Khairi Abidi
email: khairi.abidi@fsjegj.edu.tn

Wissem Inoubli
email: wissem.inoubli@loria.fr

Engelbert Mephu Nguifo
email: engelbert.mephu_nguifo@uca.fr

DGCN: LEARNING GRAPH REPRESENTATIONS VIA DENSE CONNECTIONS A PREPRINT

Keywords: Graph Neural Networks, Graph Representation Learning, Node Classification, Link Prediction

In the last decades, learning over graph data has become one of the most challenging tasks in deep learning. The generally proposed Graph Neural Network (GNN) framework computes a hidden state for every node in the graph by applying nonlinear transformations to its neighborhood. Then updates the node of interest's hidden state. Nevertheless, the node features can contain discriminative information. That can get lost over GNN layers. Here we present a new variant of GNN architecture where we combine node features and GNN activations to learn nodes representations in the graph. We conduct extensive experiments on two graph prediction tasks (node classification and link prediction) and shows that our method can match and outperforms state-of-the-art results

Introduction

Graphs are data structures that represent objects and relations between them, such as citations networks, biological networks, and social networks. Graph kernel [START_REF] Shervashidze | Weisfeiler-lehman graph kernels[END_REF], [START_REF] Shervashidze | Efficient graphlet kernels for large graph comparison[END_REF] approaches have been the most efficient machine learning methods for graph classification However, because these kernels are handcrafted and constantly require domain expertise to be constructed, they cannot acquire useful node feature representation. And since, learning node representations has become one of the most challenging issues in graph machine learning. A wide variety of random walk-based node embedding algorithms [START_REF] Perozzi | Deepwalk: Online learning of social representations[END_REF], [START_REF] Grover | Node2vec: Scalable feature learning for networks[END_REF], [START_REF] Tang | Line: Large-scale information network embedding[END_REF] have been proposed. However, these methods are ineffective due to their transductivity, scalability.. Representation Learning [START_REF] Masci | Geometric deep learning[END_REF], [START_REF] William L Hamilton | Graph representation learning[END_REF] on graphs use a neighborhood aggregation approach that has proven effective in a variety of graph prediction problems. Because of this aggregation, neural networks only learn node/graph representations based on the graph structure itself, and node level features that can contain meaningful and discriminative information are ignored. As a result, the network's later layers cannot incorporate low-level information embedded in raw node features. In this paper, we approach the problem of learning node representations (i,e; hidden state h v , for each node v ∈ V) while incorporating low-level information about nodes. Message Passing Neural Networks (MPNNs) [START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF] carry out this problem by encoding the local neighborhood structure of a given node v in a message m v computed from its nearby nodes and uses this message and the previous hidden state to update the current hidden state as shown in equation 1.In MPNNs the initial node state h 0 v = x v , where x v is the node feature vector, we make the assumption that x v would be forgotten since it will transformed and merged with structural information computed in the aggregation process.

m k v = M SG({h k u ; ∀u ∈ N(v)}) h k+1 v = U P DAT E(h k v , m k v) (1)
In this work, we present a novel method for learning graph representation, where we concatenate the transformed node features and node's local structure encoded by a GNN model.

In summary, the contributions of this paper are:

1. Propose a novel graph neural network method for learning node representation.

2. Implement the proposed architecture on top of GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF] framework.

3. Demonstrate that our method can achieve state-of-the-art results on a node classification and link prediction tasks.

The remaining of this paper is organized as follows. section 2 presents background on graph neural networks, section 3 presents the proposed method, section 4 sets experiments, section 5 results and discussion, finally, we conclude the paper in section 6.

Background

Graph Neural Networks

Graph Neural Networks are a class of Deep Learning architectures that operates on graph structured data. GNNs applies non linear transformations over the graph with the purpose of learning an embedding vector h v for every node v in the graph. These nodes representations/embeddings could be used in downstream applications such as node classification, link prediction, or graph classification. Message Passing Neural Networks [START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF] is a framework for designing Graph Neural Networks. An MPNN layer is made up of two essential components: the aggregation/message function and the node update function. For computing the node representation/embedding, firstly, aggregate a function of nodes hidden states and edges of all neighbouring nodes, then, update the hidden state with the received message and the previous hidden state as stated in equation 1, the initial hidden state h 0 v is set to be the node feature vector. The aggregation/message function could be an permutation invariant function (e.g., sum, mean, max, min, ...), as well as it can be approximated by multilayer perceptrons [START_REF] Xu | How powerful are graph neural networks[END_REF].

Next, we introduce and present GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF], GAT [START_REF] Veličković | Graph attention networks[END_REF], and SGC [START_REF] Wu | Simplifying graph convolutional networks[END_REF].

Graph Convolution Networks (GCN)

GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF] is one of the most well-known GNN architectures. GCN learns node representations by propagating information from direct neighbors, applying linear transformation and pointwise nonlinearity. The information propagation procedure consists of aggregating information from the direct neighborhood. Next, as a multilayer perceptron, GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF] applies linear transformation followed by pointwise nonlinearity. By stacking k GCN layers, each node aggregates information from nodes k-hops away. The GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF] propagation rule is defined as follows:

Information Propagation = D-1/2 à D-1/2 (2)
H l = σ(ÂH l-1 W l), with H 0 = X (3
)
Where is the normalized Adjacency matrix with added self-loops, à = A + I, Dii =

|V | j

Ãij is the degree matrix, H l and H l+1 are the previous and the new hidden state matrix, respectively, W l is a trainable weight matrix for layer l, and σ denotes any non-linear activation function. The message passing form of equation 3 can be written as follows:

m l u = v∈N (v) 1 |N v | |N u | h l-1 v h l u = σ(m l u W l + b l) (4)
That is, each node receive a message m v which is the averaged hidden states of its neighbors

N (v) = {N (v) ∪ v}.
Then, a linear transformation followed by nonlinear activation is applied to generate the new hidden state.

Simplifying Graph Convolution (SGC)

SGC [START_REF] Wu | Simplifying graph convolutional networks[END_REF] postulates that GNNs inhert unnecessary computations from deep neural networks, [START_REF] Wu | Simplifying graph convolutional networks[END_REF] removes the nonlinear activations and squashes weight matrices into one leanrable matrix W . Hence, a two-layer GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF] (Equation 5) is transformed into a linear model by removing the non-linearity and squashing the matrices W 1 and W 2 into W . The resulting model (Equation 6) is a simple logistic regression classifier.

Ŷ = sof tmax(ÃReLU (ÃXW 1)W 2) (5)
Ŷ = sof tmax(Ã2 XW) (6)
Feature Propagation Unlike GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF], which aggregates k-hop information by stacking k GCN layers (Equation 3). The k-hop information in [START_REF] Wu | Simplifying graph convolutional networks[END_REF] can be aggregated by raising the adjacency matrix to the k-th power ([13] Lemma 5.2).

X = Ãk X X is a preprocessing step to collect the k-hop neighbors information.

Graph Attention Networks (GAT)

GAT [START_REF] Veličković | Graph attention networks[END_REF] spreads the attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF] to graph neural networks. The attention is computed explicitly pairwise between nodes sharing the same edge, and thus can be learned by backpropagating the error, i.e., for each edge e ij a coefficient α eij is computed and used to update the hidden state. To depict the edge weight the coefficients α eij are normalized using softmax.

Masked Attention

e ij = a(W h i ∥ W h j) α ij = sof tmax(e ij) (7)
In order to obtain an expressive power, at least one linear transformation is needed W h i , then, for each edge {(i, j); j ∈ N (i)} a feature vector is generated by concatenating the corresponding transformed node features W h i ||W h j . Next, another linear transformation a : F ′ × F ′ → F ′ is applied to the edge features to produce the edge weights (attention coefficients) e ij . Finally, the attention coefficients are normalized by the softmax function.

Message Passing and MultiHead Attention

m i = j∈Ni α ij h j h i = ∥ K k=1 σ(m i W + b) (8)
The message received is a linear combination of the attention coefficient α ij and the hidden state of the neighbor h j . a K parallel attention heads (Equation 8) are computed then passed, each through an MLP layer (linear transformation + nonlinearity). Finally, the attention heads are concatenated ∥ to produce the new hidden state.

Proposed Method Problem formulation

We consider an undirected (or directed) simple graph G = (V, E, X), where V is the set of nodes v ∈ V, E is the set of edges e uv ∈ E, and X = {x 1 , . . . , x |V| }, with x i ∈ R d is the set of attributes / features of the nodes. We also consider the problem of learning h v ∈ R f a vector representation of node v. We motivate the selection of our architecture by the idea that the node attributes may contain discriminating information that can be useful for learning higher node representations and improving model performance.

In most GNNs architectures [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF], [START_REF] Veličković | Graph attention networks[END_REF], graph topological information is extracted through a message passing scheme [START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF], and node attributes are neglected. That is, a GNN Layer is aggregating a message m v from its neighbors and then update its hidden state h v , even when initializing the initial state h 0 v = x v as the node feature vector, we assume that this information will be forgotten or simply erased by the structural information encoded in m v . However, in numerous applications; such as social networks, product recommendation, etc, the node features x v is as important as structural information learned by GNN.

Motivation

In this section, we provide motivation for the choice of our architecture using a straightforward node classification problem. Assume we have a collection of N documents, where each document i has a four-dimensional feature vector x i ∈ R 4 and a binary label y ∈ {0, 1}, as well as an adjacency matrix A ∈ R N ×N encoding the linkages between documents. In other words, A ij = 1 If document i links to document j, we assume that the adjacency matrix is symmetric, that is, if document j links to j, then document j links to i. Each document is represented by a vector holding the frequency of the four most frequently occurring words in the corpus. Colors reflect frequencies in this ascending order: blue, green, yellow, red. For example, red is affiliated with words that have high frequencies, whereas blue is associated with words that have low frequencies. For illustration, the second most common term in the corpus appears frequently in document 7 (Figure 1), whereas the fourth most frequent word in the corpus appears less frequently.

Figure 1 illustrates the classification of documents using only raw features / document content. As can be observed, the classifier favors documents with high frequency terms and assigns them label 1, whereas documents with less frequent terms, such as document 2 (2 green and one blue), are more likely to be given label 0. When using the corpus structure encoded in documents links and raw node features as initialization to a Graph Neural Network model. The model may extract node features based on their neighborhood information. However, this GNN feature may cause the model to overfit and favor structural information over content. As illustrated in Figure 2, the classifier labels document two as 0 because of its relationship with document 3, while documents four and seven are classified as 1 since they are only connected to nodes with label 1. As a result, neither node features nor graph structure alone would produce good results in this scenario. Next, we present our model, which combines node content/intrinsic information with structural information encoded by GNN to build node representations that can improve the classification (or more generally the downstream task).

Dense Graph Convolution Network

We propose Dense Graph Convolution Networks (DGCN) an architecture that combine node features and structural information to learn node representations (Figure 3). DGCN consists of three components, projection module, the GNN module, and a dense connection procedure.

Projection Module The projection module is responsible for learning hidden representations of the features of the node. To obtain sufficient expressive power, at least one linear transformation is needed. Therefore, we choose the projection module to be a linear transformation of node features.

p v = W x T v (9)
GNN Module In DGCN, the GNN module is carrying the message passing operation to update the hidden state. In our experiments, we choose GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF], as the graph encoder.

m v = u∈N (v) h u |N (v)| * |N (u)| (10)
h v = ReLU (W m v + b) (11)
Dense Connection We define a dense connection as an operation combining the node hidden representation p v and its hidden state h v . Various combining operations are available, such as sum, mean, dot product, hadamard product, or concatenation. To enrich the learned hidden state of node v we choose to concatenate the hidden representation and the hidden state (Equation 12). That is, the output of the GCN layer will be concatenated with the projected node features p v . To produce a hidden representation that encodes both node-level and structural information. First, the linear projection (Equation 9) is applied to the node features matrix X to produce the hidden representation P . Then, the graph structure encoded in = D1/2 à D1/2 and the initial hidden state H 0 = X are fed to the GNN encoder [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF]. Finally, the output of each GNN layer H l is concatenated with the projected features P , H l = H l ∥ P .

h v = h v ∥ p v (12)
The DGCN algorithm (i.e, forward pass) is described in algorithm 1. which assumes that the model has already been trained and that the weights are fixed.

v , ∀v ∈ V; h 0 ← x v , ∀v ∈ V; p v = W p x T v , ∀v ∈ V; for k ∈ {1, . . . , K} do for v ∈ V do m k v = u∈N (v) hu √ |N (v)| * |N (u)| ; h k v = ReLU (W k .m k v); h k v = h k v ∥ p v ; end end z v = h K v , ∀v ∈ V

DGCN Analysis

As mentioned earlier in Section 3 (Motivation) and illustrated by the example, neither node features nor graph structure would give satisfactory classification results. For this reason, DGCN is utilizing structural information while keeping track of intrinsic document information. Furthermore, the intrinsic node information is passed to a linear layer (the projection module) for feature selection. Finally, the selected features are joined with the structural information (in Figure 4, we omit the concatenation after each layer for simplicity).

The overall DGCN architecture is shown in Figure 4, where input documents with their relations are supplied to the GNN Module, along with node features used to establish hidden states. Furthermore, intrinsic node features are passed via the linear projection layer to extract latent features, which will be concatenated with structural information later. That is, the GNN models produce structure-based hidden features; particularly, the seventh document has features that are similar to those of its neighbors and will be classed as 1, because it is only connected to nodes with labels 1. However, its hidden content features produces a low frequency feature vector (blue color), leading the classifier to classify it as class 0.

Experiments

Our experiments assess the performance of DGCN in node classification and link prediction tasks.

Dataset

Datasets

To evaluate our model's performance in a node classification task. We used Cora citation network [START_REF] Yang | Revisiting semi-supervised learning with graph embeddings[END_REF], LastFMAsia [START_REF] Rozemberczki | Characteristic functions on graphs: Birds of a feather, from statistical descriptors to parametric models[END_REF], Facebook [START_REF] Benedek Rozemberczki | Multi-scale attributed node embedding[END_REF], as well as Amazon Computers and Amazon Photos [START_REF] Mcauley | Image-based recommendations on styles and substitutes[END_REF], [START_REF] He | Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering[END_REF]. The Pytorch Geometric [START_REF] Fey | Fast graph representation learning with PyTorch Geometric[END_REF] Python software provides all of the datasets described above. The statistics of the datasets are summarized in Table 1.

Citation networks are graphs with nodes representing papers and edges representing the existence of citation between two papers. The node features are bag-of-words vectors derived from the abstract section of the paper. The category of the paper determines the node labels (e.g, Machine learning, Graph Theory, Statistics, ...) Amazon Computers and Amazon Photos are Amazon co-purchase graph segments [START_REF] Mcauley | Image-based recommendations on styles and substitutes[END_REF], [START_REF] He | Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering[END_REF]. The edges indicate that two products are frequently purchased together, the node attributes are bag-of-words-encoded product reviews, and node labels are provided by the product category.

LastFMAsia [START_REF] Rozemberczki | Characteristic functions on graphs: Birds of a feather, from statistical descriptors to parametric models[END_REF], is a social network of users from Asia. Nodes represent users of the LastFM music streaming service, and links among them are friendships.

Facebook [START_REF] Benedek Rozemberczki | Multi-scale attributed node embedding[END_REF] is a page-page graph of verified Facebook sites. Nodes correspond to official Facebook pages, links to mutual likes between sites. Node features are extracted from the site descriptions.

Splitting Strategy Node Classification

In the node classification task, we split the graph according to [START_REF] Yang | Revisiting semi-supervised learning with graph embeddings[END_REF]

Link Prediction

We turn the link prediction task into a binary classification problem, we train a model to predict whether an edge (i, j) exists or not. The fake edges are randomly sampled with a ratio of

Metrics

To assess the performance of our model against baseline methods [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF], [START_REF] Velickovic | Graph attention networks[END_REF], [START_REF] Wu | Simplifying graph convolutional networks[END_REF] in node classification, we choose accuracy as a performance measure. In link prediction, we use AUROC as a metric.

Accuracy is a metric that describes how the model performs across all classes. It is helpful when all classes are equally important. It is determined by dividing the number of right predictions by the total number of predictions (Equation 13).

accuracy = T N + T P T N + T P + F N + F P (13)
Area Under the Receiver Operating Characteristics (AUROC) is a measure of a classifier's ability to distinguish between classes and is used to describe the ROC curve . The greater the AUC, the better the model's performance in differentiating between positive and negative classes.

Baselines

We compare DGCN to GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF], GAT [START_REF] Velickovic | Graph attention networks[END_REF], and SGC [START_REF] Wu | Simplifying graph convolutional networks[END_REF]. For all models, we use the same set of hyper-parameters stated in the original papers. All models hyperparameters were optimized on the Cora dataset. The following GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF] hyperparameters: hidden units = 16, number of layers = 2, activation is ReLU , dropout rate= 0.5, learning rate = 0.1, and weight decay = 0.0005. GAT [START_REF] Velickovic | Graph attention networks[END_REF] hyperparameters are the following: hidden units = 8, attention heads = 8, dropout rate = 0.6, layer activation is ELU , attention activation is LeakyReLU with negative slope = 0.2, learning rate = 0.005, weight decay = 0.0005. SGC [START_REF] Wu | Simplifying graph convolutional networks[END_REF] hyperparameters are: K = 2, learning rate = 0.2, and weight decay = 0.0000130.

Configuration

First, we optimize the hyperparameters of our model (projection dim, hidden units, learning rate, and weight decay) on Cora dataset using Optuna [START_REF] Akiba | Optuna: A next-generation hyperparameter optimization framework[END_REF] Python package for 30 trial. Then, we use the hyperparameters of our model in all other experiments on the remaining datasets.

In link prediction, we used an encoder-predictor architecture, i.e the graph, along with node features, are fed to a GNN encoder to compute the hidden states {h v ; ∀v ∈ V}. Then, for each edge (u, v) a feature vector e uv = h u ∥ h v is constructed by concatenating node hidden states of corresponding nodes u and v. Finally, the edge feature e uv is passed through a one layer MLP with one output to predict whether the edges exists or not.

For all experiments, we train all models for a maximum of 300 epochs using Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF]. We report the mean accuracy over 10 runs. 4 shows the accuracy of node classification on Cora, LastFM, Amazon-Photos, Amazon-Computers, and Facebook. Our model closely matches the results of SGC [START_REF] Wu | Simplifying graph convolutional networks[END_REF], and GAT [START_REF] Velickovic | Graph attention networks[END_REF] on Cora, Amazon-Photos. And outperforms GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF] by orders of magnitude on all datasets (except Cora). When node features are dense, though, the projection layer can learn useful hidden representations, which improves the hidden state information encoded by GNN -in concordance with our expectations. As a result, the classifier benefits from node-level and structure knowledge. as demonstrated by our model outperforming GCN and GAT on LastFM and Amazon-Computers.

Performance with varying the number of layers The oversmoothing problem [START_REF] Chen | Measuring and relieving the over-smoothing problem for graph neural networks from the topological view[END_REF] is inherent in GNN. When more layers are added to a GNN model (GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF] or GAT [START_REF] Velickovic | Graph attention networks[END_REF]), each node aggregates information from the same set of k-hop neighbors (especially when k is large). As a result, different nodes will have similar representations, and the classifier will be unable to differentiate between them, resulting in poor performance. Figure 5 shows that even a sparse features can assist the model (DGCN) to alleviate the oversmoothing issue, while other methods (GCN and GAT) suffers clearly from performance deterioration. On the LastFM dataset (Figure 6), our model benefits from the additional layers, achieving 93% (+ 1%) and 94% (+ 2%) on 5 and 6 layers, respectively. To evaluate the robustness of our model against GCN [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF], GAT [START_REF] Velickovic | Graph attention networks[END_REF], and SGC [START_REF] Wu | Simplifying graph convolutional networks[END_REF]. We vary the number of training nodes per class. Then, train the model to fix the weights. Finally, report the accuracy on the test nodes. Figure 7 shows that our model nearly achieves the same performance of GCN, GAT, and SGC on the Cora citation network; we explain this to the sparsity of the matrix X. Neverthless, when node features are dense and a small set of training nodes is available (1 nodes per class), which is the case for almost all real-world applications, DGCN is outperforming baselines by significant margin (+24% on average).

Conclusion and future works

Motivated by the idea that nodes may contain significant information as their connections. We proposed DGCN, a novel method for learning graph representation by combining node-level features with hidden representation learned by GCN. We compared our proposed method with state-of-the-art models in node classification and link prediction tasks and confirm our assumptions.

Several potential DGCN improvements and additions, such as adopting an attention-based strategy for combining node-level features with hidden representation, could be addressed as future work. An interesting option to pursue would be to investigate more advanced projection architecture. Examine model inductivity in graph classification tasks. Finally, the model would be expanded to include edge features.

Figure 1 :

 1 Figure 1: documents classification using raw features.

Figure 2 :

 2 Figure 2: documents classification using topological corpus structure.

Figure 3 :

 3 Figure 3: Dense Graph Neural Networks Architecture

Algorithm 1 :

 1 DGCN forward pass algorithm Data: Graph G = (V, E); Input features {x 1 , . . . , x |V| }; Depth K; Weight matrices W k , ∀k ∈ {1, . . . , K}; Projection matrice W p Result: Vector embeddings z

Figure 4 :

 4 Figure 4: documents classification using document content and network information.

Figure 5 :Figure 6 :

 56 Figure 5: Performance (in terms of accuracy) with varying the number of layers Cora dataset

5. 1 . 1 Figure 7 :Figure 8 :

 1178 Figure 7: Performance (in terms of accuracy) with varying the number of training node on Cora dataset.

Table 1 :

 1 Node classification datasets statistics

		# Nodes # Edges # Node Atrributes # Classes
	Cora	2708	10556	1433	7
	Amazon Photos	7650	238162	745	8
	Amazon Computers	13752	491722	767	10
	Facebook	22470	342004	128	4
	LastFM	22470	342004	128	4

Table 2 :

 2 , i.e, 20 nodes for training per class, 500 nodes for validation, and 1000 nodes for testing. Number of training, validation, and testing nodes on each dataset.

	Dataset	# Training nodes # Validation nodes # Testing nodes
	Cora	140	500	1000
	LastFM	80	500	1000
	Facebook	80	500	1000
	Amazon Computers	200	500	1000
	Amazon Photo	160	500	1000

Table 3 :

 3 Number of training, validation, and testing edges on each dataset. each split includes positive and negative edges.

	Dataset	# Training edges # Validation edges # Testing edges
	Cora	10558	8444	2110
	LastFM	342006	273602	68400
	Facebook	342006	273602	68400
	Amazon Computers	491724	393376	98344
	Amazon Photo	238164	190528	47632

1, i.e, for each positive edge, and we sample one negative edge. We divide the set of edges E into three subsets E train , E valid , and E test , being, 50%, 40%, and 10% of the original edges set E, respectively.

Table 4 :

 4 CaptionTable

	5 Experimental Results					
	5.1 Node Classification Experiments				
	Model	Cora	LastFM	Computers	Photos	Facebook
	GCN	80,65±0.59 52,55±0.52	71,70±4.18	82,74±3.25 14,88±3.39
	SGC	80,12±0.34 71,76±0.54	94,88±0.28	96,95±0.35 22,60±0.39
	GAT	83,50±0.64 73,20 ±1.25	89,48±0.66	93,85±0.40 74,64±1.39
	DGCN (ours) 80,30±0.97 75,82±0.89	91,00±1.38	93,50±1.67 71,37±1.16

Table 5 :

 5 Performs in terms of accuracy of different dense connections operationsAs stated in section 3, concatenation is the best dense operation choice in our model. We validate our assumption by performing several dense operations (sum, average, concat) on node classification datasets and reporting the test accuracy. On three datasets (Cora, LastFM, and Computers), the concatenation outperforms other approaches and matches the avg score on Facebook. In the concatenation operation, the node-level information are kept and injected to structural information forming a node representation with both node and graph information, while in other operations, node intrinsic information are merged with structural information.

	Performance with different combining operations		
	Dataset	Operation sum	average	concat
	Cora	78,80±2.83	79,96±0.40	80,30±0.97
	LastFM	67,81±1.80	72,63±0.26	75,82±0.89
	Photo	87,24±0.14	97,92±0.15	93,50±1.67
	Computer	84,87±0.52	80,05±0.63	91,00±1.38
	Facebook	69,55±0.23	71,60±0.71	71,37±0.21
	Link Prediction Experiments			
	Model	Cora	LastFM	Computers
	GCN	59,59±0.21	74,82±0.21	78,83±0.12
	SGC	61,95±0.15	77,32±0.01	76,24±0.05
	GAT	53,19±2.53	65,83 ±0.72	43,14±2.88
	DGCN (ours)	53,68±1.78	80,15±0.24	79,50±0.80

Table 6 :

 6 Link prediction results. Bests are bold. Table6summarizes our link prediction task outcomes. A general conclusion we can draw from the results is that node-level information is beneficial to the classifier. Furthermore, we confirm that sparse features are ineffective and potentially affect DGCN performance. By combining node attributes with learnt hidden representation, DGCN gains +5.33% over GCN on LastFM and +0.68% on Amazon Computers, whereas SGC, a simpler model, outperforms GCN, GAT, and DGCN by a large margin on the Cora dataset.

Acknowledgments References