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Watershed-Based Attribute Profiles With Semantic
Prior Knowledge for Remote Sensing Image Analysis

Deise Santana Maia?, Minh-Tan Pham

Abstract—In this article, we develop a novel feature extraction
method that combines two well-established mathematical mor-
phology concepts: watersheds and morphological attribute profiles
(APs). In order to extract spatial-spectral features from remote
sensing data, APs were originally defined as sequences of filtering
operators on inclusion trees, i.e., the max- and min-trees, computed
from the input image. In this study, we extend the AP paradigm to
the more general framework of hierarchical watersheds. Moreover,
we explore the semantic knowledge provided by labeled training
pixels during different phases of the watershed-AP construction,
namely within the construction of hierarchical watersheds from the
raw image and later within the filtering of the resulting hierarchy.
We illustrate the relevance of the proposed method with two appli-
cations including land cover classification and building extraction
using optical remote sensing images. Experimental results show
that the new profiles outperform various existing features using
two public datasets (Zurich and Vaihingen), thus providing another
high potential feature extraction method within the AP family.

Index Terms—Attribute profiles (APs), building extraction,
classification, remote sensing, watershed.

I. INTRODUCTION

ATHEMATICAL morphology is an efficient tool that

has a long history within the analysis and processing
of remote sensing images, as attested by early surveys on this
topic [1], [2]. Since the last decade, a special attention has
been particularly given to a multilevel feature extraction method
namely morphological attribute profiles (AP) [3], which ap-
peared and mostly replaced the classical morphological profiles
(MPs) [4] for the analysis of remote sensing images. Even though
both of these methods are successful in conveying spatial-
spectral features of those image data, APs have been proved to be
more generalized and efficiently scalable to deal with large-scale
data, thanks to their construction from tree-based hierarchical
representation [5]. In this article, we study the relevance of hier-
archical watersheds integrated in an AP processing framework
for remote sensing applications. Watershed segmentation was
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proposed in the late 70’s and, since then, this concept has been
extended to several frameworks and implemented through a
variety of algorithms. The intuition behind the various defi-
nitions of the watershed segmentation derives from the topo-
graphic definition of watersheds: dividing lines between catch-
ment basins, which are, in their turn, areas where collected
precipitation flows into the same regional minimum. These
notions can be extended to gray-scale images and graphs, leading
to different definitions of watershed segmentation. In this article,
we focus on watershed-cuts and hierarchical watersheds defined
in the context of edge-weighted graphs, as formalized in [6] and
[7]. We present the notions of graphs, hierarchies of partitions,
and hierarchical watersheds in Section III-A.

In addition to the construction of watershed-based APs, our
second contribution in this work is to exploit semantic prior
knowledge during different phases of the Watershed-AP con-
struction so that the final extracted profiles could better encode
and characterize the spatial-spectral multilevel features from
the image. In the context of image segmentation, a widespread
method to introduce prior knowledge in the results is to consider
user-defined markers, which are subsets of image pixels indicat-
ing the locations of objects of interest. Such markers guide the
segmentation algorithm and assure that the objects of interest
are segmented into distinct regions. The notion of markers has
been especially explored in watershed segmentation, in which
catchment basins are grown from input markers instead of the
regional minima of an image [8]. We provide more background
notions and related studies of how semantic prior knowledge
is exploited in watershed segmentation in Section II, as well
as our proposed strategies to incorporate prior knowledge into
watershed-based APs in Section IV-B.

It should be noted that this manuscript is an extension of our
recent conference paper [9], which has provided preliminary re-
sults of watershed-APs applied to panchromatic remote sensing
image classification. In the present article, we investigate other
methods to compute watershed-APs with prior knowledge from
training pixels and we present a more extensive evaluation of
the proposed methods in land-cover classification. Moreover,
considering that other methods in the literature, such as [10],
[11], work well on binary pixel classification/segmentation of
object/background, we decided to validate our method through
another binary classification task, which is relevant for remote
sensing imagery, namely building extraction. Both land-cover
classification and building extraction are evaluated using multi-
spectral images from two publicly well-known datasets: Zurich
and Vaihingen.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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The rest of this article is organized as follows. We first
review related works on the use of semantic prior knowledge in
Section II. Then, we present some basic definitions of graphs, hi-
erarchical watersheds, and APs in Section III. In Section IV, we
introduce the proposed watershed-APs and our strategies to in-
tegrate semantic knowledge within its construction. Finally, ex-
periments conducted on the two aforementioned remote sensing
datasets are given in Section V with extensive analysis and dis-
cussion in Section VI. Finally, Section VII concludes this article.

II. RELATED WORKS

In this section, we review some related studies on the use of
prior knowledge and markers in the field of image processing and
analysis, with a focus on watershed segmentation. We present
the main findings of each study and discuss how they relate to
our proposed watershed-AP.

As already mentioned, the idea behind the watershed segmen-
tation is to partition a surface/image into its different regional
minima. To prevent oversegmentation, markers are often used to
guide the computation of the watershed segmentation, in which
catchment basins are grown from input markers instead of the
image’s regional minima. In this article, we show that the use of
markers in a watershed segmentation can go beyond the intro-
duction of new regional minima. The spectral-spatial informa-
tion regarding the marked pixels can provide further knowledge
about the objects we aim to segment. For instance, in [12], [13],
the authors use the spectral signature of training samples in the
construction of watershed segmentation of multispectral images.
First, the spectral signature of training pixels is used to train a
classifier, which is then applied on the whole image and used to
obtain a probability map per class. Then, those maps are com-
bined and used to obtain a single watershed segmentation. In the
present work, we consider a similar approach to include prior-
knowledge in the watershed-AP construction, with the main
difference being the construction of a multilevel watershed seg-
mentation instead of a single segmentation. Moreover, we go one
step further to exploit such probability maps during the image
reconstruction/filtering phase of the watershed-AP construction.

Another use of supervised classification for watersheds has
been proposed in [10], where the watershed segmentation is
computed from user-defined markers combined with probabil-
ity maps computed for each targeted class. More precisely,
catchment basins are grown from different markers, and the
probability maps, combined with the original data, are used
simultaneously in the process. In remote sensing, the later
approach has been applied to the detection of buildings [14]
and shorelines [15] in multispectral images. Similarly to [12]
and [13], the method proposed in [10] deals with single level
watershed segmentation. Finally, in [11], prior knowledge from
markers is employed on several interactive image segmen-
tation methods, including watersheds, in the framework of
edge-weighted graphs. Edge weights are defined as a linear
combination of the weights obtained from two sources: from
the pixel values, and from the classification probability maps
computed from the markers that are incrementally provided
by the users. More generally, knowledge from markers can be
used by other kinds of preprocessing methods beyond watershed
segmentation. Namely, spectral signatures of training pixels
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have been used in [16] to optimize the data preprocessing with
alternating sequential filters. Hence, training pixels are used for
preprocessing the input data, as well as for the final pixel classi-
fication. A related approach is proposed in [17], where training
pixels are used to optimize vector orderings for morphological
operations applied to hyperspectral images.

In the context of hierarchical segmentation, prior knowledge
can play a role in defining which regions should be highlighted
at different levels of a hierarchy. In [18], a marker-based hi-
erarchical segmentation is proposed for hyperspectral image
classification. Labeled markers are derived from a probability
classification map, which is obtained from training samples,
as done in [10], [12], [13]. Then, those labeled markers guide
the construction of a hierarchical segmentation by preventing
regions of different classes to be merged, and by propagating the
labeled markers to unlabeled regions. Another related approach,
proposed in [19], uses prior knowledge to keep the regions of
interest from being merged early in the hierarchy, i.e., the details
in the regions of interest are preserved at high levels of the
hierarchy. This later idea is also explored in the watershed-AP
framework, in which we aim to filter out the regions with
low probability of belonging to a given ground-truth semantic
class. Finally, in [20], the authors propose a knowledge-based
hierarchical representation for hyperspectral images. In their
approach, a dissimilarity measure learned from training pixels is
employed in the construction of a-trees. This last approach share
some common features with the one proposed in the present
paper, with the main differences being the family of hierarchy
under consideration as well as the learning algorithm used to
explore prior knowledge from training pixels. Moreover, we also
consider another way of using such prior knowledge which has
not been considered in [20], namely in the filtering step rather
than in he construction phase of a hierarchy.

Finally, following the current tendency of using deep learning
for solving computer vision problems, various methods for
coupling prior knowledge with deep learning based models have
been explored in more recent works. For instance, in [21], edge
information is combined with the output of a Fully convolutional
network (FCN) in order to refine the segmentation results given
by the later. And, in [22], crop classification in SAR time series
are performed using autoencoders (AE), convolutional neural
networks (CNN), and FCN, and then postprocessed using prior
knowledge regarding crop dynamics, i.e. expert’s knowledge
about which crop transitions might or not occur over time in
the same field. Though deep learning models perform well in
computer vision tasks in general, including remote sensing im-
agery, there are advantages of using feature extraction methods
based on hierarchical representations and morphological opera-
tors, such as the proposed watershed-APs. In particular, we can
mention the interpretability of the method when compared to the
black box parameters of deep learning models, and the low need
for lots of ground-truth data, which makes those morphological
methods well adapted to datasets with scarce annotated samples.

III. BACKGROUND NOTIONS

In this section, we present some basic notions of graphs and
hierarchical watersheds. Then, we recall the definition of mor-
phological attribute profiles and their extensions in the literature.
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Fig. 1.  (a) A weighted graph G = (V, E, w). (b) A tree representation of the

hierarchical watershed H of G for the sequence (C, A, B, D) of minima of G.
(@G = (V,E,w).(b) H.

A. Graphs and Hierarchical Watersheds

A weighted graph is a triplet G = (V, E,w), where V is a
finite set, &/ is a subset of V x V, and w is a map from F
into R. The elements of V' and E are called vertices and edges
(of G), respectively. Let G = (V, E', w) be a weighted graph and
let ¢ = (V) E)/ w) be a graph such that V' C V and E' C E.
We say that G’ is a subgraph of G. A sequence ™ = (x, . .., Zy)
of vertices in V' is a path (in G') from x to xp, if {x;_1,x;} is
an edge of G’ for any 1 <i < n. If xg = z,, and if there are
no repeated edges in m, we say that w is a cycle (in G'). The
subgraph G’ of G is said to be connected if, for any z and 2’
in V', there exists a path from z to /. Let G’ be a connected
subgraph of G. We say that G’ is a connected component of G if

1) for any = and ' in V', if {z, 2’} € E then {z,2'} € E';

and

2) there is no edge e = {y,y'} € E such that y € V' \ V'

andy € V.
Let G = (V, E,w) be a graph and let ¢’ = (V E, w) be a
connected subgraph of G. If the weight of any edge in E’ is
equal to a constant k and if w(e) > k for any edge e = {z, y}
suchthatz € V' and y € V' \ V', then G’ is a (local) minimum
of G. For instance, Fig. 1(a) illustrates a weighted graph with
four minima delimited by the dashed lines. We note that in the
remainder of this section, G = (V, E,w) denotes a connected
weighted graph and n denotes the number of minima of G.
Let G’ = (V) E w) be a subgraph of G. A Minimum Span-
ning Forest (MSF) of G rooted in G' is a subgraph G” =
(V, E w) of G such that
1) for every connected component X” of G”, there is exactly
one connected component X' of G’ such that X' is a
subgraph of X",

2) every cycle in G” is a cycle in G'; and

3) > .cpr w(e) is minimal among all graphs which satisfy
conditions (1) and (2).

A partition of V is a set P of disjoint subsets of V' such
that the union of the elements in P is V. The partition of V
induced by a graph G' is the partition P such that every element
of P is the set of vertices of a connected component of G'. A
hierarchy of partitions of V' is a sequence H = (Py,...,P,)
of partitions of V such that P,, = {V'} and such that, for
any 0 < i < n, every element of P; is the union of elements
of P, 1. Any hierarchy of partitions # can be represented
as a tree whose vertices correspond to the regions of  and
whose edges link nested regions. For instance, Fig. 1(b) shows
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a tree representation of the hierarchy H = (Po, Py, Ps, P3),
where Py = {{av b}v {Ca d}v {6, f}a {ga h}}’ P, = {{aa b}a
{C» d}a {67 fa 9, h}}’ P2 = {{av b7 ¢, d}7 {6, fv 9, h}}, andPS =
{{a7 b7 c, d7 €, fvg7 h}}

LetS = (My,..., M,) be a sequence of n distinct minima
of G such that, for any 0 < i < n, we have M; = (V;, E;, w).
The hierarchy of MSF's of G for S, also known as hierarchical
watershed of G for S, is a hierarchy H = (Py,...,P,) of
partitions of V' such that each partition P; is the partition induced
by the MSF of G rooted in the graph (| V;, U E;, w).

) >1 | >1

A hierarchical watershed of the grajph g (if Fig. 1(a) for the

sequence (C, A, B, D) of minima of G is illustrated in Fig. 1(b).

B. Attribute Profiles

In remote sensing image analysis, morphological APs [3]
appears to be one of the most efficient multilevel feature ex-
traction methods. To convey spatial-spectral features of remote
sensing images, APs were initially defined as sequences of
filtering operators on the max- and min-trees computed from the
original data. Let X : P — Z, P C Z? be a gray-scale image.
The calculation of APs on X is achieved by applying a sequence
of attribute filters based on a min-tree (i.e., attribute thickening
operators {¢71}X_|) and on a max-tree (i.e., attribute thinning
operators {7 }2_,) as follows:

AP(X) = {¢¢;<X>,¢?;1<X>, LGR(X). X
Vf‘(X),---,vé_l(X)wé(X)} )

where QS;? and ’y,? are, respectively, the thickening and thinning
operators with respect to the attribute A and to the threshold k,
and K is the number of selected thresholds. More precisely,
the thickening ¢;}(X) of X (resp. thinning v;!(X) of X) with
respect to an attribute A and to a threshold k is obtained as
follows: given the min-tree 7" (resp. max-tree 7') of X, the A
attribute values (e.g., area, circularity, and contrast) of the nodes
of T" are computed. If the attribute A is increasing, the nodes
whose attribute values are inferior to k are pruned from the
tree T'; otherwise other pruning strategies can be adopted [5].
Finally, the resulting image is reconstructed by projecting the
gray levels of the remaining nodes from the pruned tree into the
pixels of X.

Since its appearance, the notion of APs has been extended to
other hierarchical representations including tree-of-shapes and
partition trees such as a-tree and w-tree (see a comparative study
of AP constructed from different trees in [23], and [24] for amore
general survey on morphological trees). To obtain a profile from
a partition tree instead of a component tree, some adaptations
have to be made to the original definition of APs, as discussed
in [25] and [26]. For instance, the nodes of a partition tree are
not naturally associated to gray-level values, as it is the case of
component trees. The strategy adopted in [25] is to represent
each node as its level in the tree or as the maximum, minimum,
or average gray-level of the leaf nodes (pixels) of this node. For
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Gray-scale image
(one channel of
the orignal data)

Edge-weighted
graph

Fig. 2.
include prior knowledge. Details are provided in Section IV-B.

more details about APs’ extensions, we invite readers to refer to
a recent survey [5].

IV. WATERSHED AP

In this section, we present watershed-APs [9] and discuss dif-
ferent methods for introducing semantic prior knowledge during
the generation and post-processing of hierarchical watersheds.

A. Watershed-Based APs

As mentioned in the previous section (see Section III-A),
hierarchies of partitions, such as hierarchical watersheds, can
be equally represented as a (partition) tree. Hence, the filtering
strategy of watershed-APs is similar to the strategy described
in [25] for the - and w-APs: if a node is filtered out, all of its
descendants are also removed from the tree. As discussed in [25],
image reconstruction from partition trees is not straightforward
as it is from component trees. For node representation, we adopt
one of the solutions proposed in [25] and already mentioned
in Section III-B, in which a node is represented by the average
gray-level of the pixels belonging to it. We highlight that, in the
case of multichannel images, the average grey level computed
on each band might lead to spectral values not present in the
input image. However, in the context of APs used for pixel
classification, our aim is not image filtering. Hence, the fact
that new spectral values (a.k.a. false colors) are created is not a
problem as long as they allow us to distinguish between different
semantic classes.

Note that hierarchical watersheds are usually constructed
from a gradient of the original image, which contains more in-
formation about the contours between salient regions than about
the spectral signature of those regions. Hence, we consider the
original pixel values to obtain the nodes representation instead
of the image gradient.

Formally, let X : P — Z be a gray-scale image and let G =
(V,E,w) be a weighted graph, which represents a gradient of
X, ie,V = P and, for every edge e = {z,y} in F, the weight
w(e) represents the dissimilarity between x and y (e.g., w(e) =
| X (z) — X(y)|). Let S be a sequence of minima of G ordered
according to a given criterion C, and let H be the hierarchical
watershed of G for the sequence S. Given the tree representation

General framework to compute Watershed-APs. Here, the solid arrows

2577

Filtered
hierarchies

s

Watershed-AP

Feature vector

- of x

represent mandatory steps while the dashed arrows indicate optional steps to

T of H, awatershed-AP of X for the criterion C' is constructed
as a sequence of image reconstructions from filtered versions
of T.

Fig. 2 summarizes the construction of the watershed-APs for
a given gray-scale image /. The solid arrows represent manda-
tory steps for the watershed-AP construction, while the dashed
arrows indicate optional steps to include prior knowledge, which
will be discussed in the following section.

B. Watershed-APs With Semantic Prior Knowledge

As discussed in Section II, user-defined markers and prior
knowledge from training pixels are valuable tools for optimiz-
ing the construction of various image representations, such as
hierarchical segmentations, as well as for postprocessing such
representations. In this article, we investigate the use of prior
knowledge in the construction of watershed-APs. We present a
general framework for including prior knowledge at different
stages of the watershed-APs construction, followed by two in-
stances of this framework that are later validated on multispectral
remote sensing datasets.

AP and its variants are essentially unsupervised feature ex-
traction methods, in which only the spectral values and the
relative position between pixels are taken into consideration.
During the filtering and reconstruction steps of APs, low levels
of prior knowledge regarding the shape and size of the objects
of interest may be taken into account, but semantic knowledge
from training pixels remains little exploited. In this context, we
have identified two ways to incorporate prior knowledge into
watershed-APs.

1) Hierarchical Watersheds With Semantic Prior Knowl-
edge: In general, a hierarchical segmentation is a satisfactory
representation of an image for a given task when the lowest level
of the hierarchy contains all regions of interest for this specific
task, and when regions are merged in a meaningful way, i.e.,
similar pairs of regions are merged before dissimilar pairs. In
the context of feature extraction with watershed-APs, regions of
interest are composed of neighbouring pixels belonging to the
same semantic class. Due to the interclass similarity and intra-
class variability of pixel in remote sensing images, hierarchical
segmentations based only on pixel values often do not reflect
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Semantic prior knowledge combined with the image gradient before the construction of a hierarchical watershed. Given a multispectral image I, a classifier

trained on a subset of pixels of I provides probability maps per semantic class. Then, those maps are combined into a single map which is used to obtain an edge
weighted graph G p. The graph G p is then combined with the image gradient G for each channel of I. The resulting graph is given to the step 2 of the watershed-AP

pipeline presented in Fig. 2.

the inner semantic structure of the data. With that in mind, we
rely on training pixels to obtain hierarchical watersheds whose
regions partially reflect the semantic structure of the input data.
In practice, we aim to enforce regional minima at the regions with
high probability of belonging to any given ground-truth class.
This is done through a combination of the methods proposed
in [10], [12], [13], as described below.

Given a dataset I (e.g., a panchromatic or an RGB image)
and its training set composed of n classes, we compute its
hierarchical watershed using prior knowledge as follows.

i) Training of a classifier using the training set of I and
computation of perpixel class probabilities (p1,...,pn)
for all pixels of I.

Combination the class probabilities into a single map .
Computation of a weighted graph Gp = (V, E,wp)
from p.

Computation of a weighted graph G; = (V, E, we),
which represents a gradient of I, i.e., edge weights in-
dicate the dissimilarity between neighboring pixels.
Combination of the weight maps wp and wg into a
map wgp.

Computation of the hierarchical watershed of Gop =
(V, E, wgp) for a given sequence of minima of G p.

Readers may note that each of the above steps can be imple-
mented in many different ways. In our experiments, our choices
have been adopted based on solutions present in the literature
and on empirical results on the tested datasets.

In the first step of our method, we are aware that: 1) there
might be sample pixels of a given class whose spectral values
are not represented in the training set, and 2) there might be
pixels in the training set with very similar spectral signatures
but which belong to distinct classes. In those cases, we expect
the classifier to assign low class probabilities to such pixels. This
means that the watershed segmentation at those regions will be

ii)

iif)

iv)

\2)

vi)

mostly guided by the original gray-levels of the image gradient.
Then, in the step (ii), we combine the class probability maps
into a single probability map u. We expect this combination to
provide flat zones of pixels with high probability of belonging to
any given class, i.e., subsets of pixels that should be merged early
in the resulting hierarchical watershed. In the extreme case where
the classifier assigns very high class probabilities to all pixels of
1, we would have a single flat zone and, consequently, a hierarchy
with a single segmentation level. In that case, we expect that the
pixel features extracted from the resulting AP will have little in-
fluence in the final classification results. In other words, the final
results will be similar to the ones obtained with the original pixel
values. In the step (iii), a weighted graph (V, E, wp) is obtained
from the combined probability map u. In our experiments, we
chose to compute edge weights as the maximum between the
probability values of neighboring pixels based on a few exper-
iments with the datasets described in the conference version of
this article [9]. In the steps (iv) and (v), a gradient (V, E, w¢)
of I is computed and then combined with (V, E, wp). In our
experiments, this combination will be simply implemented as
a multiplication of edge weights, similarly to [10]. We note
that the proposed method is related to ones introduced in [19]
and [20], the main difference being the type of hierarchy under
consideration and how the original data is combined with the
prior knowledge. Finally, in step (vi), we compute a hierarchi-
cal watershed H of G for a given sequence of minima of G.
Those minima are often ordered according to regional attributes
(e.g., area, volume) of the catchment basins associated to each
minimum. Those regional attributes are known as extinction
values [27], [28].

‘We now analyze the time complexity of the proposed method
as described in Algorithm 1. Given an image [ and a training
set S of I, whose samples are labeled into n classes, we aim
to compute a hierarchical watershed of I with prior knowledge
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Algorithm 1: Computation of Hierarchical Watersheds
with Semantic Knowledge from Training Pixels.

Input : Original image I, training set .S of I composed of
n classes
Output: Hierarchical watershed of I computed with prior
knowledge
// Compute features of the pixels of [
// For simplicity, we often consider the
raw pixel values as their features

1 F := compute_features(I)

// Train a classifier using the features
F of the training set S

// For each pixel z of I, C(z):= (pi,...
where pf is the probability of x to
belong to the class ¢;

2 C :=train_classifier(l,S,F)

// Initialize an array g that will store
the class probabilities of each pixel
of I provided by the classifier C

w = array of length || initialized with zero values

foreach pixel x of I do
(7%, p%) == C(x)
foreach semantic class c; of I do
| pla] = pla] + (9F)?
end

end

10 foreach pixel x of I do

2 Dn) s

IR B I )

u | ople] =1 - \/pla]
12 end

// Compute a connected graph from [
B G:=(V,E)

// Compute an edge weight map wp: E — [0,1]
based on the probability map p
14 foreach edge e = (x,y) of E do
5| wp(e) = maz(u(z), u(y)
16 end
// Compute an edge weight map wg which
corresponds to a gradient of [
17 foreach edge ¢ = (x,y) of E do
s | wale) = |I(x) = I(y)|
19 end
// Combine the edge weight maps wp and wg
20 foreach edge e = (z,y) of E do
21 | wpe(e) :=wp(e) x wp(e)
22 end
// Compute a hierarchical watershed of the
edge-weighted graph (V,FE,wpqg)
23 H := compute_hierarchical_watershed(V, E,wpg)
24 return H

from training pixels. Given that the pixel features are simply
their spectral values or derived from a small window around
each pixel, line 1 can be executed in linear time O(|I|). Then,
the time complexity to build and train the classifier C depends on
the chosen method. For instance, if C is a Random Forest (RF)
composed of m trees, obtained from ¢ training samples with f
features, the time complexity to build such a forest is O(m x
t x log(t) x f). Taking into account that f is a small constant
in our experiments, the time complexity to build such a forest is
O(m x t x log(t)). Inline 5, C(x) is thus computed in O(m x
d), where d is the maximal depth of each tree. Considering that
the number n of semantic classes is a small constant in most
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datasets, the for loops of lines 4 — 9 are executed in time O(]I] x
m x d). The graph G can be constructed in time O(||) given that
each vertex in V' corresponds to a pixel in I and that the number
of edges increases linearly with the number of vertices in a 4 or
8-connected graphs. That being said, the three for loops in lines
14 — 21 are executed in time O(|I|). Finally, the hierarchical
watershed H can be obtained in time O(|I|log|I]), as stated
in [29]. Therefore, the overall time complexity of Algorithm 1
isO(m x t x log(t) + |I| x m x d + |I|log|I|) if we consider
the learning step of the classifier C. However, since C is trained
only once, we can simplify it to O(|I] x m x d + |I|log|I|),
which is a function of the number m of trees of C, their depths
and the dimensions of the image .

An illustration of the proposed method is given in Fig. 4.
A crop of the image zh20 from the Zurich dataset [30], its
ground-truth composed of six semantic classes and a class
probability map (obtained as described in Algorithm 1) are
shown in Fig. 4(a). Fig. 4(b) and (c) shows image reconstructions
from filtered versions of two different hierarchical watersheds
of zh20: in (b), we considered a hierarchical watershed obtained
from the infrared channel of zh20 computed without any prior
knowledge from training pixels and, in (c), we considered a
hierarchical watershed with prior knowledge from the map p, as
described in Algorithm 1. When comparing both results, we
observe that images in (c) preserve some of the boundaries
between distinct semantic classes, as, for instance, between the
regions belonging to classes trees (represented in dark green in
the ground-truth) and grass (light green) in the lower right corner
of the reconstructed images.

2) Hierarchy Filtering With Semantic Prior Knowledge: The
illustration given in Fig. 4 shows that the hierarchical water-
sheds computed with prior knowledge from training pixels can
indeed provide regions, which are more semantically coherent.
On the other hand, considering that our objective is feature
extraction at pixel level, including prior knowledge into the
hierarchy construction may suppress part of the finer regions
present in the original data. In order to preserve the information
provided by those finer regions, we could delay the utilization
of prior knowledge in the watershed-AP pipeline to the filtering
step (step 3 of the pipeline given in Fig. 2). The idea is to
replace the handcrafted criteria, which are usually employed
at this step (e.g., area and moment of inertia thresholds) by
markers obtained from class probability maps per semantic
class, as the ones given in Fig. 3. Given a dataset [ and its
training set composed of n classes, we propose the following
pipeline.

1) Computation of a hierarchical watershed H of I.

2) Training of a classifier using the training set of I and

computation of per-pixel class probabilities (p1, ..., pn,)
for all pixels of .

3) For each probability map p;, computation of a list L; =
(p},...,pk) of k binary thresholded versions of p; such
that, in each map p;", white or one valued pixels are
the ones whose class probabilities are larger than a given
threshold.

4) Filtering out the nodes of regions of H which only contain
black or zero-valued pixels.
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Fig. 4.

Image reconstructions (represented in false colors) obtained from two hierarchical watersheds of the image zh20 (Zurich dataset V-A) computed without

semantic prior knowledge (b) and with semantic prior knowledge given by the probability map p (c). The reconstructions given in (b) and (c) are computed by
filtering their respective hierarchical watersheds with the area attribute and the following thresholds: 5 k, 10 k, 20 k. (a) Cropped RGB image zh20 from the Zurich
dataset, its ground-truth and the combined probability map . (b) Images reconstructed from filtered versions of a hierarchical watershed computed from a gradient
of I. (c) Images reconstructed from filtered versions of a hierarchical watershed computed from a combination of a gradient of I with .

5) Reconstruction of an image from each of the filtered

versions of H computed in the previous step.

The proposed pipeline is shown in Fig. 5 and described in
Algorithm 2. In terms of time complexity, Algorithm 2 adds
as much to the complexity of computing watershed-APs as
does the method described in Algorithm 1. More precisely,
both algorithms include the training of a classifier C and the
computation of classification probability maps per semantic
class, which consist of the most “time consuming” parts of the
algorithms. Then, in the lines 7 — 17 of Algorithm 2, we perform
the filtering step of the watershed-AP. In practice, filtering the
input hierarchy is indeed similar to the standard filtering step of
APs using criteria such as area and moment of inertia: attribute
values are propagated from the leaves to the root node, and nodes
are removed if their attribute values are below a given threshold
value. Therefore, we can conclude the proposed methods for
including semantic prior knowledge into watershed-APs present
equivalent time complexities.

Fig. 6 illustrates the method described in Algorithm 2 on a
cropped patch of an image from the Vaihingen dataset [31].
The image and its ground truth regions are given in Fig. 6(a). In

Fig. 6(b) and (c), we give thresholded versions of the probability
map for the class trees (represented in green in the ground
truth), along with the image reconstructions obtained from a
hierarchical watershed filtered using each of those probability
maps, as described in Algorithm 2. Similarly, Fig. 6(d) and (e)
shows the results obtained for the class cars (represented in
yellow in the ground-truth image). For a better visualization,
all image reconstructions are represented in false colors. In
Fig. 6(c), we observe that the finer regions belonging to the
class trees are preserved in all reconstructions and the same is
true for the class cars in Fig. 6(e).

V. EXPERIMENTAL SETUP

In this section, we conduct experiments to evaluate the per-
formance of the proposed watershed-AP (computed with and
without prior knowledge) in the context of land-cover classi-
fication and building extraction of remote sensing images. We
first describe the multispectral images considered in our study,
as well as the experimental settings used for evaluation. We pro-
vide detailed analysis and show that oftentimes watershed-APs
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Semantic prior knowledge employed at the filtering step of watershed-AP. Given a multispectral image I, a classifier trained on a subset of pixels of

I provides probability maps per semantic class. Then, those maps are thresholded at many different levels, resulting in binary maps, whose white pixels have
the highest probabilities of belonging to a given class. Finally, the threshold probability maps are used as markers to guide the filtering of the input hierarchical

watershed.

outperform AP and its variants including SDAP [32], a-AP [25],

and w-AP [25], on both datasets in the following section.
Experiments were performed in Python! using the open

source simple attribute profile (SAP)? and Higra [33] libraries.’

A. Datasets

Our experiments were conducted on the multispectral remote
sensing Vaihingen [31] and Zurich [30] datasets.

The Vaihingen dataset [31] contains 38 images collected over
the city of Vaihingen, Germany. Each image has a spatial reso-
lution of 9 cm and is composed of four channels (near infrared,
red and green and blue) plus a digital surface model (DSM). As
done in [34], we only consider the first three channels, namely
near infrared, red, and green in our experiments. Images width
and height range in the intervals [1388,3816] and [1281,3313],
respectively. Ground-truth annotations, which are provided for
each of the 38 images, consist of at most six thematic classes:
impervious surfaces, buildings, low vegetation, trees, cars, and
background/clutter. Following previous works [34], we only
consider the 16 images for which ground-truth annotations were

'Source codes are available in https://github.com/deisemaia/Watershed-
attribute-profiles

2The documentation and source codes of the SAP package are provided in
https://github.com/fguiotte/sap

3The documentation and source codes of the Higra package are provided in
https://github.com/higra

provided during the ISPRS semantic labeling contest. Moreover,
the background class is not used for land-cover classification. To
perform building extraction, the ground-truth labels are divided
into two classes: buildings and background (i.e., the union of all
remaining semantic classes). Training samples were extracted
from eleven images (image IDs: 1, 3, 5,7, 13, 17, 21, 23, 26, 32,
37), and the remaining five images (image IDs: 11, 15, 28, 30,
34) were used for evaluation. For each semantic class, training
samples were composed of 1% of randomly selected pixels in
the training images, leading to the number of training and test
pixels per semantic class given in Table I. The test images
of the Vaihingen dataset and their ground-truths are shown
in Fig. 7.

The Zurich Summer dataset [30] is a collection of 20 images
obtained from a QuickBird acquisition of the city of Zurich,
Switzerland, in August 2002. The images in this dataset have
various dimensions, with widths and heights in [622,1639]
and [782,1830] ranges, respectively, and are composed of four
channels (near infrared, red, green, and blue). The ground-truth
provided for each image consists of at most nine thematic
classes, namely: roads, buildings, trees, grass, bare soil, water,
railways, swimming pools, and background. For the building
extraction task, all classes except buildings are merged into a
single background class. Following previous works [34], [35],
training pixels were extracted from the first fifteen images of this
dataset, and the remaining five images (zh16, zh17, zh18, zh19,
and zh20) were used for evaluation. As for the Vaihingen dataset,


https://github.com/deisemaia/Watershed-attribute-profiles
https://github.com/deisemaia/Watershed-attribute-profiles
https://github.com/fguiotte/sap
https://github.com/higra
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G

Fig. 6. Comparison between image reconstructions obtained with the filtering method illustrated in Fig. 5. To better distinguish between neighboring regions
with similar gray levels, all image reconstructions are represented in false colors. (a) Cropped patch of the first image (denoted here as vn ;) from the Vaihingen
dataset [31] and its ground-truth semantic classes. (b) Class probability map for the tree class (in green) thresholded at increasing values. (c) Image reconstructions
(in false colors) obtained by filtering a hierarchical watershed of vn 1 using the maps given in (b). (d) Class probability map for the car class (in yellow) thresholded
at increasing values. (e) Image reconstructions (in false colors) obtained by filtering a hierarchical watershed of vn using the maps given in (d).
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line: ground-truth labels including six semantic classes: L] impervious surfaces, [ buildings,

the background class of the Zurich dataset is not considered for
land-cover classification. In total, the training set is composed of
122,630 pixels, which corresponds to 1% of the labeled pixels
randomly extracted for each class of each training image. The
number of training and test pixels per semantic class is given
in Table II. The test images and their ground-truths are given in
Fig. 8.

B. Experimental Settings

Most works in the literature evaluate AP and its variants in
the following way: training and test pixels come from the same
remote sensing image, which allows training and test features
to be extracted from the same hierarchical representation of the
image under study. As discussed in [5], this setting does not
generalize well to more realistic scenarios, in which we may have
a dataset composed of several images without any annotation.
For that reason, we extend the evaluation on the Zurich dataset
already presented in our conference paper [9]. In the present
article, training and test features are extracted from independent
hierarchical representations computed from the training and test
images.

I e e

Ll i.‘ﬁ""_‘;
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The test images of the Vaihingen dataset. First line from left to right: NIR+RG images (IDs: 11, 15, 28, 30, and 34) represented as RGB images. Second

low vegetation, [ | trees, cars, [ | background.

AP and its variants, including watershed-APs, were computed
with the usual area and moment of inertia (Mol) attributes.
The following 10 area thresholds and four Mol thresholds were
adopted for both datasets

Aarea = {25,100, 500, 1000, 5000, 10000,
20000, 50000, 100000, 150000}
Amoi = {0.2,0.3,0.4,0.5}

The only exceptions are the watershed-APs filtered using
semantic prior knowledge, as described in Section IV-B2. To
compute those watershed-APs, the hard-coded criteria based on
the area and Mol attributes are replaced by the nodes’ proba-
bility of belonging to each ground-truth semantic class. In our
experiments, the set 7" of threshold values used by Algorithm 2
is defined as an interval of evenly spaced numbers ranging from
the minimum to the maximum values of each classification
probability map. In order to obtain a similar number of features
as the other APs, different numbers of threshold values were
considered for each task and for each dataset (see Table III).

The APs and their extensions are first computed indepen-
dently on each of the NIR+RGB bands (resp. NIR+RG) of
the Zurich (resp. Vahingen) dataset and then concatenated. For
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Fig. 8.

semantic classes: I roads, [ | buildings, [ | trees, [ | grass, B vare soil, [ water,

each image I in the Zurich and Vaihingen datasets, hierarchi-
cal watersheds were computed from two four-connected edge-
weighted graphs: from the graph G; = (V, E, wg) obtained
from a gradient of the original data I (without semantic prior
knowledge from training pixels), and the second one computed
from the combination of the graph G with the classification
probability map obtained from the training set of /, as described
in Section I'V-A.

Supervised pixel classification was performed twice, once
for obtaining the classification probability map and then to
provide the final land-cover or building extraction classifica-
tion. Both were performed using a RF classifier with 100
trees. The number of variables used for training was set to
the square root of the feature vectors length. To optimize
the construction and filtering of hierarchical watersheds us-
ing prior knowledge, the first RF, which is used to obtain
the classification probability maps, is trained on the fea-
tures extracted from a 5 x 5 window around each training
pixel.

For land-cover classification, the different approaches are
compared using the overall accuracy (OA), average accuracy
per class (AA) and « coefficient, as done in [3]. To evaluate
the proposed methods on building extraction, the following
standard measures were considered: OA, precision, recall, the
F1 score, and the mean intersection over union (mIOU). For
each tested method, we report the mean and standard devia-
tion of the classification scores over ten runs in the form of
mean + standard deviation.

As defined in Section III-A, hierarchical watersheds can be
computed for any given ordering on the minima of a weighted
graph. In our experiments, such orderings are obtained from

Test images of the Zurich dataset. First line from left to right: RGB images with IDs from 16 to 20. Second line: ground truth labels including nine

railways, swiming pools, ] background.
extinction values [27], [28] based on the area, dynamics, and
volume attributes.

VI. RESULTS AND DISCUSSION

A. Land-Cover Classification

Tables IV-IX present the results of land-cover classifica-
tion on the Vaihingen and Zurich datasets. We compare the
performance of the following methods: the baseline, in which
every pixel is represented by its NIR+RG or NIR+RGB values,
AP-maxT, and AP-minT obtained by filtering the max- and
min-tree, respectively; AP [3] obtained as a concatenation of
AP-maxT and AP-minT; SDAP [32]; «-AP and w-AP [25];
and the watershed-APs computed/filtered with and without prior
knowledge. To simplify the notations, watershed-AP computed
without prior knowledge is denoted as A-WS-AP, and the
watershed-APs computed and filtered using prior knowledge are
denoted as A-CPWS-AP and A-FPWS-AP, respectively, where
A is the attribute used in the construction of the hierarchical
watersheds, namely Area, Dynamics (Dyn) and Volume (Vol).

On the Vaihingen dataset, as shown in Tables IV and V, the
Area-WS-AP and Volume-WS-AP, which are computed without
any prior knowledge, outperform all other methods in the liter-
ature in terms of OA and x scores. The same is true for Area-
CPWS-AP and Vol-CPWS-AP, as well for all three FPWS-APs.
Our best method, namely Vol-FPWS-AP, outperforms AP by
2.46% and by 3.29% in terms of OA and k scores, respectively.
Regarding the use of prior knowledge for WS-APs, all three
FPWS-APs performed better than their respective CPWS-APs
and WS-AP counterparts. The most meaningful improvements
were observed for Dyn-FPWS-AP, which presented OA, AA,
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Algorithm 2: Filtering of Hierarchical Watersheds with
Semantic Knowledge from Training Pixels.

Input : Original image /, training set .S labeled into n
classes, hierarchical watershed H, threshold list 7"
Output: List of filtered versions of the hierarchy H
// Same steps 1-2 of Algorithm 1
1 F := compute_features(I)
2 C:=train_classifier(I,S, F)
// Compute per—-class and per-pixel
classification probabilities
3 foreach pixel x of I do
a | pi,...,ph=C(x)
5 end
// Initialize an empty list £ that will
store all filtered versions of H
6 L := empty list
// For each threshold ¢t in T and for each
semantic class ¢;, we filter out the
nodes of H composed only of pixels
whose class probability for the class
¢; 1s inferior to t
7 foreach threshold value t in T" do

8 foreach semantic class c; of I do

// Create a copy of H
9 H' := copy(H)
10 foreach node n of H' do
1 if pi <t for every pixel in 7 then
12 | filter out the node n from H'
13 end
14 end

// Add H' to the list L
15 L:=LUH
16 end
17 end
18 return L

TABLE I

NUMBER OF TRAINING AND TEST SAMPLES OF THE VAIHINGEN DATASET USED
FOR LAND-COVER CLASSIFICATION AND BUILDING EXTRACTION

Class | Training | Test
Land-cover classification
Impervious surfaces 159,323 5882512
Buildings 146,465 5,770,150
Low vegetation 110,075 5,264,832
Trees 121,183 5,991,642
Cars 6,661 279,069
Building extraction
Buildings 146,465 5,770,150
Background 402,362 17,433,644

and k scores more than 2% higher than Dyn-WS-AP. Con-
sidering the classification result per semantic class given in
Table VIII, we observe that the watershed-APs yielded the best
results for the impervious surfaces, buildings, low vegetation
and tree classes, but falls behind AP on the classification of
cars.

To provide further insight into the performance of APs in
the context of semantic segmentation, we compare one of our
results with a recent deep learning method [34] (see Table VI).
In [34], the authors propose an adaptation of the FCN to
consider sparsely annotated training data. They trained their
proposed model with different types of scribbled annotations,
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TABLE II
NUMBER OF TRAINING AND TEST SAMPLES OF THE ZURICH DATASET USED
FOR LAND-COVER CLASSIFICATION AND BUILDING EXTRACTION

Class | Training | Test
Land-cover classification
Roads 30,439 757,752
Buildings 46,343 739,365
Trees 18,789 652,037
Grass 12,129 650,969
Bare soil 1,552 79,039
Water 9,910 275,923
Railways 3,229 18,817
Swimming pools 229 10,457
Building extraction
Buildings 46,343 739,365
Background 161,800 2,444,994
TABLE III

NUMBER OF THRESHOLD VALUES CONSIDERED IN THE COMPUTATION
WATERSHED-APS FILTERED USING PRIOR KNOWLEDGE

Dataset | Task | #Thresholds

Zurich Building extraction 7

Vaihingen Land-cover classification 5
Building extraction 7

TABLE IV
AVERAGE LAND-COVER CLASSIFICATION RESULTS FOR THE TEST IMAGES OF
VATIHINGEN OVER TEN DIFFERENT RANDOM TRAINING SETS

. Classification result
Method Dim OA %) AR (%) = X 100
NIR+RG 3 65.71 +£0.04 54.60 £0.05 54.45+ 0.06
AP-maxT [3] 48 69.86 +0.11  59.15+0.11  59.92+0.15
AP-minT [3] 48 70.18 £0.09 58.54+0.15 60.31+0.13
AP [3] 90 72.58 £0.08 6192 +0.11 63.51+0.11
SDAP [32] 48 72.27+£0.06 61.29+0.13 63.11 +£0.07
a-AP [25] 48 71.35+0.07 58.85+0.09 61.85+0.10
w-AP [25] 48 71.54+0.11 58.99+0.13 62.11+0.14
Area-WS-AP 48 73.21+0.09 61.26+£0.11 64.35+0.11
Dyn-WS-AP 48 71.83+£0.13 59.19+0.15 62.49+0.18
Vol-WS-AP 48 73.46 £0.07 61.64+0.10 64.69+0.09
Watershed-AP constructed with prior knowledge:
Area-CPWS-AP 48 73.15+0.23 61.04+0.26 64.27 +£0.30
Dyn-CPWS-AP 48 72.49+0.11 59.64+0.15 63.36+0.15
Vol-CPWS-AP 48 73.53+0.15 61.66 £0.21 64.78 +0.20
Watershed-APs filtered with prior knowledge:
Area-FPWS-AP 48 74.80 + 0.07 62.18 £ 0.14  66.47 £+ 0.10
Dyn-FPWS-AP 48 7447 +0.12  62.57 £ 0.17  66.05 £+ 0.16
Vol-FPWS-AP 48 75.04 + 0.11  62.61 + 0.16 66.80 + 0.15
Deep learning models:
FCN-Festa+dCFR [34] - 77.99 + 2.14 - -
FCN [34] - 86.51 - -

including points, lines, and polygons. On both datasets, their
baseline is the FCN trained on the whole set of training pixels,
and their best results were achieved by the FCN-Festa-dCRF
method trained on scribbled lines. The FCN-Festa-dCFR and
FCN methods were trained on 480,593 and 54,373,518 sam-
ples, respectively, while that our Vol-FPWS-AP was trained on
543,707 samples. On this dataset, Vol-FPWS-AP approached
the scores of FCN-Festa-dCFR on four classes, namely imper-
vious surfaces, buildings, low vegetation and trees, but pre-
sented much poorer results on the classification of cars. With
respect to FCN, both Vol-FPWS-AP and FCN-Festa-dCFR per-
formed worse in general, except for the frees class, for which
Vol-FPWS-AP and FCN-Festa-dCFR outperformed FCN by
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TABLE V
AVERAGE ACCURACY PER CLASS FOR THE TEST IMAGES OF VAIHINGEN OVER TEN DIFFERENT RANDOM TRAINING SETS

. Classification result per class

Method Dim. ‘ Impervious surfaces Buildings Low vegetation Trees Cars

NIR+RG 3 73.03 £ 0.13 69.26 £ 0.14 49.20 £+ 0.16 7224 £0.17 926 £ 0.18
AP-maxT [3] 48 75.16 £ 0.41 72.82 £ 0.28 49.64 £+ 0.30 82.09 + 0.20  16.06 £+ 0.28
AP-minT [3] 48 78.57 £ 0.24 73.07 £ 0.27 46.84 + 0.38 8240 £ 0.18 11.83 + 0.46
AP [3] 90 80.70 £ 0.16 75.71 £ 0.18 49.57 £ 0.25 84.28 £ 0.12  19.32 + 0.47
SDAP [32] 48 80.67 £ 0.21 73.60 £ 0.25 53.51 £ 0.21 81.80 + 0.13  16.88 £+ 0.72
a-AP [25] 48 76.21 £+ 0.25 75.78 £ 0.30 47.98 + 0.40 85.79 £ 0.15 8.49 £ 0.46
w-AP [25] 48 75.55 £ 0.23 76.58 £+ 0.27 49.39 £+ 0.30 85.16 £ 0.18  8.26 £ 0.75
Area-WS-AP 48 79.53 £ 0.18 7437 £ 0.13 54.47 £ 0.26 85.18 £ 0.09 12.74 + 0.53
Dyn-WS-AP 48 76.85 £+ 0.41 76.10 £ 0.43 48.88 + 0.32 8594 £ 0.16  8.18 £ 0.36
Vol-WS-AP 48 79.33 £ 0.17 75.20 £ 0.22 54.99 £ 0.19 85.03 £ 0.09  13.64 £ 0.37

Watershed-APs computed with prior knowledge:
Area-PWS-AP 48 80.59 + 0.29 72.14 £ 0.71 5539 £ 0.73 8528 £ 030 11.82 £ 0.85
Dyn-PWS-AP 48 7745 £ 0.54 77.38 £ 041 48.50 £ 0.49 87.00 + 0.17  7.85 + 0.52
Vol-PWS-AP 48 80.68 £ 0.46 72.46 £ 0.46 56.38 + 0.58 8542 £ 022 1335+ 0.71
Watershed-APs filtered with prior knowledge:
Area-PWS-AP 48 80.66 £ 0.29 78.19 £ 0.34 54.94 £ 0.34 86.22 £ 0.15  10.88 & 0.51
Dyn-FPWS-AP 48 79.93 £ 0.41 79.15 £ 0.53 54.46 £ 0.25 84.99 £ 0.14  14.34 £ 0.46
Vol-FPWS-AP 48 80.83 + 0.44 79.34 + 0.27 54.68 £+ 0.34 86.03 £ 0.13  12.19 &+ 0.61
TABLE VI

COMPARISON OF PER-CLASS F1 SCORES OBTAINED WITH VOL-CPWS-AP FOR THE TEST IMAGES OF VAIHINGEN WITH THE RESULTS OF TWO DEEP LEARNING
METHODS REPORTED IN [34]

Method . _ F1 scores per clgss Mean F1
Impervious surfaces Buildings Low vegetation Trees Cars
Vol-FPWS-AP 78.36 £ 0.21 82.06 + 0.16 60.44 + 0.19 78.16 £ 0.03 18.5 £ 0.75 64.0
Deep learning models:
FCN-Festa+dCFR [34] 80.06 + 3.32 84.47 +2.23 64.35 £ 2.38 80.32 +£ 092  43.72 + 9.62 70.58
FCN [34] 88.67 92.83 76.32 74.21 86.67 83.74
TABLE VII

AVERAGE LAND-COVER CLASSIFICATION RESULTS FOR THE TEST IMAGES OF
ZURICH OVER TEN DIFFERENT RANDOM TRAINING SETS

Classification result

Method Dim. 0A (%) NNO) # % 100
NIR+RGB 4 76.41 £0.18 65.16 £ 1.01 70.26 £0.24
AP-maxT [3] 64 81.29 +£0.17 64.39 £ 0.30 76.34 £0.22
AP-minT [3] 64 76.64 £ 0.32 61.49 £ 0.32 70.45 £ 0.41
AP [3] 120 81.98 +£0.14 64.55 £ 0.21 77.20 £0.18
SDAP [32] 64 81.98 +0.20 64.16 £ 0.89 77.20 £0.25
a-AP [25] 64 80.37 £ 0.18 63.35 £ 0.80 75.17+£0.24
w-AP [25] 64 80.35 +0.35 63.41 £ 1.36 75.14 £ 0.46
Area-WS-AP 64 83.12 £ 0.18 65.28 £ 0.11 78.65 £ 0.23
Dyn-WS-AP 64 80.38 £ 0.12 62.84 +£0.17 75.18 £0.15
Vol-WS-AP 64 83.36 &+ 0.23 65.50 +0.13 78.96 £ 0.29
Watershed-APs computed with ic prior knowledge (pipeline of Fig. 3)
Area-CPWS-AP 64 85.25 +0.20 66.49 +0.18 81.34 £0.26
Dyn-CPWS-AP 64 83.46 + 0.28 65.05 £ 0.32 79.07 £ 0.35
Vol-CPWS-AP 64 85.27 + 0.35 66.81 + 0.24 81.37 £ 0.44
Deep learning models:
FCN-Festa+dcFR [34] - 78.51 £2.21 - -
FCN [34] ‘ - 90.51 - -

at least 3.95%. By comparing Vol-FPWS-AP and FCN-Festa-
dCFR with FCN, we see a compromise between the num-
ber of training samples and the overall performance of each
method.

On the Zurich dataset, as shown in Table VII, the Area-WS-AP
and Vol-WS-AP, computed without any prior knowledge, as
well as the CPWS-APs outperform all other methods in the
literature in terms of OA and x. Our best method, namely Vol-
CPWS-AP, outperforms AP by 3.29%, 2.26%, and 4.17 in terms
of OA, AA, and &, respectively. Considering the classification

result per semantic class given in Table VIII, we observe that
the watershed-APs yielded the best results for most classes,
namely roads, buildings, trees, grass, and water, but, for the
remaining three classes, none of the APs outperformed the
baseline NIR+RGB. Concerning the use of prior knowledge,
it led to consistent improvements when used in the construction
of hierarchical watersheds: all three CPWS-APs outperformed
their respective WS-APs by at least 1% in terms of OA, AA,
and . The most significant improvement was observed for the
Dyn-CPWS-AP, which outperformed Dyn-WS-AP by 3.08%,
2.21%, and 3.89 in terms of OA, AA, and x x 100, respectively.
However, regarding FPWS-APs, we concluded that this method
is not well adapted for this dataset and, hence, we do not
present land-cover evaluation scores of FPWS-APs on Zurich.
The reason is that the Zurich test images do not contain ground
truth pixels of all eight semantic classes and, different from
CPWS-APs, the FPWS-APs are constructed by considering
the classification probability maps of each class individually.
For instance, the swimming pool class is present in only two
among the five Zurich test images. Hence, the classification
probability map for this semantic class would be meaningless for
remaining three test images, leading to flat or redundant image
reconstructions.

Table IX compares the F1 scores per class of our best method,
namely Vol-FPWS-AP, with the results of two FCN based deep
learning methods present in [34]. As for the Vaihingen dataset,
their best results on Zurich were achieved by the FCN-Festa-
dCRF method trained on scribbled lines, which are composed
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TABLE VIII

AVERAGE ACCURACY PER CLASS FOR THE TEST IMAGES OF ZURICH OVER TEN DIFFERENT RANDOM TRAINING SETS

Classification result per class

Method Dim Roads Buildings Trees Grass Bare Soil Water Railways Swimming Pools
NIR+RGB 4 63.05 + 0.32 79.17 £ 0.08 89.27 + 0.10 76.82 £ 0.35 25.29 + 845 93.46 + 0.10 2.27 + 0.24 91.97 £ 0.58
AP-maxT [3] 64 75.21 £ 0.50 84.94 + 0.19 92.98 £ 0.16 79.51 £ 0.66 0.03 £ 0.03 93.36 £ 0.21 0.0 + 0.0 89.08 & 2.58
AP-minT [3] 64 67.13 + 0.86 80.59 + 0.22 92.99 + 0.23 71.82 + 1.64 0.13 £ 0.10 91.66 + 1.14 0.0 = 0.0 87.61 = 1.09
AP [3] 120 77.93 £+ 042 83.62 + 0.36 94.01 + 0.19 80.33 + 0.76 0.06 £ 0.11 92.98 + 0.81 0.0 + 0.0 87.49 + 1.71
SDAP [32] 64 75.06 + 0.38 85.24 + 0.36 94.10 £ 0.13 82.12 + 0.89 0.34 £ 0.24 92.11 £ 0.38 0.0 + 0.0 84.28 & 6.80
a-AP [25] 64 7349 + 0.59 84.50 + 0.31 95.03 £ 0.16 75.34 £ 0.75 2.54 £ 720 93.04 + 043 0.0 + 0.0 82.87 + 0.96
w-AP [25] 64 73.58 £ 0.89 84.03 &+ 045 94.88 £ 0.11 75.77 £ 0.54 4.26 £ 11.11 92.70 £ 0.19 0.0 + 0.0 82.04 &+ 1.20
Area-WS-AP 64 74.36 + 0.36 87.77 + 0.28 95.12 £ 0.09 84.66 + 0.69 0.06 £ 0.18 92.01 + 0.47 0.0 + 0.0 88.23 + 0.71
Dyn-WS-AP 64 70.23 + 0.83 88.42 + 0.41 95.29 £ 0.09 74.87 £ 0.42 0.31 £ 0.81 92.85 £ 0.13 0.0 &+ 0.0 80.74 + 1.18
Vol-WS-AP 64 75.20 + 0.36 88.28 4+ 0.28 95.20 £ 0.13 83.81 £ 0.77 0.03 £ 0.03 92.94 + 0.46 0.0 + 0.0 88.57 &+ 0.58
Watershed-APs computed with ic prior knowledge:
Area-CPWS-AP 64 79.86 + 0.74 86.58 + 0.57 96.03 £ 0.12 88.88 + 0.50 0.07 £ 0.11 92.56 + 1.33 0.01 £ 0.04 87.93 + 1.51
Dyn-CPWS-AP 64 75.64 £ 0.82 87.02 + 0.46 95.41 + 0.08 85.17 £ 1.15 0.01 £ 0.04 92.65 + 0.48 0.0 + 0.0 84.48 + 1.69
Vol-CPWS-AP 64 81.62 £ 0.95 84.22 + 0.77 96.09 £ 0.13 88.98 + 0.68 0.27 £ 0.36 93.81 £ 0.61 0.0 &+ 0.0 89.46 & 0.67
TABLE IX

COMPARISON OF PER-CLASS F1 SCORES OBTAINED WITH VOL-CPWS-AP FOR THE TEST IMAGES OF ZURICH WITH THE RESULTS OF TWO DEEP

LEARNING METHODS REPORTED IN [34]
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Method . F1 scores per class _ ] . Mean F1
Roads Buildings Trees Grass Bare Soil Water Railways Swimming Pools ‘
Vol-CPWS-AP 79.32 £ 0.71 82.06 £+ 0.9 91.83 £ 0.26 91.26 £ 0.38 053 +£0.7 96.53 £ 0.31 0.00 & 0.00 9443 £037 | 67.0
Deep learning models:
FCN-Festa+dCFR [34] 71.74 £ 2.78 7581 £ 4.18 81.20 £ 1.60 83.44 £ 1.51 66.49 £ 15.57 94.68 £ 0.52 0.00 & 0.00 82.06 £ 6.80 69.43
FCN [34] 88.34 93.27 92.40 89.48 67.96 96.87 2.98 88.10 7742

of 330,767 annotated samples from all semantic classes, except
for background/clutter. As we can see in Tables VII and IX, our
Vol-CPWS-AP outperformed FCN-Festa-dCRF in terms of OA
and F1 scores for all semantic classes, except for the bare soil
class. We note that our results were achieved by using less than
a half of their number of training samples. On the other hand, in
contrast to our experiments, the authors of [34] do not consider
the blue channel of the Zurich dataset, which may explain the
gap between both methods. Moreover, APs still falls behind the
state-of-the-art FCN model trained on dense annotations (i.e.,
trained on all pixels of the training set).

Fig. 9 illustrates the classification results on the test image
zhl18 of the Zurich dataset. As already suggested by the scores
given in Table VIII, we can see that none of the APs are able
to improve the results for the bare soil class, but most of them
provide better classification results for the roads (in black) and
grass (in light green). When comparing the WS-APs and CPWS-
APs, the most significant improvements are observed on the
roads, trees, and grass classes, in the regions highlighted by
the blue boxes in Fig. 9(m)—(0). The red boxes indicate a few
regions in which classification results were worsened by the use
of semantic prior knowledge.

B. Building Extraction

Taking into account that other methods in the literature, such
as [10], [11] which also employ prior knowledge for image
segmentation, perform well on binary classification/
segmentation of images into object and background regions,
we aim to validate our watershed-APs on a binary classification
task, which is meaningful for remote sensing imagery, namely
building extraction. For evaluating our proposed methods on
this task, we consider two semantic classes on the Zurich and
Vaihingen datasets, namely buildings and background, such that
the latter is the union of all remaining classes of each dataset,
as mentioned in Section V-B. Evaluating our methods on this

binary classification task might give us a clearer idea of their
performance, since semantic prior knowledge come from only
two classes. Moreover, we no longer have semantic classes,
e.g., swimming pools, which are absent in some of the Zurich
test images.

Table IV reports the evaluation results of building extrac-
tion on the Vaihingen dataset. On this dataset, the highest F1
score among the APs were achieved with the Area-FPWS-AP,
which outperformed one of the best methods in the literature,
namely AP, by 0.51%, 1.90% and 2.59% in terms of OA, FI,
and mIOU, respectively. Regarding the use of prior knowledge
on watershed-APs, both Area-CPWS-AP and Area-FPWS-AP
(resp. Vol-CPWS-AP and Vol-FPWS-AP) outperformed Area-
WS-AP (resp. Vol-WS-AP) with respect to all metrics, except
for precision, which validates the interests of semantic prior
knowledge in the context of building extraction. The largest
improvement was observed for the watershed-AP filtered with
area, with the Area-FPWS-AP being 1.24%, 7.70%, 4.08% and
5.47% better than Area-WS-AP with respect to OA, recall, F1
and mIOU scores, respectively. All three FPWS-AP presented
very similar results and outperformed their respective WS-AP
counterparts by more than 6%, 3%, and 4%, respectively, in
terms of recall, F1, and mIOU scores.

Classification results on one image of the Vaihingen dataset
are illustrated in Fig. 10. The true positives, false negatives and
false positives are represented in white, red, and cyan, respec-
tively. On this image, we can observe that the area and volume
watershed-APs produce less noisy classification results when
compared to the other methods. In particular, the Vol-CPWS-AP
presents a higher precision than all other methods.

Table XI presents the evaluation of building extraction on the
Zurich dataset. With respect to the baseline NIR+RGB, all APs
(except for AP-minT) provided better scores for most metrics.
For each metric, the highest score was achieved by one of the
watershed-APs, with Area-FPWS-AP giving the highest OA,
F1, and mIOU scores among all tested methods. In general,
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Fig. 9.
roads, [ | buildings, [ ] trees, [ ] grass, B bore soil, [ ] water,

Ground-truth, classification results and classification probability map p (used to computed the CPWS-APs) of the image z/18 of the Zurich dataset: [ |
railways, [ swiming pools, ] background. (a) Ground-truth. (b) NIR+RGB.

(c) NIR+RGB545. (d) AP-maxT. (e) AP-minT. (f) AP. (g) SDAP. (h) a-AP. (i) w-AP. (j) Area-WS-AP. (k) Dyn-WS-AP. (1) Vol-WS-AP. (m) Probability map (p).

(n) Area-CPWS-AP. (0) Dyn-CPWS-AP. (p) Vol-CPWS-AP.

FPWS-APs led to more pixels being classified as belonging
to the building class, increasing the number of true and false
positives, as attested by the lower precision and higher recall
scores of FPWS-APs when compared to CPWS-APs. Still,
Area-FPWS-APs (resp. Dyn-FPWS-APs) achieved F1 scores at
least 4% higher than Area-WS-AP and Area-CPWS-AP (resp.
Dyn-WS-AP and Dyn-CPWS-AP).

In conclusion, watershed-APs computed with the help of
semantic prior knowledge showed its usefulness in both land-
cover classification and building extraction on multispectral
data. On both tested datasets, the highest scores were achieved
by one of the watershed-APs, whether it was with CPWS-APs or
FPWS-APs. Based on our experiments, the effectiveness of con-
sidering semantic prior knowledge either during the construction
phase of hierarchical watersheds or during the filtering step of

watershed-APs depends on the task and on the dataset under
study. For land-cover pixel classification, CPWS-APs seem to
be more adapted than FPWS-APs when there is a high imbalance
between the number of semantic classes, which are present in
each test image, such as in the Zurich dataset. On the other hand,
FPWS-APs performed better than CPWS-APs on the Zurich
dataset when the data was divided in only two classes: building
and background.

VII. CONCLUSION

This article proposed the watershed-AP as an extension of
AP to hierarchical watersheds computed from (edge) weighted
graphs. Besides, the relevance of using semantic prior knowl-
edge was considered in the construction and filtering of such
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Fig. 10.  Ground-truth, classification results and classification probability map p (used to computed the CPWS-APs) of the image number 30 of the Vaihingen
dataset: ] true positive, I raise negative, false positive. (a) Ground-truth. (b) NIR+RG. (c) AP-maxT. (d) AP-minT. (e) AP. (f) SDAP. (g) a-AP.
(h) w-AP. (i) Area-WS-AP. (j) Dyn-WS-AP. (k) Vol-WS-AP. (1) Probability map (xt). (m) Area-CPWS-AP. (n) Dyn-CPWS-AP. (0) Vol-CPWS-AP. (p) Area-FPWS-
AP. (q) Dyn-FPWS-AP. (r) Vol-FPWS-AP.
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TABLE X

AVERAGE CLASSIFICATION RESULTS OF BUILDING EXTRACTION ON THE VAIHINGEN DATASET

Method Dim. OA Precision Recall F1 mIOU

NIR+RG 3 8697 +£ 0.03 7777 £0.15 66.63 £ 0.17 71.77 £ 0.08 5597 £+ 0.10
AP-maxT [3] 48 88.12 +£ 0.16 8230 & 037 66.55 £ 0.39  73.59 + 0.37 58.22 £+ 0.46
AP-minT [3] 48 88.98 + 0.07 85.02 £0.19 67.61 £0.39 7532 + 022 60.42 £+ 0.29
AP [3] 90 90.29 + 0.07 89.24 +0.27 69.29 + 0.21  78.01 & 0.16  63.95 £+ 0.21
SDAP [32] 48 89.53 +£ 0.08 8890 + 0.18 66.15 £ 0.28 75.86 = 0.20 61.11 £+ 0.26
a-AP [25] 48 88.89 + 0.12 8555+ 032 66.56 +£ 0.36 74.87 + 0.30 59.83 £+ 0.38
w-AP [25] 48 89.21 £ 0.12  85.10 = 0.28 68.62 £ 0.46 7598 + 0.31  61.26 £+ 0.40
Area-WS-AP 48 89.56 + 0.07 89.40 + 0.20 65.84 +£ 0.24 7583 + 0.17 61.07 £ 0.23
Dyn-WS-AP 48 89.08 + 0.07 8588 £0.18 67.14 £ 0.32 7536 + 021  60.47 £+ 0.27
Vol-WS-AP 48 89.69 + 0.12  89.12 £ 026  66.69 £+ 0.33 7629 + 0.29 61.66 £+ 0.38

Watershed-APs computed with semantic prior knowledge:
Area-CPWS-AP 48 89.90 + 0.15 90.13 £0.49 66.71 £ 0.62  76.66 & 040 62.16 £+ 0.53
Dyn-CPWS-AP 48 89.20 + 0.14 9234 + 040 61.67 £ 0.78 7395 + 048 58.67 £ 0.61
Vol-CPWS-AP 48 90.86 + 0.20 91.96 £ 0.61 69.32 + 0.61 79.05 + 0.49  65.36 + 0.67
Watershed-APs filtered with semantic prior knowledge:

Area-FPWS-AP 45 90.80 + 0.03 87.48 &+ 0.17 73.54 £ 0.24 7991 + 0.09 66.54 + 0.13
Dyn-FPWS-AP 45 89.92 + 0.14 83.70 £ 0.53 73.86 £ 0.35 7847 + 026 64.57 £ 0.36
Vol-FPWS-AP 45 90.79 £+ 0.04 87.43 £ 0.17 73.54 £ 0.29 79.89 + 0.12 66.51 £ 0.16

The training samples are extracted from the training images (Id 1,3,5,7,13,17,21,23,26,32,37]). The samples are divided in only two classes:

background and buildings.

TABLE XI
AVERAGE CLASSIFICATION RESULTS OF BUILDING EXTRACTION ON THE ZURICH DATASET FOR THE IMAGES 16-20 OF ZURICH

Method Dim. OA Precision Recall Fl1 mIOU

NIR+RGB 4 87.65 £ 0.06 57.88 £ 031 4726 £ 022 52.03 £ 0.20 35.16 & 0.18
AP-maxT [3] 64 89.32 £ 0.06 69.65 £ 051 43.64 £ 088 53.65 = 0.59  36.66 £+ 0.55
AP-minT [3] 64 88.14 £ 0.13 6256 £ 093 40.63 £ 0.57 49.26 + 0.49  32.68 £+ 0.43
AP [3] 120 89.67 £ 0.15 7490 £ 0.54 40.76 £ 1.19 52,78 &+ 1.07  35.86 &+ 0.99
SDAP [32] 64 89.90 +£ 0.09 71.53 £ 033 4775+ 097 5726 +0.69 40.12 4+ 0.68
a-AP [25] 64 90.27 £ 0.06 7426 + 059 4794 + 039 58.26 & 0.24  41.11 £+ 0.24
w-AP [25] 64 90.27 £ 0.08 73.86 +£ 0.81 4845+ 0.57 58.51 +0.33 41.36 4+ 0.33
Area-WS-AP 64 90.79 £ 0.05 7691 £ 033 4999 + 039 60.59 + 0.28  43.47 + 0.29
Dyn-WS-AP 64 90.40 £ 0.03 74.80 £ 022 48.67 £ 0.36 5897 + 0.25 41.81 4+ 0.25
Vol-WS-AP 64 91.06 £ 0.06  77.63 + 0.28 51.82 + 0.51  62.15 + 0.38  45.09 £+ 0.40

Watershed-APs computed with semantic prior knowledge:
Area-CPWS-AP 64 90.67 £ 0.12 76.80 £ 0.72 4896 + 1.12  59.79 + 0.80 42.64 £+ 0.81
Dyn-CPWS-AP 64 89.79 + 0.08 68.10 + 0.81 52.53 + 1.04 59.30 + 0.45 42.15 4+ 0.45
Vol-CPWS-AP 64 90.89 + 0.14 7598 + 1.04 5225+ 088 6191 + 0.65 44.84 4+ 0.68
Watershed-APs filtered with semantic prior knowledge:
Area-FPWS-AP 60 91.08 + 0.11 73.03 £ 0.71 58.75 £ 0.25 65.11 £ 0.33  48.27 + 0.36
Dyn-FPWS-AP 60 90.46 £ 0.08 68.76 £ 040 59.87 + 043 64.01 & 0.31  47.07 &+ 0.33
Vol-FPWS-AP 60 90.85 £ 023 71.60 £ 1.30 58.70 & 0.42 64.50 + 0.66  47.61 &+ 0.73
The samples are divided in only two classes: background and buildings.
hierarchies. We evaluated and validated our approach on the REFERENCES

pixel classification and building extraction of two multispectral
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pipeline. Also, the proposed approach has a great potential to
be adapted and applied to other remote sensing data such as
synthetic aperture radar images or LiDAR point clouds.
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