
HAL Id: hal-03991079
https://hal.science/hal-03991079

Submitted on 22 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficiently validating aggregated IoT data integrity
Nesrine Kaaniche, Jung Eunjin, Ashish Gehani

To cite this version:
Nesrine Kaaniche, Jung Eunjin, Ashish Gehani. Efficiently validating aggregated IoT data integrity.
2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (Big-
DataService), Mar 2018, Bamberg, Germany. pp.17897073, �10.1109/BigDataService.2018.00046�.
�hal-03991079�

https://hal.science/hal-03991079
https://hal.archives-ouvertes.fr

Efficiently Validating Aggregated IoT Data Integrity
Nesrine Kaâniche*

SAMOVAR, Telecom SudParis
CNRS, University Paris-Saclay, France

Email: nesrine.kaaniche@telecom-sudparis.eu

Eunjin (EJ) Jung
Department of Computer Science

University of San Francisco
Email: ejung@cs.usfca.edu

Ashish Gehani
Computer Science Laboratory

SRI International
Email: ashish.gehani@sri.com

Abstract—We address the problem of validating the integrity
of data aggregated in applications that run on the Internet
of Things (IoT). When data from multiple sources is sent to
a single receiver, the receiver needs to efficiently verify the
authenticity and integrity of data. For example, sensors from
multiple IoT devices would send the measurements to a gateway
for data aggregation and/or processing. The gateway needs to
verify the authenticity and integrity of the readings from sensors.
To address this need, we propose a lightweight homomorphic
signature scheme that supports the execution of aggregation
operations.

Our approach collects digital signatures from multiple sources
and provides an efficient aggregated signature verification mech-
anism for the end receiver. The aggregation and verification
mechanism preserves the privacy of intermediate nodes. We
discuss how our homomorphic signature scheme resists forgery
and replay attacks.

I. INTRODUCTION

During the last decade, the Internet of Things (IoT) pen-
etrated our lives in many ways – most recently in smart
monitoring and control applications at home and workplaces.
IoT devices are smart, and often resource-constrained devices,
and they interact in a collaborative way or a semi-centric
fashion under different processing and communication archi-
tectures and technologies in order to fulfill a common goal [1].
For example, a set of resource-constrained IoT devices can
collect environmental information regarding a targeted area
and collaboratively transmit data back to a base station or a
central aggregator to monitor air quality, earthquake activities,
or traffic patterns.

In many cases, users of IoT applications are only interested
in aggregated results after in-network processing, rather than
detailed readings from individual nodes. To ensure the authen-
ticity and integrity of the data in the aggregated results, we
need to provide a mechanism for the aggregator nodes to create
a digital signature that matches the aggregated data, and for
the end receiver to verify this signature.

While there are known cryptographic mechanisms that can
provide data confidentiality, data integrity, and data/device au-
thentication in a traditional computing environment of personal
computers and servers, these may require heavy computation
and communication costs. Instead of relying on dedicated
resourceful devices, we aim to take advantage of large and
distributed computation and storage capacities of the different
devices by requiring each device to provide signed information

* while Dr. Kaâniche was visiting SRI International

for collected data. Each device aggregates the data it has
received so far and is responsible for creating matching
signature for the aggregated data.

Aggregation has been often presented as a solution to take
advantage of the local computing and storage capabilities in
order to remove redundant information within network flows.
Many aggregation mechanisms have been proposed in the
literature [2]–[4]. The use of such approaches considerably
distributes the heavy computation burden among different
hosts, thereby reducing the resource consumption of the end
receiver. However, aggregation affects the security properties
of protection systems. For instance, if some information of
a signed data flow is dropped to reduce redundancy, the end
receiver may not be able to correctly verify the authenticity
of the signed stream.

Contributions – Our aggregation signature scheme allows
the resource saving of aggregation and also allows the nodes to
create the corresponding signatures of any subset of aggregate
data for authenticity without knowing the private key materials
of the original senders of the aggregated data. We propose a
new homomorphic signature scheme based on set operations.
A set-homomorphic signature scheme allows signing sets of
data such that anyone can derive both a signature on the union
of two signed sets and a signature of any subsets of a signed
set [5]. We consider all data sent from each IoT device as
an element of a set. This enables us to design an efficient
signature scheme that allows the aggregating entity to do the
following:

1) detect forged signatures before the data and signatures
reach the end receiver.

2) generate a proper signature without private keys used to
derive each single signature.

3) apply set operations on signed data flows, such as union,
subset, and set difference.

Paper Organization – The remainder of this paper is
organized as follows. First, we detail the requirements needed
for our signature scheme and review the related approaches
presented in the literature in Section II. Then, we introduce our
homomorphic signature scheme in Section III and present a
concrete construction in Section IV. Finally, we give a detailed
analysis in Section V, before concluding in Section VI.

d1	

d1	

d3	

d13	

d123	
d1234	

gateway	
(receiver)	

IoT	devices	

Fig. 1. An Example System

II. DIGITAL SIGNATURE SCHEMES FOR DISTRIBUTED
ENVIRONMENTS

IoT devices involved in distributed environments provide
ubiquitous and pervasive computing capabilities. However,
these systems are often deployed in environments where
collecting hosts are open to various attacks due to untrusted
environments. We introduce our network model in Section II-A
and present security and privacy requirements in Section II-B.

A. Network Model

Figure II-A shows an example system with IoT devices
and a gateway. Each IoT device periodically broadcasts the
data it received from other IoT nodes and its own data (e.g.
readings from sensors.) di stands for data from node i, and
dij stands for the aggregated data from nodes i and j. The
aggregated data (dij can be in any form, such as concatenation
(di||dj) average ((di + dj)/2), or max (max(di, dj)). Note
that node 3 aggregates all it has received (d1) and its own d3

into d13, while node 4 aggregates d123 and d13 into d1234,
without repeating d1 and d3. In other words, the aggregation
step removes the redundancy in data.

Our aggregated signature scheme enables node 3 to create a
signature for d13 using the signature for d1 and its own private
key without knowing node 1’s private key. Similarly, node 4
can create a signature for d1234 using the signatures of d123

and d13 and its own private key without knowing the private
key of any other nodes.

B. Requirement Analysis

We suppose the aggregation process can be performed by
any participating node, and it may result in the removal
of some information to reduce the redundancy between the
collected data stream transmitted from different nodes to
minimize communication latency.

Considering that collected data can be output by different
nodes, our signature scheme has to fulfill the following re-
quirements:
• Unforgeability – even if an adversary can capture signa-

tures of different contents, it should be unable to generate
a new signature on new data contents.

• Anti-replay – for two communication sessions, even if
the content of the collected packets is the same, the

generated signatures should be different. This prevents
any adversary to re-inject responses previously signed by
a specific host.

• Privacy – an adversary must not be able to gain any
knowledge about the origin and content of the removed
parts of the signed data flow without having access to
them or to link each part of an aggregate signature to its
related generator.

• Support of multiple signers – the computation of the
aggregated signature should be possible even if multiple
private keys are used.

• Low processing and communication overhead – the pro-
posed security mechanism should provide low process-
ing and communication complexities due to resource-
constrained devices.

C. Literature Review

Various types of homomorphic signatures have been pre-
sented in the literature [2], such as sanitizable signatures [6],
set-based signatures [5], redactable signatures [7], linearly ho-
momorphic signatures [8], and verifiably encrypted signatures
[3]. The constructions in [9], [10] propose sanitizable and
redactable signatures, respectively. They enable an authorized
user to bring modifications to a signed message. That is, given
a signature on a message, a signature on subsets of this mes-
sage can be generated by the authorized entity. However, these
techniques generate long signatures that require substantial
computing resources and introduce communication overhead.
The mechanisms in [3], [11], [12] mechanisms are limited with
regard to the supported homomorphic operations, allowing
only polynomial, transitive, multiplication operations, respec-
tively.

III. SYSTEM OVERVIEW

Our objective is to develop a new distributed aggregate
signature scheme. We discuss the basic properties that should
be fulfilled by such a scheme in section III-A. Then, we
introduce our system model in Section III-B and our threat
model in Section III-C.

A. Basic Properties

Definition 3.1: Set-based Signature Scheme
Let M be a message space, Σ be a signature space, Kpr a
private key space, and Kpub a public key space. A set-based
signature scheme consists of the following three algorithms:
• gen : 1ξ −→ Kpr ×Kpub: this key generation algorithm

takes as input the security parameter ξ and outputs the
public and private keys.

• sig : Kpr × 2M −→ Σ × 2M: the signature generation
algorithm takes as input the private key of the signing host
and the set of messages. It outputs the related signature.
Note that 2M is the power set of M.

• vrf : Kpub × 2M ×Σ −→ {0, 1}: the signature verifica-
tion algorithm takes as input the signature and the public
key related to the signing key, and it outputs 1; i.e accept;
or 0; i.e reject.

The main difference between traditional signature schemes
is that the sig algorithm operates on sets of messages in 2M

instead of operating on individual messages in M.
Definition 3.2: Set-homomorphic Signature Scheme

A set-based signature scheme {gen, sig, vrf} is called set
homomorphic if these three operations exist ◦ : Kpr×Kpr −→
Kpr, ♦ : Kpub × Kpub −→ Kpub and ∇ : Σ × Σ −→ Σ that
satisfy the following two properties for a set operation ? and
for any sets Si and Sj and for any ski and skj in Kpr and
any pki and pkj in Kpub:
• Homomorphism –

sig(ski◦skj , Si?Sj) = sig(ski, Si)∇sig(skj , Sj) (1)

• Correctness –

vrf(pki♦pkj , sig(ski ◦ skj , Si ? Sj)) =

vrf(pki, sig(ski, Si)) ∧ vrf(pkj , sig(skj , Sj)) (2)

We note the ∧ symbol is the logical AND operator.
Therefore, a Set-Homomorphic Signature Scheme (SHSS)

consists of four algorithms and four functions such that:

SHSS = {{gen, sig, vrf, agg}, {◦,♦,∇, ?}}, (3)

where the agg algorithm is defined as agg : Σ×Σ −→ Σ×A
(cf; Equation 4). This algorithm returns an aggregate signature
with a set of parameters in A. We have to note A is the set
of parameters required to calculate the ♦ function.

agg(sig(ski, Si), sig(skj , Sj)) = sig(ski, Si)♦sig(skj , Sj)
(4)

B. System Model

Our proposal is composed of six randomized algorithms
defined as follows:
stp : 1ξ −→ P : this algorithm is run by a trusted entity. It
takes as input the security parameter ξ, and it outputs a set of
public parameters P . We suppose that P is an auxiliary input
of all the following algorithms.
genu : P −→ {sku, pku} : this algorithm is executed by
a trusted entity in order to generate a pair of keys for each
requesting host Hu. It takes as input the public parameters P ,
and it outputs the secret key sku and the public key pku of
Hu.
sig : sku × S −→ σ : this algorithm is performed by any
involved host Hu. It takes as input the secret key of the signing
host sku and the data set S. It outputs a signature σ.
vrf : pku×σ −→ {0, 1} : this algorithm is run by a verifying
host. It takes as input the public key of the signing entity pku
and the signed set S. It outputs either 1; i.e accept; or 0; i.e.
reject.
agg : {σi}i∈[1,n] ×A −→ Σ : this algorithm is performed by
an aggregating node. It takes as input a set of n signatures
and a set of parameters A required for the calculation of the
resulting signature. It outputs an aggregated signature Σ.
vrfagg : Σ × {pki}i∈[1,n] × A −→ {0, 1} : this algorithm
is executed by any verifying entity. It takes as input an

aggregated signature Σ, the set of public keys of the involved
hosts, and the set of aggregation parametersA. It outputs either
1 if the signature is accepted, or 0 if rejected.

C. Security Model

To design the most suitable security solutions for distributed
environments, we have to consider realistic threat models.
For example, an external malicious adversary may intend to
inject false information as a legitimate user, or to gain extra
knowledge about collected signed data. Thus, this attacker
is considered against the unforgeability, anti-replay, and the
privacy-preserving properties, as defined in Section II-B.

IV. CONSTRUCTION

In this section, we first introduce some mathematical no-
tations and present our cryptographic assumptions in Sec-
tion IV-A. Then, we detail the different algorithms of our
construction in Section IV-B.

A. Mathematical Background

In this section, we first define our collision-resistant hash
function, in Subsection IV-A1. Then, we introduce bilinear
maps in Section IV-A2 and detail our cryptographic assump-
tions in Section IV-A3.

1) Hash functions: h is a collision-resistant hash function.
h :M→ P , whereM is the message space and P is a set of
prime numbers such that |M| ≤ |P|. For all mi,mj ∈M, if
mi 6= mj , then h(mi) 6= h(mj) and gcd(h(mi), h(mj)) = 1.

2) Bilinear maps: Let us consider three cyclic multiplica-
tive groups G1, G2, and GT of prime order p. Let ê :
G1 × G2 → GT be a bilinear map that has to fulfill the
following properties:

• Bilinearity – for each g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zp,
we have the equality ê(g1

a, g2
b) = ê(g1, g2)ab

• Computability – for each g1 ∈ G1 and g2 ∈ G2, there
exists an algorithm that efficiently calculates ê(g1, g2)

• Non-degeneracy – for each g1 ∈ G1 and g2 ∈ G2, we
have < ê(g1, g2) >= GT

3) Complexity assumptions: For our construction, we con-
sider the following complexity assumptions:

• Computational Diffie Hellman Assumption (CDH) –
Let G be a group of a prime order p, and g is a generator
of G. The CDH problem is given the tuple of elements
(g, ga, gb) where {a, b} R←− Zp, and there is no efficient
probabilistic algorithm ACDH that computes gab.

• Computational co-Diffie Hellman Assumption (co-
CDH) – Let G1, G2 be two groups of a prime order p, g1,
g2 and their respective generators and ê an asymmetric
pairing function. The co-CDH problem in the asymmetric
bilinear group (G1,G2, g1, g2, ê) is, given a tuple of
elements (g1, g2, g1

a, g2
b) where {a, b} R←− Zp there is no

efficient probabilistic algorithm Aco−CDH that computes
g1
ab.

B. Concrete Construction

Our SHSS construction is composed of three phases, namely
the generation phase, the single signature phase, and the
aggregation phase.

1) Generation phase: The generation phase is executed
only one time, and it relies on the stp and genu algorithms.
The stp algorithm is given by Algorithm 1. We consider
the prime order p, the groups G1, G2, and the pairing ê
have already been chosen and are naturally included in the
parameters P .

Algorithm 1 stp algorithm
1: select g1 a generator of G1;
2: select g2 a generator of G2;
3: select h a collision-resistant hash function defined in

Section IV.A.1);
4: return P = (G1,G2, ê, g1, g2, h)

Then, for each host Hu, the trusted entity executes the genu
algorithm given by Algorithm 2.

Algorithm 2 genu algorithm

1: sku
R←− Zp;

2: pku ← g2
sku ;

3: return (sku, pku)

2) Single signature phase: As introduced in Section III-B,
the single signature phase is composed of two algorithms,
namely sig and vrf, defined by Algorithm 3 and Algorithm 4,
respectively.

Algorithm 3 sig algorithm
1: input: host secret key sku and the set S =
{m1,m2, · · · ,mnS

}
2: output: the signature σS
3: H(S) = 1;
4: nS ← |S|;
5: for i ∈ [1 . . . nS] do
6: H(S)← H(S) ∗ h(mi);
7: end for
8: σS ← [g1

sku]H(S)−1

;
9: return σS

The correctness of our proposed single signature, for any set
S, is easily deduced using the bilinearity property of pairing
functions (cf; Equation 5) such that:

ê(σS , g2) = ê([g1
sku]H(S)−1

, g2) = ê([g1]H(S)−1

, pku) (5)

This proves Equation 5 is correct if and only if the public
key pku = g2

sku used by the vrf algorithm corresponds to
the private key used to generate the signature σS .

Algorithm 4 vrf algorithm
1: input: host u’s public key pku, the set S and the signature
σ

2: output: boolean value B ∈ {0, 1}
3: H(S) = 1; nS ← |S|;
4: for i ∈ [1 . . . nS] do
5: H(S)← H(S) ∗ h(mi);
6: end for
7: XS ← [g1]H(S)−1

;
8: if ê(σ, g2) = ê(XS , pku) then
9: B ← 1

10: else
11: B ← 0
12: end if
13: return B

3) Aggregation phase: The aggregation phase includes the
agg and vrfagg algorithms, as detailed in Section III. The
aggregating node executes the agg algorithm and derives the
resulting signature that relies on set operations, namely union,
subset, and intersection operations. The resulting signature,
detailed in definition 3.2, must ensure the homomorphism and
the correctness properties (cf. Equation 1 and Equation 2).

Theorem 1 shows our proposed signature scheme is ho-
momorphic with respect to the union operation. The set-
homomorphism properties, with respect to two sets Si and Sj ,
is generated by Hi and Hj devices, respectively. Our scheme
can easily be extended to support multiple sets of data records.

Theorem 1: Union-homomorphic Signature
Let stp, genu, sig, and vrf be the algorithms introduced

by Algorithm 1, 2, 3, and 4. The agg algorithm resulting in
an aggregate signature sig(ski ◦ skj , Si ? Sj) presented in
Equation 4 is defined as follows, such that ? is the union
operator, and ◦ is the minus operator:

sig(ski, Si)∇sig(skj , Sj) =
[sig(ski, Si)]

u′

[sig(skj , Sj)]v
′ (6)

such that:

u′ = u+ v
H(Si)

H(Sj)
, v′ = v + u

H(Sj)

H(Si)

and u and v are the two unique integers that satisfy:

gcd(H(Si),H(Sj)) = vH(Si) + uH(Sj)

Proof 1: To prove Theorem 1, we must first express
H(Si ∪ Sj), using H(Si) and H(Sj), such that H(Sk) =∏
l∈[1,nSk

] h(sl), where k ∈ {i, j} and nSk
= |Sk| (i.e., the

number of elements of a set Sk).
Lemma 1: Given two sets Si and Sj and given a hash

function H as defined in Algorithm 3, there exist two unique
integers u and v such that:

H(Si ∪ Sj)−1 = uH(Si)
−1 + vH(Sj)

−1 (7)

Proof 2: Given the hash function H as defined in Algo-
rithm 3 the H(Si ∪ Sj) corresponds to:

H(Si ∪ Sj) = lcm(H(Si),H(Sj)) (8)

In addition, knowing that lcm and gcd satisfy the following
Equation:

lcm(H(Si),H(Sj))gcd(H(Si),H(Sj)) = H(Si)H(Sj)

And using the Euclidean algorithm, there exist two unique
integers u and v, such that:

gcd(H(Si),H(Sj)) = vH(Si) + uH(Sj)

Consequently, we have:

lcm(H(Si),H(Sj))
−1 = uH(Si)

−1 + vH(Sj)
−1 (9)

Based on Equation 8 and Equation 9, we prove Lemma 1.
In the following, we demonstrate that the agg algorithm

satisfies the homomorphism and correctness properties. In this
paper, we only prove for the union operation, but our scheme
is easily extensible to the subset and set difference operations.
• Proof of homomorphism –
To prove that our agg ensures the homomorphism property,

we have to express sig(ski, Si), referred to as σi, and
sig(skj , Sj), referred to as σj , with respect to both ski and
skj .

s = σi
uσj

v

= [g1
uski]H(Si)

−1

[g1
vskj]H(Sj)−1

= [g1
uski]H(Si)

−1

[g1
vskj]H(Sj)−1 [g1

vski]H(Sj)−1

[g1
vski]H(Sj)−1

= g1
ski[uH(Si)

−1+vH(Sj)−1]g1
v(skj−ski)H(Sj)−1

Similarly, we can express

r = σi
uσj

v = g1
skj [uH(Si)

−1+vH(Sj)−1]g1
u(ski−skj)H(Si)

−1

Consequently, by dividings byr, we obtain the following
result:

g1
(ski−skj)[uH(Si)

−1+vH(Sj)−1] =
g1
v(skj−ski)H(Sj)−1

g1
u(ski−skj)H(Si)

−1

g1
(ski−skj)[uH(Si∪Sj)−1] =

g1
skiH(Si)

−1(u+v
H(Si)

H(Sj)
)

g1
skjH(Sj)−1(v+u

H(Sj)

H(Si)
)

sig(ski − skj , Si ∪ Sj) =
σi
u′

σjv
′

where:
u′ = u+ v

H(Si)

H(Sj)
, v′ = v + u

H(Sj)

H(Si)

• Correctness –
This property shows how the verifier relies on the vrfagg

in Algorithm 5 based on the aggregate signature [sig(ski,Si)]
u′

[sig(skj ,Sj)]v′
,

the public keys pki and pkj of nodes Hi and Hj , respectively,

and the aggregate set Si ∪ Sj .

Based on Equation 2 and the properties of the bilinear func-
tion ê, we can write ê(g1

(ski−skj)[H(Si∪Sj)−1], g2) denoted by
E , as follows:

E = ê(g1
u′skiH(Si)

−1−v′skjH(Sj)−1

, g2)

= ê(g1
u′skiH(Si)

−1

, g2) · ê(g1
−v′skjH(Sj)−1

, g2)

= ê(σi, g2)u
′
· ê(σj , g2)−v

′

As such, based on the vrfagg algorithm defined
in Algorithm 5 and Equation 2, we deduce that
vrfagg(pki♦pkj , sig(ski − skj , Si ∪ Sj)) = 1, such
that pki♦pkj = pki

pkj
, if and only if:

ê(σi, g2) = ê(g1
H(Si)

−1

, pki), and

ê(σj , g2) = ê(g1
H(Sj)−1

, pkj)

Algorithm 5 vrfagg algorithm
1: input: the public keys pki and pkj of nodes Hi and Hj ,

the aggregate set Si ∪ Sj and the aggregate signature Σ
2: output: boolean value B ∈ {0, 1}

3: H(Si ∪ Sj) = 1;
4: n← |Si ∪ Sj |;
5: for all k ∈ [1 . . . n] do
6: H(Si ∪ Sj)← H(Si ∪ Sj) ∗ h(sk);
7: end for
8: X ← [g1]H(Si∪Sj)−1

;
9: if ê(Σ, g2) = ê(X, pkipkj

) then
10: B ← 1
11: else
12: B ← 0
13: end if
14: return B

This proves the correctness of our proposed aggregate
signature, with respect to Definition 3.2.

V. SECURITY DISCUSSION

A. Unforgeability

As discussed in Section II-B, the unforgeability requirement
prevents external adversaries from generating a new valid
signature based on new generated data.

Obviously, A tries a forgery attack against the CDH and
co-CDH assumptions considering the simple signature σ and
the aggregate signature Σ are both products of an accumulator
over the set elements and a group element associated to the
secret key of the signer. Knowing these two group elements,
namely the accumulator and the group element associated with
the secret key of the signer, are both required for deriving the
corresponding signature, A is led to break the co-CDH and
CDH assumptions. The Expunf is then considered with respect

to the CDH-assumption, as it is considered stronger than the
co-CDH assumption [13].

The complexity of the CDH assumption has been studied
in [13] and was demonstrated to be hard to solve; i.e., a (t, ε)
CDH group is a group for which the Adv(A, t) ≤ ε for every
PPT adversary running in a time t. Therefore, our signature
scheme is unforgeable.

B. Privacy

The privacy-preserving property covers the privacy of con-
tents, where the adversary should not be able to guess the
origin and the content of the removed parts from signed data
flow, and the privacy of users, where an intruder should not
be able to link each signed part of an aggregate data stream
to its respective generator.

Generally, the attacker A tries to distinguish between two
honestly derived signatures by linking each simple signature
of an aggregate signature Σ to its related generator, having
only access to Σ.

The aggregate signature Σ results in merging two signatures
σb and σb̄, where b = (j, k), such that j refers the set index
(i.e., j ∈ {0, 1}) and k to the index of the private key (i.e.,
k ∈ {1, 2}). Each single signature σ(j,k), generated by C using
the private key skk, is based on a randomly chosen set Sj . As
such, both signatures σb and σb̄ are identically distributed in
both cases. Thus, the attacker A is relying on a left-or-right
oracle with respect to the CDH assumption. Hence, he cannot
distinguish the oracle’s outputs better than flipping a coin.

Similarly, the aggregate signature Σ generated based on two
signatures associated with two different private keys, skk (i.e.,
k ∈ {1, 2}), is uniformly distributed. Hence, two aggregate
signatures derived based on two different combinations b and
b̄ are statistically indistinguishable, and the probability of
predicting b is 1

2 with respect to the CDH assumption.
As such, the A cannot distinguish two different aggregate

signatures with a probability greater than 1
4 . Therefore, our

scheme provides the privacy property.

VI. CONCLUSION

The need for secure mechanisms that enable the end
receiver to efficiently verify the authenticity of aggregated
data streams and the emergence of homomorphic signatures
led us to present a cryptographic mechanism that enables
efficient aggregation of signed data. In this paper, we pro-
posed a new lightweight aggregate signature scheme based on
set-homomorphic relations in distributed environments. Our
construction permits distribution of the verification process
among multiple IoT nodes. We proved its homomorphism
and correctness. In addition, our construction preserves the
privacy of non-end nodes such that an external adversary
cannot distinguish between honestly derived signatures by
linking each simple signature of an aggregate signature to its
respective generator.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant ACI-1547467. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,”
International Journal of Communication Systems, vol. 25, no. 9, p. 1101,
2012.

[2] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “A survey of two
signature aggregation techniques,” CryptoBytes, vol. 6, p. 2003, 2003.

[3] ——, “Aggregate and verifiably encrypted signatures from bilinear
maps,” in Proceedings of the 22nd International Conference on Theory
and Applications of Cryptographic Techniques, ser. EUROCRYPT’03.
Berlin, Heidelberg: Springer-Verlag, 2003.

[4] L. Wang, L. Wang, Y. Pan, Z. Zhang, and Y. Yang, “Discrete logarithm
based additively homomorphic encryption and secure data aggregation,”
Inf. Sci., vol. 181, no. 16, pp. 3308 – 3322, Aug. 2011.

[5] R. Johnson, D. Molnar, D. Song, and D. Wagner, “Homomorphic
signature schemes,” in Cryptographers Track at the RSA Conference.
Springer, 2002, pp. 244–262.

[6] G. Ateniese, D. H. Chou, B. De Medeiros, and G. Tsudik, “Sanitizable
signatures,” in European Symposium on Research in Computer Security.
Springer, 2005, pp. 159–177.

[7] D. Slamanig and S. Rass, “Generalizations and extensions of redactable
signatures with applications to electronic healthcare,” in IFIP Inter-
national Conference on Communications and Multimedia Security.
Springer, 2010, pp. 201–213.

[8] D. Boneh and D. M. Freeman, “Linearly homomorphic signatures over
binary fields and new tools for lattice-based signatures,” in International
Workshop on Public Key Cryptography. Springer, 2011, pp. 1–16.

[9] S. Canard, A. Jambert, and R. Lescuyer, “Sanitizable signatures with
several signers and sanitizers,” in International Conference on Cryptol-
ogy in Africa. Springer, 2012, pp. 35–52.

[10] K. Samelin, H. C. Pöhls, A. Bilzhause, J. Posegga, and H. De Meer,
“Redactable signatures for independent removal of structure and con-
tent,” in International Conference on Information Security Practice and
Experience. Springer, 2012, pp. 17–33.

[11] G. Neven, “A simple transitive signature scheme for directed trees,”
Theoretical Computer Science, vol. 396, no. 1-3, pp. 277–282, 2008.

[12] A. Bagherzandi and S. Jarecki, “Identity-based aggregate and multi-
signature schemes based on rsa,” in International Workshop on Public
Key Cryptography. Springer, 2010, pp. 480–498.

[13] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
weil pairing,” in Proceedings of the 7th International Conference on
the Theory and Application of Cryptology and Information Security:
Advances in Cryptology, ser. ASIACRYPT ’01, 2001.

