattice surgery [15]. In such context, and considering the fact that the Clifford+T gate set is
approximatively universal, the T -count stands out as a key metric to minimize in order to make
fault-tolerant quantum computing more efficient. Moreover, minimizing the T -count is also cru-
cial in the field of quantum circuits simulation as many simulators have a runtime that scales
exponentially with respect to the number of T gates [16–20].

The problem of finding the optimal number of T gates in a {CNOT, S, T} circuit composed of
n qubits has been well formalized for {CNOT, S, T} circuits by demonstrating its equivalence with
the problem of finding a maximum likelihood decoder for the punctured Reed-Muller code of order
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n−4 and length 2n−1 [4], which is tantamount to the third order symmetric tensor rank decompo-
sition problem [21]. In order to make use of this formalism in Clifford+T circuits it is necessary to
circumvent the Hadamard gates in some way; this can be achieved by applying one of the two fol-
lowing strategies. The first method consists of extracting {CNOT, S, T} subcircuits and interposing
them with layers of Hadamard gates [1]. Then an independent and Hadamard-free instance of the
T -count minimization problem can be formulated for each {CNOT, S, T} subcircuit extracted. The
second strategy involves a measurement-based gadget which can substitute a Hadamard gate. This
Hadamard gadgetization procedure requires the following additional resources for each Hadamard
gate gadgetized: an ancilla qubit, a CZ gate and a measurement [22].

The number T gates in a circuit containing h Hadamard gates can be upper bounded by O(n2h)
or O((n + h)2) in the case where all Hadamard gates are gadgetized [4]. Hence, each Hadamard
gate that must be circumvented, regardless of the strategy applied, for a lack of a good Hadamard
gate optimization procedure is potentially the cause of missed opportunities for further T gate
reduction. Therefore, a preliminary procedure consisting in reducing the number of Hadamard
gates can result in an important T -count reduction, as demonstrated in Reference [3]. It has
been shown that circumventing all Hadamard gates using the Hadamard gadgetization procedure
is the strategy that leads to the best reduction in the number of T gates [6]. However, the main
drawback of this method is the use of one additional qubit for each Hadamard gate gadgetized.
This is obviously an inconvenience if the number of qubits at disposal is limited, but can also be
detrimental to the optimization process in two ways. Firstly, as suggested in Reference [10], it may
become more difficult to find opportunities to reduce the T -count as the ratio between the number
of qubits and the number of T gates increases. In addition, the runtime of a T -count optimizer can
drastically increase as the number of qubits grows. For all these reasons it is important to minimize
the number of auxiliary qubits needed, which further motivates investigations into a pre-processing
step optimizing the number Hadamard gates in the initial circuit.

We can mainly distinguish two strategies for the optimization of quantum circuits. The first one
is referred to as pattern matching and involves the detection of patterns of gates within the circuit
to then substitute them by an equivalent, but nonetheless different, sequence of gates. A series of
transformation is therefore applied to the circuit, but its semantic is preserved at each step of the
process. This method has already been applied to the optimization of Hadamard gates by using
rewriting rules that preserve or reduce the number of Hadamard gates within the circuit [3, 10].
The second method is circuit re-synthesis which consists in extracting some parts of the circuit,
representing them by higher level constructs and performing their synthesis to obtain an equivalent
circuit. This method has not yet been considered for the optimization of Hadamard gates, despite
displaying excellent performances for other optimization problems such as T gate reduction [6, 8].

In the case of circuit re-synthesis, a commonly used fact is that the operation performed by
a given Clifford+T circuit can be represented by a sequence of π/4 Pauli rotations followed by
a final Clifford operator [2]. A strategy for optimizing the number of Hadamard gates could
then consist of synthesizing this sequence of π/4 Pauli rotations using as few Hadamard gates
as possible. In Section 3, we present an algorithm that solves this problem optimally. With the
Hadamard gadgetization approach, a Hadamard gate needs to be gadgetized only if it comes after
and precedes a T gate in the circuit, we say that such Hadamard gates are internal Hadamard
gates. This leads to a more specific Hadamard gate reduction problem consisting in reducing the
number of internal Hadamard gates within the circuit. We tackle this problem in Section 4 by
proposing an algorithm that synthesizes a sequence of Pauli rotations with a minimal number of
internal Hadamard gates. Section 5 presents alternative versions of our algorithms with lower
complexities. Benchmarks are then given in Section 6 to evaluate the performances and scalability
of our algorithms on a library of reversible logic circuits and on large-scale quantum circuits. Our
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algorithms are not working exclusively for the Clifford+T gate set but can also be executed on any
circuit composed of {X,CNOT, S,H,RZ} gates.

2 Preliminaries

2.1 Pauli rotations sequences

The four Pauli matrices are defined as follows:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Two Pauli matrices commute if they are equal or if one of them is the identity matrix I, otherwise
they anticommute. All tensor products of n Pauli matrices, together with an overall phase of ±1 or
±i, generate the Pauli group Pn. We define the subset P∗

n ⊂ Pn as the set of Pauli operators which
have an overall phase of ±1. We will use Pi to denote the ith Pauli matrix of a Pauli operator P , for
instance if P = Z⊗X then P1 = Z and P2 = X. We say that a Pauli operator P is diagonal if and
only if Pi ∈ {I, Z} for all i. Two Pauli operators P and P ′ commute if there is an even number of
indices i such that Pi anticommutes with P ′

i , otherwise they anticommute. Given a Pauli operator
P ∈ P∗

n and an angle θ ∈ R, a Pauli rotation RP (θ) is defined as follows:

RP (θ) = exp(−iθP/2) = cos(θ/2)I − i sin(θ/2)P.

For example the T gate is defined as a π/4 Pauli Z rotation:

T = RZ(π/4)

Clifford gates can also be represented in terms of Pauli rotations, we will mostly make use of the
CNOT, S and H gates defined as follows:

CNOT = RZX(π/2)RZI(−π/2)RIX(−π/2),
S = RZ(π/2),

H = RZ(π/2)RX(π/2)RZ(π/2).

The Clifford group Cn is defined as the set of unitaries stabilizing Pn:

Cn = {U | U †PU ∈ Pn, ∀P ∈ Pn}.

and is generated by the {CNOT, S,H} gate set. Note that for each pair of Pauli operators P, P ′ ∈
Pn \ {I⊗n} there exists a Clifford operator U ∈ Cn such that P ′ = U †PU . Unless indicated
otherwise, the term Clifford circuit will refer to a circuit exclusively composed of gates from the
set {X,CNOT, S,H}, the use of other Clifford gate set is discussed at the end of Section 3.2.

A Pauli operator P ∈ P∗
n can be encoded using 2n + 1 bits: 2n bits for the n Pauli matrices

and 1 bit for the sign [23]. In the following we will encode a Pauli operator P ∈ P∗
n with 2n bits

and neglect its sign as it has no impact on the formulation of our problem; we will use the term

Pauli product to designate a Pauli operator deprived of its sign. Let S =

[
Z
X

]
be a block matrix

of size 2n×m representing a sequence of m Pauli products acting on n qubits such that Z is the
submatrix of S formed by its first n rows and X is the submatrix of S formed by its last n rows.
The value (Zi,j ,Xi,j) represents the ith component of the jth Pauli product encoded by S, such
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Zi

Zj

Xi

Xj

⊕

⊕

(a) CNOTi,j

Zi

Xi

⊕

(b) Si

Zi

Xi

(c) Hi

Figure 1: Operations on a sequence of Pauli products S =

[
Z
X

]
corresponding to the conjugation

of all its Pauli products by a Clifford gate. For the CNOTi,j gate where i is the control qubit and
j is the target qubit (a), the Zj and Xi rows are added to the Zi and Xj rows respectively. For a
S gate applied on qubit i (b), the Xi row is added to the Zi row. For a H gate applied on qubit
i (c), the Zi and Xi rows are swapped.

that the values (0, 0), (0, 1), (1, 1) and (1, 0) are corresponding to the Pauli matrices I,X, Y and
Z respectively. We use the notation S:,i to refer to the column i of the matrix S, we will denote
P (S:,i) the Pauli product encoded by S:,i, and we will say that S:,i is diagonal if and only if P (S:,i)
is diagonal and that S:,i and S:,j commute (or anticommute) if their associated Pauli products
P (S:,i) and P (S:,j) commute (or anticommute). Throughout the document we use the zero-based
indexing for vectors and matrices and the initial element is termed the zeroth element, for instance
the zeroth column of S is S:,0. If all Pauli products encoded by S are conjugated by a Clifford gate
U ∈ {CNOT, S,H}, then S can be updated to encode the Pauli products U †P (S:,i)U , for all i, via
the operations depicted in Figure 1. These operations are analogous to the operations performed in
the tableau representation [23]. We will say that S̃ = U †SU if and only if P (S̃:,i) = ±U †P (S:,i)U
for all i and for some Clifford operator U .

Any Clifford+RZ circuit can be represented up to a global phase by a sequence of Pauli rotations
followed by a final Clifford operator [2]. The synthesis of a Pauli rotation is then a key procedure
for constructing an equivalent Clifford+RZ circuit from this representation. Let U be a Clifford
operator such that

U †RP (θ)U = RU†PU (θ) = RZi(θ) (1)

for some qubit i and some Pauli operator P ∈ P∗
n. Then the synthesis of the Pauli rotation RP (θ)

can be performed by implementing U , U † and inserting a RZ(θ) gate in between on qubit i. If P is
diagonal then the Clifford operator U satisfying Equation 1 can be implemented using only CNOT
and X gates. Otherwise, if P is not diagonal, at least one Hadamard gate is required to implement
U over the {X,CNOT, S,H} gate set such that

U †RP (θ)U = RP ′(θ) (2)

where P ′ is diagonal. Note that the gate set considered is not minimal as the X gate can be
generated from the S and H gates. As our cost model is the number of Hadamard gates we include
the X gate so that no H gates are required to implement it. The X gate finds its purpose in the
case where

U †RP (θ)U = RU†PU (θ) = RZi(−θ) (3)
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by allowing the implementation of the RZ(−θ) gate using the RZ(θ) gate via the equality

RZ(−θ) = XRZ(θ)X. (4)

Nonetheless, in the case where θ = π/4, the minimal {CNOT, S,H} gate set can be used since the
negative sign can be compensated by inserting three S gates as

URZi(7π/4)U
† = URZi(−π/4)U † = RUZiU†(−π/4) = RP (π/4). (5)

2.2 Diagonalization network

The synthesis of a sequence of Pauli rotations using the Clifford+RZ gate set implies the con-
struction of a diagonalization network, derived from the notion of parity network established in
Reference [24] and which is defined as follows.

Definition 1 (Diagonalization network). A Clifford circuit C is a diagonalization network for a
sequence S of m Pauli products if and only if there exists m non-negative integers α0 ≤ . . . ≤ αm−1

such that U †
i P (S:,i)Ui is diagonal, where Ui is the Clifford operator implemented by the first αi gates

of C.

A sequence of m Pauli rotations can be represented by a triple (S, b,θ), where S encodes a
sequence of m Pauli products, b ∈ {−1, 1}m and θ ∈ Rm such that bi and θi correspond to the
sign and angle associated with the Pauli product P (S:,i). Let C be a diagonalization network for
S, then the sequence of Pauli rotations represented by (S, b,θ) can be easily implemented from C
up to a final Clifford circuit by inserting m {X,CNOT, RZ} subcircuits into C. Indeed, as stated
previously, if a Pauli product P is diagonal then the Clifford operator V satisfying

V †RP (θ)V = RV †PV (θ) = RZj (θ) (6)

for some qubit j, can be implemented using only CNOT and X gates. And because C is a diago-
nalization network for S then by definition there exists m non-negative integers α0 ≤ . . . ≤ αm−1

such that U †
i P (S:,i)Ui is diagonal, where Ui is the Clifford operator implemented by the first αi

gates of C. It follows that inserting, for all i and just after the αith gate of C, a {CNOT, X}
implementation of the Clifford operators Vi and V †

i with the RZj (biθi) gate in between, such that
Vi satisfies

V †
i U

†
i P (S:,i)UiVi = RZj (biθi) (7)

for some qubit j, will result in an implementation of the sequence of Pauli rotations defined by
(S, b,θ) up to a final Clifford circuit.

The circuit obtained by this procedure obviously contains the same number of Hadamard gates
as C as no additional Hadamard gate was inserted. Thus, synthesizing a sequence of Pauli rotations
represented by (S, b,θ) with a minimal number of Hadamard gates up to a final Clifford operator is
equivalent to the problem of constructing a diagonalization network for S using a minimal number
of Hadamard gates. This approach can easily be extended to take into account the final Clifford
operator, as explained in Section 3.3. We define h(C) as being the number of Hadamard gates
in a Clifford circuit C, and we extend the notation for a sequence of Pauli products S such that
h(S) = min{h(C) | C is a diagonalization network for S}. The problem of synthesizing a sequence
of Pauli rotations ignoring the final Clifford operator with a minimal number of Hadamard gates
can then be defined as follows.

Problem 1 (H-Opt). Given a sequence S of Pauli products, find a Clifford circuit C that is a
diagonalization network for S and such that h(C) = h(S).
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In Clifford+T circuits, the Hadamard gadgetization procedure aims to transform the circuit
in order to obtain an Hadamard-free subcircuit containing all the T gates. Hence, a Hadamard
gate does not need to be gadgetized if there is no T gate preceding it. To take this particularity
into consideration we define the following problem relating to the synthesis of a sequence of Pauli
rotations up to a final Clifford circuit with a minimal number of internal Hadamard gates.

Problem 2 (Internal-H-Opt). Given a sequence S of Pauli products, find a Clifford circuit C =
C1 :: C2, i.e. C is the circuit resulting from the concatenation of C1 and C2, such that h(C2) is
minimized and C2 is a diagonalization network for S̃ = U †SU where U is the Clifford operator
associated with C1.

In Section 3.1 we propose a diagonalization network synthesis algorithm to solve the H-Opt
problem. We prove its optimality in Section 3.2, and it is then employed in Section 4 to design an
algorithm solving the Internal-H-Opt problem.

3 Hadamard gates minimization

3.1 Diagonalization network synthesis algorithm

We first describe a simple procedure, of fundamental importance in our diagonalization network
synthesis algorithm, to construct a Clifford operator U such that U †PU is diagonal, where P is
a non-diagonal Pauli product. Let i be such that Pi ∈ {X,Y }, which necessarily exists as P is
non-diagonal. If there exists j ̸= i such that Pj ∈ {X,Y }, then, based on the operation depicted
in Figure 1(a), we can deduce that the Pauli product P ′ resulting from the conjugation of P
by the CNOTi,j gate satisfies P ′

i ∈ {X,Y }, P ′
j ∈ {I, Z} and P ′

k = Pk for all k ̸∈ {i, j}. More

generally, if P ′ = U †PU where U is the Clifford operator associated with the fan-out formed by
the gates {CNOTi,j | Pj ∈ {X,Y },∀j ̸= i}, then P ′

j is diagonal for all j ̸= i. To complete the
diagonalization of P ′ we then just have to make P ′

i diagonal while preserving this property. If
P ′
i = Y then conjugating P ′ by a S gate on qubit i maps P ′

i to X. And in the case where P ′
i = X,

then conjugating P ′ by a H gate on qubit i maps P ′
i to Z, and our diagonalization procedure is

complete as the Si and Hi operations do not affect P ′
j where j ̸= i.

Consider the diagonalization network synthesis algorithm whose pseudo-code is given in Algo-
rithm 1 and which takes a sequence S of m Pauli products as input. The algorithm constructs
a Clifford circuit C iteratively by processing the Pauli products constituting S in order. When
a Pauli product P = P (S:,i) is being processed, if U †PU , where U ∈ Cn is the Clifford operator
implemented by C, is diagonal then the algorithm moves on to the next Pauli product. Otherwise,
if U †PU is not diagonal, a sequence of gates, constructed using the procedure described above, are
appended to C so that the updated Pauli product U †PU is diagonal. Thus, Algorithm 1 outputs
a Clifford circuit that is a diagonalization network for S. A detailed execution example of Algo-
rithm 1 is provided in Appendix A.

Complexity analysis. At each iteration the algorithm carries out at most O(n) row operations
on S where n is the number of qubits, m iterations are performed and S has m columns, therefore
the complexity of Algorithm 1 is O(nm2).

In the typical case where n < m, a faster version of Algorithm 1 can be implemented using the
tableau representation [23]. Let T be a tableau initialized at the begining of the algorithm. Instead
of updating S for each Clifford gate appended to the circuit C, we can use T to keep track of the
Clifford operator U implemented by C. For each Clifford gate appended to C, T can be updated
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Algorithm 1: Diagonalization network synthesis with a minimal number of H gates

Input: A sequence S =

[
Z
X

]
of m Pauli products.

Output: A diagonalization network for S with a minimal number of H gates.
1 procedure DiagonalizationNetworkSynthesis(S)
2 C ← new empty circuit
3 if S is empty then
4 return C
5 end
6 if ∃i such that Xi,0 = 1 then
7 foreach j ∈ {j | Xj,0 = 1} \ {i} do
8 C ← C :: CNOTi,j

9 S ← CNOTi,j S CNOTi,j

10 end
11 if Zi,0 = 1 then
12 C ← C :: Si

13 S ← Si S Si

14 end
15 C ← C :: Hi

16 S ← Hi SHi

17 end
18 S ← S with its first column removed
19 return C :: DiagonalizationNetworkSynthesis(S)

in O(n) [23]. Then, the algorithm proceeds in the same way as Algorithm 1 by sequentially diag-
onalizing the Pauli products represented by S. However, the ith Pauli product to diagonalized is
not P (S:,i) but U †P (S:,i)U , which can be computed in O(n2) using the tableau T . This operation
must be performed O(m) times and T must be updated O(nm) times as the number of gates in the
final Clifford circuit is O(nm), therefore the overall time complexity of this algorithm is O(n2m).
More details on this approach are given in Section 5, where this algorithm is adapated to take a
Clifford+RZ circuit as input instead of a sequence of Pauli products.

Hadamard gate count. In order to evaluate h(C), where C is the output circuit of Algorithm 1,
we will rely on the following definition.

Definition 2 (Commutativity matrix). Let S be a sequence of m Pauli products. The commuta-
tivity matrix A(S) associated with S is a strictly upper triangular Boolean matrix of size m × m
such that for all i < j:

A
(S)
i,j =

{
0 if S:,i commutes with S:,j ,
1 if S:,i anticommutes with S:,j .

For convenience we will drop the superscript (S) from A when it is clear from the context that
A is associated with S. The commutativity matrix A(S) can also be seen as the adjacency matrix
of a directed acyclic graph, which has already been studied and linked to the T -depth optimization
problem [8]. In this work, we further reinforce the interest in this structure by establishing a relation
between the H-Opt and Internal-H-Opt problems and the rank of A(S). Note that if S̃ = U †SU ,
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where U is some Clifford operator, then A(S̃) = A(S) because if two Pauli products P and P ′ are
commuting (or anticommuting) then U †PU and U †P ′U are commuting (or anticommuting).

The number of Hadamard gates in the circuit produced by Algorithm 1 can be characterized
via the following theorem.

Theorem 1. Let S =

[
Z
X

]
be a sequence of m Pauli products, A be its commutativity matrix and

C be the Clifford circuit returned by Algorithm 1 when S is given as input. Then h(C) = rank(M)

where M =

[
X
A

]
.

Proof. Let S(i) =

[
Z(i)

X (i)

]
be the sequence of Pauli products given as input to the ith recursive

call of Algorithm 1 with S(0) = S, and let M (i) =

[
X (i)

A(i)

]
where A(i) is the commutativity matrix

associated with S(i). We first start by analyzing how M (i) evolves to M (i+1) when S(i):,0 is diagonal.

In such case, we can obtain M (i+1) from M (i) by removing the first column of M (i) and the first

row of its submatrix A(i). Let P = P (S(i):,0 ), then, because P is diagonal, the following equation
holds: ⊕

k∈K
X (i)
k =

⊕
k∈K

M
(i)
k = A

(i)
0 (8)

where K = {k | Z(i)
k,0 = 1}. Indeed, as P is diagonal we necessarily have Pk = Z for some k, and

in the case where Pj = I for all j ̸= k we have X (i)
k,j = 1 if and only if S(i):,0 anticommutes with

S(i):,j , and so X (i)
k = A

(i)
0 . In a more general case, if there exists j ̸= k satisfying Pj = Z then we

can apply a CNOTj,k gate for all such j in order to fall back on our previous case, which implies
Equation 8. Consequently, removing the first row of the submatrix A(i) will not change the rank of

M (i). Moreover, due to the fact that S(i):,0 is diagonal, the first column of M (i) is equal to the null

vector. Therefore we have rank(M (i+1)) = rank(M (i)) when S(i):,0 is diagonal.

In the case where S(i):,0 is not diagonal, Algorithm 1 will apply a sequence of CNOT and S

gates followed by a single H gate. Let S̃(i) =
[
Z̃(i)

X̃ (i)

]
be the sequence of Pauli products obtained by

conjugating all Pauli products of S(i) by this sequence of CNOT and S gates, and let M̃ (i) =

[
X̃ (i)

A(i)

]
.

Note that we have rank(M̃ (i)) = rank(M (i)) as applying a S or CNOT operation on S(i) does not
change the rank of X (i). Let j be the qubit on which the Hadamard gate is applied, we must have

M̃
(i)
j,0 = 1 and M̃

(i)
k,0 = 0 for all k ̸= j, which implies that M̃

(i)
j is independent from all the other

rows of M̃ (i). Let M̂ (i) =

[
X̂ (i)

A(i)

]
where Ŝ(i) =

[
Ẑ(i)

X̂ (i)

]
is obtained by conjugating all Pauli products

of S̃(i) by a Hadamard gate on qubit j, and notice that M̂
(i)
k = M̃

(i)
k for all k ̸= j. Analogously to

Equation 8, since Ŝ(i):,0 is diagonal, the following equation holds:⊕
k∈K̂

X̂ (i)
k =

⊕
k∈K̂

M̂
(i)
k = A

(i)
0 (9)
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where K̂ = {k | Ẑ(i)
k,0 = 1}. Furthermore, as j ∈ K̂, M̂

(i)
j can be expressed as follows:

M̂
(i)
j =

⊕
k∈K̂\{j}

M̂
(i)
k ⊕A

(i)
0 =

⊕
k∈K̃

M̃
(i)
k ⊕A

(i)
0 (10)

where K̃ = {k | Z̃(i)
k,0 = 1} = K̂ \{j}. It follows that M̂ (i)

j is a linear combination of the rows of M̃ (i)

whereas M̃
(i)
j is an independent row, and so rank(M̂ (i)) = rank(M̃ (i)) − 1. After the Hadamard

gate has been applied we end up in the same case as when S(i):,0 is diagonal, therefore we have

rank(M (i+1)) = rank(M̂ (i)) = rank(M (i))− 1.
We demonstrated that rank(M (i+1)) = rank(M (i)) when no Hadamard gate is applied at the

ith recursive call, and that rank(M (i+1)) = rank(M (i))− 1 if one Hadamard gate is applied. Thus,
the number of Hadamard gates in the Clifford circuit C is equal to rank(M)− rank(M (m)) where
m is the number of Pauli products in S. The sequence of Pauli products S(m) is empty, hence
rank(M (m)) = 0 and h(C) = rank(M).

3.2 Optimality

In this section we demonstrate the optimality of Algorithm 1 by proving the following theorem.

Theorem 2. Let S =

[
Z
X

]
be a sequence of m Pauli products, A be its commutativity matrix and

C be a Clifford circuit that optimally solves the H-Opt problem for S. Then h(C) = rank(M) where

M =

[
X
A

]
.

Our proof of Theorem 2 rests on the following proposition, which puts an upper bound on the
number of Hadamard gates required to simultaneously diagonalize a set of mutually commuting
Pauli products.

Proposition 1. Let S =

[
Z
X

]
be a sequence of m mutually commuting Pauli products of size n and

let U ∈ Cn be a Clifford operator such that U †P (S:,i)U is diagonal for all i. Then h(C) ≥ rank(X ),
where C is a Clifford circuit implementing U .

Proof. Let S(i) be the state of S resulting from conjugating all its Pauli products by the Clifford
operator implemented by the first i gates of C. If the (i+1)th gate of C is a CNOT or S gate, then
rank(X (i+1)) = rank(X (i)). Else, if the (i + 1)th gate of C is a Hadamard gate, then X (i+1) and
X (i) have at least n− 1 rows in common and 1 ≥ | rank(X (i))− rank(X (i+1))| ≥ 0. Therefore, the
number of Hadamard gates in C is at least | rank(X )− rank(X (k))|, where k is the number of gates
in C. The circuit C performs a simultaneous diagonalization of the Pauli products constituting S,
which implies that rank(X (k)) = 0, hence h(C) ≥ | rank(X )− rank(X (k))| = rank(X ).

In the following we use S:,:j to denote the submatrix formed by the first j columns of S.
Theorem 1 implies an upper bound on the number of Hadamard gates required to solve the H-
Opt problem. There always exists a Clifford circuit C that is a diagonalization network for a

sequence of Pauli products S =

[
Z
X

]
such that rank(M) ≥ h(C) where M =

[
X
A

]
and A is the
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commutativity matrix associated with S. In order to prove Theorem 2 it remains to show that if
C is a diagonalization network for S then h(C) ≥ rank(M). To do so, we will show that we can
derive a Clifford circuit C ′ from C such that C ′ is satisfying h(C ′) = h(C) and is a solution to a

specific instance S ′ of the simultaneous diagonalization problem, where S ′ =
[
0
M ′

]
is a sequence

of mutually commuting Pauli products satisfying rank(M ′) ≥ rank(M). By Proposition 1 we then
would have h(C) = h(C ′) ≥ rank(M ′) ≥ rank(M). We first give a construction for M ′ and prove
that rank(M ′) ≥ rank(M) via the following proposition.

Proposition 2. Let C be a diagonalization network for a sequence S =

[
Z
X

]
of m Pauli products

of size n, and let C(i) be the subcircuit of C truncated after its ith Hadamard gate. And let the

matrices S(i) =
[
Z(i)

X (i)

]
be such that S(0) = S and in the case where i > 0:

S(i):,j = 0 if C(i−1) is a diagonalization network for S:,:j ,
P (S(i):,j ) = ±U

†
(i)P (S:,j)U(i) otherwise,

where U(i) ∈ Cn is the Clifford operator associated with C(i). Consider the matrices M =

[
X
A

]
and

M ′ =

[
X
A′

]
where A is the commutativity matrix associated with S, and A′ is a matrix composed

of h(C) rows such that A′
i−1 = X (i)

j where j is the qubit on which the ith Hadamard gate of C is
applied. Then we have rank(M ′) ≥ rank(M).

Proof. We will prove Proposition 2 by showing that the rows of M are in the span of the set formed
by the rows of the X (i) matrices, which are themselves in the row space of the matrix M ′. We first
show that the rows of X (i) are in the span of the set formed by the first n+ i rows of M ′. For i = 0,

this assertion is obviously true as we have Xj = M ′
j for all 0 ≤ j < n. Let S̃(i) =

[
Z̃(i)

X̃ (i)

]
= U †S(i)U ,

where U is the Clifford operator implemented by the {CNOT, S} subcircuit comprised between
the ith and (i + 1)th Hadamard gate of C. Note that performing a CNOT or S operation on
S(i) doesn’t change the row space of X (i), therefore the rows of X̃ (i) are in the row space of X (i).
Let α be a vector of size m such that αj is the smallest non-negative integer for which C(αj) is a
diagonalization network for S:,:j and let k be the qubit on which the (i+1)th Hadamard gate of C
is applied. We can then distinguish 3 cases for the value of αj , where 0 ≤ j < m:

• αj < i, then S(i+1)
:,j = S̃(i):,j = 0 for all j, because if C(i−1) is a diagonalization network for S:,:j

then C(i) is also a diagonalization network for S:,:j ;

• αj = i, then S(i+1)
:,j = 0 and S̃(i):,j is diagonal, therefore X (i+1)

:,j = X̃ (i)
:,j = 0;

• αj > i then S̃(i):,j encodes the same Pauli product as S(i+1)
:,j up to a Hadamard operation on

qubit k, therefore X (i+1)
ℓ,j = X̃ (i)

ℓ,j for all ℓ ̸= k.

To sum up we have X (i+1)
j = X̃ (i)

j for all j ̸= k and by definition we have X (i+1)
k = M ′

n+i+1. It

follows that the rows of X (i+1) are in the span of the set formed by the first n+ i+ 1 rows of M ′.

10



S H H S

H

(a) Circuit C that is a diagonalization network for S
where S:,0 is diagonalized by the first 3 gates, S:,1 by
the first 5 gates and S:,2 by the whole circuit.

H H

H

(b) Circuit C ′ derived from C.

S =

[
Z
X

]
=


1 0 0
1 1 0

1 0 1
0 1 0

 , A(S) =

 0 1 1
0 0 0
0 0 0



(c) Initial sequence of Pauli products and its
commutativity matrix.

S ′ =
[
0
M ′

]
=



0 0 0

1 0 1
0 1 0
0 1 1
0 0 1
0 0 0


(d) Pauli products that are simultaneously

diagonalized by C ′, where M ′ is as defined in
Proposition 2.

Figure 2: Construction example of C ′ and S ′ for the proof of Theorem 2.

We now show that, for all j, Aj is in the row space of X (αj). Since S(αj)
:,j is diagonal, similarly to

Equation 8, the following holds:

⊕
k∈K
X (αj)
k,ℓ =

{
0 if S:,ℓ commutes with S:,j or ℓ ≤ j,

1 if S:,ℓ anticommutes with S:,j ,∀ℓ > j,
(11)

where K = {k | Z(αj)
k,j = 1}. This sum satisfy the same properties as the row j of the commutativity

matrix A associated with S, therefore we have:

Aj =
⊕
k∈K
X (αj)
k . (12)

Thus, for all j, Aj is in the row space of the matrix X (αj), whose rows are themselves in the row
space of M ′. Consequently, Mj is in the row space of M ′ for all j and rank(M ′) ≥ rank(M).

The proof of Theorem 2 can now be formulated based on Proposition 1 and 2.

Proof of Theorem 2. Consider a Clifford C ′ containing the same number of Hadamard gates as C,
acting over n+ h(C) qubits and constructed by the following process:

1. Start with C ′ as a copy of C with h(C) additional qubits.

2. Remove all S gates from C ′.

3. After the ith Hadamard gate of C ′, insert a SWAP gate operating over the qubits n+ i− 2
and j where j is the qubit on which the ith Hadamard gate is applied.

11



An example of this process is provided in Figure 2. The SWAPi,j gate can be implemented using
CNOT gates:

SWAPi,j = CNOTi,jCNOTj,iCNOTi,j

This operation can be performed on S by swapping the rows Zi and Zj as well as the rows Xi and

Xj . Let M
′ be defined as in Proposition 2, let S ′ =

[
0
M ′

]
be a sequence of m mutually commuting

Pauli products of size n+h(C) and let U ′ is the Clifford operator implemented by C ′, we will show

that U ′†P (S ′:,i)U ′ is diagonal for all i. We reuse C(i) and S(i) =
[
Z(i)

X (i)

]
as defined in Proposition 2,

and we define S ′(i) =

[
Z ′(i)

X ′(i)

]
and C ′(i) analogously where C ′(i) is the subcircuit resulting from

truncating C ′ after its ith inserted SWAP gate and C ′(0) is the empty circuit.
We now prove by induction that for all 0 ≤ i ≤ h(C), 0 ≤ j < n and n ≤ k < n + i we have

X ′(i)
j = X (i)

j , Z ′(i)
j = 0 and X ′(i)

k = 0. For i = 0 and 0 ≤ j < n, the equalities X ′
j = Xj and Z ′(i)

j = 0
are satisfied by definition. Let 0 ≤ i < h(C) and αi be the qubit on which the (i+ 1)th Hadamard
gate of C is applied. The matrix S(i+1) can be obtained from S(i) by performing a sequence of
{CNOT, S} operations and a Hadamard operation on qubit αi. Similarly, the matrix S ′(i+1) can be
obtained from S ′(i) by performing the same sequence of CNOT operations, a Hadamard operation

on qubit αi and a SWAP operation acting on the qubits αi and n+ i. In both cases, the rows X (i)
j

and X ′(i)
j , where 0 ≤ j < n, j ̸= αi, are only affected by the CNOT operations, and so if X ′(i)

j = X (i)
j

for all 0 ≤ j < n, then X ′(i+1)
j = X (i+1)

j for all 0 ≤ j < n, j ̸= αi. Notice that the only gate in C ′

acting on the qubit n+ i is the SWAP gate operating on the qubits αi and n+ i and recall that by

definition X ′
n+i = X

(i+1)
αi ; then, because this SWAP gate is the last gate of the circuit C ′(i+1), we

have X ′(i+1)
αi = X ′

n+i = X
(i+1)
αi . Therefore, for all 0 ≤ j < n, if X ′(i)

j = X (i)
j then X ′(i+1)

j = X (i+1)
j .

If Z ′(i)
j = 0 for all 0 ≤ j < n, then applying a sequence of CNOT operations on S ′(i) acting

on the first n qubits will not alter the matrix Z ′(i). Thus, if Z ′(i)
j = 0 for all 0 ≤ j < n, then

Z ′(i+1)
j = Z ′(i)

j = 0 for all 0 ≤ j < n, j ̸= αi. Furthermore, if Z ′(i)
αi = 0 for all 0 ≤ j < n, then

applying a Hadamard operation on S ′(i) acting on qubit αi after this sequence of CNOT operations

would yield X ′(i)
αi = 0. This Hadamard operation is followed by a SWAP operation between the

qubits αi and k = n + i which would induce that X ′(i+1)
k = 0 and Z ′(i+1)

αi = 0 because Z ′
k = 0.

Thus, for all 0 ≤ j < n , if Z ′(i)
j = 0 then Z ′(i+1)

j = 0. In addition, for all k such that n ≤ k < n+ i,

the circuit C ′(i+1) doesn’t contain any gate operating on the qubit k other than those included in

C ′(i); therefore if X ′(i)
k = 0 for all n ≤ k < n+ i then X ′(i+1)

k = 0 for all n ≤ k < n+ i+ 1.

Let i = h(C), by combining the facts that X ′(i)
j = X (i)

j = 0 for all 0 ≤ j < n and X ′(i)
n+j = 0

for all 0 ≤ j < i, we can deduce that X ′(i) is the null matrix which imply that U ′†P (S ′:,j)U ′ is
diagonal for all j where U ′ is the Clifford operator implemented by C ′. By Proposition 1 we have
h(C) = h(C ′) ≥ rank(M ′), and by Proposition 2 we have rank(M ′) ≥ rank(M) which entails
h(C) ≥ rank(M). This lower bound is satisfied by Algorithm 1 as stated by Theorem 1, this
implies that Algorithm 1 is optimal and concludes the proof of Theorem 2.

Pauli rotations ordering. Algorithm 1 solves the H-Opt problem for a fixed sequence of Pauli
rotations. However, if two adjacent Pauli rotations are commuting then their order could be in-
verted, leading to another sequence of Pauli rotations representing the same operator. We show
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that changing the ordering in this way doesn’t affect the minimal number of Hadamard gate re-
quired to implement the diagonalization network associated with the sequence of Pauli rotations.

Let S =

[
Z
X

]
be a sequence of Pauli products, let i be such that S:,i commutes with S:,i+1 and

let S ′ =
[
Z ′

X ′

]
be a sequence of Pauli products obtained by swapping the columns i and i + 1 of

S. Let M =

[
X
A

]
and M ′ =

[
X ′

A′

]
where A and A′ are the commutativity matrices of S and S ′

respectively. Since S:,i commutes with S:,i+1 we have Ai,i+1 = A′
i,i+1 = 0, and so M:,i = M ′

:,i+1

and M:,i+1 = M ′
:,i. The matrix M ′ can be obtained from M by swapping its columns i and i + 1,

which entails rank(M) = rank(M ′). Thus, inverting the order of two adjacent and commuting
Pauli rotations doesn’t change the minimal number of Hadamard gates required to implement the
diagonalization network associated with the sequence of Pauli rotations.

Other gate sets. One could consider the problem over other Clifford gate sets, which raises
the question of whether these gate sets could perform better than the {X,CNOT, S,H} gate set
considered. In order to achieve a number of Hadamard gate inferior to rank(M), where M is defined
as in Theorem 2, the gate set considered needs to have at least one gate, other than the Hadamard
gate, such that its decomposition over the {X,CNOT, S,H} gate set necessarily involves at least
one Hadamard gate. Said otherwise, the number of Hadamard gates is at least rank(M) for any
gate set in which the Hadamard gate is the only gate U for which there exists a non-diagonal Pauli
operator P such that U †PU is diagonal.

3.3 Extension to Clifford+RZ circuit re-synthesis

Any Clifford+RZ circuit can be characterized by a sequence of Pauli rotations followed by a final
Clifford operator Cf [2]. We demonstrated that Algorithm 1 solves the H-Opt problem optimally,
and so it can be used to synthesize a sequence of Pauli rotations up to a final Clifford operator
Cf ′ with a minimal number of Hadamard gates. The synthesis of the full Clifford+RZ circuit can
then be performed by coupling Algorithm 1 with a procedure to synthesize the Clifford operator
Cf · Cf ′ . We will demonstrate that this procedure can in fact also be performed by Algorithm 1
with a minimal number of Hadamard gates.

A Clifford operator U ∈ Cn can be represented by a tableau encoding 2n Pauli operators
such that n of them are mutually commuting Pauli operators called stabilizer generators and the
other half are also mutually commuting Pauli operators referred to as destabilizer generators. If
the stabilizer generators are all diagonalized, then the Clifford operator can be synthesized using
only {X,S,CNOT} gates [23]. Thus, synthesizing a Clifford operator with the minimal number
of Hadamard gates amounts to finding a Clifford circuit C containing the minimal number of
Hadamard gates and such that U †PU is diagonal for all P in the stabilizer generators, where U is
the Clifford operator associated with C. We will demonstrate via the following proposition that a
Clifford circuit satisfying these properties is produced by Algorithm 1 when the sequence of Pauli
products S given as input encodes the stabilizer generators on any order.

Proposition 3. Let S be a sequence of m mutually commuting Pauli products and C be the Clifford
circuit returned by Algorithm 1 when S is given as input. Then U †P (S:,j)U is diagonal for all j,
where U is the Clifford operator associated with C.

Proof. Let P and P ′ be commuting Pauli operators such that P is diagonal and P ′ is not diagonal.
If there exists k such that P ′

k = X and P ′
ℓ ∈ {I, Z} for all ℓ ̸= k, then Pk = I because P commutes
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with P ′ and P is diagonal. Therefore conjugating P and P ′ with a Hadamard gate on qubit k will
result in both operators being diagonalized. Let C(i) be the subcircuit of C truncated before its
ith Hadamard gate with C(0) defined as the empty circuit, and let U(i) be the Clifford operator

associated with C(i). Due to the construction process of C, for each subcircuit C(i) where i > 0
there exists j such that P ′ = U †

(i)S:,jU(i) satisfies P ′
k = X and P ′

ℓ ∈ {I, Z} for all ℓ ̸= k where

k is the qubit on which the ith Hadamard gate of C is applied. Hence, for all i < h(C) and for

all j, if U †
(i)P (S:,j)U(i) is diagonal, then U †

(i+1)P (S:,j)U(i+1) is also diagonal. The circuit C is a

diagonalization network for S, which imply that for all j there exists U(i) such that U †
(i)P (S:,j)U(i)

is diagonal, and so U †P (S:,j)U is a diagonal for all j.

Based on Proposition 3, we can now show that Algorithm 1 can be used to synthesize a sequence
of Pauli rotations followed by a final Clifford operator with a minimal number of Hadamard gates.
Let S be a sequence of Pauli products associated with the sequence of Pauli rotations we are aiming
to implement, let S ′ be a sequence of Pauli products encoding the stabilizer generators of the
final Clifford operator, and let S̃ =

[
S S ′

]
. Any {X,CNOT, S,H,RZ} circuit implementing this

sequence of Pauli rotations followed by the final Clifford operator is necessarily a diagonalization
network for S̃. The circuit C returned by Algorithm 1 when S̃ is given as input satisfies this
condition with a minimal number of Hadamard gates. Moreover, as indicated by Proposition 3, C
simultaneously diagonalize the sequence of Pauli products encoded by S ′. Thus, the synthesis of
the sequence of Pauli rotations and the final Clifford operator can be completed with a minimal
number of Hadamard gate by inserting {X,CNOT, S,RZ} subcircuits into C.

Let C be the circuit obtained once the number of Hadamard gates have been optimized with our
method. The circuit C may contain an important number of CNOT gates as our algorithm does
not aim at optimizing the CNOT-count. If necessary, several methods can be used to optimize the
number of CNOT gates in C while preserving the number of Hadamard gates. First, the Clifford
parts of C can be re-synthesized by using a Clifford circuit synthesis algorithm that preserve the
optimal number of Hadamard gates. For example, as shown in Reference [25], a Clifford circuit
can be implemented with the optimal number of Hadamard gates via two {CNOT,CZ, S} circuits
separated by a layer of Hadamard gates. Algorithms designed for the synthesis of {CNOT,CZ, S}
circuits can then be used to optimize the number of gates or the depth of the circuit [26]. A
complementary way of optimizing the number of CNOT gates in C is to re-synthesize the Hadamard-
free subcircuits of C via a phase polynomial synthesis algorithm [24, 27]. This method would
probably be more effective than the re-synthesis of the Clifford parts approach when C contains
large Hadamard-free subcircuits.

4 Internal Hadamard gates minimization

In this section, we tackle the problem of minimizing the number of internal Hadamard gates, which
corresponds to the number of Hadamard gates occurring between the first and the last non-Clifford
RZ gate of the circuit. We first give an algorithm in Section 4.1 that performs the synthesis of a
diagonalization network while minimizing the number of internal Hadamard gates. We then prove
its optimality in Section 4.2.
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4.1 Algorithm

Solving the Internal-H-Opt problem for a sequence S =

[
Z
X

]
of Pauli products consists in finding

a Clifford operator U such that rank(M̃) is minimal where M̃ =

[
X̃
A

]
, S̃ =

[
Z̃
X̃

]
= U †SU and A

is the commutativity matrix associated with S. The inequality rank(A) ≤ rank(M̃) ≤ rank(M) ≤
rank(A) + n, where M =

[
X
A

]
and n is the number of qubits, imply that the circuit produced

by Algorithm 1 contains at most n additional internal Hadamard gates when compared to an
optimal solution. To go beyond this approximation and obtain an optimal solution, it is necessary
to find a sequence of Clifford operations which, when applied to S, transform X into X̃ . As
discussed in Section 3.3, implementing a Clifford operator can be done in two parts: finding a circuit
that simultaneously diagonalize the stabilizer generators of the Clifford operator and finishing the
implementation with a {X,S,CNOT} circuit. The {X,S,CNOT} circuit can be disregarded as
the associated operations have no impact on the rank of M̃ . Hence, solving the Internal-H-Opt
problem for a sequence S of Pauli products consists in finding a set of mutually commuting Pauli
products, encoded in a matrix S ′, that are simultaneously diagonalized by a Clifford operator U

and such that rank(M̃) is minimal where M̃ =

[
X̃
A

]
and S̃ is the sequence of Pauli products

resulting from conjugating all the Pauli products of S by U . As stated by Proposition 3, a circuit
that simultaneously diagonalize the Pauli products of S ′ is produced by Algorithm 1 when S ′ is
given as input. Thus, if

[
S ′ S

]
is given as input to Algorithm 1, then the constructed circuit is

a diagonalization network for S which containing a minimal number of internal Hadamard gates.
An example of the execution of Algorithm 2 is given in Figure 3.

We propose an algorithm, whose pseudo-code is given in Algorithm 2, to solve the Internal-
H-Opt problem optimally by finding the Pauli products constituting S ′. Let Jm be an exchange
matrix of size m×m defined as follows:

Jmi,j =

{
1 if i+ j = m− 1,

0 otherwise.
(13)

As such, the Pauli products encoded by the columns of the matrix SJm are then the same as the
ones encoded by S but in reverse order. The algorithm starts by performing a call to Algorithm 1
to obtain a Clifford circuit C that is a diagonalization network for the sequence of Pauli products
encoded in SJm. Then, a set of stabilizer generators associated with the inverse of C are encoded
in the columns of S ′ and a second and final call to Algorithm 1 is performed where

[
S ′ S

]
is

given as input. We prove that the resulting circuit gives an optimal solution to the Internal-H-Opt
problem in the next subsection. When one uses Algorithm 2 to perform the re-synthesis of a circuit,
as explained in Section 3.3, the stabilizer generators associated with the final Clifford operator of
the input circuit can be append to the final call to Algorithm 1 to obtain a full re-synthesis of the
circuit containing both a minimal number of Hadamard gates and internal Hadamard gates.

Note that a set of stabilizer generators associated with the inverse of the Clifford circuit C can
be computed in O(n2m) using the tableau representation as C is composed of O(nm) gates and
a tableau can be updated in O(n) operations when a Clifford gate is applied. The complexity of
the algorithm then resides in the two calls made to Algorithm 1. The first call has a complexity
of O(n2m) as SJm is composed of m Pauli products. For the second call, n + m Pauli products
are given as input because a Clifford operator acting on n qubits has n stabilizer generators. This
induces a complexity of O(n2(n + m)) = O(n3 + n2m), which corresponds to O(n2m) in the
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Algorithm 2: Diagonalization network synthesis with a minimal number of internal H
gates

Input: A sequence S of m Pauli products of size n.
Output: A diagonalization network for S with a minimal number of internal H gates.

1 Jm ← exchange matrix of size m×m
2 C ← DiagonalizationNetworkSynthesis(SJm)
3 S ′ ← stabilizer generators of the inverse of the Clifford operator associated with C

4 return DiagonalizationNetworkSynthesis(
[
S ′ S

]
)

H S H

S H

(a) Circuit produced by Algorithm 1 when SJm is
given as input.

S H H S H

(b) Circuit produced by Algorithm 1 when
[
S ′ S

]
is

given as input. The first 4 gates are a diagonalization
network for S ′, the last 3 gates are a diagonalization
for S̃. The whole circuit solves the Internal-H-Opt

problem for S with rank(A(S)) = 1 internal
Hadamard gates.

S =

[
Z
X

]
=


1 0 0
1 1 0

1 0 1
0 1 0

 , A(S) =

 0 1 1
0 0 0
0 0 0



(c) Initial sequence of Pauli products and its
commutativity matrix, which are the same as the

example in Figure 2.

S ′ =


1 0
1 1

1 1
0 1

 , S̃ =


0 0 1
1 1 0

0 1 1
0 1 1


(d) Sequence of Pauli products S ′ and S̃ such that S ′

is associated with the stabilizer generators of the
Clifford operator U† where U is implemented by the
circuit depicted in Subfigure 3(a), and S̃ = U†SU .

Figure 3: Example of an execution of Algorithm 2. For a sequence of Pauli products S (c), the first
call to Algorithm 1 will produce a circuit (a) with associated Pauli products S ′ (d). The algorithm
will then output the circuit produced by Algorithm 1 when

[
S ′ S

]
is given as input (b).

typical case where n ≤ m. Thus, the overall complexity of Algorithm 2 matches the complexity of
Algorithm 1.

4.2 Optimality

This subsection is dedicated to the proof of the following theorem, which states the optimality of
Algorithm 2.

Theorem 3. Let S be a sequence of m Pauli products, A be its commutativity matrix and let C be
the Clifford circuit returned by Algorithm 2 when S is given as input. Then C optimally solves the
Internal-H-Opt problem with rank(A) internal Hadamard gates.

We first show that the optimal number of internal Hadamard gates is equal to rank(A). Our
proof rests on the following proposition.
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Proposition 4. Let S be a sequence of m Pauli products, A be its commutativity matrix and let
y,y′ be such that Ay = 0 and Ay′ = 0. Then the Pauli products encoded by Sy and Sy′ are
commuting.

Proof. Notice that the Pauli product S:,i commutes with S:,j if and only if (A⊕AT )i,j = (A⊕AT )j,i =
0. Then Sy′ commutes with S:,i if and only if vi = 0, where v = (A⊕ AT )y′. And Sy′ commutes
with Sy if and only if yTv = yT (A ⊕ AT )y′ = 0. As Ay = 0 and Ay′ = 0, we can show that
yT (A⊕AT )y′ = yTAy′⊕yTATy′ = yTAy′⊕ (Ay)Ty′ = 0, which implies that Sy commutes with
Sy′.

Based on Proposition 4 we can show that the optimal number of internal Hadamard gates is
equal to rank(A). Let S ′ be a sequence of Pauli products such that the columns of S ′ are forming
a spanning set of {Sy | Ay = 0,y ∈ Fm

2 }. It follows that for all y satisfying Ay = 0 there exists
a vector y′ such that Sy = S ′y′. Moreover, Proposition 4 entails that all the Pauli products of S ′
are mutually commuting. Therefore if the Pauli products encoded in S ′ were all to be diagonal,
then, for all y satisfying Ay = 0, the Pauli product Sy would be diagonal, i.e. Xy = 0. Let C ′ be
the circuit resulting from the execution of Algorithm 1 when S ′ is given as input and let S̃ be the
sequence of Pauli products where, for all i, the Pauli product encoded by S̃:,i is equal to the Pauli

product encoded by S:,i conjugated by the Clifford operator associated with C ′. Let M̃ =

[
X̃
A

]
,

for all y satisfying Ay = 0 we have X̃y = 0 because C ′ performs a simultaneous diagonalization
on the Pauli products of S ′, as stated by Proposition 3. Consequently we have M̃y = 0 for all
y ∈ nullspace(A) and so rank(M̃) = rank(A). Then we can use Algorithm 1 to produce a Clifford
circuit C̃ that is a diagonalization network for S̃ and such that h(C̃) = rank(M̃) = rank(A). It
follows that the Clifford circuit C ′ :: C̃ is a diagonalization network for S containing h(C̃) = rank(A)
internal Hadamard gates.

To solve the Internal-H-Opt problem optimally it is then essential to find a spanning set of
{Sy | Ay = 0,y ∈ Fm

2 }, which we encode in the columns of S ′. Constructing such a spanning
set naively by finding all y ∈ Fm

2 satisfying Ay = 0 would imply a complexity of O(m3) using
a Gaussian elimination procedure, which is more computationally expensive than minimizing the
number of Hadamard gates via Algorithm 1 in the case where n < m. Fortunately, we can actually
rely on Algorithm 1 to compute S ′ with a complexity of O(n2m), as it is done in Algorithm 2.
Indeed, if Algorithm 1 is used to constructed a diagonalization network C for the sequence of
Pauli products SJm, then the stabilizer generators of the Clifford operator implemented by C are
forming a spanning set of {Sy | Ay = 0,y ∈ Fm

2 }. We demonstrate this statement via the following
proposition.

Proposition 5. Let S =

[
Z
X

]
be a sequence of m Pauli products, Jm be an exchange matrix of

size m × m and let U be the Clifford operator associated with the Clifford circuit C produced by
Algorithm 1 when SJm is given as input. Let S̃ be the sequence of Pauli products obtained by
conjugating all the Pauli products of S by U , then X̃Jmy = 0 for all y satisfying yTA(SJm) = 0,
where A(SJm) is the commutativity matrix associated with SJm.

Proof. Let C(i) be the circuit obtained after the ith recursive call to Algorithm 1 when SJm is
given as input, as such C(i) is a diagonalization network for the first i + 1 columns of SJm. And

let S(i) =
[
Z(i)

X (i)

]
be the sequence of Pauli products resulting from conjugating S by the Clifford
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operator associated with the circuit C(i). We defined y(i) ∈ Fm
2 as follows:

y
(i)
j =

{
yj if j ≤ i,

0 otherwise,
(14)

where y ∈ Fm
2 satisfies yTA(SJm) = 0.

In the case where i = 0, the equality X (0)Jmy(0) = 0 is satisfied because the Pauli product

encoded by the first column of S(0)Jm is diagonal and y
(0)
j = 0 for all j > 0. More generally, the

Pauli product encoded by the ith column of S(i)Jm is diagonal, and so the following holds:⊕
k∈K
X (i)
k Jm = A

(SJm)
i ⊕A

(SJm)
:,i (15)

where K = {k | Z(i)
k,m−i−1 = 1}. Here the ith column of A(SJm) must be added to the ith row of

A(SJm) to form the vector describing how the ith Pauli rotation commutes or anticommutes with
the other Pauli rotations of the sequence. In this sense, it is a generalization of Equation 8 to the
other rows of A(SJm). Equation 15 entails[⊕

k∈K
X (i)
k Jm

]T

y(i) =
[
A

(SJm)
i ⊕A

(SJm)
:,i

]T
y(i) (16)

Moreover, we have
[
A

(SJm)
i

]T
y(i) = 0 because A

(SJm)
i,j = 0 for all j ≤ i and y

(i)
j = 0 for all j > i.

And we also have
[
A

(SJm)
:,i

]T
y(i) = 0 because

[
A

(SJm)
:,i

]T
y(i) =

[
A

(SJm)
:,i

]T
y as A

(SJm)
j,i = 0 for all

j > i and
[
A

(SJm)
:,i

]T
y = yTA

(SJm)
:,i = 0 by definition. Thus, we proved that the following holds:

[⊕
k∈K
X (i)
k Jm

]T

y(i) = 0 (17)

where K = {k | Z(i)
k,m−i−1 = 1}.

Let’s assume that X (i)Jmy(i) = 0, we can then distinguish two cases for the (i+ 1)th iteration
of Algorithm 1. In the case where the (i + 1)th Pauli product of S(i)Jm is diagonal, the circuit
C(i+1) can be obtained from C(i) by appending a {CNOT, S} circuit to it. If the Pauli product
encoded by S(i)Jmy(i) is diagonal, as we assumed, then the Pauli product encoded by the vector
S(i+1)Jmy(i) is also diagonal as no Hadamard gate was appended to C(i) to derive C(i+1) from it.
In addition, the (i + 1)th Pauli product of S(i+1)Jm is also diagonal which imply that the Pauli
product encoded by the vector X (i+1)Jmy(i+1) is diagonal and so X (i+1)Jmy(i+1) = 0. Therefore,
in such case where the (i + 1)th Pauli product of S(i)Jm is diagonal, the equality X (i)Jmy(i) = 0
implies that X (i+1)Jmy(i+1) = 0.

In the case where the (i + 1)th Pauli product of S(i)Jm is not diagonal, the circuit C(i+1)

can be constructed from C(i) by appending a {CNOT, S} circuit to it and a final Hadamard gate
on some qubit j. Let Ĉ(i+1) be the circuit resulting from appending this {CNOT, S} circuit to
C(i), i.e. Ĉ(i+1) corresponds to the circuit C(i+1) whose last gate, which is a Hadamard gate, has
been removed. Let Ŝ(i+1) be the sequence of Pauli products obtained by conjugating all the Pauli
products of S by the Clifford operator associated with Ĉ(i+1). Using the same reasoning as before,
if the Pauli product encoded by S(i)Jmy(i) is diagonal then the Pauli product encoded by the vector
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Ŝ(i+1)Jmy(i) is also diagonal as no Hadamard gate was appended to C(i) to derive Ĉ(i+1) from it,
and so we have X̂ (i+1)Jmy(i) = 0.

The circuit C(i+1) can be obtained from Ĉ(i+1) by appending a Hadamard gate to it on some

qubit j. Therefore, X (i+1)
k = X̂ (i+1)

k for all k ̸= j, and so[
X (i+1)
k Jm

]T
y(i) =

[
X̂ (i+1)
k Jm

]T
y(i) = 0 (18)

for all k ̸= j. The (i + 1)th Pauli product of S(i+1)Jm is diagonal which means that the (i + 1)th
column of X (i+1)Jm is equal to 0, and so the equality holds as well for y(i+1):[

X (i+1)
k Jm

]T
y(i+1) =

[
X (i+1)
k Jm

]T
y(i) = 0 (19)

for all k ̸= j. Notice that j ∈ K where K = {k | Z(i+1)
k,m−i−1 = 1}, then from Equation 17 we can

infer that [
X (i+1)
j Jm

]T
y(i+1) ⊕

⊕
k∈K̂

X (i+1)
k Jm

T

y(i+1) = 0 (20)

where K̂ = K \{j}. From Equation 19 we can deduce that the second term of Equation 20 is equal
to 0, therefore we have [

X (i+1)
j Jm

]T
y(i+1) = 0 (21)

which, when combined with Equation 19, entails X (i+1)Jmy(i+1) = 0 and concludes the proof of
Proposition 5.

We can now demonstrate Theorem 3 on the basis of Proposition 5.

Proof of Theorem 3. Let S ′ be as defined in Algorithm 2 and let C be the circuit produced by

Algorithm 2 when S =

[
Z
X

]
is given as input. As C is a diagonalization network for

[
S ′ S

]
it can

be splitted in two subcircuits such that C = C1 :: C2, where C1 and C2 are diagonalization networks

for S ′ and S̃ respectively with S̃ =

[
Z̃
X̃

]
= U †SU where U is the Clifford operator associated with

C1. The number of internal Hadamard gates in C is therefore equal to the number of Hadamard
gates in C2, proving Theorem 3 can then be done by proving that h(C2) = rank(M̃) = rank(A(S))

where M̃ =

[
X̃

A(S)

]
.

The Pauli products encoded in the matrix SJm are the same as in S but in reverse order.

Consequently we have A
(S)
i,j = A

(SJm)
m−j−1,m−i−1, therefore by reversing the order of the rows and

columns of A(SJm) and transposing it to obtain a strictly upper triangular matrix we get the
matrix A(S): [

JmA(SJm)Jm

]T
= A(S) (22)

From this we can deduce that
A(S)y = 0

⇒
[
JmA(SJm)Jm

]T
y = 0

⇒ yTJmA(SJm)Jm = 0

⇒ yTA(SJm) = 0

(23)
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where y = Jmy. And based on Proposition 5 we have

X̃Jmy = 0

⇒ X̃y = 0
(24)

Thus, for all y ∈ nullspace(A(S)) we have X̃y = 0 and therefore M̃y = 0, which implies that
h(C2) = rank(M̃) = rank(A(S)) and concludes the proof of Theorem 3.

5 Improving the complexity

Algorithm 1 and 2 are taking a sequence of Pauli products S as input and output a diagonalization
network for S. In order to use these algorithms to minimize the number of Hadamard gates, or
internal Hadamard gates, in a circuit C it is then required to first extract from C the sequence of
Pauli products S for which the diagonalization network must be constructed. This procedure can
be done with a complexity O(nM) by using a tableau, where n is the number of qubits and M
is the number of gates in C. In this section, we will see how we can merge the extraction of the
sequence of Pauli products S with our algorithms to obtain the desired re-synthesis of C with a
complexity of O(nM + n2h) instead of O(nM + n2m) where m is the number of Pauli products in
S and h ≤ m is the minimal number of Hadamard gates required to construct a diagonalization
network for S. We first explain our notations related to the tableau representation, commonly used
to represent a Clifford operator. In Subsection 5.1 we present an algorithm which performs the
re-synthesis of a sequence of Pauli rotations implemented by a given circuit up to a final Clifford
operator and with a minimal number of Hadamard gates. Finally, in Subsection 5.2, we present an
algorithm which produces a circuit that is a re-synthesis of a given circuit and which implements
the same sequence of Pauli rotations but with a minimal number of Hadamard gates and internal
Hadamard gates.

The tableau representation. A tableau encodes 2n generators which can be represented by 2n
independent Pauli products along with a phase for each one of these Pauli products. We can thus
reuse our method of encoding for a sequence of Pauli products S and represent a tableau by a

block matrix T =

sTZ
X

 of size (2n + 1) × 2n where n is the number of qubits. The first row of

T corresponds to a vector s ∈ {0, 1}2n which encodes the phases of the generators, the subsequent
n rows of T are forming the submatrix Z and the last n rows of T are forming the submatrix X .
The jth column of T is then encoding the jth generator: sj encodes its phase which corresponds to
(−1)sj and (Zi,j ,Xi,j) encodes its ith Pauli matrix, such that the values (0, 0), (0, 1), (1, 1) and (1, 0)
are corresponding to the Pauli matrices I,X, Y and Z respectively. The first n columns of T are
encoding the stabilizer generators, whereas the last n columns of T are encoding the destabilizer

generators. The identity tableau T associated with an empty circuit is such that the matrix

[
Z
X

]
is forming the identity matrix and s = 0, said otherwise the ith stabilizer generator of T is Zi

and the ith destabilizer generator of T is Xi. The inverse tableau of T , denoted by T −1, is the
tableau associated with the Clifford operator U † where U is the Clifford operator associated with
T . Analogously, the inverse of a circuit C, denoted C−1, is the circuit obtained from C by replacing
every gate G by G† and by reversing the order of its gates. Let S be a sequence of Pauli products,
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Algorithm 3: H-Opt

Input: A Clifford+RZ circuit C and a tableau T =

sTZ
X

.
Output: A circuit Cout and a tableau Tout, such that Cout is a re-synthesis of C and

implements the same sequence of Pauli rotations as C up to an initial and final
Clifford operator represented by T and T −1

out respectively.
1 procedure HOpt(C, T )
2 Cout ← new empty circuit
3 foreach gate G ∈ C do
4 if G is Clifford then
5 Prepend G† to T
6 end
7 if G is a non-Clifford RZk

(θ) gate then
8 if ∃i such that Xi,k = 1 then
9 foreach j ∈ {j | Xj,k = 1} \ {i} do

10 Cout ← Cout :: CNOTi,j

11 Append CNOTi,j to T
12 end
13 if Zi,k = 1 then
14 Cout ← Cout :: Si

15 Append Si to T
16 end
17 Cout ← Cout :: Hi

18 Append Hi to T
19 end
20 i← any value satisfying Zi,k = 1

21 C̃ ← new empty circuit
22 foreach j ∈ {j | Zj,k = 1} \ {i} do
23 C̃ ← C̃ :: CNOTj,i

24 end
25 if sk = 1 then

26 C̃ ← C̃ :: Xi

27 end

28 Cout ← Cout :: C̃ :: RZi(θ) :: C̃
−1

29 end

30 end
31 return (Cout, T )
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Algorithm 4: Internal-H-Opt

Input: A Cliffod+RZ circuit C.
Output: A circuit that is a re-synthesis of C and which implements the same sequence of

Pauli rotations as C with a minimal number of Hadamard gates and internal
Hadamard gates.

1 procedure InternalHOpt(C)

2 T ← new identity tableau
3 foreach Clifford gate G ∈ C do
4 Prepend G† to T
5 end

6 (C̃, T̃ )← HOpt(C−1, T )
7 CT̃ ← CliffordSynthesis(T̃ )
8 (Cout, Tf )← HOpt(C, T̃ )
9 return CT̃ :: Cout :: CliffordSynthesis(T −1

f )

if S̃ = U †SU then we will equivalently say that S̃ = T −1ST where T is the tableau associated
with the Clifford operator U .

Let C be a Clifford circuit such that its associated Clifford operator is represented by a tableau
T . If a Clifford gate from the set {CNOT, S,H} is appended to C then the generators of T can
be updated accordingly with O(n) operations, where n is the number of qubits. The operations
to perform on the Pauli products encoded by T are the same as the one depicted in Figure 1,
similar operations can be performed to update the phases associated with the Pauli products in
O(n) [23]. Also, if a Clifford gate from the set {CNOT, S,H} is prepended to C, then T can also
be updated with O(n) operations [28]. When T is updated in such manner we will say that we
append, or prepend, a gate to T . As explained in Section 3.3, a Clifford operator, represented by
a tableau T and acting on n qubits, can be implemented over the {X,CNOT, S,H} gate set with
a complexity of O(n3) and with a minimal number of Hadamard gates by first diagonalizing its
stabilizer generators using Algorithm 1, and then finishing its synthesis using only {X,CNOT, S}
gates. We use the term CliffordSynthesis to denote this procedure in our algorithms.

5.1 H-Opt algorithm

Consider the algorithm whose pseudo-code is given in Algorithm 3 and which takes a circuit C and
a tableau Tin as input, and let S be the sequence of Pauli products associated with the sequence
of Pauli rotations implemented by C. This algorithm outputs a circuit Cout and a tableau T such
that Cout is a re-synthesis of C and implements the same sequence of Pauli rotations as C up to
an initial and final Clifford operator represented by Tin and T −1

out respectively.
Algorithm 3 is composed of a loop iterating over the gates of C and which contains two distinct

cases: either the current gate G is a Clifford gate or it is not. If G is Clifford gate then G† is
prepended into T . If G is a non-Clifford RZi(θ) gate then we must compute the Pauli rotation
that should be appended to Cout. To do so we can first compute which Pauli rotation is actually
being implemented by C by pulling all the Clifford gates preceding G through the Pauli rotation
RZi(θ). The Pauli rotation obtained is then URZi(θ)U

† where U is the Clifford operator associated
with the Clifford circuit composed of all the Clifford gates preceding G. Then, to be appended into
Cout, the Pauli rotation must also be propagated through the initial tableau Tin, we will denote V
the Clifford operator associated with Tin. Finally, the Pauli rotation must be propagated through
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all the Clifford gates that are in Cout so far, we denote W the associated Clifford operator. The
Pauli rotation to append to the circuit Cout is therefore W †V †URZi(θ)U

†VW . We can notice that
the Clifford operator U †VW is in fact associated with the tableau T . Indeed, T is initially equal
to Tin, the inverse Clifford gates that are preceding G in C has been prepended to T and the
Clifford gates that are in Cout so far has been appended to T . The Pauli operator P satisfying
RP (θ) = W †V †URZi(θ)U

†VW is therefore the ith stabilizer generator of T , which is encoded by
the ith column of T .

The Pauli rotation RP (θ) can then be implemented by first performing the synthesis of a Clifford
operator U such that U †RP (θ)U is diagonal, and then by performing the synthesis of a Clifford
operator V satisfying V †U †RP (θ)UV = RZi(θ), for some qubit i. The Clifford operator V can be
synthesized using only {X,CNOT} gates as U †RP (θ)U is diagonal, this is done in Algorithm 3 by
constructing the circuit C̃. Once the operators U and V have been implemented, the gate RZi(θ)
can be appended to the circuit. The operator V † does not necessarily need to be implemented, but
it is actually implemented in Algorithm 3 to avoid additional operations that would be required
to update the tableau T . We should not treat the operator U † the same way as it would increase
the number of Hadamard gates in the circuit, U † is therefore not implemented in Algorithm 3 and
the tableau T is updated accordingly by appending the gates realizing the implementation of U to
it. Note that the method utilized to implement U is the same as the one in Algorithm 1, which
uses exactly one Hadamard gate when P is not diagonal. It follows from the results in Section 3
that Algorithm 3 can be used to solve the H-Opt problem for S̃ = T −1

in STin. More concretely,
by removing all the non-Clifford RZ gates from the circuit produced by Algorithm 3 we obtain a
diagonalization network which solves the H-Opt problem for S̃.

Let C ′ and C ′
out be the Clifford circuits obtained by removing all the non-Clifford RZ gates from

C and Cout respectively, and let CTin be a Clifford circuit whose Clifford operator is associated with
the tableau Tin. In the end of Algorithm 3, the tableau T is associated with the Clifford operator
implemented by the circuit CT = C ′−1 :: CTin :: C ′

out. As Cout implements the sequence of Pauli
rotations associated with S̃ = T −1

in STin up to a final Clifford operator implemented by C ′−1
out , it

follows that Cf = CTin :: Cout :: C
−1
T is a re-synthesis of C and implements the same sequence of

Pauli rotations as C. If the input tableau Tin is the identity tableau, or can be implemented with
no Hadamard gates, and if CT is implemented with a minimal number of Hadamard gates using
the procedure described in Section 3.3, then Cf is a re-synthesis of C which implements the same
sequence of Pauli rotations with a minimal number of Hadamard gates.

Complexity analysis. The main loop of Algorithm 3 is performing M iterations where M is the
number of gates in the input circuit. At each iteration, if the current gate is a Clifford gate then
it is prepended to T which is done in O(n) operations, where n is the number of qubits in the
input circuit. If the current gate is a non-Clifford RZk

(θ) gate then the algorithm append O(n)
gates to Cout. In the case where the kth stabilizer generator of T is not diagonal then a subset of
these gates are appended to T which takes O(n) operations for each gates. This happens exactly
h times where h is the number of Hadamard gates in the output circuit Cout, which implies a cost
of O(n2h) operations. Thus, the overall complexity of Algorithm 3 is O(nM + n2h).

5.2 Internal-H-Opt algorithm

Algorithm 4 is based on the procedure explained in Section 4 and utilized by Algorithm 2 to
synthesize a diagonalization network for a sequence of Pauli products with a minimal number of
internal Hadamard gates. It takes a Clifford+RZ circuit C as input and outputs a circuit which is a
re-synthesis of C and which implements the same sequence of Pauli rotations as C with a minimal
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number of Hadamard gates and internal Hadamard gates.
As explained in Section 4, in order to solve the Internal-H-Opt problem for a sequence of

m Pauli products S it is necessary to find a Clifford operator U that minimizes rank(M̃) where

M̃ =

[
X̃

A(S)

]
, A(S) is the commutativity matrix associated with S and S̃ =

[
Z̃
X̃

]
= U †SU . We

proved that the Clifford operator associated with the circuit produced by Algorithm 1 when SJm,
where Jm is an exchange matrix of size m ×m, is given as input is satisfying this property. Let
S be a sequence of m Pauli products associated with the sequence of Pauli rotations implemented
by a Clifford+RZ circuit C, then the Clifford operator U described above can be computed by
the HOpt procedure described in Algorithm 3. To do so, the circuit C−1 and the tableau T must
be given as input to the HOpt procedure, such that T is the tableau associated with the Clifford
operator implemented by the circuit C ′−1 where C ′ is the Clifford circuit obtained by removing
all the non-Clifford RZ gates of C. The circuit C−1 is provided so that the Pauli rotations are
processed in reversed order by the HOpt procedure. For the tableau T , it must be provided because
the circuit C−1 does not necessarily implements the same sequence of Pauli rotations as C, however
the circuit C ′ :: C−1 do implement the same sequence of Pauli rotations as the circuit C. We can
be convinced by this fact by noticing that the Clifford operator formed by all the Clifford gates
preceding a non-Clifford gate in C is the same as the Clifford operator formed by all the Clifford
gates preceding the corresponding non-Clifford gate in C ′ :: C−1. Then, as shown in Section 5.1,
when the HOpt procedure is executed with C−1 and T as parameters, it will produce a circuit C̃
and a tableau T̃ associated with the Clifford operator implemented by the circuit C ′ :: C ′−1 :: C̃ ′,
which is equivalent to the circuit C̃ ′, and where C̃ ′ is the Clifford circuit obtained by removing all
the non-Clifford RZ gates from C̃. The circuit C̃ ′ then solves the H-Opt problem for SJm, and
is an implementation of the Clifford operator associated with the tableau T̃ . From the results of

Section 4, it follows that if S̃ =

[
Z̃
X̃

]
= T̃ −1ST̃ then rank(M̃) = rank(A(S)) where M̃ =

[
X̃

A(S)

]
.

Algorithm 4 then performs the synthesis of the Clifford operator associated with T̃ with a
minimal number of Hadamard gates, the Clifford circuit CT̃ obtained will be the initial Clifford
circuit of the circuit produced by Algorithm 4. The algorithm then calls a second time the HOpt

procedure with C and T̃ given as parameters in order to implement the sequence of Pauli rotations
associated with S̃ with a minimal number of internal Hadamard gates and up to a final Clifford
circuit. The tableau T̃ must be given as input so that the sequence of Pauli rotations implemented
is the one associated with the sequence of Pauli products S̃ and not S. The procedure HOpt will
then produce a circuit Cout and a tableau Tf such that C ′

out is solving the H-Opt problem for S̃
and Tf is associated with the Clifford operator implemented by Cf = C ′−1 :: CT̃ :: C ′

out, where
C ′ and C ′

out are the circuits obtained by removing all the non-Clifford RZ gates from C and Cout

respectively. We can then deduce that CT̃ :: Cout :: C−1
f is implementing the same sequence of

Pauli rotations as C and the Clifford operator formed by all the Clifford gates of this circuit is the
same as the Clifford operator formed by all the Clifford gates of C. Thus, the circuit produced by
Algorithm 4 is a re-synthesis of C and it implements the same sequence of Pauli rotations with a
minimal number of Hadamard gates and internal Hadamard gates.

Complexity analysis. Let h be the number of Hadamard gates within the circuit produced by
Algorithm 4, and let n be the number of qubits in C. The algorithm performs two calls to the
HOpt procedure for C−1 and C respectively, which both contains M gates. The first call, with
C−1 given as input, will produce a circuit which contains h̃ number of Hadamard gates, such that
h̃ ≤ h. The second call, with C given as input, will produce a circuit which contains a number of
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Hadamard gates that is equal to the number of internal Hadamard gates in the circuit produced by
Algorithm 4, and which is therefore less than or equal to h. Hence, these two calls to Algorithm 3
have a cost of O(nM + n2h) operations. The procedure CliffordSynthesis is also called two
times, which induces a cost of O(n3) operations. Thus, the overall complexity of Algorithm 4 is
O(nM + n2h+ n3), which corresponds to O(nM + n2h) in the typical case where h > n.

Note that the two calls to the CliffordSynthesis procedure can be avoided if the objective is
to minimize the number of internal Hadamard gates in the circuit and not the number of Hadamard
gates. Indeed, the first call to the HOpt procedure will produce a circuit C̃ and a tableau T such
that T is associated with the Clifford operator implemented by C̃ ′ where C̃ ′ is obtained by removing
all the non-Clifford RZ gates from C̃. Performing the synthesis of T will therefore produce a circuit
that is equivalent to C̃ ′. Consequently, instead of calling the procedure CliffordSynthesis, an
equivalent circuit could be obtained by constructing C̃ ′ which can be done with O(nM) operations
as C̃ containsO(nM) gates. Of course, the drawbacks of this method are that C̃ ′ may not contain an
optimal number of Hadamard gates and that the worst-case complexity would be greater thanO(n3)
in the case where M > n2. The second call to CliffordSynthesis can also be avoided in a similar
manner. Indeed, Tf is associated with the Clifford operator implemented by Cf = C ′−1 :: CT̃ :: C ′

out,
where C ′ and C ′

out are the circuits obtained by removing all the non-Clifford RZ gates from C and
Cout respectively. The circuit Cf can then be constructed in O(nM) as the circuits C ′−1, CT̃ and

C ′
out all contain O(nM) gates. Thus, we can design an algorithm which produces a circuit Ĉ with

a complexity of O(nM + n2h), even in the case where h < n, and such that Ĉ is a re-synthesis
of a Clifford+RZ circuit C and implements the same sequence of Pauli rotations as C but with a
minimal number of internal Hadamard gates.

6 Benchmarks

We compare the performances of Algorithm 4, the InternalHOpt procedure, to the moveH procedure
presented in Reference [10] and which has a complexity of O(M2) where M is the number of
gates in the input circuit. Note that the moveH procedure does not include the T gates reduction
method of Reference [10] based on spider nest identities and which is normally performed once
the number of Hadamard gates have been reduced. The moveH procedure applies a sequence of
rewriting rules on the circuit with the aim of reducing the number of internal Hadamard gates.
During this process the number of T gates may also be reduced, which modifies the sequence
of Pauli rotations implemented by the circuit. This can then lead to a better reduction in the
number of internal Hadamard gates than the one obtained when only the InternalHOpt procedure
is performed. Which is why, in order to better exploit the InternalHOpt procedure, it can be
helpful to first execute an algorithm which can reduce the number of T gates in the circuit quickly
and efficiently. The T -count reduction algorithms that are closest to these requirements are the
provided in Reference [8] and in Reference [7], these two algorithms have in fact been proven to
be equivalent [29]. The method used in these algorithms consists in merging the Pauli rotations
in the sequence that are equivalent and that are not separated by another Pauli rotation with
which they anticommute. We implemented the algorithm provided in Reference [8] such that it
is not increasing the number of gates in the circuit in order to not increase the execution time of
the InternalHOpt procedure. This procedure, which we refer to as TMerge, has a complexity of
O(nM+nm2) where n is the number of qubits, M is the number of gates in the input circuit and m
is the number of Pauli rotations. If the T gates reduction rules used in the moveH subroutine is only
consisting in merging two adjacent RZ gates together, then we can infer that the number of T gates
in the circuit after moveH procedure has been performed is always higher or equal to the number of
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InternalHOpt TMerge [8] + InternalHOpt moveH [10]

Circuit H-count T -count Time (s) H-count T -count Time (s) H-count T -count Time (s)

Tof3 2 21 0.00 2 15 0.00 2 15 0.00
Tof4 4 35 0.00 4 23 0.00 4 23 0.00
Tof5 6 49 0.00 6 31 0.00 6 31 0.00
Tof10 16 119 0.00 16 71 0.00 16 71 0.00
Barenco Tof3 3 28 0.00 3 16 0.00 3 16 0.00
Barenco Tof4 7 56 0.00 7 28 0.00 7 28 0.00
Barenco Tof5 11 84 0.00 11 40 0.00 11 40 0.00
Barenco Tof10 31 224 0.00 31 100 0.01 31 100 0.00
Mod54 0 28 0.00 0 8 0.00 0 8 0.00
VBE Adder3 4 70 0.00 4 24 0.00 4 24 0.00
CSLA MUX3 6 70 0.00 6 62 0.00 6 62 0.00
CSUM MUX9 12 196 0.00 12 84 0.01 12 84 0.00
QCLA Com7 18 203 0.00 18 95 0.01 18 95 0.00
QCLA Mod7 58 413 0.00 58 237 0.02 58 237 0.00
QCLA Adder10 25 238 0.00 25 162 0.01 25 162 0.00
Adder8 41 399 0.00 37 173 0.02 41 215 0.01
Mod Adder1024 304 1995 0.00 304 1011 0.12 304 1011 0.06
RC Adder6 10 77 0.00 10 47 0.00 10 47 0.00
Mod Red21 17 119 0.00 17 73 0.00 17 73 0.00
Mod Mult55 3 49 0.00 3 35 0.00 3 35 0.00
GF(24) Mult 0 112 0.00 0 68 0.00 0 68 0.00
GF(25) Mult 0 175 0.00 0 115 0.01 0 115 0.00
GF(26) Mult 0 252 0.00 0 150 0.01 0 150 0.00
GF(27) Mult 0 343 0.00 0 217 0.02 0 217 0.01
GF(28) Mult 0 448 0.00 0 264 0.04 0 264 0.02
GF(29) Mult 0 567 0.00 0 351 0.05 0 351 0.03
GF(210) Mult 0 700 0.00 0 410 0.07 0 410 0.04
GF(216) Mult 0 1792 0.01 0 1040 0.43 0 1040 0.14
GF(232) Mult 0 7168 0.05 0 4128 7.19 0 4128 0.98
GF(264) Mult 0 28672 0.19 0 16448 125.07 0 16448 7.46
GF(2128) Mult 0 114688 1.20 0 65664 2294.64 0 65664 60.47
GF(2256) Mult 0 458752 8.22 0 262400 41474.34 0 262400 2922.20
GF(2512) Mult 0 1835008 53.85 - - - 0 1049088 59186.15
Adder1024 2044 14322 3.57 2044 8184 31.08 2046 8184 6.12
Adder2048 4092 28658 18.98 4092 16376 179.07 4094 16376 25.69
Adder4096 8188 57330 90.46 8188 32760 1182.67 8190 32760 131.11
DEFAULT 11936 62720 13.72 11936 39744 39.33 12030 39744 1602.60
Shor4 9780 68320 0.21 5010 17052 5.91 9829 22514 77.52
Shor8 69759 489741 1.74 35585 121341 158.91 69759 163827 6895.79
Shor16 537630 3755115 15.80 312274 1042881 2821.94 - - -
Shor32 4173389 29622691 172.98 387103 1303156 24150.54 - - -

Table 1: Comparison of different methods for the optimization of the number of internal Hadamard
gates. TheH-count corresponds to the number of internal Hadamard gates. A blank entry indicates
that the execution couldn’t be carried out in less than a day.
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T gates in the circuit after the TMerge procedure has been performed; this is corroborated by the
results of our benchmarks.

We evaluate the different methods on a set of commonly used circuits which were obtained from
Reference [30] and Reference [31]. We extended the set of circuits over which the benchmarks are
performed by adding larger quantum circuit to better test the scalability of the different approach
on various types of circuits. We added large adders circuits which are performing an addition
over two registers of size 1024, 2048 and 4096 qubits, the implementation of these circuits is based
on Reference [32]. We also added a circuit, given in Reference [33], that is an implementation
of the block cipher DEFAULT. Finally, we added quantum circuits implementing the modular
exponentiation part of Shor’s algorithm for number factoring over 4, 8, 16 and 32 bits.

The TMerge and InternalHOpt procedures were implemented with the Rust programming lan-
guage, while the moveH procedure was extracted from the implementation realized in Haskell by
the authors of the method [34]. Our implementation of the InternalHOpt procedure used for the
benchmarks is publicly available [35], along with the circuits used in the benchmarks and which
have a reasonable size. The operations performed by the InternalHOpt algorithm mostly consist
in bitwise operations between vectors in order to update the tableau. Thus, our algorithm can
greatly benefits from SIMD (Same Instruction Multiple Data) instructions which enable the simul-
taneous execution of some of these bitwise operations. This have for example been used in the
CHP stabilizer circuit simulator [23]. We also exploit this concept in our implementation of the
InternalHOpt procedure by using 256 bit wide Advanced Vector Extensions (AVX).

Benchmarks analysis. The results of our benchmarks are presented in Table 1. We can notice
that the InternalHOpt procedure outperforms the moveH procedure in term of execution time
on some circuits of large size. For instance, the Shor32 circuit was optimized in 173 seconds
by the InternalHOpt procedure while the two other methods did not succeed in optimizing the
circuit in less than a day. However, the InternalHOpt procedure alone does not always achieve
the best results in the number of internal Hadamard gates. For the set of circuits and methods
considered, the method achieving the best results in term of internal Hadamard gates is the TMerge+
InternalHOpt approach. Indeed, the TMerge+ InternalHOpt approach always leads to a number
of internal Hadamard gates that is lower or equal to the numbers obtained by the moveH procedure.
This fact also holds for the number of T gates. However, for some circuits, the performances of the
moveH procedure and the TMerge+InternalHOpt approach are similar with respect to the H-count
and T -count metrics, but the execution time of the moveH procedure is much lower. This is notably
the case for the adder circuits of large size. These adder circuits have a low depth and a high
number of qubits, which is far from the ideal case for TMerge+ InternalHOpt approach since the
complexity of both procedures is dependent on the number of qubits. On the contrary, the moveH

procedure is not affected by the number of qubits as it has a complexity of O(M2) where M is the
number of gates within the circuit. This explains why the moveH procedure is competitive for these
adder circuits and has an execution time that is close to the one of the InternalHOpt procedure.

Another series of circuits for which the moveH procedure is much faster than the TMerge +
InternalHOpt approach are the “GF(2n) Mult” circuits. This behaviour can be explained by
analyzing the structure of the “GF(2n) Mult” circuits and the design of the TMerge algorithm.
The “GF(2n) Mult” circuits are all implementing a sequence of Pauli rotations that are mutually
commuting, which is why no internal Hadamard gate is required for these circuits. In the worst
case, for every pair of Pauli rotations, the TMerge procedure will check whether two Pauli rotations
commute or not. This routine, which seems unnecessary in the case where we know that the Pauli
rotations are all mutually commuting, is particularly expensive for the “GF(2n) Mult” circuits for
which n is high since the number of Pauli rotations increases drastically with respect to n.
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Outlook. Our primary motivation for optimizing the number of internal Hadamard gate is to foster
the minimization of T -gates. Conversely, our benchmarks show that optimizing the number of T -
gate leads to better minimization in the number of internal Hadamard gates. This interdependence
between the T -count and H-count minimization problems could lead us to think that a second
round of T -count optimization followed by a H-count optimization could lead to a lower number
of internal Hadamard gates. Our investigations on that second round of optimization have not be
fruitful as we did not succeed in reducing the number of internal Hadamard gates below the numbers
obtained by the TMerge + InternalHOpt approach. It seems that once the TMerge procedure has
been performed, it becomes difficult to modify the underlying sequence of Pauli rotations in such
a way that it enables further reduction in the number of internal Hadamard gates. Our conclusion
here is only based on some of our tests, more investigations with a wide variety of T -count optimizers
should be performed to know whether or not this second round of optimization could lead to an
improvement in the number of internal Hadamard gates.

Two lines of investigations on how to perform the optimization of internal Hadamard gates
more efficiently can be drawn out from these benchmarks. Firstly, the TMerge procedure is out-
performed, with respect to the execution time, by the moveH procedure on some circuits such as
the “GF(2n) Mult” circuits, can the complexity of the TMerge procedure be improved so that it is
more competitive on these circuits? Secondly, is it possible to design an algorithm similar to the
moveH procedure, so that it has approximatively the same execution time, but which systematically
obtains the same number of T gates as the TMerge procedure and which optimally minimizes the
number of internal Hadamard gates in the resulting sequence of Pauli rotations as done by the
InternalHOpt procedure?

7 Conclusion

We presented an algorithm to realize the synthesis of a sequence of Pauli rotations over the
{X,CNOT, S,H,RZ} gate set using a minimal number of Hadamard gates and with a time com-
plexity of O(n2m), in the typical case where n ≤ m, and where n is the number of qubits and m
is the number of Pauli rotations. A closely related problem is to optimize a Clifford+RZ circuit
so that the sequence of Pauli rotations it is implementing contains a minimal number of internal
Hadamard gates, where a Hadamard gate is called internal if it is comprised between the first and
last non-Clifford RZ gates of the circuit. Solving this problem is important to improve the efficiency
and scalability of algorithms minimizing the number of non-Clifford RZ gates such as T -count op-
timizers, and to minimize the additional cost that comes with the Hadamard gates gadgetization
procedure. In Reference [10], the authors raised the question of whether this problem is solvable
in O(M2poly log(M)) time where M is the number of gates in the input circuit. We answer this
question positively, in the case where n ≤ M/

√
h and for a fixed sequence of Pauli rotations by

providing an algorithm solving this problem with a time complexity of O(nM+n2h) where n is the
number of qubits, M is the number of gates in the input circuit and h is the number of Hadamard
gates within the optimized circuit.

Our algorithms are optimal for a given sequence of Pauli rotations, however there may exist other
sequences of Pauli rotations, associated with the same operator, which could be implemented with
fewer Hadamard gates. An open problem is to find a sequence of Pauli rotations S implementing
a given unitary gate up to a Clifford operator such that rank(A(S)) is minimal, where A(S) is the
commutativity matrix associated with S as defined in Section 3. Should there exist an algorithm
solving this problem in reasonable time, then it could be used in conjunction with our algorithms
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to implement a unitary gate over the Clifford+RZ gate set with a minimal number of internal
Hadamard gates.
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A Diagonalization network synthesis example

In this section we provide a detailed execution example of Algorithm 1 which performs the synthesis
of a diagonalization network for a given sequence of Pauli products. Let S be the sequence of Pauli
products given as input to Algorithm 1 and defined as follows:

S =

[
Z
X

]
=



1 1 1 0
0 1 0 1
0 1 0 0

1 0 1 1
0 1 1 0
0 0 1 1

 .

The algorithm starts by diagonalizing the Pauli product represented by the first column of S.
This is done by inserting a S gate in the circuit followed by a Hadamard gate on the first qubit.
The matrix S encoding the sequence of Pauli products is updated by performing the operations
associated with the S and H gates, as depicted in Figure 1. Then, the first column is removed from
the matrix and the algorithm performs a recursive call on the updated matrix.

S H



0 1 1
1 0 1
1 0 0

1 0 1
1 1 0
0 1 1


This time, the first column of the lower matrix has a Hamming weight greater than one. There-

fore, the algorithm inserts a CNOT gate acting on the first and second qubits of the circuit to
reduce the Hamming weight of the first column of the lower matrix to one. The Pauli product
encoded by the first column can then be diagonalized by inserting a S gate and a Hadamard gate
on the first qubit. Then, the matrix is updated, the first column is removed from the matrix and
the algorithm performs a recursive call.
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S H S H



0 1
0 1
0 0

1 1
1 1
1 1



Again, the first column of the lower matrix has a Hamming weight greater than one. This time
two CNOT gates must be inserted in the circuit to reduce it to one. After that, a Hadamard gate
is inserted to diagonalize the Pauli product encoded by the first column.

S H S H H



1
1
0

0
0
0


Finally, the Pauli product encoded by the remaining column is already diagonal. Therefore, the

algorithm simply removes the column from the matrix. The matrix is then empty so the algorithm
terminates by returning the constructed circuit, which is a diagonalization network for the sequence
of Pauli products encoded by S.

We can then insert {CNOT, RZ} subcircuits in the appropriate places to implement the sequence
of Pauli rotations associated with S up to a final Clifford circuit. The following figure shows an
example of a possible circuit obtained after this procedure.

S H RZ S H RZ H RZ RZ

The commutativity matrix A(S) associated with S is

A(S) =


0 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0

 .

As stated by Theorem 1, we can notice that the number of Hadamard gates in the circuit

produced by Algorithm 1 is equal to rank(M) where M =

[ X
A(S)

]
.
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