
HAL Id: hal-03991119
https://hal.science/hal-03991119v1

Submitted on 15 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight attribute-based encryption supporting
access policy update for cloud assited IoT

Sana Belguith, Nesrine Kaaniche, Giovanni Russello

To cite this version:
Sana Belguith, Nesrine Kaaniche, Giovanni Russello. Lightweight attribute-based encryption sup-
porting access policy update for cloud assited IoT. Secrypt 2018: 15th International Conference on
Security and Cryptography, Jul 2018, Porto, Portugal. pp.135-146, �10.5220/0006854603010312�. �hal-
03991119�

https://hal.science/hal-03991119v1
https://hal.archives-ouvertes.fr

Lightweight Attribute-Based Encryption Supporting Access Policy
Update for Cloud Assitsed IoT

Sana Belguith1, Nesrine Kaaniche2, Giovanni Russello1

1Cyber Security Foundry, University of Auckland, New Zealand
2SAMOVAR, CNRS, Telecom SudParis, University Paris-Saclay, Paris, France

sbel452@aucklanduni.ac.nz,Nesrine.Kaaniche@telecom-sudparis.eu,g.russello@auckland.ac.nz

Keywords: Constant-size Attribute based encryption, Access policy update, Cloud assisted IoT, Confidentiality, Access
control.

Abstract: Cloud-assisted IoT applications are gaining an expanding interest, such that IoT devices are deployed in dif-
ferent distributed environments to collect and outsource sensed data to remote servers for further processing
and sharing among users. On the one hand, in several applications, collected data are extremely sensitive and
need to be protected before outsourcing. Generally, encryption techniques are applied at the data producer
side to protect data from adversaries as well as curious cloud provider. On the other hand, sharing data among
users requires fine grained access control mechanisms. To ensure both requirements, Attribute Based Encryp-
tion (ABE) has been widely applied to ensure encrypted access control to outsourced data. Although, ABE
ensures fine grained access control and data confidentiality, updates of used access policies after encryption
and outsourcing of data remains an open challenge. In this paper, we design PU-ABE, a new variant of key
policy attribute based encryption supporting efficient access policy update that captures attributes addition
and revocation to access policies. PU-ABE contributions are multifold. First, access policies involved in the
encryption can be updated without requiring sharing secret keys between the cloud server and the data own-
ers neither re-encrypting data. Second, PU-ABE ensures privacy preserving and fine grained access control
to outsourced data. Third, ciphertexts received by the end-user are constant sized and independent from the
number of attributes used in the access policy which affords low communication and storage costs.

1 INTRODUCTION

Nowadays, IoT applications are widely used in
different fields such as smart cities, e-health, intelli-
gent transport systems, to name a few (Farhan et al.,
2018; Atwady and Hammoudeh, 2017; Coates et al.,
2017; Belguith et al., 2018). Due to their limited stor-
age and computation capacities, IoT devices are usu-
ally assisted with cloud services to store and process
generated data (Kaaniche and Laurent, 2017b; Bel-
guith et al., 2015). IoT devices produce huge amounts
of data which need to be securely collected and shared
among different users (Bacis et al., 2016a; Bacis et al.,
2016b). Consequently, encryption and access control
mechanisms are important to protect data from unau-
thorised access (Belguith et al., 2016).

Attribute based encryption (ABE) ensures en-
crypted access control to outsourced data while lim-
iting privacy leakage of data producers and users
(Kaaniche and Laurent, 2017a). ABE consists of en-
ciphering data with respect to an access policy over

a set of attributes where users who have the matching
attributes can recover data. Nowadays, with the emer-
gence of applications adapted to distributed and dy-
namic environments, several settings require adding
new users, strengthening access patterns and/or re-
moving current users from systems. A naive solu-
tion is to re-encrypt the whole data contents using
new access policy by the data owner and re-outsource
them to the cloud server. However, this solution is
extremely expensive in computation and communica-
tions costs as it should be re-executed at every time a
user is added or removed. Proxy re-encryption tech-
niques are used to update users in outsourced sys-
tems. These mechanisms allow a server to re-encrypt
stored data without accessing their content using a re-
encryption key (Liang et al., 2015; Ge et al., 2018).
Attribute-based Proxy Re-encryption (AB-PRE) sys-
tems have been applied for access policy update. In
AB-PRE, when the data owner decides to update ac-
cess policies of some ciphertexts, she uses her pri-
vate key to generated a re-encryption key for each ci-

phertext to be changed from an old access policy to a
new one. Afterwards, all the generated re-encryption
keys are uploaded to a proxy server to update the ci-
phertext using the received keys. Although AB-PRE
schemes allow re-encryption without decrypting ci-
phertext or accessing the plaintexts, it requires that the
data owner generates valid re-encryption keys. When
the number of ciphertext rises, it becomes inefficient
for a data owner to generate all the re-encryption keys
and upload them to the proxy. Furthermore, this may
also be unfeasible for limited bandwidths. Therefore,
attribute-based proxy re-encryption schemes may not
be efficient when updating a huge the number of ci-
phertexts.

Key Policy Attribute Based Encryption (KP-ABE)
is widely applied to secure data in several distributed
systems such as Publish and Subscribe systems
(Pub/Sub) (Ion et al., 2012; Esposito and Ciampi,
2015), pay-TV systems (Ogawa et al., 2017), vehicu-
lar networks (Nkenyereye et al., 2016), ..., where rules
on who may read a document must be specified but
it is unable to specify policies on a per-message ba-
sis. Obviously, these dynamic environments usually
require efficiently adding new users and/or revoking
existent users. That is, KP-ABE consists in labeling
user’s key by an access structure that specifies which
type of ciphertext the key can decrypt, while cipher-
text are labeled by a set of attributes. Thus, KP-ABE
are adapted to distributed and decentralized environ-
ments. Instead, Ciphertext Policy Attribute Based En-
cryption (CP-ABE) schemes consists in associating
an access structure to the ciphertext while assigning
a set of credentials to deciphering users. CP-ABE
schemes supporting policy update have been recently
explored by Jiang et al. (?; Jiang et al., 2017). In-
deed, the authors proposed a CP-ABE scheme where
new attributes can be added or current attributes can
be removed efficiently without sharing re-encryption
keys.

This motivates us to introduce the first KP-ABE
scheme supporting adding and/or removing attributes
from the access policy without sharing keys with the
cloud server.

Contributions – In this paper, we propose Policy
Update Attribute Based Encryption (PU-ABE), a
novel key policy attribute based encryption scheme
which supports access policy update. This proposed
scheme is suitable for bandwidth-limited applications
as the size of the ciphertext received by end-users
does not depend on the number of attributes involved
in the access policy. In PU-ABE, the encrypting
entity generates a ciphertext involving encrypted
data together with some extra components used for
supporting the access policy update feature. The

ciphertext is forwarded to the cloud server that can
update the access policy upon demand. Indeed, the
cloud server does not need to be trusted. That is, it
stores and shares ciphertexts among authorised users
and also executes access policy update algorithm as
requested. While executing these functionalities, the
remote server is unable of decrypting any ciphertexts
neither accessing any secret keys. For supporting
the policy update feature, PU-ABE provides two
functions. The first function permits to add new
attributes to the access policy used to encrypt data.
The second function ensures revoking attributes from
the access policy used in the encryption phase. To
prove the security of our proposed constructions, we
present an updated security model to capture security
requirements related to policy updates.

Paper Organisation – The remainder of this work
is as follows: Section 2 highlights security consid-
erations and design goals. Then, Section 3 reviews
related work and section 4 describes the system and
security models. Section 5 presents the mathematical
background. In Section 6, an overview of PU-ABE
is introduced and the detailed construction are pre-
sented. Section 7 presents a rigorous security discus-
sion. Finally, a theoretical analysis of computational
performances is presented in Section 8, before con-
cluding in Section 9.

2 PU-ABE FRAMEWORK

In this section, we first present the network model,
detailing the involved entities and their interactions in
Section 2.1. Then, we detail the security requirements
that the proposed system should fulfill in Section 2.2.

2.1 Architecture

As depicted by Figure 1, our PU-ABE framework
considers a cloud service provider that stores data
generated by data owners and share them among au-
thorised users. Four different entities are defined as
follows:

• The Central Trusted Authority (CTA), known by
the Attribute authority, is responsible for gener-
ating the global public parameters and issuing
users’ secret keys. CTA is considered as a trusted
entity in our model.

• The Cloud Service Provider (CSP) is a remote
cloud server who stores and shares data among
authorised users. CSP is also responsible of ex-
ecuting the update algorithm to change the access

policy involved in the ciphertext, w.r.t. the data
owner’s recommendations.

• The data owner (O) is the data producer. She de-
fines access rights and encrypts data with respect
to them before outsourcing to the cloud. In ad-
dition, the data owner generates extra ciphertext
components used by the update algorithm.

• The data users (U) requests access to outsourced
data. She decrypts the received data using his ac-
cess rights. A user may be malicious if she tries
to access data without authorisation.

2.2 Security Requirements

To design an efficient attribute based encryption
scheme supporting efficient access policy update, the
following requirements need to be achieved:

• access policy update – our PU-ABE scheme
should ensure adding new attributes and/or re-
moving attributes from the access policy.

• flexible access control – our proposal should en-
sure flexible security policies among dynamic
groups of users, w.r.t. forward secrecy and back-
ward secrecy.

– backward secrecy means that a new added user
to a group is unable to decrypt information cre-
ated prior to their introduction.

– forward secrecy means that a compromise of
the secret key does not affect the secrecy of fu-
ture encrypted data.

• data confidentiality – our PU-ABE scheme has to
protect the secrecy of outsourced and encrypted
data contents against curious users and curious
cloud service provider.

• low computation overhead and storage cost –
the proposed algorithms should have low process-
ing complexity and acceptable storage cost to be
adapted to resource-constrained devices and dis-
tributed environments.

3 ATTRIBUTE BASED
ENCRYPTION SCHEMES

Attribute-based Encryption (ABE) has been de-
signed to ensure encrypted flexible access control for
outsourced data (Sahai and Waters, 2005). Unlike
traditional public key encryption schemes, ABE con-
sists in encrypting data for many users. Therefore,
decrypting entities’ private keys and encrypted data
are labeled with a set of attributes or a structure over

attributes. A user is able to decrypt a ciphertext if
there is a match between her private key and the ci-
phertext (Bethencourt et al., 2007). Attribute based
encryption schemes are classified into two categories,
namely: Key-Policy ABE (KP-ABE) and Ciphertext-
Policy ABE (CP-ABE) (Goyal et al., 2006). In KP-
ABE, ciphertexts are labeled with a set of attributes
while users’ private keys are associated with an ac-
cess policy which can be any monotonic structure.
The user is able to decrypt the ciphertext if her ac-
cess policy is satisfied by the attributes embedded in
the ciphertext. KP-ABE schemes have been widely
applied to secure data in distributed systems such as
Internet of Things, publish and subscribe systems, in-
telligent transport systems, etc. (Yao et al., 2015).

Although ABE schemes ensure flexible access
control to encrypted data, the communication and
computation overhead as well as the bandwidth con-
sumption increase exponentially with the number of
attributes required in the access policies. To save the
storage cost of ciphertext and processing overhead of
encryption, attribute based encryption schemes with
constant ciphertext size have been introduced (Her-
ranz et al., 2010; Ge et al., 2012; Attrapadung et al.,
2012; Wang and Luo, 2012). In these schemes, the
size of the generated ciphertext does not depend on
the number of attributes used on the threshold access
policies, which presents an interesting feature mainly
for resource-constrained devices. Herranz et al. (Her-
ranz et al., 2010) have proposed the first constant size
threshold ciphertext-policy attribute based encryption
scheme. Indeed, the ciphertext size is constant and
does not depend on the number of attributes involved
in the threshold access policies. Afterwards, several
CP-ABE schemes with constant cipheretxt size have
been proposed (Ge et al., 2012; Belguith et al., 2017;
Li et al., 2017). Due to the construction of CP-ABE
schemes, monotone access policies based schemes
can not be extended to ensure a constant ciphertext
size. For instance, these schemes consist in only us-
ing threshold or conjunctive access policies which do
not provide the desired expressiveness.

Several expressive Key policy attribute based en-
cryption schemes with constant ciphertext size have
been designed (Attrapadung et al., 2012; Wang and
Luo, 2012; Emura et al., 2009). Wang et al. (Wang
and Luo, 2012) have proposed a KP-ABE scheme
with constant ciphertext size. This scheme relies on
a monotone access policy to express the users’ at-
tributes.

Although, these schemes ensure reduced commu-
nication and computation costs, they still present a
major limitation which is their incapacity of chang-
ing access policies of ciphertexts. In dynamic envi-

Central Trusted Authority

Cloud Service Provider
2.Issue Public Parameters

Data UsersData Owner
3. Define access policy
4. Encrypt data w.r.t to access policy
5. Generate ciphertext components
for access policy updates

7. Store ciphertexts
8. Update access policy

13. Decrypt cipherext

1. Generate public
parameters
11. Generate users’ secret
keys

Figure 1: PU-ABE involved entities and their interaction

ronments, users may be often added or removed, then
access policies should be updated to support these
changes. Recently, the first CP-ABE with policy up-
date has been proposed by Jiang et al. (?; Jiang et al.,
2017). The authors introduced a new variant of CP-
ABE supporting access policy update that captures
the functionalities of attribute addition and revoca-
tion from access policies. They provide two CP-ABE
schemes supporting AND-gate access policies with
constant-size ciphertexts.

PUABE

4 MODEL DESCRIPTION

In this section, we first present the system model of
our PU-ABE scheme (subsection 4.1). Then, we de-
tail our security model (subsection 4.2).

4.1 System Model

Our policy-update key-policy attribute based encryp-
tion scheme consists of five randomized algorithms:
setup, encrypt, update, keygen and decrypt, defined
as follows:

setup(ξ)→ (pp,msk) – the setup algorithm is per-
formed by a central trusted authority, known by the
attribute authority. It takes as input a security param-
eter ξ and outputs the public parameters pp and the
secret master key msk.

encrypt(pp,S ,M) → CT – the encryption algo-
rithm is performed by an enciphering entity E . It

takes as inputs the public parameters pp, the set of
the encryption attributes S and the message M. This
algorithm outputs the encrypted message, referred to
as CT .

update(pp,CT, ind,U)→ CT ′– the update algo-
rithm is executed by a cloud server. It takes as inputs
the public parameters pp, a ciphertext CT that con-
tains the set of enciphering attributes S = {ai}i=1..m
such that |S | = m, an operation indicator ind where
ind = add or ind = revoke and a set of attributes U
with U∩S = /0 if ind = add or U ⊂ S if ind = revoke.
It outputs a new ciphertext CT ′ for the new encrypting
set of attributes S ′ such as S ′ = S ∪U or S ′ = S \U
w.r.t. ind value.

keygen(pp,msk,Ψ)→ sk – this randomized algo-
rithm is executed by the attribute authority to derive
the secret keys of a decrypting entity D . Given the
public parameters pp, an access policy Ψ of the user
D and the secret master key msk. The algorithm out-
puts the user’s secret key sk w.r.t. Ψ.

decrypt(pp,sk,CT ′) → M – the decryption
algorithm is executed by the decrypting entity D . It
takes as inputs the public parameters pp, the user’s
secret key sk and the ciphertext CT ′. The algorithm
returns the message M if D has correctly obtained
the secret key related to the required set of attributes
for deciphering the encrypted message. Otherwise,
the algorithm outputs a reject symbol ⊥.

Our PU-ABE scheme has to satisfy the correct-
ness property. The correctness property requires
that for all security parameter ξ, all attribute uni-

verse descriptions U, all (pp,msk) ∈ setup(ξ), all
(S ,U) ⊆ U (i.e; U is the attribute universe), all sk ∈
keygen(pp,msk,Ψ), all M ∈ M (i.e; M is the mes-
sage universe), all Ψ ∈ G (G is the access policy
space), all CT ∈ encrypt(pp,S ,M), and all CT ′ ∈
(pp,CT, ind,U) if the decrypting user has correctly
obtained the secret key sk related to the Ψ required
access policy S ′ for deciphering the encrypted mes-
sage, the derypt(pp,sk,CT ′) outputs M.

4.2 Security Model

For designing a secure policy-update attribute based
encryption scheme, we consider the case of malicious
adversaries with respect to the indistinguishability
property. The indistinguishability property means
that if an adversary has some information about the
plaintext, he should not learn about the ciphertext.
This security notion requires the computational
impossibility to distinguish between two messages
chosen by the adversary with a probability greater
than a half.

To design the most suitable security model con-
sidering the confidentiality requirement, we adopt
an updated security model to capture security re-
quirements related to policy updates (Jiang et al.,
2017). PU-ABE is said to be indistinguishable
against non-adaptive chosen ciphertext attacks if
there is no probabilistic polynomial time (PPT)
adversary that can win the Expcon f security game
with non-negligible advantage. The Expcon f game
is formally defined, between an adversary A and a
challenger C as follows:

INITIALISATION – A selects a set of encryption
attributes S∗ (i.e; S∗ corresponds to the set of at-
tributes specified for the encryption) to be used for en-
crypting the challenge ciphertext, as a set of attributes
S∗ = {ai}i=1..m where |S∗|= m. A sends S∗ to C .

SETUP – the challenger C runs the setup(ξ) algo-
rithm, sends the public parameters pp to the adversary
A and keeps secret the master key msk.

QUERY PHASE 1 – the adversary A queries, for
each session i, an access policy ΨA ,i. The challenger
C answers by running the keygen(pp,msk,ΨA ,i) al-
gorithm and sends the resulting secret key skA ,i to the
adversary A . Note that the access policy ΨA ,i does
not satisfy the encryption attribute set S∗.

CHALLENGE PHASE – during the challenge
phase, A picks two equal length cleartexts M0

∗ and
M1
∗ as well as an attribute set U∗ with |U∗| = t

U∗ ∩S∗ = /0 if ind = add or U∗ ⊂ S∗ if ind = revoke.
The challenger C chooses a random bit b from {0,1}

with S ′∗ = S∗ \U∗ for ind = add or S ′∗ = S∗ ∩U∗
for ind = revoke and computes the challenge en-
crypted message CTb

∗ = encrypt(pp,S∗,Mb
∗). It

gives CTb
∗ to the adversary if U = /0, otherwise

CT ′∗b = update(pp,CTb
∗, ind,U∗).

QUERY PHASE 2 – in this phase, the adversary A
can query a polynomially bounded number of queries
as in QUERY PHASE 1, except that A cannot query
secret keys related to a set of attributes S∗.

GUESS – A tries to guess which message Mi,
where i ∈ {0,1} corresponds to the enciphered data
CTb

∗. Thus, A outputs a bit b′ of b and wins the
game if b = b′. The advantage of the adversary A in
the above game is defined as AdvA [ExpCon f (1ξ)] =
|Pr[b = b′]− 1

2 |.

5 Mathematical Background

In this section, we first introduce the access struc-
ture in section 5.1. Then, in section 5.2, we present
the bilinear maps. Finally, we introduce some secu-
rity assumptions.

5.1 Access Policies

Access policies can be represented as a boolean
functions of attributes or a Linear Secret Sharing
Scheme (LSSS) matrix.

Access Structure – Let P = {P1, · · · ,Pn} be a set of
parties. A collection A ⊆ 2{P1,··· ,Pn} is monotone if
∀B,C if B ∈ A and B⊆C then C ∈ A.
An access structure is a collection A of non-empty
subsets of {P1, · · · ,Pn}, such as A ⊆ 2{P1,··· ,Pn}\ /0.
Note that any access structure can be converted
into a boolean function. Boolean functions can be
defined as an access tree, where the leaves present the
attributes while the intermediate and the root nodes
are the logical operators AND (∧) and OR (∨).

Linear Secret Sharing Schemes (LSSS) – Let P be a
set of parties, A be l×n matrix, and ρ : {1,2, · · · , l}→
P be a function that maps a row to a party for labeling.
A secret sharing scheme for access structure Ψ over
a set of parties P is a linear secret sharing scheme
(LSSS) in Zp and is represented by (A,ρ) if it consists
of two efficient algorithms:
• Share((A,ρ),s): The share algorithm takes as in-

put s ∈ Zp which is to be shared. It randomly
chooses β1, · · · ,βn ∈ Zp, and defines β = (β1 =
s,β2, · · · ,βk)

T . It outputs M.β as the vectors of l
shares. The share λi =< Ai,β

T > belongs to party
ρ(i), where Ai is the i− th of A.

• Recon((A,ρ),S): The reconstruction algorithm
takes as input an access set S ∈ A. Let I =
{i|ρ(i) ∈ S}. It outputs a set of constants {µi}i∈I
such that ∑i∈I µi ·λi = β1 = s.

5.2 Bilinear Maps

Let G1, G2 and GT be three multiplicative groups of
a finite field having the same order p. An admissi-
ble asymmetric pairing function ê from G1×G2 in
GT has to be bilinear, non degenerate and efficiently
computable.

5.3 The General Diffie-Hellman
Exponent Assumption

In our PU-ABE construction, we make use of the
generalisation of the Diffie-Hellman exponent as-
sumption, formally defined by Boneh et al. in (Boneh
et al., 2005). The authors have introduced a class of
assumptions that appeared with the use of pairing-
based schemes namely Decisional DiffieHellman
assumption (DDH), Bilinear Diffie-Hellman (BDH),
and q-Bilinear Diffie Hellman Exponent (qBDHE)
assumptions, detailed hereafter.

Let B = (p,G1,G2,G, ê : G1×G2→G) be a bilinear
map group such that G1 = G2 = G. Let g0 be a
generator of G and set g = ê(g0,g0) ∈ G. Let s
and n be positive integers and P,Q ∈ Fp[X1, · · · ,Xn]

s

be two s-tuples of n-variate polynomials over Fp
where P = (p1, · · · , ps) and Q = (q1, · · · ,qs) and
p1 = q1 = 1. For any function h : Fp → Ω and any
vector (x1, · · · ,xn) ∈ Fn

p, h(P(x1, · · · ,xn)) stands
for (h(p1(x1, · · · ,xn)), · · · ,h(ps(x1, · · · ,xn))) ∈
Ωs and h(Q(x1, · · · ,xn)) stands for
(h(q1(x1, · · · ,xn)), · · · ,h(qs(x1, · · · ,xn))) ∈ Ωs.
Let f ∈ Fp[X1, · · · ,Xn], it is said that f depends on
(P,Q), which we denote by f ∈ P,Q, when there is a
linear decomposition

f = ∑
1≤i, j≤s

ai, j · pi · p j + ∑
1≤i≤s

bi ·qI , ai, j,bi ∈ Zp

Let P,Q be as above and f ∈ Fp[X1, · · · ,Xn]. The
(P,Q, f)-General Diffie- Hellman Exponent problems
are defined as follows.

Definition 1: (P,Q, f)-GDHE. Given a tuple
H(x1, · · · ,xn) = (gP(x1,··· ,xn)

0 ,gQ(x1,··· ,xn)) ∈ Gs
1×Gs,

compute g f (x1,··· ,xn).

Definition 2: (P,Q, f)-GDDHE. Given
H(x1, · · · ,xn) ∈ Gs

1×Gs, compute g f (x1,··· ,xn) as
above, decide whether T = g f (x1,··· ,xn).

We refer to (Boneh et al., 2005) for a proof that
(P,Q, f)-GDHE and (P,Q, f)-GDDHE have generic
security when f /∈< P,Q >.

6 A NOVEL KEY POLICY
ATTRIBUTE BASED
ENCRYPTION SUPPORTING
POLICY UPDATE

In this section, we first give an overview of our
proposed constant size PU-ABE scheme (subsection
6.1). Then, we detail the scheme construction.

6.1 Overview

In this paper, we develop a novel key-policy attribute
based encryption scheme that supports access policy
update. Our contribution extends Wang et al.’s key
policy attribute based encryption scheme (Wang and
Luo, 2012) to support adding new attributes or revok-
ing others from the encryption access policy. Indeed,
the cloud server is able to change a ciphertext en-
crypted with respect to an access policy S to a cipher-
text encrypted with respect to a new access policy S ′
such that S ′ corresponds to S ∪U in case of attributes’
addition and S \U in case of attributes’ revocation.
This update does not need any re-encryption key nei-
ther the data owner to be online. It is only based on
some extra ciphertext components as detailed in Sec-
tion 6.2) which are used by the cloud server in the
update algorithm. Indeed, while encrypting data con-
tents, E generates additional elements in the cipher-
text which point out attributes that can be added or
removed later. When an access policy update is re-
quired, the cloud server uses the ciphertext’s compo-
nents to generate a new ciphertext suitable for the new
access policy then forwards it to the decrypting entity.

6.2 Concrete Construction

Our PU-ABE construction, supporting both at-
tributes’ addition and revocation, is based on five al-
gorithms defined as follows:

• setup – given the security parameter ξ, the at-
tribute authority chooses three cyclic groups G1,
G2 and GT of prime order p and defines a bilin-
ear pairing ê : G1×G2 → GT . It also randomly
selects two generators g ∈G1 and h ∈G2 as well
as a secret random value α ∈ Z∗p. In addition, the

attribute authority sets v = ê(g,h), {hαi}i=1···k and
{ui = gαi}i=1···k where k = |U| is the cardinal of

the attributes universes U. Finally, it chooses a
cryptographic hash function H : {0,1}∗⇒Z∗p and
outputs the public parameters pp as follows:

pp = (G1,G2,GT ,v = ê(g,h),h,{hαi}i=1···k,

{ui = gαi}i=1···k)

The master secret key is defined as msk = (g,α).

• encrypt – let S be the set of the encryption
attributes S = {ai}m

i=1. This algorithm, executed
by the encrypting entity E takes an extra input
which is a maximum revocation number r ≤ m.
The data owner chooses s ∈ Z∗p and computes the
ciphertext CT as follows:

E0 = hs·∏ai∈S (α+H (ai))

E1 = Eα
0 , · · · ,Ek−m = Eα

k−m−1
C1 = u−s

1 =, · · · ,Cr+1 = u−s
r+1

CM = M · ê(g,h)s

• update – the update algorithm first checks the
operation indicator ind. Then, if ind = add,
it proceeds as (i), otherwise if ind = revoke it
executes (ii):

(i) – given a ciphertext CT encrypted w.r.t. a set
of attributes S and U = {a′1, · · · ,a′t} a new set of
attributes where U ∩S = /0, the server has to add
elements of U to the set of encrypting attributes
S of the ciphertext CT . To do so, it proceeds as
follows:
Let F(x) be the polynomial in x defined as F(x) =
∏ai∈U(x+H (ai)) = ftxt + ft−1xt−1 + · · ·+ f0

Then, the algorithm computes E ′0 = EF(α)
0 =

∏
t
i=0 E fi

i . The new ciphertext is then defined
as CT ′ = (E ′0,C1,CM) w.r.t. S ′, the new set of
encrypting attributes defined as S ′ = S ∪U.

(ii) – given a ciphertext CT encrypted w.r.t. a set
of attributes S and a revocation attribute set U =
{a′1, · · · ,a′t} ⊆ S where t ≤ r, the server updates
the ciphertext CT as follows:
Let F(x) be the polynomial in x as F(x) =

1
∏ai∈U H (ai)

∏ai∈U(x+H (ai)) = ftxt + ft−1xt−1 +

· · ·+ f0

Then, the algorithm computes CT ′ as follows:
E ′0 = E

1
∏ai∈U H (ai)

0 = hs·∏ai∈S\U(α+H (ai))F(α)

C′1 = ∏
t+1
t=1 C fi−1

i = g−αs∑
t+1
i=1 αi−1 fi−1 = u−sF(α)

1
C′M =CM ê(∏t

i=1 C− fi
i ,h) = Mê(g,h)s∑

t
i=0 fiαi

= MvsF(α)

• keygen – it computes the private key associated
to an access structure Ψ w.r.t. an LSSS scheme
(A,ρ) such that A is the corresponding l× n ma-
trix. First, the keygen algorithm generates shares
of 1 relying on the LSSS schema w.r.t. (A,ρ), as
detailed in section 5. Namely, it chooses a column
vector β = (β1,β2, · · · ,βn)

T , while β1 = s = 1 and
β2, · · · ,βn ∈ Zp. Then for each i = 1 to l, it calcu-
lates λi =< Ai,β

T >, and sets sk as follows:

sk = {Di,(Ki, j)
n
j=0}l

i=0

= {g
λi

α+H (ρ(i)) ,(hλiα
j
)n

j=0}l
i=0

• decrypt – the cipherext CT ′ is encrypted under the
set of attributes S ′ = S ∪U = {at+m

i=1 }. The de-
crypting entity D having a secret key sk(A,ρ) first
sets I = i|ρ(i) ∈ S ′, and calculates the reconstruc-
tion of constants µi∈I = Recon((A,ρ),S). The de-
cryption key corresponding to the LSSS scheme
w.r.t. (A,ρ) is parsed as sk = {Di,(Ki, j)

n
j=0}l

i=0.
Then, D computes the polynomial on the variable
α with degree m+ t−1 as follows:

Pi,A(α) =
λi

α
(∏

j=1, j 6=i
(α+H (a j))− ∏

j=1, j 6=i
H (a j)))

D calculates hPi,A(α) according to his secret key
component (Ki, j)

n
j=0. Afterwards, she computes

Yi which can be retrieved based on two cases w.r.t.
the ind operator value, such that:

– Case 1: if attributes have been added to the ac-
cess policy:

Yi = (ê(C1,h
Pi,A(α)) · ê(Di,C2))

1
∏ j=1, j 6=i H (ai))

= ê(g,h)sλi

Finally, D computes Y = ∏i∈I Y µi
i = ê(g,h)s

and retrieves M = CM/Y . Note that if no
changes have been made to the access policy
and the corresponding ciphertext, the decryp-
tion process follows Case 1.

– Case 2: if attributes have been revoked from
the access policy:

Yi = (ê(C′1,h
Pi,A(α)) · e(Di,E ′0))

1
∏ j=1, j 6=i H (ai))

= ê(g,h)sF(α)λi

Finally, D computes Y = ∏i∈I Y µi
i = ê(g,h)s

and retrieves M =C′M/Y .

7 Security analysis

In this section, we first prove the correctness of
our PU-ABE construction, with respect to the data
decryption algorithms proposed in the previous con-
struction, in section 7.1. Then, we prove the security
of our proposal, with respect to the indistinguishabil-
ity property in Section 7.2.

7.1 Correctness

In the following, we prove the correctness of the PU-
ABE proposed construction w.r.t. the attributes’ ad-
dition and revocation. A decrypting entity D who
possesses a set of attributes expressed with respect to
an access structure Ψ, satisfying S ′ first sets Pi,A(α) =
λi
α
(∏ j=1, j 6=i(α+H (a j))−∏ j=1, j 6=i H (a j))). Then,

D uses his secret keys to compute Yi with respect to
the two following cases:

• Case 1: if ind = add and S ′ = S ∪U, then Yi is
computed as:

Yi = [ê(C′1,h
Pi,A(α)) · ê(Di,E ′0)]

1
∏ j=1, j 6=i H (a j))

= [ê(g−αs,hPi,A(α)) · ê(g
λi

α+H (ρ(i)) ,EF(α)
0)]

1
∏ j=1, j 6=i H (a j))

= [ê(g−αs,hPi,A(α))

·ê(g
λi

α+H (ρ(i)) ,hs·∏a j∈A(α+H (a j))F(α)
)]

1
∏ j=1, j 6=i H (a j))

= [ê(g,h)−αsPi,A(α)

·ê(g,h)sλiF(α)·∏ j=1, j 6=i(α+H (a j)))]
1

∏ j=1, j 6=i H (a j))

= [ê(g,h)−sλi(∏ j=1, j 6=i(α+H (a j))ê(g,h)sλi ∏ j=1, j 6=i H (a j)

·ê(g,h)sλiF(α)·∏ j=1, j 6=i(α+H (a j))]
1

∏ j=1, j 6=i H (a j)

= [ê(g,h)sλi ∏ j=1, j 6=i H (a j)]
1

∏ j=1, j 6=i H (a j)

= ê(g,h)sλi

Afterwards, the decrypting entity D computes:

Y = ∏
i∈I

Y µi
i

= ∏
i∈I

ê(g,h)sλiµi

= ê(g,h)s∑i∈I λiµi

= ê(g,h)s

Recall that the constants mui∈I are the reconstruc-
tion of the LSSS matrix µi∈I = Recon((A,ρ),A).
Therefore, the user retrieves Y using the follow-
ing equation

< λ,µ >= ∑
i∈I

λiµi = ∑
i∈I

β1 = ∑
i∈I

1 = 1

Finally, D retrieves M such as:

M =
CM

Y
=

CM

ê(g,h)s =
Mê(g,h)s

ê(g,h)s

• Case 2: if ind = revoke and S ′ = S \U, Yi is com-
puted as follows:

Yi = [ê(C′1,h
Pi,A(α)) · ê(Di,E ′0)]

1
∏ j=1, j 6=i H (a j))

= [ê(u−sF(α)
1 ,hPi,A(α)) · ê(g

λi
α+H (ρ(j)) ,

h
s·∏a j∈A\U(α+H (a j))F(α)

)]
1

∏ j=1, j 6=i H (a j))

= [ê(g,h)−sλiF(α)(∏ j=1, j 6=i(α+H (ai))−∏ j=1, j 6=i H (ai))) ·

ê(g,h)sλi·∏ j=1, j 6=i(α+H (a j))F(α))]
1

∏ j=1, j 6=i H (a j))

= [ê(g,h)−sλiF(α)(∏ j=1, j 6=i(α+H (ai))

·ê(g,h)sλiF(α)∏ j=1, j 6=i H (ai)))

·ê(g,h)sλiF(α)·∏ j=1, j 6=i(α+H (a j)))]
1

∏ j=1, j 6=i H (a j))

= ê(g,h)
sλiF(α))

∏ j=1, j 6=i H (ai)

∏ j=1, j 6=i H (a j)

= ê(g,h)sF(α)λi

Afterwards, the decrypting entity computes:

Y = ∏
i∈I

Y µi
i

= ∏
i∈I

ê(g,h)sF(α)λiµi

= ê(g,h)sF(α)∑i∈I λiµi

= ê(g,h)sF(α)

Finally, D retrieves M such as:

M =
C′M
Y

=
C′M

ê(g,h)sF(α)
=

Mê(g,h)sF(α)

ê(g,h)sF(α)

7.2 Confidentiality

In the following proof, we prove that our PU-ABE
scheme is CPA-Secure against non-adaptive Chosen
Ciphertext Attacks with respect to Theorem 1.

Theorem 1. For any adversary A , against CPA-
Secure against non-adaptive chosen ciphertext, our
PU-ABE scheme is indistinguishable according to
Definition 4.2 with respect to the hardness of the Gen-
eral Diffie-Hellman Exponent (GDHE) assumption (
Definition 5.3)

Proof. To decrypt a ciphertext CT’ associated with an
updated access policy S ′, A must recover ê(g,h)s, in
case of attributes’ addition and ê(g,h)s∑

t
i=0 fiαi

, in case

of attributes’ revocation, where the secret sharing key
s is embedded in the ciphertext. For this purpose, A
has to retrieve the corresponding C̃M and the related
private key.

To prove that our scheme is secure against selec-
tive non-adaptive chosen ciphertext attacks, we first
consider that A is running the Expcon f experiment
with an entity B . This latter is running the ExpB .
Wang et al. security game (Wang and Luo, 2012),
with C . The objective of this proof is to show that
the advantage of A to win the GS−CPA(1κ) security
game is equivalent to the advantage of ExpB to win
the Wang et al. security game (Wang and Luo, 2012).
Hereafter, A and B proceed as follows:

INITIALISATION – in this phase, the adversary A
gives the algorithm C a challenge set of attributes S∗.

SETUP – the challenger C runs the
setup(ξ) algorithm, sends the public parameters
pp= (G1,G2,GT ,v= ê(g,h),gα,h,hα, · · · ,hαk

,{ui =

gαi}i=1···k) to B and keeps secret msk. Consequently,
B sends pp to A .

QUERY PHASE 1 – B sets an empty table T and
repeatedly queries an access policy ΨA ,i, for each
session i. That is, B uses C to derive and send
the queried secret keys to A . The challenger C
answers by running the keygen(pp,msk,ΨA ,i) algo-
rithm. The challenger C generates shares of 1 relying
on the LSSS schema w.r.t. (A,ρ). It chooses a col-
umn vector β = (β1,β2, · · · ,βn)

T , while β1 = s = 1
and β2, · · · ,βn ∈ Zp. Then for each i = 1 to l, it
calculates λi =< Ai,β

T >, and sets sk as skA ,i =

{g
λi

α+H (ρ(i)) ,(hλiα
j
)n

j=0}l
i=0.

Note that the access policy ΨA ,i does not satisfy
the encryption attribute set S∗. The private keys

skA ,i = {g
λi

α+H (ρ(i)) ,(hλiα
j
)n

j=0}l
i=0 are returned to B .

Subsequently, B sets a new entry with the private key

and returns skA ,i = {g
λi

α+H (ρ(i)) ,(hλiα
j
)n

j=0}l
i=0 to A .

CHALLENGE PHASE – during the challenge
phase, A picks two equal length cleartexts M0

∗ and
M1
∗ as well as an attribute set U∗ with |U∗| = t

U∗ ∩S∗ = /0 if ind = add or U∗ ⊂ S∗ if ind = revoke.
Subsequently, B selects SB such that SB ⊆ S ′∗, such
as S ′∗ = S∗ \U∗ for ind = add or S ′∗ = S∗ ∩U∗ for
ind = revoke.
Afterwards, B sends the access structure SB and the
two equal length messages M0 and M1, defined by
A to the challenger C . The challenger C chooses
a random bit b from {0,1} with S ′B = SB \U∗

for ind = add or S ′B = SB ∩U∗ for ind = revoke
and computes the challenge encrypted message
CTb

∗ = encrypt(pp,S ′B ,Mb
∗).

E0 = hs·∏ai∈S ′B
(α+H (ai))

E1 = Eα
0 , · · · ,Ep−m = Ep−m−1

C1 = u−s
1 =, · · · ,Cr+1 = u−s

r+1
CM = M · vs = M · ê(g,h)s

The challenger C gives CTb
∗ to the adversary if

U = /0, otherwise CT ′∗b = update(pp,CTb
∗, ind,U∗).

QUERY PHASE 2 – in this phase, the adversary A
can query a polynomially bounded number of queries
as in QUERY PHASE 1, except that A cannot query
secret keys related to a set of attributes S∗.

Hereafter, two cases are considered w.r.t. the ind
operator value, randomly selected by C in order to
encrypt the challenging message such that:

• Case 1 – the first case corresponds to attributes’
addition, such that C sets S ′B = SB ∪U∗ and out-
puts an encrypted message CT ′b , as defined in sec-
tion 6.2. In this case, we first show that how a
challenge ciphertext should be produced. In fact,
given a ciphertext CT encrypted w.r.t. a set of at-
tributes SB and U∗ = {a′1, · · · ,a′t} a new set of at-
tributes where U ∩ S = /0, C has to add elements
of U∗ to the set of encrypting attributes SB of the
ciphertext CT ′b . To do so, it proceeds as follows:
Let F(x) be the polynomial in x defined as F(x) =
∏ai∈U∗(x + H (a′i)) = ftxt + ft−1xt−1 + · · ·+ f0

Then, the algorithm computes E ′∗0 = E∗F(α)
0 =

∏
t
i=0 E fi

i . The new ciphertext is then defined as
CT ′b = (E ′∗0,C1,CM) w.r.t. S ′, the new set of en-
crypting attributes defined as S ′B = SB ∪U∗.

• Case 2 – the second case corresponds to at-
tributes’ revocation, such that C defines S ′B =
SB \U∗ and outputs an encrypted message CT ′b ,
as detailed in section 6.2. That is, given a cipher-
text CT encrypted w.r.t. a set of attributes S ′B and
a revocation attribute set U∗ = {a′1, · · · ,a′t} ⊆ S ′B
where t ≤ r, the server updates the ciphertext
CT ′b as follows: Let F(x) be the polynomial in x
as F(x) = 1

∏a′i∈U∗ H (a′i)
∏a′i∈U(x+H (a′i)) = ftxt +

ft−1xt−1 + · · ·+ f0. Similarly, the new ciphertext
is then defined as CT ′b = (E ′∗0,C′∗1,C′∗M) w.r.t.
S ′, the new set of encrypting attributes defined as
S ′B = SB \U∗.

Without loss of generality, the distribution of the
received challenge ciphertext does not depend on the
attributes’ addition and revocation. More precisely,

the distribution of the challenge enciphered message
is quite similar in both cases. Thus, the resistance of
PU-ABE scheme against CPA, follows (Wang and
Luo, 2012) construction, w.r.t. to B , that is proven
secure under the GDDHE assumption. Thus, the
view of B is indistinguishable from the view of A ,
considering a randomly selected enciphered message
w.r.t. S ′B referring to the updated access policy.

As such, we prove that our PU-ABE construc-
tion is secure against selective non-adaptive chosen
ciphertexts attacks in the standard model, under the
GDDHE assumption, with respect to Expcon f secu-
rity experiment.

8 PERFORMANCES ANALYSIS

In this section, we present the computation and
the storage complexities of our proposed PU-ABE
scheme. In our analysis, we are interested in the com-
putations performed to execute the encrypt, update
and the decrypt algorithms as well as the size of the
generated encrypted message and the size of the se-
cret keys as introduced in Table 1.

8.1 Storage Complexities

Emura et al. (Emura et al., 2009) introduced a KP-
ABE scheme requiring only 2 keys per user indepen-
dent of the users’ attributes. In addition, this scheme
generates a ciphertext composed only of 3 elements.
Herranz et al. (Herranz et al., 2010) have proposed the
first CP-ABE scheme generating a ciphertext whose
size does not depend on the number of attributes used
in the threshold access policy. In this scheme, the de-
crypting entity needs k+n secret keys’ where k is the
cardinal of the attributes universes and n is the num-
ber of the users’ attributes.
In (Ge et al., 2012), the authors proposes a CP-ABE
scheme with constant ciphertext size. However, this
schemes requires the use of 3k−2+n secret keys.
Similarly, the authors in (Wang and Luo, 2012) pro-
posed a KP-ABE scheme which produces only 3 el-
ements in the ciphertext. The users’ secret keys are
equal to k(n+1). This size of secret keys is due to the
use of LSSS monotone access policies which makes
the scheme more expressive than the aforementioned
schemes.

Although, the above schemes ensure low storage
and communication costs, they do not support access
policy updates. Indeed, if the access rights change
with the addition or the revocation of some attributes,
outsourceddata need to be re-encrypted.

Jiang et al. (Jiang et al., 2017), have proposed a
threshold CP-ABE scheme supporting access policy
update. The authors proposed two different construc-
tion. The first construction ensures the addition of
attributes to the access policy. This incurs the gener-
ation of a ciphertext whose size is equal to 3+ k−m
to be forwarded to the cloud server however the final
user only receives 3 elements of the ciphertext no mat-
ter how many attributes are used in the access policy.
The second construction provides the ability to revoke
attributes from the access policy. Therefore, the gen-
erated access policy depends on the maximum num-
ber of attributes in an attribute revocation list. Like
the first construction, the user only needs three ele-
ments to decrypt data. Both the proposed construction
require n+1 secret keys for every user.

In our PU-ABE scheme, we apply a compact
policy update technique to ensure adding and/or re-
moving attributes from access policies in KP-ABE
schemes. Therefore, the proposed construction gen-
erates a ciphertext size equal to 3+ k+ r−m. Users
receives a constant ciphertext size independent from
the number of attributes involved in the access policy
and from the applied update procedures. PU-ABE re-
lies in using monotone access policies, then the users
secret keys are equal to n+ k elements. Therefore,
the proposed PU-ABE scheme ensures expressive-
ness and policy updates while introducing compara-
tive storage with similar ABE schemes.

8.2 Computation Complexities

The proposed schemes in (Emura et al., 2009), (Her-
ranz et al., 2010) and (Wang and Luo, 2012) introduce
an encryption algorithm which requires two exponen-
tiations in G1 and one exponentiation in G. Ge et
al.’s scheme (Ge et al., 2012) introduces an encryp-
tion algorithm requiring 5 exponentiations in G1 and
one exponentiation in G.
In Emura et al.’ scheme (Emura et al., 2009), the
decrypting entity needs to perform two pairing oper-
ations and 3 exponentiations in G1. Herranz et al.
(Herranz et al., 2010) decryption algorithm requires
n+ 1 exponentiations in G1, 5 pairing functions and
one exponentiation in G. In (Ge et al., 2012) scheme,
the users executes 4 pairing operations and 2(k− n)
exponentiations in G1. Wang et al. proposed a KP-
ABE scheme (Wang and Luo, 2012) where the de-
cryption algorithm performs n+1 exponentiations in
G, one exponentiation in G1 and two pairing opera-
tions.

The aforementioned schemes do not ensure ac-
cess policies update. Jiang et al.’s scheme is the first
CP-ABE scheme supporting policy updates. In this

Table 1: Features and Functionality Comparison of Attribute Based Encryption Schemes
Scheme Policy Update Access Policy Type Key size Ciphertext size Encryption Cost Update Cost Decryption Cost

(Emura et al., 2009) 7 AND-Gates CP-ABE 2 3 2E1 +E – 2τp +3E1
(Herranz et al., 2010) 7 Monotone KP-ABE k+n 3 2E1 +E – (n+1)E1 +5τp +E

(Ge et al., 2012) 7 Threshold CP-ABE 3k−2+n 4 5E1 +E – 4τp +2E1(k−n)
(Wang and Luo, 2012) 7 Monotone KP-ABE k(n+1) 3 2E1 +E – (n+1)E +E1 +2τp

(Jiang et al., 2017) X Threshold CP-ABE n+1 3+ k−m / 3 (k−m+2)E1 +E tE1 nE1 +2τp
X Threshold CP-ABE n+1 r+3 / 3 (r+2)E1 +E (2t +2)E1 + τp nE1 +2τp

PU-ABE X Monotone KP-ABE (n+1)k 3+ k−m+ r/3 (k−m+2+ r)E1 +E tE1/(2t +2)E1 + τp 2τp +E1 +(n+1)E

We denote by E1 the exponentiation cost in G1, E the exponentiation cost in G and τP the computation cost of a
pairing function ê. n is the number of attributes of a user. k is the cardinal of the universe of attributes U. m is
the number of attributes used in an access policy for encryption. t is the number of attributes (t = |U|) added or
removed from an access policy and r is the maximum number of attributes supported by the revocation list.

scheme, the encryption algorithm related to the at-
tributes addition construction require k−m + 2 ex-
ponentiations in G1 and only one exponentiation in
G. In addition, the attribute revocation encryption
algorithms requires r + 2 exponentiations in G1 and
only one exponentiation in G. This proposal con-
sists in executing an update algorithm by the cloud
server to update the used access policy used in the
encryption. Therefore, it requires t exponentiations
in G1 to add attributes and 2t + 2 exponentiations in
G1 and one pairing operation to revoke attributes. In
(Jiang et al., 2017), the decryption algorithm incurs
2τp +nE1 overhead.

PU-ABE scheme requires the execution of (k−
m+2+ r) exponentiations in G1 and only one expo-
nentiation in G. The proposed scheme requires the
execution of two update functions to add attributes or
revoke attributes from the access policy. To add new
attributes, it requires t exponentiations in G1 while
revoking t attributes needs to an overhead equal to
(2t +2)E1 +τp, where t is the number of attributes to
be added or removed. Our PU-ABE scheme requires
2τp +E1 +(n+ 1)E as a decryption overhead due to
the use of monotone access policies.

Above all, our proposed PU-ABE scheme
presents quite similar to the computation costs of the
related attribute based encryption schemes while pro-
viding more practical features mainly related to ex-
pressiveness and policy update.

9 CONCLUSIONS

Attribute based encryption is often used to ensure
encrypted access control to outsourced data for multi-
user settings. That is, in several applications, users
are removed and/or added, thus, it require an efficient
update of users’ access rights.

In this paper, we propose PU-ABE, a novel key
policy attribute based encryption technique, with
short size ciphertexts that supports access policy up-
date. Indeed, a cloud server can add and/or remove

attributes from the encryption access policy without
requiring data re-encryption. The proposed PU-ABE
scheme is proved to be secure against chosen cipher-
texts attacks in the standard model. Finally, a de-
tailed performances analysis showed that PU-ABE ci-
phertexts are short-sized and independent from the
number of attributes used in the access policy which
affords low communication and storage costs, com-
pared to most-closely related schemes.

ACKNOWLEDGEMENTS

This research is supported by STRATUS (Secu-
rity Technologies Returning Accountability, Trust and
User-Centric Services in the Cloud), a project funded
by the Ministry of Business, Innovation and Employ-
ment (MBIE), New Zealand.

REFERENCES

Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B.,
De Panafieu, E., and Ràfols, C. (2012). Attribute-
based encryption schemes with constant-size cipher-
texts. Theoretical Computer Science, 422:15–38.

Atwady, Y. and Hammoudeh, M. (2017). A survey on au-
thentication techniques for the internet of things. In
Proceedings of the International Conference on Fu-
ture Networks and Distributed Systems, page 8. ACM.

Bacis, E., De Capitani di Vimercati, S., Foresti, S., Para-
boschi, S., Rosa, M., and Samarati, P. (2016a).
Mix&slice: Efficient access revocation in the cloud. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 217–
228. ACM.

Bacis, E., di Vimercati, S. D. C., Foresti, S., Paraboschi,
S., Rosa, M., and Samarati, P. (2016b). Access con-
trol management for secure cloud storage. In Interna-
tional Conference on Security and Privacy in Commu-
nication Systems, pages 353–372. Springer.

Belguith, S., Jemai, A., and Attia, R. (2015). Enhancing
data security in cloud computing using a lightweight
cryptographic algorithm. In ICAS 2015 : The

Eleventh International Conference on Autonomic and
Autonomous Systems, pages 98–103. IARIA.

Belguith, S., Kaaniche, N., Jemai, A., Laurent, M., and At-
tia, R. (2016). Pabac: a privacy preserving attribute
based framework for fine grained access control in
clouds. In 13th IEEE International Conference on Se-
curity and Cryptography(Secrypt).

Belguith, S., Kaaniche, N., Laurent, M., Jemai, A., and At-
tia, R. (2017). Constant-size threshold attribute based
signcryption for cloud applications. In SECRYPT
2017: 14th International Conference on Security and
Cryptography, volume 6, pages 212–225.

Belguith, S., Kaaniche, N., Laurent, M., Jemai, A., and
Attia, R. (2018). Phoabe: Securely outsourcing
multi-authority attribute based encryption with policy
hidden for cloud assisted iot. Computer Networks,
133:141–156.

Bethencourt, J., Sahai, A., and Waters, B. (2007).
Ciphertext-policy attribute-based encryption. In IEEE
Symposium on Security and Privacy.

Boneh, D., Boyen, X., and Goh, E.-J. (2005). Hierarchical
identity based encryption with constant size cipher-
text. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques,
pages 440–456. Springer.

Coates, A., Hammoudeh, M., and Holmes, K. G. (2017). In-
ternet of things for buildings monitoring: Experiences
and challenges. In Proceedings of the International
Conference on Future Networks and Distributed Sys-
tems, page 38. ACM.

Emura, K., Miyaji, A., Nomura, A., Omote, K., and
Soshi, M. (2009). A ciphertext-policy attribute-based
encryption scheme with constant ciphertext length.
In International Conference on Information Security
Practice and Experience, pages 13–23. Springer.

Esposito, C. and Ciampi, M. (2015). On security in pub-
lish/subscribe services: a survey. IEEE Communica-
tions Surveys & Tutorials, 17(2):966–997.

Farhan, M., Jabbar, S., Aslam, M., Hammoudeh, M.,
Ahmad, M., Khalid, S., Khan, M., and Han, K.
(2018). Iot-based students interaction framework us-
ing attention-scoring assessment in elearning. Future
Generation Computer Systems, 79:909–919.

Ge, A., Zhang, R., Chen, C., Ma, C., and Zhang, Z. (2012).
Threshold ciphertext policy attribute-based encryption
with constant size ciphertexts. In Australasian Con-
ference on Information Security and Privacy, pages
336–349. Springer.

Ge, C., Susilo, W., Fang, L., Wang, J., and Shi, Y.
(2018). A cca-secure key-policy attribute-based proxy
re-encryption in the adaptive corruption model for
dropbox data sharing system. Designs, Codes and
Cryptography, pages 1–17.

Goyal, V., Pandey, O., Sahai, A., and Waters, B. (2006).
Attribute-based encryption for fine-grained access
control of encrypted data. In The 13th ACM confer-
ence on Computer and communications security.

Herranz, J., Laguillaumie, F., and Ràfols, C. (2010). Con-
stant size ciphertexts in threshold attribute-based en-

cryption. In International Workshop on Public Key
Cryptography, pages 19–34. Springer.

Ion, M., Russello, G., and Crispo, B. (2012). Design and
implementation of a confidentiality and access control
solution for publish/subscribe systems. Computer net-
works, 56(7):2014–2037.

Jiang, Y., Susilo, W., Mu, Y., and Guo, F. (2017).
Ciphertext-policy attribute-based encryption support-
ing access policy update and its extension with pre-
served attributes. International Journal of Information
Security, pages 1–16.

Kaaniche, N. and Laurent, M. (2017a). Attribute based en-
cryption for multi-level access control policies. In
SECRYPT 2017: 14th International Conference on
Security and Cryptography, volume 6, pages 67–78.
Scitepress.

Kaaniche, N. and Laurent, M. (2017b). Data security and
privacy preservation in cloud storage environments
based on cryptographic mechanisms. Computer Com-
munications, 111:120–141.

Li, J., Sha, F., Zhang, Y., Huang, X., and Shen, J. (2017).
Verifiable outsourced decryption of attribute-based
encryption with constant ciphertext length. Security
and Communication Networks, 2017.

Liang, K., Au, M. H., Liu, J. K., Susilo, W., Wong, D. S.,
Yang, G., Yu, Y., and Yang, A. (2015). A secure
and efficient ciphertext-policy attribute-based proxy
re-encryption for cloud data sharing. Future Gener-
ation Computer Systems, 52:95–108.

Nkenyereye, L., Park, Y., and Rhee, K. H. (2016). A secure
billing protocol over attribute-based encryption in ve-
hicular cloud computing. EURASIP Journal on Wire-
less Communications and Networking, 2016(1):196.

Ogawa, K., Tamura, S., and Hanaoka, G. (2017). Key man-
agement for versatile pay-tv services. In International
Workshop on Security and Trust Management, pages
3–18. Springer.

Sahai, A. and Waters, B. (2005). Fuzzy identity-based en-
cryption. In EUROCRYPT 2005.

Wang, C.-J. and Luo, J.-F. (2012). A key-policy attribute-
based encryption scheme with constant size cipher-
text. In Computational Intelligence and Security
(CIS), 2012 Eighth International Conference on,
pages 447–451. IEEE.

Yao, X., Chen, Z., and Tian, Y. (2015). A lightweight
attribute-based encryption scheme for the internet
of things. Future Generation Computer Systems,
49:104–112.

