
HAL Id: hal-03991038
https://hal.science/hal-03991038

Submitted on 22 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Authledger: a novel Blockchain-based domain name
authentication scheme

Zhi Guan, Abba Garba, Anran Li, Zhong Chen, Nesrine Kaaniche

To cite this version:
Zhi Guan, Abba Garba, Anran Li, Zhong Chen, Nesrine Kaaniche. Authledger: a novel
Blockchain-based domain name authentication scheme. 5th International Conference on Infor-
mation Systems Security and Privacy(ICISSP), Feb 2019, Prague, Czech Republic. pp.345-352,
�10.5220/0007366803450352�. �hal-03991038�

https://hal.science/hal-03991038
https://hal.archives-ouvertes.fr

AuthLedger: A Novel Blockchain-based Domain Name Authentication
Scheme

Zhi Guan1,3 a , Abba Garba2,3 b , Anran Li2,3 c , Zhong Chen 2,3 d , Nesrine Kaaniche 4 e

1National Engineering Research Center for Software Engineering, Peking University, Beijing, China
2Institute of Software, EECS, Peking University, Beijing, China

3MoE Key Lab of High Confidence Software Technologies, Peking University, Beijing, China
4SAMOVAR, Telecom SudParis, CNRS, University of Paris-Saclay, France.

{guan, abbaggumel, lianran, zhongchen}@pku.edu.cn, nesrine.kaaniche@telecom-sudparis.eu

Keywords:
PKI, Blockchain, Authentication, Cryptography, Thin Nodes

Abstract:
Public Key Infrastructure (PKI) authentication mainly relies on Certificate Authorities (CAs) and
have to be trusted by both domain operators and domain owners. In order to fairly distribute
trust among entities involves in the certificate issuing process, it is necessary to balance the distri-
bution rights among the entities and improve the control of certificate issuance for the certificate
owners. Recently with the emergence of Blockchain, a public verifiable distributed ledger, sev-
eral applications appeared taking advantage of this powerful technology. The unique features of
Blockchain technology has capability to ensure trust, remove single point of failure attached to
the current PKI systems and quick response to CAs misbehaviour. In this paper, we designed
and implemented robust and scalable domain authentication based on blockchain technology for
low constrained devices (thin client nodes). Our approach aim to achieve same level of security
properties and authentication mechanism as DANE and CAA for low constrain devices but in a
more trusted and decentralised structure. The proposed scheme is multi-fold. First, we proposed a
domain authentication scheme to reduce the level of trust in CAs over certificate issuance process
for using thin client nodes. Second, we implement our system using Ethereum smart contract.
Third, we evaluate security and performance of the proposed system.

1 INTRODUCTION

Nowadays, Internet users are mainly relying
on Public Key Infrastructures to authenticate
end-user certificates and Domain Name Service
(DNS) to translate human readable in to IP ad-
dress to communicate on the web services. PKI
enable secure mean of authenticating entities on
the Internet. It includes policies and procedure
required to issue, manage, distribute, validate,
revoke digital certificate and manage public key
encryption (Yakubov et al., 2018). The current

a https://orcid.org/0000-1111-2222-3333
b https://orcid.org/1111-2222-3333-4444
c https://orcid.org/2222-3333-4444-5555
d https://orcid.org/3333-4444-5555-6666
e https://orcid.org/4444-5555-6666-7777

approaches use to authenticate entities relies on
third parties CAs to issue certificates that we
usually trust. There is a disparity of rights be-
tween the different involved entities such as end-
users and Certificate Authorities (CAs) (Scheitle
et al., 2018). Indeed, users may initiate a certifi-
cate signing request, but are not allowed to judge
whether the issuing authority has the right to is-
sue certificate for the domain. (Matsumoto et al.,
2017).

Several breaches of trust and certificates mis-
issuance have been revealed recently (Kamat and
Gautam, 2018). In September 2015, Google de-
nounced Symantec’s Extended Validation certifi-
cates due to Symantec issued a certificates with-
out authorization for google domains (Rashid,
2015). Meanwhile, in 2015 Lenovo Superfish in-
stalled a local CA for its products to steal con-

fidential data (Kamat and Gautam, 2018). Ger-
vase in 2016 revealed an issue of certificate com-
promise associated with wosigns free certificate
service on Mozilla.(Enisa, 2016).

These lethal phenomena results to disseminate
the trust of the PKI to various authorities (CAs)
(Khan et al., 2018). Nowadays, certificate miss-
issuance is hard to detect due to lack of standard
mechanisms to check which certificate authorities
have the right to issue certificates for the domains
(Kubilay et al., 2018).

Recently Domain Name System Security Ex-
tensions (DNSSEC) as a DNS resources records,
uses a public key infrastructure (PKI) to offer
additional security for authenticating data for
domain name system (DNS). DNSSEC records
allowed client via signed statements to specify
which CAs are authorized to represent certificate
for the domain (Gourley and Tewari, 2018). Cer-
tificate authority authorization (CAA) is another
approach developed by Internet Engineering Task
Force (IETF) as explained in [RFC 6844]1 to pro-
vides security guarantee against rogue CAs. In
CAA, domain owners decides which CAs can is-
sue a certificate for their domains via CAA re-
source records (Karaarslan and Adiguzel, 2018).
Consequently, latter approaches are more prone
to central point of failure due to their trust in-
herently attached to infrastructure like Internet
Corporation for Assigned Names and Numbers
(ICANN) 2(Berkowsky and Hayajneh, 2017).

Blockchain is a decentralised global ledger
that contain a series of transactions in the form
of blocks (Ali et al., 2016). Each block is se-
cured by hash function to link to another Block
in an orderly structured to form a Blockchain
network (Yakubov et al., 2018). one of the key
constrains of the current blockchain is scalabil-
ity running full nodes in low constrain devices
is not scalable. Ethereum is the second largest
blockchain system in terms of value. The ob-
jective of such system is to store an arbitrary
state in a distributed temper-proof manner (Mat-
sumoto and Reischuk, 2016). Unlike Bitcoin,
Ethereum used Turing-complete language and
EthereumVirtualMachine(EV M) to represent lan-
guage and computations.

In this paper, we extend a conference paper
based on AuthLedger: A Novel Blockchain-based
Domain Name Authentication Scheme. Afore-
mentioned paper was proposed based on full
nodes or global verification state. We design and

1https://tools.ietf.org/html/rfc6844
2https://www.icann.org/

implemented Blockchain based domain authenti-
cation that allow thin client to efficiently verify
data in the block.

We present AuthLedger scheme extension us-
ing thin client and make several optimisations to
make it more efficient and validate low resource
devices such mobile. Since running full nodes
from browser to fetch queries is computationally
costly. Our optimisations use tools such as cryp-
tographic accumulators, sparse merkle hash tree
and bloom filters to allow efficient domain au-
thentication for low resources devices.

The primary goal is limit the attack surface of
the malicious CAs that issue certificate and any
domain and equitably distribute the trust among
the entities during certificate issuance process us-
ing blockchain while allow low resource devices to
authenticate data efficiently.

Thus, our contributions are summarised as fol-
lows:
– We extend authledger paper using thin client

method based on the blockchain technology
for identity authentication without a trusted
third party.

– Provides an efficient and trustworthy certifi-
cate authentication process for low resources
devices.

– We implement and conduct an experimental
performances’ analysis to validate the pro-
posed system using Ethereum solidity smart
contract environment.

– Analyse security implication of the proposed
scheme by discussing different security threats
and countermeasures.

– We evaluate security and performance of the
proposed system including Browser plug-in
extensions.

2 BACKGROUND AND RELATED
STUDY

In this section, we first give a detailed tech-
nical background on certificate authorities (CAs)
and its relevant issues in subsection 2.1. Then,
we look at the Domain name system (DNS) in-
cluding Domain name system security extensions
(DNSSEC) and Domain name system based au-
thentication (DANE) in subsection 2.2 Also in 2.3
we describe about Certificate authority and au-
thorization (CAA). We finally present Blockchain
PKI systems solutions in subsection 2.4.

2.1 Certificate Authorities (CAs)

PKI involve several hardware and software en-
tities to manage the digital certificates (Aish-
warya et al., 2015). Certificate based authenti-
cation mainly use X.509 PKI standard to provide
a strong level of clients authentication (Yakubov
et al., 2018). Authentication occurs using a
third party certification authorities (CA) (Kiayias
et al., 2017). In the following, we present the enti-
ties that are involved in PKI system: A client pro-
vides information to a CA that verifies the user
identity. Registration authority (RA) manages
CA task such as authenticating users. Validation
authority (VA) verifies and confirms whether dig-
ital certificate is used by adequate trustworthy
CA.

Different entities involved in the PKI as shown
in Figure 6:

RA

CA

VA

Registration
 Authority

Certification
Authority

Validation
AuthorityGet verification

Identity verification

G
et

ce
rti

fic
at

e

Certificate request

Authenticate with

certificate

User

1

2 3

4
5

Figure 1: Entities involves in PKI

2.2 DNS Authentications

DNS is one of the most important internet pro-
tocol designed to connect web sites over the in-
ternet. A distributed database that provides a
mapping service called Resource Records (RR).
RR translates a domain name into IP address and
an IP address to human readable domain names
(Zhu et al., 2015). DNS is used as a distributed
and hierarchical domain database. The hierarchi-
cal name space feature is very essential because it
permits a relaying party to verify the identity of
the requesting entity. However, DNS based on its
original implementation does support detail secu-
rity to protect attacks from occurring. This in-
cludes DNS spoofing/cache poisoning (Wei-hong
et al., 2017), DNS hijacking and DNS rebinding
(Lencse and Kadobayashi, 2018).

DNS security extensions (DNSSEC):
DNSSEC was implemented to add up layer
of trust on top of the DNS to ensure smooth
authentication of information, on the other

hand, maintain backward compatibility (Gourley
and Tewari, 2018). DNSSEC using DNS based
authentication of named entities (DANE) was
designed based on Internet Engineering Task
Force (IETF) [RFC6394-RFC6698] standard to
protect cache poisoning attacks (Shulman and
Waidner, 2017). The main purpose of DNSSEC
is to address some security challenges of the
existing PKI certificates authentication (Gourley
and Tewari, 2018).

Essentially, in a DNSSEC deployed zone, the
DNS response clients are digitally signed. Conse-
quently, the client is able to determine whether
the data contained in the response has been mod-
ified or not (Anon, 2019). However, the current
DNSSEC does not protect DNS from a new form
of Denial of Service (DoS) attacks (Zhu et al.,
2015). Since DNS data verification poses addi-
tional overhead to network and servers. (Kubilay
et al., 2018). Despite DNSSEC ensure authenti-
cation and data integrity. However, confidential-
ity of data cannot be guaranteed ().

DNSSEC system is a complex PKI authenti-
cation scheme to deploy which as a result, suffer
from limited patronage with only %4 of the sec-
ond level domains signed for DNSSEC (Gourley
and Tewari, 2018) (Linkova, 2019).

Consequently, Security of DNSSEC inherently
lies on PKI root at ICANN3 which is vulnerable
to central failure. Vulnerability is much easier
to exploit with current DNSSEC system (Sehgal
and Dixit, 2019). The Key corrective measure
is to ensure domain holders and domain opera-
tors behave honestly (Matsumoto et al., 2017).
Despite the current proposed solutions there is
no standard method to incentivitize an entities
that behave honestly, the compromised mis-issue
certificate is reported manually and its time con-
suming (Matsumoto and Reischuk, 2016).

Furthermore, DNSSEC using DANE allows
domain operators to make judgement about CA
based on the statement related to each PKI cer-
tificate (Qin et al., 2017). It includes the follow-
ing information:
• CA restrictions: the client should determine

which CA should issue certificates.
• Service certificate restrictions: the client

should accept only certain certificates.
• Trust anchor: the client should validate cer-

tificates for a particular domain based on the
set of available domains provided chain of
trust.

3https://www.icann.org/

DNS Authentication Name Entity (DANE)
DANE use transport layer security protocol to
allow X.509 digital certificate to bind domain
names via DNS security extension (Dukhovni and
Hardaker, 2015). DANE provides an alternatives
authentication method using DNSSEC system to
store certificates and sign keys that are used by
transport layer security. DANE TLSA therefore
equip third parties CAs allowing users to have a
better control of the certificate issuance for their
domains and protect against compromise certifi-
cate. DANE foreseen as a basis for binding pub-
lic key data to domain names, since entities that
verify binding public keys are the same entities
that are responsible for managing suspicious pub-
lic keys data and domain names (Zhu et al., 2015).

2.3 Certification Authority
Authorization (CAA)

Certificate authority authorization provides addi-
tional measures to protect issuing accidental cer-
tificates (Scheitle et al., 2018). CAA resource
record type was implemented to allow owner of
the domain to identify those issuing certificate
authorities that are allowed to issue certificates
for the domain. During issuing certificates for the
domains, certificates authorities evaluate the ex-
istence of the certificates thorough animate DNS
resolving (Wei-hong et al., 2017). If records are
missing or either accidentally authorized a given
CA to issue a certificate for the domain. Conse-
quently. Certificate authority authorization pro-
vides additional measures to disallow rogue or
compromise certificates from issuance. Further-
more, DNS based authority does not prevent se-
curity threat associated with certificate author-
ities. That is presumably possible attacks may
be launch to trivially bypass the CAA checking
during issuing fraudulent certificate (Ruohonen,
2018).

Consequently, the success of the Certification
Authority Authorization (CAA) as a largest DNS
security mechanism relies on smooth cooperation
between CAs, DNS operators and domain own-
ers. Generally, DNS based extension (Aishwarya
et al., 2015); Certificate authority Authorization
(Scheitle et al., 2018); are DNS resource record
types built to assist certificate issuance and veri-
fication.

It clearly shows that reducing level of trust
associated with centralized trusted authorities in
traditional PKI system, would enormously help
to achieve stronger security, and by doing so in-

deed a cornerstone for achieving robust, and se-
cure PKI systems.

2.4 Blockchain Based PKI

Traditional PKI system is based on cen-
tralised trusted authorities to issue certificates
and authenticate users. Authentication using
blockchain is basically based on decentralised
method, with no trusted authorities (Wang et al.,
2018). Blockchain based solutions are resistance
to most of the attacks associated with current
PKI systems (Baldi et al., 2017) (Kalodner et al.,
2015). Blockchain records are immutable, temper
proof and trust (Ali et al., 2016). Trust in the tra-
ditional PKI systems rely on single authorities to
authenticate clients(Yakubov et al., 2018). Un-
like PKI system, Blockchain based systems trust
is distributed among the nodes across the entire
network of global ledger. Blockchain technology
allow an execution of arbitrary logic known as
programmable contract. Smart contract is a pro-
gram that executes on the blockchain by network
of mutually distrustful nodes without requiring
a trusted authority (Wang et al., 2018). Several
solutions are proposed based on the blockchain
technology to address the current challenges of
PKI systems namely:

NameCoin:
Namecoin (Kalodner et al., 2015) proposed

a namespace blockchain based system that pro-
vides a novel solution to the current challenges
of decentralized namespaces (Nam,). Name-
coin was first Blockchain based PKI solutions
implemented, designed to serve as a decentral-
ized DNS for bit addresses. However, one of
the major drawbacks of the namecoin solution is
that, Blockchain in the namecoin is static that
is coin is un-spendable (Kalodner et al., 2015).
Meanwhile domain names are stored in a pub-
lic ledger of every namecoin transaction ever ex-
ecuted, lack of integration with traditional DNS
such as browser adds-on usability which has re-
sulted namecoin from widely adoption and use
(Xander Lammertink, 2019).

BlockStack:
BlockStack is an implementation of a new type

of decentralised internet infrastructure focusing
on decentralized application layer of equivalent to
traditional PKI/CA system to traditional inter-
net architecture (Ali et al., 2016). Blockstack use
blockchain technology to build a domain name
system and public key infrastructure alike in a
more decentralized structure.

Using Blockstack clients can run a decentral-
ized app using Blockstack browsers and gives the
users ultimate right and ownership to control
their data (Ali et al., 2016). From one hand,
Blockstack implementation provides key revoca-
tion to execute in the Blockstack name service. In
order to verify the authenticity of the operations
in the Blockstack, there is need to download the
entire blockchain and process the data using vir-
tual chain. However, verification and authentica-
tion is not in the implementation of design of the
Blockstack (Ali et al., 2016). Essentially, Block-
stack is a project which aim to bring the trusted
nature of the Blockchain to all of the Internet. In-
stead of relying on remote, third party servers for
access to data and the Internet, Blockstack will
remove those trust points and give them back to
the users via blockchains (Dong et al.,).

IKP:
Instant Karmer PKI (IKP) is an implemen-

tation of ethereum blockchain design to enhance
the certificate transparency, participants in the
IKP are encouraged to find and report any rogue
certificates and get rewards accordingly in a de-
centralised way (Matsumoto et al., 2017). The
main aim of IKP is to rewards users for vigilance
over CAs and automate process of managing CA
misbehavior in a more decentralize manner. The
implementation was based Ethereum’s platform
to run the smart contracts. In the IKP system
domain owners and the CAs adhere to IKP con-
tract as input using domain registration policies,
which specify a list of CAs that allow to issue
certificate for the domains. CAs can get punish-
ment based on the contract reaction policy (Mat-
sumoto and Reischuk, 2016). However, the soft-
ware required to test IKP is not yet widely avail-
able (Fries, 2019). Moreover, implementation of
IKP is not practical as a result of RSA signature
verification required to update the keys which are
not in the original implementation of Ethereum
smart contracts (Fries, 2019).

2.5 Simplify payment Verification/
Light Client Nodes:

Transactions
Bloom filters
Spark Merkle Hash Tree
Challenges of Blockchain
Security
Network reliability and throughput
selfish mining
concensus breaking and

2.6 Towards a better domain
authentication system using Thin
client:

One of the biggest challenges with authledger for
deployment is that every client store the entire
blockchain that is client has to store the entire
blockchain in order to validate transactions. In
order to validate the transactions, digital curren-
cies like ethereum. This comprises and down-
loading the entire chain of blocks which it takes
sometimes and needs considerable amount of giga
space of bandwidth and storage. Thus, less re-
source intensive devices like mobile phones un-
able to verify transactions freely without trust-
ing the whole blockchain or full nodes. Simplify
payment verification is an approach use in most
of the populous blockchains such as bitcoin and
ethereum that allow light client to verify trans-
actions by having access to only block headers in
the blockchain.

The Ethereum blockchain is currently at ()
and it appears to be growing linearly at the rate
of () a month. A naive deployment of AthLedger
requires any device or client to conduct verifica-
tion to have a large storage capacity. Hence, it is
not possible for low resources devices for instance,
browser on a smart phones or thin client to have
that much available storage or capacity to handle
this task.

3 MODEL AND DESIGN GOAL

3.1 Threat Model

In this section, we describe different adversaries
capabilities: From Blockchain, to malicious client
entities that may launch a colluding attacks (be-
tween several compromised CAs).

First scenario we assume there are M full
nodes in the blockchain network, in which the en-
tire nodes with p proportions is controlled by ma-
licious attackers, and the other nodes of 1− p are
honest full nodes;the number of verification nodes
is N, among which q accounts for the verification
node is controlled by a malicious attacker, and
the other 1q proportion of the verification nodes
are honest nodes.

Additionally we assume malicious entity repli-
cate public keys as the authenticating node to
launch (Sybil attack).

Second scenario, from client server side we
assume CAs and validating authorities are ma-
licious which act arbitrarily such as binding
fake certificate. Moreover, Domain name server
(DNS) is assume to be corrupted. We assume
that malicious entities cannot collude the hash
function of the standard cryptographic protocols.

We also assume when Browser is performing
checking relevant to a CA may filter erroneous
certificates.

Eclipse attacks MItM attacks Sybil attacks
(Letz, 2019)

3.2 Entities and Architecture

Our proposed system consists of five entities de-
fined as follows:

• Certificate Authority (CA): It represents each
authorized entity to be able to issue digital
certificates in this case, to join AuthLedger to
register the information on the Blockchain.

• Domain Name Server (DNS): Maintains the
directory of the certificate owner and identity
binding.

• Browser Extension: complete domain name
Transport layer security (TLS) set up.

• Validating Authority: Put vigilance during
CA operations for suspicious certificates and
report any misbehaviour for an entity.

• Blockchain: Which contain full nodes verify
binding request and confirm request from val-
idating authorities.

• Thin Client:

As depicted in Figure 2 [1] Domain initiates
an identity binding request in the blockchain.[2]
Validating authority via full nodes verify the re-
quests. [3] A domain updated a trusted CAs in
the Blockchain. [4-5] The domain name sends a
CA list that is trusted by blockchain network to
complete certificate issuance process. [6-7] Client
initiates a secure connection through the browser-
plug-in to obtain the certificate own by the do-
main name. [8-10] Browser then requests trusted
CAs list from blockchain and compare the valid-
ity of the information obtained.

Figure 2: Entities and its Functionalities in Auth-
Ledger

4 DOMAIN NAME
AUTHENTICATION DESIGN
FOR THIN NODES

4.1 Domain Authentication

In order to achieve the entity authentication in
this paper we provide an authentication proce-
dures based on time [T] and count [C], detail pro-
cess describe below:

The identity of the binding process is broadly
divided into 3 steps:
1. The domain name send an authentication re-

quest to the blockchain.
2. After transaction confirmation, the transac-

tion and block are placed on the server side
for verification.

3. Node is verify the transaction after the ver-
ification period or number of times takes to
complete the identity binding.

4.1.1 Authentication Verification based on
Time

In time-based authentication process when the
verification reaches a specified time it owns the
domain name server and completes the binding
procedures.

As depicted in figure 3.
Time Based Domain Process: Hypothesis

A B%ORFNFKDLQ

Txreq(PkA, exmaple.com)
<latexit sha1_base64="v2RvuGznC1eMZEZc1LmyhA2ELlA=">AAACBHicbVA9SwNBEJ3zM8avREubxSAoyHFno2XExjJCokISjr3NJFmye3fu7mnCkcLGv2JjoYit+Bvs/DduPgo1Phh4vDfDzLwwEVwbz/ty5uYXFpeWcyv51bX1jc1CcetSx6liWGOxiNV1SDUKHmHNcCPwOlFIZSjwKuydjfyrW1Sax1HVDBJsStqJeJszaqwUFHaq/SBTeDPcr/SC00OCfUkTgS6L5UFQKHmuNwaZJf6UlMrFO/kBAJWg8NloxSyVGBkmqNZ130tMM6PKcCZwmG+kGhPKerSDdUsjKlE3s/ETQ7JnlRZpx8pWZMhY/TmRUan1QIa2U1LT1X+9kfifV09N+6SZ8ShJDUZssqidCmJiMkqEtLhCZsTAEsoUt7cS1qWKMmNzy9sQ/L8vz5LLI9f3XP/CpuHCBDnYgV3YBx+OoQznUIEaMLiHR3iGF+fBeXJenbdJ65wzndmGX3DevwFMoZlS</latexit><latexit sha1_base64="/RK0XcrRlgeGQG9dYuUIJpN9I58=">AAACBHicbVC7SgNBFJ2N7/hI1NJmMAgRZNm10TJiYxnBPCBZltnJ3WTIzO46M6sJSwobf8XGQhFbP8HCTj/Cb3DyKHwduHA4517uvSdIOFPacd6t3Nz8wuLS8kp+dW19o1Dc3KqrOJUUajTmsWwGRAFnEdQ00xyaiQQiAg6NoH869htXIBWLows9TMATpBuxkFGijeQXdy4GfibhclSu9v2TAwwDQRIONo3Fvl8sObYzAf5L3BkpVTavxcfrZ6HqF9/anZimAiJNOVGq5TqJ9jIiNaMcRvl2qiAhtE+60DI0IgKUl02eGOE9o3RwGEtTkcYT9ftERoRSQxGYTkF0T/32xuJ/XivV4bGXsShJNUR0uihMOdYxHieCO0wC1XxoCKGSmVsx7RFJqDa55U0I7u+X/5L6oe06tntu0rDRFMtoB+2iMnLREaqgM1RFNUTRDbpDD+jRurXurSfredqas2Yz2+gHrJcv1aCbNw==</latexit><latexit sha1_base64="/RK0XcrRlgeGQG9dYuUIJpN9I58=">AAACBHicbVC7SgNBFJ2N7/hI1NJmMAgRZNm10TJiYxnBPCBZltnJ3WTIzO46M6sJSwobf8XGQhFbP8HCTj/Cb3DyKHwduHA4517uvSdIOFPacd6t3Nz8wuLS8kp+dW19o1Dc3KqrOJUUajTmsWwGRAFnEdQ00xyaiQQiAg6NoH869htXIBWLows9TMATpBuxkFGijeQXdy4GfibhclSu9v2TAwwDQRIONo3Fvl8sObYzAf5L3BkpVTavxcfrZ6HqF9/anZimAiJNOVGq5TqJ9jIiNaMcRvl2qiAhtE+60DI0IgKUl02eGOE9o3RwGEtTkcYT9ftERoRSQxGYTkF0T/32xuJ/XivV4bGXsShJNUR0uihMOdYxHieCO0wC1XxoCKGSmVsx7RFJqDa55U0I7u+X/5L6oe06tntu0rDRFMtoB+2iMnLREaqgM1RFNUTRDbpDD+jRurXurSfredqas2Yz2+gHrJcv1aCbNw==</latexit><latexit sha1_base64="oSoZPewt3V9J8cGB2YL+hy/DNfQ=">AAACBHicbVDLSsNAFJ3UV62vqstuBotQQULiRpcVNy4r9AVtCJPpTTt0JokzE2kJXbjxV9y4UMStH+HOv3H6WGjrgQuHc+7l3nuChDOlHefbyq2tb2xu5bcLO7t7+wfFw6OmilNJoUFjHst2QBRwFkFDM82hnUggIuDQCoY3U7/1AFKxOKrrcQKeIP2IhYwSbSS/WKqP/EzC/aRSG/rX5xhGgiQcbBqLM79YdmxnBrxK3AUpowVqfvGr24tpKiDSlBOlOq6TaC8jUjPKYVLopgoSQoekDx1DIyJAednsiQk+NUoPh7E0FWk8U39PZEQoNRaB6RRED9SyNxX/8zqpDq+8jEVJqiGi80VhyrGO8TQR3GMSqOZjQwiVzNyK6YBIQrXJrWBCcJdfXiXNC9t1bPfOKVftRRx5VEInqIJcdImq6BbVUANR9Iie0St6s56sF+vd+pi35qzFzDH6A+vzB6iul10=</latexit>

8QFRQƉUP�ELQGLQJ�UHTXHVW
PkA < � > example.com

<latexit sha1_base64="kAAwL60dN96Drn/sN71bk6Y6+U0=">AAAB/XicbVDJSgNBEK1xS4xbXG5eGoPgxWHGix5EIl48RjALJCH0dCpJk+6ZobtHjCHop3jxoIhX/8Ob3yD4DXaWgyY+KHi8V0VVvSAWXBvP+3Tm5hcWl1Lp5czK6tr6RnZzq6SjRDEsskhEqhJQjYKHWDTcCKzECqkMBJaD7sXQL9+g0jwKr00vxrqk7ZC3OKPGSo3sTqHbOCenh2cEb6mMBbosko1sznO9Ecgs8Sckl099fz0AQKGR/ag1I5ZIDA0TVOuq78Wm3qfKcCZwkKklGmPKurSNVUtDKlHX+6PrB2TfKk3SipSt0JCR+nuiT6XWPRnYTklNR097Q/E/r5qY1km9z8M4MRiy8aJWIoiJyDAK0uQKmRE9SyhT3N5KWIcqyowNLGND8KdfniWlI9f3XP/KpuHCGGnYhT04AB+OIQ+XUIAiMLiDR3iGF+feeXJenbdx65wzmdmGP3DefwAoOJaW</latexit><latexit sha1_base64="lNLLybCJYf8UWPkklXMWwkEEZyQ=">AAAB/XicbVC7SgNBFJ2Nj8T4Wh+dzWBQbFx2bbQQidhYRjAPSJYwO7mbDJnZXWZmxRiCv2JjoYit32Br5zcIfoOTR6GJBy4czrmXe+8JEs6Udt1PKzM3v7CYzS3ll1dW19btjc2KilNJoUxjHstaQBRwFkFZM82hlkggIuBQDboXQ796A1KxOLrWvQR8QdoRCxkl2khNe7vUbZ7j08MzDLdEJBwcGoumXXAddwQ8S7wJKRSz31/Jfua91LQ/Gq2YpgIiTTlRqu65ifb7RGpGOQzyjVRBQmiXtKFuaEQEKL8/un6A94zSwmEsTUUaj9TfE30ilOqJwHQKojtq2huK/3n1VIcnfp9FSaohouNFYcqxjvEwCtxiEqjmPUMIlczcimmHSEK1CSxvQvCmX54llSPHcx3vyqThoDFyaAftogPkoWNURJeohMqIojv0gJ7Qs3VvPVov1uu4NWNNZrbQH1hvP1Qal3c=</latexit><latexit sha1_base64="lNLLybCJYf8UWPkklXMWwkEEZyQ=">AAAB/XicbVC7SgNBFJ2Nj8T4Wh+dzWBQbFx2bbQQidhYRjAPSJYwO7mbDJnZXWZmxRiCv2JjoYit32Br5zcIfoOTR6GJBy4czrmXe+8JEs6Udt1PKzM3v7CYzS3ll1dW19btjc2KilNJoUxjHstaQBRwFkFZM82hlkggIuBQDboXQ796A1KxOLrWvQR8QdoRCxkl2khNe7vUbZ7j08MzDLdEJBwcGoumXXAddwQ8S7wJKRSz31/Jfua91LQ/Gq2YpgIiTTlRqu65ifb7RGpGOQzyjVRBQmiXtKFuaEQEKL8/un6A94zSwmEsTUUaj9TfE30ilOqJwHQKojtq2huK/3n1VIcnfp9FSaohouNFYcqxjvEwCtxiEqjmPUMIlczcimmHSEK1CSxvQvCmX54llSPHcx3vyqThoDFyaAftogPkoWNURJeohMqIojv0gJ7Qs3VvPVov1uu4NWNNZrbQH1hvP1Qal3c=</latexit><latexit sha1_base64="kz9xtRBnG5AmhgZz6Rq8M4MnC00=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwY0jc6EKk4sZlBfuANoTJ9KYdOpOEmYlYQ/FX3LhQxK3/4c6/cdpmoa0HLhzOuZd77wlTzpR23W9rYXFpeWW1tFZe39jc2rZ3dhsqySSFOk14IlshUcBZDHXNNIdWKoGIkEMzHFyP/eY9SMWS+E4PU/AF6cUsYpRoIwX2fm0QXOGLk0sMD0SkHByaiMCuuI47AZ4nXkEqqEAtsL863YRmAmJNOVGq7bmp9nMiNaMcRuVOpiAldEB60DY0JgKUn0+uH+Ejo3RxlEhTscYT9fdEToRSQxGaTkF0X816Y/E/r53p6NzPWZxmGmI6XRRlHOsEj6PAXSaBaj40hFDJzK2Y9okkVJvAyiYEb/bledI4dTzX8W7dStUp4iihA3SIjpGHzlAV3aAaqiOKHtEzekVv1pP1Yr1bH9PWBauY2UN/YH3+AJ0gk/Y=</latexit>

Get blockchain info
of binding request

(PkA, exmaple.com,BlockInfo)
<latexit sha1_base64="633ZiNeFxpQz7Ox3vJmBYMg30Xc=">AAACB3icbVC7SgNBFL0b3/EVtRRkUAQFWXZttPTRaBfBmEAMYXZyNw6ZxzIzK4ZgZ+Mn2FnbWChi6y/Y+TdOEgtfBy4czrmXe+9JMsGti6KPoDAyOjY+MTlVnJ6ZnZsvLSyeWZ0bhhWmhTa1hFoUXGHFcSewlhmkMhFYTTqHfb96icZyrU5dN8OGpG3FU86o81KztLJR7jT3twheSZoJDJmWW+RAaNY5VqnebJbWojAagPwl8RdZ25u7u7sHgHKz9H7e0iyXqBwT1Np6HGWu0aPGcSbwunieW8wo69A21j1VVKJt9AZ/XJN1r7RIqo0v5chA/T7Ro9Larkx8p6Tuwv72+uJ/Xj136W6jx1WWO1RsuCjNBXGa9EMhLW6QOdH1hDLD/a2EXVBDmfPRFX0I8e+X/5Kz7TCOwvjEpxHCEJOwDKuwATHswB4cQRkqwOAGHuAJnoPb4DF4CV6HrYXga2YJfiB4+wSHLpnz</latexit><latexit sha1_base64="/spPsOHSZ6C8HEPqdk+Zky88azQ=">AAACB3icbVDLSgNBEJyNrxg1Rj0KMiiCgiy7XvQY9aK3COYBMYTZSa8ZMo9lZlYMITcvfoJ+ghcPinj1F7z5N04eB00saCiquunuihLOjA2Cby8zMzs3v5BdzC0tr+RXC2vrFaNSTaFMFVe6FhEDnEkoW2Y51BINREQcqlHnbOBXb0EbpuSV7SbQEORGsphRYp3ULGztlTrNkwMMd4IkHHyqxAE+5Yp2LmSs9puFncAPhsDTJByTnWL+cYCnUrPwdd1SNBUgLeXEmHoYJLbRI9oyyqGfu04NJIR2yA3UHZVEgGn0hn/08a5TWjhW2pW0eKj+nugRYUxXRK5TENs2k95A/M+rpzY+bvSYTFILko4WxSnHVuFBKLjFNFDLu44Qqpm7FdM20YRaF13OhRBOvjxNKod+GPjhpUvDRyNk0SbaRnsoREeoiM5RCZURRffoGb2iN+/Be/HevY9Ra8Ybz2ygP/A+fwDka5u4</latexit><latexit sha1_base64="/spPsOHSZ6C8HEPqdk+Zky88azQ=">AAACB3icbVDLSgNBEJyNrxg1Rj0KMiiCgiy7XvQY9aK3COYBMYTZSa8ZMo9lZlYMITcvfoJ+ghcPinj1F7z5N04eB00saCiquunuihLOjA2Cby8zMzs3v5BdzC0tr+RXC2vrFaNSTaFMFVe6FhEDnEkoW2Y51BINREQcqlHnbOBXb0EbpuSV7SbQEORGsphRYp3ULGztlTrNkwMMd4IkHHyqxAE+5Yp2LmSs9puFncAPhsDTJByTnWL+cYCnUrPwdd1SNBUgLeXEmHoYJLbRI9oyyqGfu04NJIR2yA3UHZVEgGn0hn/08a5TWjhW2pW0eKj+nugRYUxXRK5TENs2k95A/M+rpzY+bvSYTFILko4WxSnHVuFBKLjFNFDLu44Qqpm7FdM20YRaF13OhRBOvjxNKod+GPjhpUvDRyNk0SbaRnsoREeoiM5RCZURRffoGb2iN+/Be/HevY9Ra8Ybz2ygP/A+fwDka5u4</latexit><latexit sha1_base64="RN/mO3zWkWcRRDmhXzupxD3dzC8=">AAACB3icbVDLSgNBEJz1bXytehRkMAgRwrLrRY9RL3qLYDSQLGF20huHzGOZmRVD8ObFX/HiQRGv/oI3/8bJ46CJBQ1FVTfdXUnGmbFh+O3NzM7NLywuLRdWVtfWN/zNrWujck2hRhVXup4QA5xJqFlmOdQzDUQkHG6S7tnAv7kDbZiSV7aXQSxIR7KUUWKd1PJ3S9Vu66SM4V6QjENAlSjjU65o90Km6qDlF8MgHAJPk2hMimiMasv/arYVzQVISzkxphGFmY37RFtGOTwUmrmBjNAu6UDDUUkEmLg//OMB7zuljVOlXUmLh+rviT4RxvRE4joFsbdm0huI/3mN3KbHcZ/JLLcg6WhRmnNsFR6EgttMA7W85wihmrlbMb0lmlDroiu4EKLJl6fJ9WEQhUF0GRYrwTiOJbSD9lAJRegIVdA5qqIaougRPaNX9OY9eS/eu/cxap3xxjPb6A+8zx+pDJfT</latexit>

Get blockchain info
 of binding request

(PkA, exmaple.com,BlockInfo)
<latexit sha1_base64="633ZiNeFxpQz7Ox3vJmBYMg30Xc=">AAACB3icbVC7SgNBFL0b3/EVtRRkUAQFWXZttPTRaBfBmEAMYXZyNw6ZxzIzK4ZgZ+Mn2FnbWChi6y/Y+TdOEgtfBy4czrmXe+9JMsGti6KPoDAyOjY+MTlVnJ6ZnZsvLSyeWZ0bhhWmhTa1hFoUXGHFcSewlhmkMhFYTTqHfb96icZyrU5dN8OGpG3FU86o81KztLJR7jT3twheSZoJDJmWW+RAaNY5VqnebJbWojAagPwl8RdZ25u7u7sHgHKz9H7e0iyXqBwT1Np6HGWu0aPGcSbwunieW8wo69A21j1VVKJt9AZ/XJN1r7RIqo0v5chA/T7Ro9Larkx8p6Tuwv72+uJ/Xj136W6jx1WWO1RsuCjNBXGa9EMhLW6QOdH1hDLD/a2EXVBDmfPRFX0I8e+X/5Kz7TCOwvjEpxHCEJOwDKuwATHswB4cQRkqwOAGHuAJnoPb4DF4CV6HrYXga2YJfiB4+wSHLpnz</latexit><latexit sha1_base64="/spPsOHSZ6C8HEPqdk+Zky88azQ=">AAACB3icbVDLSgNBEJyNrxg1Rj0KMiiCgiy7XvQY9aK3COYBMYTZSa8ZMo9lZlYMITcvfoJ+ghcPinj1F7z5N04eB00saCiquunuihLOjA2Cby8zMzs3v5BdzC0tr+RXC2vrFaNSTaFMFVe6FhEDnEkoW2Y51BINREQcqlHnbOBXb0EbpuSV7SbQEORGsphRYp3ULGztlTrNkwMMd4IkHHyqxAE+5Yp2LmSs9puFncAPhsDTJByTnWL+cYCnUrPwdd1SNBUgLeXEmHoYJLbRI9oyyqGfu04NJIR2yA3UHZVEgGn0hn/08a5TWjhW2pW0eKj+nugRYUxXRK5TENs2k95A/M+rpzY+bvSYTFILko4WxSnHVuFBKLjFNFDLu44Qqpm7FdM20YRaF13OhRBOvjxNKod+GPjhpUvDRyNk0SbaRnsoREeoiM5RCZURRffoGb2iN+/Be/HevY9Ra8Ybz2ygP/A+fwDka5u4</latexit><latexit sha1_base64="/spPsOHSZ6C8HEPqdk+Zky88azQ=">AAACB3icbVDLSgNBEJyNrxg1Rj0KMiiCgiy7XvQY9aK3COYBMYTZSa8ZMo9lZlYMITcvfoJ+ghcPinj1F7z5N04eB00saCiquunuihLOjA2Cby8zMzs3v5BdzC0tr+RXC2vrFaNSTaFMFVe6FhEDnEkoW2Y51BINREQcqlHnbOBXb0EbpuSV7SbQEORGsphRYp3ULGztlTrNkwMMd4IkHHyqxAE+5Yp2LmSs9puFncAPhsDTJByTnWL+cYCnUrPwdd1SNBUgLeXEmHoYJLbRI9oyyqGfu04NJIR2yA3UHZVEgGn0hn/08a5TWjhW2pW0eKj+nugRYUxXRK5TENs2k95A/M+rpzY+bvSYTFILko4WxSnHVuFBKLjFNFDLu44Qqpm7FdM20YRaF13OhRBOvjxNKod+GPjhpUvDRyNk0SbaRnsoREeoiM5RCZURRffoGb2iN+/Be/HevY9Ra8Ybz2ygP/A+fwDka5u4</latexit><latexit sha1_base64="RN/mO3zWkWcRRDmhXzupxD3dzC8=">AAACB3icbVDLSgNBEJz1bXytehRkMAgRwrLrRY9RL3qLYDSQLGF20huHzGOZmRVD8ObFX/HiQRGv/oI3/8bJ46CJBQ1FVTfdXUnGmbFh+O3NzM7NLywuLRdWVtfWN/zNrWujck2hRhVXup4QA5xJqFlmOdQzDUQkHG6S7tnAv7kDbZiSV7aXQSxIR7KUUWKd1PJ3S9Vu66SM4V6QjENAlSjjU65o90Km6qDlF8MgHAJPk2hMimiMasv/arYVzQVISzkxphGFmY37RFtGOTwUmrmBjNAu6UDDUUkEmLg//OMB7zuljVOlXUmLh+rviT4RxvRE4joFsbdm0huI/3mN3KbHcZ/JLLcg6WhRmnNsFR6EgttMA7W85wihmrlbMb0lmlDroiu4EKLJl6fJ9WEQhUF0GRYrwTiOJbSD9lAJRegIVdA5qqIaougRPaNX9OY9eS/eu/cxap3xxjPb6A+8zx+pDJfT</latexit>

2.Put Vcode
at

exmaple.com/
path

Visit exmaple.com/path

vcode

���$FFRUGLQJ�WR�
WKH�LQIR�RI�

%LQGLQJ�UHTXHVW��
JHQHUDWH�SDWK�
DQG�&KDO��WKHQ�
FRPSDUH�WKH�
9FRGH�ZLWK�&KDO�

��9HULI\�
FRUUHFWQHVV�RI�
9FRGH

[Pass]

[Not Pass]

Duration
T

The binding
lasts T

duration, if
there is no
report, then
the binding
completes.

Txrep(PkB , PkA, example.com)
<latexit sha1_base64="oiK/v2m/KJchv80icjbttjQFEY0=">AAACCXicbVC7SgNBFL3rM8bXqqXNoAgRZNm10TJqYxkhL4hhmZ3c6JCZ3WVmVg1LWht/xcZCESvBP7Dzb5w8Co0euJfDOfcyc0+UCq6N7385M7Nz8wuLhaXi8srq2rq7sVnXSaYY1lgiEtWMqEbBY6wZbgQ2U4VURgIbUe9s6DduUGmexFXTT7Et6VXMu5xRY6XQJdW7MFeYDkqVXnh6QGw/OcA7KlOBHkvkfuju+p4/AvlLggnZLW/cyncAqITu52UnYZnE2DBBtW4FfmraOVWGM4GD4mWmMaWsR6+wZWlMJep2PrpkQPas0iHdRNmKDRmpPzdyKrXuy8hOSmqu9bQ3FP/zWpnpHrdzHqeZwZiNH+pmgpiEDGMhHa6QGdG3hDLF7V8Ju6aKMmPDK9oQgumT/5L6oRf4XnBh0/BgjAJsww6UIIAjKMM5VKAGDO7hEZ7hxXlwnpxX5208OuNMdrbgF5yPb4d1mws=</latexit><latexit sha1_base64="mW/wYPPTW0LdEhYI8QfngaEAMqI=">AAACCXicbVC7TgMxEPTxJjxyQEljgZBAik53NFDyaCiDRAApiU4+ZxOs2D7L9gHRKS0Nv0JDAUK09BR08BF8A86jgISRdjWa2ZW9kyjOjA3DT29icmp6ZnZuvrCwuLRc9FdWz02aaQoVmvJUXybEAGcSKpZZDpdKAxEJh4ukfdzzL65BG5bKM9tRUBekJVmTUWKdFPv47DbONajudrkdH5Ww64cluCVCcQhoKnZifzMMwj7wOImGZPNg5UZ8vX8Xy7H/UWukNBMgLeXEmGoUKlvPibaMcugWapkBRWibtKDqqCQCTD3vX9LFW05p4GaqXUmL++rvjZwIYzoicZOC2Csz6vXE/7xqZpv79ZxJlVmQdPBQM+PYprgXC24wDdTyjiOEaub+iukV0YRaF17BhRCNnjxOzneDKAyiU5dGgAaYQ+toA22jCO2hA3SCyqiCKLpDD+gJPXv33qP34r0ORie84c4a+gPv7QcQg5zw</latexit><latexit sha1_base64="mW/wYPPTW0LdEhYI8QfngaEAMqI=">AAACCXicbVC7TgMxEPTxJjxyQEljgZBAik53NFDyaCiDRAApiU4+ZxOs2D7L9gHRKS0Nv0JDAUK09BR08BF8A86jgISRdjWa2ZW9kyjOjA3DT29icmp6ZnZuvrCwuLRc9FdWz02aaQoVmvJUXybEAGcSKpZZDpdKAxEJh4ukfdzzL65BG5bKM9tRUBekJVmTUWKdFPv47DbONajudrkdH5Ww64cluCVCcQhoKnZifzMMwj7wOImGZPNg5UZ8vX8Xy7H/UWukNBMgLeXEmGoUKlvPibaMcugWapkBRWibtKDqqCQCTD3vX9LFW05p4GaqXUmL++rvjZwIYzoicZOC2Csz6vXE/7xqZpv79ZxJlVmQdPBQM+PYprgXC24wDdTyjiOEaub+iukV0YRaF17BhRCNnjxOzneDKAyiU5dGgAaYQ+toA22jCO2hA3SCyqiCKLpDD+gJPXv33qP34r0ORie84c4a+gPv7QcQg5zw</latexit><latexit sha1_base64="vP13iUkaZCRFUnpKFcQJwf3Hj3Y=">AAACCXicbVC7TsMwFHXKq5RXgZHFokIqUhUlLDAWWBiL1JfURpHj3rRW7SSyHdQq6srCr7AwgBArf8DG3+A+Bmg50r06Oude2fcECWdKO863lVtb39jcym8Xdnb39g+Kh0dNFaeSQoPGPJbtgCjgLIKGZppDO5FARMChFQxvp37rAaRicVTX4wQ8QfoRCxkl2kh+EddHfiYhmZRrQ/+mgk2/rsCIiISDTWNx7hdLju3MgFeJuyAltEDNL351ezFNBUSacqJUx3US7WVEakY5TArdVEFC6JD0oWNoRAQoL5tdMsFnRunhMJamIo1n6u+NjAilxiIwk4LogVr2puJ/XifV4ZWXsShJNUR0/lCYcqxjPI0F95gEqvnYEEIlM3/FdEAkodqEVzAhuMsnr5Lmhe06tnvvlKr2Io48OkGnqIxcdImq6A7VUANR9Iie0St6s56sF+vd+piP5qzFzjH6A+vzB+OCmRY=</latexit>

Domain Validator

1.Pk and
Domain
Name

Figure 3: Time Based Domain Authentication

Suppose A owns key fairs and domain name e.g
example.com such that: (PkA∥SkA∥Dmexam pl e.com);
verifier B with the following parameters of key
fairs: (PkB∥SkB)
Transaction Type
In this scenario, the following three types of trans-
actions are:
– Binding transaction request: T xreq

(PkA∥Dmexam ple.com) binder issues a binding
request containing its own public key PkA and
domain name example.com.

– Report transaction: T xre p while processing
the binding, the verification node finds that
the binder’s authentication information is in-
correct. Transaction can be reported and re-
jected.

– Verify transaction: T xvr f reporting transac-
tion can be verified by the validator.

Binding Procedures: The specific process of bind-
ing is shown in Figure 3, which includes the fol-
lowing steps:
• A Publishes the binding transaction T xreq

(PkA,example.com) to the blockchain.
• Validator B accesses the domain name

to verify that A operates correctly. If
not, sends a report transaction T xre p
(PkB,PkA,example.com) to the blockchain.

• After A maintains the verification time T, the
verification service can be stopped and the
binding is completed.

4.1.2 Authentication Verification Based on
Count.

In count based authentication system verification
process reaches the specified number of counts to

complete the identity binding as shown in figure
4.

A B%ORFNFKDLQ

Txreq(PkA, exmaple.com)
<latexit sha1_base64="v2RvuGznC1eMZEZc1LmyhA2ELlA=">AAACBHicbVA9SwNBEJ3zM8avREubxSAoyHFno2XExjJCokISjr3NJFmye3fu7mnCkcLGv2JjoYit+Bvs/DduPgo1Phh4vDfDzLwwEVwbz/ty5uYXFpeWcyv51bX1jc1CcetSx6liWGOxiNV1SDUKHmHNcCPwOlFIZSjwKuydjfyrW1Sax1HVDBJsStqJeJszaqwUFHaq/SBTeDPcr/SC00OCfUkTgS6L5UFQKHmuNwaZJf6UlMrFO/kBAJWg8NloxSyVGBkmqNZ130tMM6PKcCZwmG+kGhPKerSDdUsjKlE3s/ETQ7JnlRZpx8pWZMhY/TmRUan1QIa2U1LT1X+9kfifV09N+6SZ8ShJDUZssqidCmJiMkqEtLhCZsTAEsoUt7cS1qWKMmNzy9sQ/L8vz5LLI9f3XP/CpuHCBDnYgV3YBx+OoQznUIEaMLiHR3iGF+fBeXJenbdJ65wzndmGX3DevwFMoZlS</latexit><latexit sha1_base64="/RK0XcrRlgeGQG9dYuUIJpN9I58=">AAACBHicbVC7SgNBFJ2N7/hI1NJmMAgRZNm10TJiYxnBPCBZltnJ3WTIzO46M6sJSwobf8XGQhFbP8HCTj/Cb3DyKHwduHA4517uvSdIOFPacd6t3Nz8wuLS8kp+dW19o1Dc3KqrOJUUajTmsWwGRAFnEdQ00xyaiQQiAg6NoH869htXIBWLows9TMATpBuxkFGijeQXdy4GfibhclSu9v2TAwwDQRIONo3Fvl8sObYzAf5L3BkpVTavxcfrZ6HqF9/anZimAiJNOVGq5TqJ9jIiNaMcRvl2qiAhtE+60DI0IgKUl02eGOE9o3RwGEtTkcYT9ftERoRSQxGYTkF0T/32xuJ/XivV4bGXsShJNUR0uihMOdYxHieCO0wC1XxoCKGSmVsx7RFJqDa55U0I7u+X/5L6oe06tntu0rDRFMtoB+2iMnLREaqgM1RFNUTRDbpDD+jRurXurSfredqas2Yz2+gHrJcv1aCbNw==</latexit><latexit sha1_base64="/RK0XcrRlgeGQG9dYuUIJpN9I58=">AAACBHicbVC7SgNBFJ2N7/hI1NJmMAgRZNm10TJiYxnBPCBZltnJ3WTIzO46M6sJSwobf8XGQhFbP8HCTj/Cb3DyKHwduHA4517uvSdIOFPacd6t3Nz8wuLS8kp+dW19o1Dc3KqrOJUUajTmsWwGRAFnEdQ00xyaiQQiAg6NoH869htXIBWLows9TMATpBuxkFGijeQXdy4GfibhclSu9v2TAwwDQRIONo3Fvl8sObYzAf5L3BkpVTavxcfrZ6HqF9/anZimAiJNOVGq5TqJ9jIiNaMcRvl2qiAhtE+60DI0IgKUl02eGOE9o3RwGEtTkcYT9ftERoRSQxGYTkF0T/32xuJ/XivV4bGXsShJNUR0uihMOdYxHieCO0wC1XxoCKGSmVsx7RFJqDa55U0I7u+X/5L6oe06tntu0rDRFMtoB+2iMnLREaqgM1RFNUTRDbpDD+jRurXurSfredqas2Yz2+gHrJcv1aCbNw==</latexit><latexit sha1_base64="oSoZPewt3V9J8cGB2YL+hy/DNfQ=">AAACBHicbVDLSsNAFJ3UV62vqstuBotQQULiRpcVNy4r9AVtCJPpTTt0JokzE2kJXbjxV9y4UMStH+HOv3H6WGjrgQuHc+7l3nuChDOlHefbyq2tb2xu5bcLO7t7+wfFw6OmilNJoUFjHst2QBRwFkFDM82hnUggIuDQCoY3U7/1AFKxOKrrcQKeIP2IhYwSbSS/WKqP/EzC/aRSG/rX5xhGgiQcbBqLM79YdmxnBrxK3AUpowVqfvGr24tpKiDSlBOlOq6TaC8jUjPKYVLopgoSQoekDx1DIyJAednsiQk+NUoPh7E0FWk8U39PZEQoNRaB6RRED9SyNxX/8zqpDq+8jEVJqiGi80VhyrGO8TQR3GMSqOZjQwiVzNyK6YBIQrXJrWBCcJdfXiXNC9t1bPfOKVftRRx5VEInqIJcdImq6BbVUANR9Iie0St6s56sF+vd+pi35qzFzDH6A+vzB6iul10=</latexit>

8QFRQƉUP�ELQGLQJ�UHTXHVW
PkA < � > example.com

<latexit sha1_base64="kAAwL60dN96Drn/sN71bk6Y6+U0=">AAAB/XicbVDJSgNBEK1xS4xbXG5eGoPgxWHGix5EIl48RjALJCH0dCpJk+6ZobtHjCHop3jxoIhX/8Ob3yD4DXaWgyY+KHi8V0VVvSAWXBvP+3Tm5hcWl1Lp5czK6tr6RnZzq6SjRDEsskhEqhJQjYKHWDTcCKzECqkMBJaD7sXQL9+g0jwKr00vxrqk7ZC3OKPGSo3sTqHbOCenh2cEb6mMBbosko1sznO9Ecgs8Sckl099fz0AQKGR/ag1I5ZIDA0TVOuq78Wm3qfKcCZwkKklGmPKurSNVUtDKlHX+6PrB2TfKk3SipSt0JCR+nuiT6XWPRnYTklNR097Q/E/r5qY1km9z8M4MRiy8aJWIoiJyDAK0uQKmRE9SyhT3N5KWIcqyowNLGND8KdfniWlI9f3XP/KpuHCGGnYhT04AB+OIQ+XUIAiMLiDR3iGF+feeXJenbdx65wzmdmGP3DefwAoOJaW</latexit><latexit sha1_base64="lNLLybCJYf8UWPkklXMWwkEEZyQ=">AAAB/XicbVC7SgNBFJ2Nj8T4Wh+dzWBQbFx2bbQQidhYRjAPSJYwO7mbDJnZXWZmxRiCv2JjoYit32Br5zcIfoOTR6GJBy4czrmXe+8JEs6Udt1PKzM3v7CYzS3ll1dW19btjc2KilNJoUxjHstaQBRwFkFZM82hlkggIuBQDboXQ796A1KxOLrWvQR8QdoRCxkl2khNe7vUbZ7j08MzDLdEJBwcGoumXXAddwQ8S7wJKRSz31/Jfua91LQ/Gq2YpgIiTTlRqu65ifb7RGpGOQzyjVRBQmiXtKFuaEQEKL8/un6A94zSwmEsTUUaj9TfE30ilOqJwHQKojtq2huK/3n1VIcnfp9FSaohouNFYcqxjvEwCtxiEqjmPUMIlczcimmHSEK1CSxvQvCmX54llSPHcx3vyqThoDFyaAftogPkoWNURJeohMqIojv0gJ7Qs3VvPVov1uu4NWNNZrbQH1hvP1Qal3c=</latexit><latexit sha1_base64="lNLLybCJYf8UWPkklXMWwkEEZyQ=">AAAB/XicbVC7SgNBFJ2Nj8T4Wh+dzWBQbFx2bbQQidhYRjAPSJYwO7mbDJnZXWZmxRiCv2JjoYit32Br5zcIfoOTR6GJBy4czrmXe+8JEs6Udt1PKzM3v7CYzS3ll1dW19btjc2KilNJoUxjHstaQBRwFkFZM82hlkggIuBQDboXQ796A1KxOLrWvQR8QdoRCxkl2khNe7vUbZ7j08MzDLdEJBwcGoumXXAddwQ8S7wJKRSz31/Jfua91LQ/Gq2YpgIiTTlRqu65ifb7RGpGOQzyjVRBQmiXtKFuaEQEKL8/un6A94zSwmEsTUUaj9TfE30ilOqJwHQKojtq2huK/3n1VIcnfp9FSaohouNFYcqxjvEwCtxiEqjmPUMIlczcimmHSEK1CSxvQvCmX54llSPHcx3vyqThoDFyaAftogPkoWNURJeohMqIojv0gJ7Qs3VvPVov1uu4NWNNZrbQH1hvP1Qal3c=</latexit><latexit sha1_base64="kz9xtRBnG5AmhgZz6Rq8M4MnC00=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwY0jc6EKk4sZlBfuANoTJ9KYdOpOEmYlYQ/FX3LhQxK3/4c6/cdpmoa0HLhzOuZd77wlTzpR23W9rYXFpeWW1tFZe39jc2rZ3dhsqySSFOk14IlshUcBZDHXNNIdWKoGIkEMzHFyP/eY9SMWS+E4PU/AF6cUsYpRoIwX2fm0QXOGLk0sMD0SkHByaiMCuuI47AZ4nXkEqqEAtsL863YRmAmJNOVGq7bmp9nMiNaMcRuVOpiAldEB60DY0JgKUn0+uH+Ejo3RxlEhTscYT9fdEToRSQxGaTkF0X816Y/E/r53p6NzPWZxmGmI6XRRlHOsEj6PAXSaBaj40hFDJzK2Y9okkVJvAyiYEb/bledI4dTzX8W7dStUp4iihA3SIjpGHzlAV3aAaqiOKHtEzekVv1pP1Yr1bH9PWBauY2UN/YH3+AJ0gk/Y=</latexit>

*HW�EORFNFKDLQ�LQIR
�RI�ELQGLQJ�UHTXHVW

1.Pk and
Domain Name

(PkA, exmaple.com,BlockInfo)
<latexit sha1_base64="633ZiNeFxpQz7Ox3vJmBYMg30Xc=">AAACB3icbVC7SgNBFL0b3/EVtRRkUAQFWXZttPTRaBfBmEAMYXZyNw6ZxzIzK4ZgZ+Mn2FnbWChi6y/Y+TdOEgtfBy4czrmXe+9JMsGti6KPoDAyOjY+MTlVnJ6ZnZsvLSyeWZ0bhhWmhTa1hFoUXGHFcSewlhmkMhFYTTqHfb96icZyrU5dN8OGpG3FU86o81KztLJR7jT3twheSZoJDJmWW+RAaNY5VqnebJbWojAagPwl8RdZ25u7u7sHgHKz9H7e0iyXqBwT1Np6HGWu0aPGcSbwunieW8wo69A21j1VVKJt9AZ/XJN1r7RIqo0v5chA/T7Ro9Larkx8p6Tuwv72+uJ/Xj136W6jx1WWO1RsuCjNBXGa9EMhLW6QOdH1hDLD/a2EXVBDmfPRFX0I8e+X/5Kz7TCOwvjEpxHCEJOwDKuwATHswB4cQRkqwOAGHuAJnoPb4DF4CV6HrYXga2YJfiB4+wSHLpnz</latexit><latexit sha1_base64="/spPsOHSZ6C8HEPqdk+Zky88azQ=">AAACB3icbVDLSgNBEJyNrxg1Rj0KMiiCgiy7XvQY9aK3COYBMYTZSa8ZMo9lZlYMITcvfoJ+ghcPinj1F7z5N04eB00saCiquunuihLOjA2Cby8zMzs3v5BdzC0tr+RXC2vrFaNSTaFMFVe6FhEDnEkoW2Y51BINREQcqlHnbOBXb0EbpuSV7SbQEORGsphRYp3ULGztlTrNkwMMd4IkHHyqxAE+5Yp2LmSs9puFncAPhsDTJByTnWL+cYCnUrPwdd1SNBUgLeXEmHoYJLbRI9oyyqGfu04NJIR2yA3UHZVEgGn0hn/08a5TWjhW2pW0eKj+nugRYUxXRK5TENs2k95A/M+rpzY+bvSYTFILko4WxSnHVuFBKLjFNFDLu44Qqpm7FdM20YRaF13OhRBOvjxNKod+GPjhpUvDRyNk0SbaRnsoREeoiM5RCZURRffoGb2iN+/Be/HevY9Ra8Ybz2ygP/A+fwDka5u4</latexit><latexit sha1_base64="/spPsOHSZ6C8HEPqdk+Zky88azQ=">AAACB3icbVDLSgNBEJyNrxg1Rj0KMiiCgiy7XvQY9aK3COYBMYTZSa8ZMo9lZlYMITcvfoJ+ghcPinj1F7z5N04eB00saCiquunuihLOjA2Cby8zMzs3v5BdzC0tr+RXC2vrFaNSTaFMFVe6FhEDnEkoW2Y51BINREQcqlHnbOBXb0EbpuSV7SbQEORGsphRYp3ULGztlTrNkwMMd4IkHHyqxAE+5Yp2LmSs9puFncAPhsDTJByTnWL+cYCnUrPwdd1SNBUgLeXEmHoYJLbRI9oyyqGfu04NJIR2yA3UHZVEgGn0hn/08a5TWjhW2pW0eKj+nugRYUxXRK5TENs2k95A/M+rpzY+bvSYTFILko4WxSnHVuFBKLjFNFDLu44Qqpm7FdM20YRaF13OhRBOvjxNKod+GPjhpUvDRyNk0SbaRnsoREeoiM5RCZURRffoGb2iN+/Be/HevY9Ra8Ybz2ygP/A+fwDka5u4</latexit><latexit sha1_base64="RN/mO3zWkWcRRDmhXzupxD3dzC8=">AAACB3icbVDLSgNBEJz1bXytehRkMAgRwrLrRY9RL3qLYDSQLGF20huHzGOZmRVD8ObFX/HiQRGv/oI3/8bJ46CJBQ1FVTfdXUnGmbFh+O3NzM7NLywuLRdWVtfWN/zNrWujck2hRhVXup4QA5xJqFlmOdQzDUQkHG6S7tnAv7kDbZiSV7aXQSxIR7KUUWKd1PJ3S9Vu66SM4V6QjENAlSjjU65o90Km6qDlF8MgHAJPk2hMimiMasv/arYVzQVISzkxphGFmY37RFtGOTwUmrmBjNAu6UDDUUkEmLg//OMB7zuljVOlXUmLh+rviT4RxvRE4joFsbdm0huI/3mN3KbHcZ/JLLcg6WhRmnNsFR6EgttMA7W85wihmrlbMb0lmlDroiu4EKLJl6fJ9WEQhUF0GRYrwTiOJbSD9lAJRegIVdA5qqIaougRPaNX9OY9eS/eu/cxap3xxjPb6A+8zx+pDJfT</latexit>

*HW�EORFNFKDLQ�LQIR
�RI�ELQGLQJ�UHTXHVW

(PkA, exmaple.com,BlockInfo)
<latexit sha1_base64="633ZiNeFxpQz7Ox3vJmBYMg30Xc=">AAACB3icbVC7SgNBFL0b3/EVtRRkUAQFWXZttPTRaBfBmEAMYXZyNw6ZxzIzK4ZgZ+Mn2FnbWChi6y/Y+TdOEgtfBy4czrmXe+9JMsGti6KPoDAyOjY+MTlVnJ6ZnZsvLSyeWZ0bhhWmhTa1hFoUXGHFcSewlhmkMhFYTTqHfb96icZyrU5dN8OGpG3FU86o81KztLJR7jT3twheSZoJDJmWW+RAaNY5VqnebJbWojAagPwl8RdZ25u7u7sHgHKz9H7e0iyXqBwT1Np6HGWu0aPGcSbwunieW8wo69A21j1VVKJt9AZ/XJN1r7RIqo0v5chA/T7Ro9Larkx8p6Tuwv72+uJ/Xj136W6jx1WWO1RsuCjNBXGa9EMhLW6QOdH1hDLD/a2EXVBDmfPRFX0I8e+X/5Kz7TCOwvjEpxHCEJOwDKuwATHswB4cQRkqwOAGHuAJnoPb4DF4CV6HrYXga2YJfiB4+wSHLpnz</latexit><latexit sha1_base64="/spPsOHSZ6C8HEPqdk+Zky88azQ=">AAACB3icbVDLSgNBEJyNrxg1Rj0KMiiCgiy7XvQY9aK3COYBMYTZSa8ZMo9lZlYMITcvfoJ+ghcPinj1F7z5N04eB00saCiquunuihLOjA2Cby8zMzs3v5BdzC0tr+RXC2vrFaNSTaFMFVe6FhEDnEkoW2Y51BINREQcqlHnbOBXb0EbpuSV7SbQEORGsphRYp3ULGztlTrNkwMMd4IkHHyqxAE+5Yp2LmSs9puFncAPhsDTJByTnWL+cYCnUrPwdd1SNBUgLeXEmHoYJLbRI9oyyqGfu04NJIR2yA3UHZVEgGn0hn/08a5TWjhW2pW0eKj+nugRYUxXRK5TENs2k95A/M+rpzY+bvSYTFILko4WxSnHVuFBKLjFNFDLu44Qqpm7FdM20YRaF13OhRBOvjxNKod+GPjhpUvDRyNk0SbaRnsoREeoiM5RCZURRffoGb2iN+/Be/HevY9Ra8Ybz2ygP/A+fwDka5u4</latexit><latexit sha1_base64="/spPsOHSZ6C8HEPqdk+Zky88azQ=">AAACB3icbVDLSgNBEJyNrxg1Rj0KMiiCgiy7XvQY9aK3COYBMYTZSa8ZMo9lZlYMITcvfoJ+ghcPinj1F7z5N04eB00saCiquunuihLOjA2Cby8zMzs3v5BdzC0tr+RXC2vrFaNSTaFMFVe6FhEDnEkoW2Y51BINREQcqlHnbOBXb0EbpuSV7SbQEORGsphRYp3ULGztlTrNkwMMd4IkHHyqxAE+5Yp2LmSs9puFncAPhsDTJByTnWL+cYCnUrPwdd1SNBUgLeXEmHoYJLbRI9oyyqGfu04NJIR2yA3UHZVEgGn0hn/08a5TWjhW2pW0eKj+nugRYUxXRK5TENs2k95A/M+rpzY+bvSYTFILko4WxSnHVuFBKLjFNFDLu44Qqpm7FdM20YRaF13OhRBOvjxNKod+GPjhpUvDRyNk0SbaRnsoREeoiM5RCZURRffoGb2iN+/Be/HevY9Ra8Ybz2ygP/A+fwDka5u4</latexit><latexit sha1_base64="RN/mO3zWkWcRRDmhXzupxD3dzC8=">AAACB3icbVDLSgNBEJz1bXytehRkMAgRwrLrRY9RL3qLYDSQLGF20huHzGOZmRVD8ObFX/HiQRGv/oI3/8bJ46CJBQ1FVTfdXUnGmbFh+O3NzM7NLywuLRdWVtfWN/zNrWujck2hRhVXup4QA5xJqFlmOdQzDUQkHG6S7tnAv7kDbZiSV7aXQSxIR7KUUWKd1PJ3S9Vu66SM4V6QjENAlSjjU65o90Km6qDlF8MgHAJPk2hMimiMasv/arYVzQVISzkxphGFmY37RFtGOTwUmrmBjNAu6UDDUUkEmLg//OMB7zuljVOlXUmLh+rviT4RxvRE4joFsbdm0huI/3mN3KbHcZ/JLLcg6WhRmnNsFR6EgttMA7W85wihmrlbMb0lmlDroiu4EKLJl6fJ9WEQhUF0GRYrwTiOJbSD9lAJRegIVdA5qqIaougRPaNX9OY9eS/eu/cxap3xxjPb6A+8zx+pDJfT</latexit>

2.Put Vcode
at

exmaple.com/
path 9LVLW�H[PDSOH�FRP�SDWK

vcode

3.According
to the info of

Binding
request,

generate path
and Chal,

then compare
the Vcode
with Chal.

4.Verify
correctness of

Vcode

[Pass] �$QG�LI�WKH�YDOLGDWRU�
FDQ�FRQƉUP�WKLV�UHTXHVW�

[Not Pass]
Txrep(PkB , PkA, example.com)

<latexit sha1_base64="oiK/v2m/KJchv80icjbttjQFEY0=">AAACCXicbVC7SgNBFL3rM8bXqqXNoAgRZNm10TJqYxkhL4hhmZ3c6JCZ3WVmVg1LWht/xcZCESvBP7Dzb5w8Co0euJfDOfcyc0+UCq6N7385M7Nz8wuLhaXi8srq2rq7sVnXSaYY1lgiEtWMqEbBY6wZbgQ2U4VURgIbUe9s6DduUGmexFXTT7Et6VXMu5xRY6XQJdW7MFeYDkqVXnh6QGw/OcA7KlOBHkvkfuju+p4/AvlLggnZLW/cyncAqITu52UnYZnE2DBBtW4FfmraOVWGM4GD4mWmMaWsR6+wZWlMJep2PrpkQPas0iHdRNmKDRmpPzdyKrXuy8hOSmqu9bQ3FP/zWpnpHrdzHqeZwZiNH+pmgpiEDGMhHa6QGdG3hDLF7V8Ju6aKMmPDK9oQgumT/5L6oRf4XnBh0/BgjAJsww6UIIAjKMM5VKAGDO7hEZ7hxXlwnpxX5208OuNMdrbgF5yPb4d1mws=</latexit><latexit sha1_base64="mW/wYPPTW0LdEhYI8QfngaEAMqI=">AAACCXicbVC7TgMxEPTxJjxyQEljgZBAik53NFDyaCiDRAApiU4+ZxOs2D7L9gHRKS0Nv0JDAUK09BR08BF8A86jgISRdjWa2ZW9kyjOjA3DT29icmp6ZnZuvrCwuLRc9FdWz02aaQoVmvJUXybEAGcSKpZZDpdKAxEJh4ukfdzzL65BG5bKM9tRUBekJVmTUWKdFPv47DbONajudrkdH5Ww64cluCVCcQhoKnZifzMMwj7wOImGZPNg5UZ8vX8Xy7H/UWukNBMgLeXEmGoUKlvPibaMcugWapkBRWibtKDqqCQCTD3vX9LFW05p4GaqXUmL++rvjZwIYzoicZOC2Csz6vXE/7xqZpv79ZxJlVmQdPBQM+PYprgXC24wDdTyjiOEaub+iukV0YRaF17BhRCNnjxOzneDKAyiU5dGgAaYQ+toA22jCO2hA3SCyqiCKLpDD+gJPXv33qP34r0ORie84c4a+gPv7QcQg5zw</latexit><latexit sha1_base64="mW/wYPPTW0LdEhYI8QfngaEAMqI=">AAACCXicbVC7TgMxEPTxJjxyQEljgZBAik53NFDyaCiDRAApiU4+ZxOs2D7L9gHRKS0Nv0JDAUK09BR08BF8A86jgISRdjWa2ZW9kyjOjA3DT29icmp6ZnZuvrCwuLRc9FdWz02aaQoVmvJUXybEAGcSKpZZDpdKAxEJh4ukfdzzL65BG5bKM9tRUBekJVmTUWKdFPv47DbONajudrkdH5Ww64cluCVCcQhoKnZifzMMwj7wOImGZPNg5UZ8vX8Xy7H/UWukNBMgLeXEmGoUKlvPibaMcugWapkBRWibtKDqqCQCTD3vX9LFW05p4GaqXUmL++rvjZwIYzoicZOC2Csz6vXE/7xqZpv79ZxJlVmQdPBQM+PYprgXC24wDdTyjiOEaub+iukV0YRaF17BhRCNnjxOzneDKAyiU5dGgAaYQ+toA22jCO2hA3SCyqiCKLpDD+gJPXv33qP34r0ORie84c4a+gPv7QcQg5zw</latexit><latexit sha1_base64="vP13iUkaZCRFUnpKFcQJwf3Hj3Y=">AAACCXicbVC7TsMwFHXKq5RXgZHFokIqUhUlLDAWWBiL1JfURpHj3rRW7SSyHdQq6srCr7AwgBArf8DG3+A+Bmg50r06Oude2fcECWdKO863lVtb39jcym8Xdnb39g+Kh0dNFaeSQoPGPJbtgCjgLIKGZppDO5FARMChFQxvp37rAaRicVTX4wQ8QfoRCxkl2kh+EddHfiYhmZRrQ/+mgk2/rsCIiISDTWNx7hdLju3MgFeJuyAltEDNL351ezFNBUSacqJUx3US7WVEakY5TArdVEFC6JD0oWNoRAQoL5tdMsFnRunhMJamIo1n6u+NjAilxiIwk4LogVr2puJ/XifV4ZWXsShJNUR0/lCYcqxjPI0F95gEqvnYEEIlM3/FdEAkodqEVzAhuMsnr5Lmhe06tnvvlKr2Io48OkGnqIxcdImq6A7VUANR9Iie0St6s56sF+vd+piP5qzFzjH6A+vzB+OCmRY=</latexit>

Txvfy(PkB , PkA, V code)
<latexit sha1_base64="IjYSslm8KxWZdg3YQoCxZC/YShc=">AAACBHicbVC7SgNBFL0bXzG+Ei3TDAYhQlh2bbSM2lhGyAuSsMzOziZDZh/MzEbDksLGX7GxUMRW/AY7/8bJo9DEA/dyOOdeZu5xY86ksqxvI7O2vrG5ld3O7ezu7R/kC4dNGSWC0AaJeCTaLpaUs5A2FFOctmNBceBy2nKH11O/NaJCsiisq3FMewHuh8xnBCstOfli/d5JR/54Uq4NnasK0v2ygpok8uipky9ZpjUDWiX2gpSqhbvgEwBqTv6r60UkCWioCMdSdmwrVr0UC8UIp5NcN5E0xmSI+7SjaYgDKnvp7IgJOtGKh/xI6AoVmqm/N1IcSDkOXD0ZYDWQy95U/M/rJMq/6KUsjBNFQzJ/yE84UhGaJoI8JihRfKwJJoLpvyIywAITpXPL6RDs5ZNXSfPMtC3TvtVpmDBHFopwDGWw4RyqcAM1aACBB3iCF3g1Ho1n4814n49mjMXOEfyB8fEDOGWYnw==</latexit><latexit sha1_base64="GfbKdyHQRd/xXKxenTPWwZfW4Bc=">AAACBHicbVC7TsMwFHV4lvJoCmMXiwqpSFWUsMBYYGEsUl9SG0WO47RWnYdspxBFHVj4FRYGEGLlExjY4CP4BtzHAC1HuldH59wr+x43ZlRI0/zUVlbX1jc2c1v57Z3dvYJe3G+JKOGYNHHEIt5xkSCMhqQpqWSkE3OCApeRtju8nPjtEeGCRmFDpjGxA9QPqU8xkkpy9FLj1slGfjqu1IfORRWqfl6FLRx55NjRy6ZhTgGXiTUn5VrxJvh6/y7UHf2j50U4CUgoMUNCdC0zlnaGuKSYkXG+lwgSIzxEfdJVNEQBEXY2PWIMj5TiQT/iqkIJp+rvjQwFQqSBqyYDJAdi0ZuI/3ndRPpndkbDOJEkxLOH/IRBGcFJItCjnGDJUkUQ5lT9FeIB4ghLlVtehWAtnrxMWieGZRrWtUrDADPkQAkcggqwwCmogStQB02AwR14AE/gWbvXHrUX7XU2uqLNdw7AH2hvP8FkmoQ=</latexit><latexit sha1_base64="GfbKdyHQRd/xXKxenTPWwZfW4Bc=">AAACBHicbVC7TsMwFHV4lvJoCmMXiwqpSFWUsMBYYGEsUl9SG0WO47RWnYdspxBFHVj4FRYGEGLlExjY4CP4BtzHAC1HuldH59wr+x43ZlRI0/zUVlbX1jc2c1v57Z3dvYJe3G+JKOGYNHHEIt5xkSCMhqQpqWSkE3OCApeRtju8nPjtEeGCRmFDpjGxA9QPqU8xkkpy9FLj1slGfjqu1IfORRWqfl6FLRx55NjRy6ZhTgGXiTUn5VrxJvh6/y7UHf2j50U4CUgoMUNCdC0zlnaGuKSYkXG+lwgSIzxEfdJVNEQBEXY2PWIMj5TiQT/iqkIJp+rvjQwFQqSBqyYDJAdi0ZuI/3ndRPpndkbDOJEkxLOH/IRBGcFJItCjnGDJUkUQ5lT9FeIB4ghLlVtehWAtnrxMWieGZRrWtUrDADPkQAkcggqwwCmogStQB02AwR14AE/gWbvXHrUX7XU2uqLNdw7AH2hvP8FkmoQ=</latexit><latexit sha1_base64="AlT67TtNe56+UQN7xMgjTXY63pY=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJCKVEUJC4wFFsYi9SW1UeQ4TmvVcSLbqYiiDiz8CgsDCLHyEWz8DW6bAVqOdK+OzrlX9j1+wqhUtv1trK1vbG5tl3bKu3v7B4fm0XFHxqnApI1jFouejyRhlJO2ooqRXiIIinxGuv74duZ3J0RIGvOWyhLiRmjIaUgxUlryzErrwcsnYTatNcfeTR3qfl2HHRwH5Nwzq7ZlzwFXiVOQKijQ9MyvQRDjNCJcYYak7Dt2otwcCUUxI9PyIJUkQXiMhqSvKUcRkW4+P2IKz7QSwDAWuriCc/X3Ro4iKbPI15MRUiO57M3E/7x+qsIrN6c8SRXhePFQmDKoYjhLBAZUEKxYpgnCguq/QjxCAmGlcyvrEJzlk1dJ58JybMu5t6sNq4ijBCrgFNSAAy5BA9yBJmgDDB7BM3gFb8aT8WK8Gx+L0TWj2DkBf2B8/gCUcpaq</latexit>

V erifyCount : 0
<latexit sha1_base64="KcXGJ/eGiivwE7azqnvJe3ecod8=">AAAB9HicbVDLSgNBEOz1lRhfUY9eBoPgadn1ongK5OIxgnlAsoTZyWwyZHZmnZkNLEvAv/DiQRGvfow3v0HwG5w8DppY0FBUddPdFSacaeN5n87a+sbmVqG4XdrZ3ds/KB8eNbVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbCUW3qt8ZUaSbFnckSGsR4IFjECDZWCppUsSiryVSYa69XrniuNwNaJf6CVKqF768HAKj3yh/dviRpTIUhHGvd8b3EBDlWhhFOJ6VuqmmCyQgPaMdSgWOqg3x29ASdWaWPIqlsCYNm6u+JHMdaZ3FoO2NshnrZm4r/eZ3URFdBzkSSGirIfFGUcmQkmiaA+kxRYnhmCSaK2VsRGWKFibE5lWwI/vLLq6R54fqe69/aNFyYowgncArn4MMlVOEG6tAAAvfwCM/w4oydJ+fVeZu3rjmLmWP4A+f9B/55lGw=</latexit><latexit sha1_base64="XupeiMK/ORWONMo4A1UtaBGQWtY=">AAAB9HicbVC7SgNBFL0bH4nxFbW0GQyKVdi1UawCaSwjmAckS5idzCZDZmfWmdnAsuQ7bCwUsfU/bO38BsFvcPIoNPHAhcM593LvPUHMmTau++nk1tY3NvOFreL2zu7efungsKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjGpTvzWmSjMp7kwaUz/CA8FCRrCxkt+kioVpTSbCXLu9UtmtuDOgVeItSLma//6Kz3Lv9V7po9uXJImoMIRjrTueGxs/w8owwumk2E00jTEZ4QHtWCpwRLWfzY6eoFOr9FEolS1h0Ez9PZHhSOs0CmxnhM1QL3tT8T+vk5jwys+YiBNDBZkvChOOjETTBFCfKUoMTy3BRDF7KyJDrDAxNqeiDcFbfnmVNC8qnlvxbm0aFZijAMdwAufgwSVU4Qbq0AAC9/AAT/DsjJ1H58V5nbfmnMXMEfyB8/YDKmqVTQ==</latexit><latexit sha1_base64="XupeiMK/ORWONMo4A1UtaBGQWtY=">AAAB9HicbVC7SgNBFL0bH4nxFbW0GQyKVdi1UawCaSwjmAckS5idzCZDZmfWmdnAsuQ7bCwUsfU/bO38BsFvcPIoNPHAhcM593LvPUHMmTau++nk1tY3NvOFreL2zu7efungsKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjGpTvzWmSjMp7kwaUz/CA8FCRrCxkt+kioVpTSbCXLu9UtmtuDOgVeItSLma//6Kz3Lv9V7po9uXJImoMIRjrTueGxs/w8owwumk2E00jTEZ4QHtWCpwRLWfzY6eoFOr9FEolS1h0Ez9PZHhSOs0CmxnhM1QL3tT8T+vk5jwys+YiBNDBZkvChOOjETTBFCfKUoMTy3BRDF7KyJDrDAxNqeiDcFbfnmVNC8qnlvxbm0aFZijAMdwAufgwSVU4Qbq0AAC9/AAT/DsjJ1H58V5nbfmnMXMEfyB8/YDKmqVTQ==</latexit><latexit sha1_base64="V3gSUy5lgYf9IUZ+A1dUtwll2no=">AAAB9HicbVBNSwMxEM36WetX1aOXYBE8LVkviqdCLx4r2A9ol5JNZ9vQbLIm2cJS+ju8eFDEqz/Gm//GtN2Dtj4YeLw3w8y8KBXcWEK+vY3Nre2d3dJeef/g8Oi4cnLaMirTDJpMCaU7ETUguISm5VZAJ9VAk0hAOxrX5357AtpwJR9tnkKY0KHkMWfUOilsgeZxXleZtHekX6kSnyyA10lQkCoq0OhXvnoDxbIEpGWCGtMNSGrDKdWWMwGzci8zkFI2pkPoOippAiacLo6e4UunDHCstCtp8UL9PTGliTF5ErnOhNqRWfXm4n9eN7PxbTjlMs0sSLZcFGcCW4XnCeAB18CsyB2hTHN3K2YjqimzLqeyCyFYfXmdtK79gPjBA6nW/CKOEjpHF+gKBegG1dA9aqAmYugJPaNX9OZNvBfv3ftYtm54xcwZ+gPv8wdzcJHM</latexit>

8QFRQƉUP�ELQGLQJ�
UHTXHVW

PkA < � > example.com
<latexit sha1_base64="kAAwL60dN96Drn/sN71bk6Y6+U0=">AAAB/XicbVDJSgNBEK1xS4xbXG5eGoPgxWHGix5EIl48RjALJCH0dCpJk+6ZobtHjCHop3jxoIhX/8Ob3yD4DXaWgyY+KHi8V0VVvSAWXBvP+3Tm5hcWl1Lp5czK6tr6RnZzq6SjRDEsskhEqhJQjYKHWDTcCKzECqkMBJaD7sXQL9+g0jwKr00vxrqk7ZC3OKPGSo3sTqHbOCenh2cEb6mMBbosko1sznO9Ecgs8Sckl099fz0AQKGR/ag1I5ZIDA0TVOuq78Wm3qfKcCZwkKklGmPKurSNVUtDKlHX+6PrB2TfKk3SipSt0JCR+nuiT6XWPRnYTklNR097Q/E/r5qY1km9z8M4MRiy8aJWIoiJyDAK0uQKmRE9SyhT3N5KWIcqyowNLGND8KdfniWlI9f3XP/KpuHCGGnYhT04AB+OIQ+XUIAiMLiDR3iGF+feeXJenbdx65wzmdmGP3DefwAoOJaW</latexit><latexit sha1_base64="lNLLybCJYf8UWPkklXMWwkEEZyQ=">AAAB/XicbVC7SgNBFJ2Nj8T4Wh+dzWBQbFx2bbQQidhYRjAPSJYwO7mbDJnZXWZmxRiCv2JjoYit32Br5zcIfoOTR6GJBy4czrmXe+8JEs6Udt1PKzM3v7CYzS3ll1dW19btjc2KilNJoUxjHstaQBRwFkFZM82hlkggIuBQDboXQ796A1KxOLrWvQR8QdoRCxkl2khNe7vUbZ7j08MzDLdEJBwcGoumXXAddwQ8S7wJKRSz31/Jfua91LQ/Gq2YpgIiTTlRqu65ifb7RGpGOQzyjVRBQmiXtKFuaEQEKL8/un6A94zSwmEsTUUaj9TfE30ilOqJwHQKojtq2huK/3n1VIcnfp9FSaohouNFYcqxjvEwCtxiEqjmPUMIlczcimmHSEK1CSxvQvCmX54llSPHcx3vyqThoDFyaAftogPkoWNURJeohMqIojv0gJ7Qs3VvPVov1uu4NWNNZrbQH1hvP1Qal3c=</latexit><latexit sha1_base64="lNLLybCJYf8UWPkklXMWwkEEZyQ=">AAAB/XicbVC7SgNBFJ2Nj8T4Wh+dzWBQbFx2bbQQidhYRjAPSJYwO7mbDJnZXWZmxRiCv2JjoYit32Br5zcIfoOTR6GJBy4czrmXe+8JEs6Udt1PKzM3v7CYzS3ll1dW19btjc2KilNJoUxjHstaQBRwFkFZM82hlkggIuBQDboXQ796A1KxOLrWvQR8QdoRCxkl2khNe7vUbZ7j08MzDLdEJBwcGoumXXAddwQ8S7wJKRSz31/Jfua91LQ/Gq2YpgIiTTlRqu65ifb7RGpGOQzyjVRBQmiXtKFuaEQEKL8/un6A94zSwmEsTUUaj9TfE30ilOqJwHQKojtq2huK/3n1VIcnfp9FSaohouNFYcqxjvEwCtxiEqjmPUMIlczcimmHSEK1CSxvQvCmX54llSPHcx3vyqThoDFyaAftogPkoWNURJeohMqIojv0gJ7Qs3VvPVov1uu4NWNNZrbQH1hvP1Qal3c=</latexit><latexit sha1_base64="kz9xtRBnG5AmhgZz6Rq8M4MnC00=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwY0jc6EKk4sZlBfuANoTJ9KYdOpOEmYlYQ/FX3LhQxK3/4c6/cdpmoa0HLhzOuZd77wlTzpR23W9rYXFpeWW1tFZe39jc2rZ3dhsqySSFOk14IlshUcBZDHXNNIdWKoGIkEMzHFyP/eY9SMWS+E4PU/AF6cUsYpRoIwX2fm0QXOGLk0sMD0SkHByaiMCuuI47AZ4nXkEqqEAtsL863YRmAmJNOVGq7bmp9nMiNaMcRuVOpiAldEB60DY0JgKUn0+uH+Ejo3RxlEhTscYT9fdEToRSQxGaTkF0X816Y/E/r53p6NzPWZxmGmI6XRRlHOsEj6PAXSaBaj40hFDJzK2Y9okkVJvAyiYEb/bledI4dTzX8W7dStUp4iihA3SIjpGHzlAV3aAaqiOKHtEzekVv1pP1Yr1bH9PWBauY2UN/YH3+AJ0gk/Y=</latexit>

V erifyCount : 0
<latexit sha1_base64="KcXGJ/eGiivwE7azqnvJe3ecod8=">AAAB9HicbVDLSgNBEOz1lRhfUY9eBoPgadn1ongK5OIxgnlAsoTZyWwyZHZmnZkNLEvAv/DiQRGvfow3v0HwG5w8DppY0FBUddPdFSacaeN5n87a+sbmVqG4XdrZ3ds/KB8eNbVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbCUW3qt8ZUaSbFnckSGsR4IFjECDZWCppUsSiryVSYa69XrniuNwNaJf6CVKqF768HAKj3yh/dviRpTIUhHGvd8b3EBDlWhhFOJ6VuqmmCyQgPaMdSgWOqg3x29ASdWaWPIqlsCYNm6u+JHMdaZ3FoO2NshnrZm4r/eZ3URFdBzkSSGirIfFGUcmQkmiaA+kxRYnhmCSaK2VsRGWKFibE5lWwI/vLLq6R54fqe69/aNFyYowgncArn4MMlVOEG6tAAAvfwCM/w4oydJ+fVeZu3rjmLmWP4A+f9B/55lGw=</latexit><latexit sha1_base64="XupeiMK/ORWONMo4A1UtaBGQWtY=">AAAB9HicbVC7SgNBFL0bH4nxFbW0GQyKVdi1UawCaSwjmAckS5idzCZDZmfWmdnAsuQ7bCwUsfU/bO38BsFvcPIoNPHAhcM593LvPUHMmTau++nk1tY3NvOFreL2zu7efungsKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjGpTvzWmSjMp7kwaUz/CA8FCRrCxkt+kioVpTSbCXLu9UtmtuDOgVeItSLma//6Kz3Lv9V7po9uXJImoMIRjrTueGxs/w8owwumk2E00jTEZ4QHtWCpwRLWfzY6eoFOr9FEolS1h0Ez9PZHhSOs0CmxnhM1QL3tT8T+vk5jwys+YiBNDBZkvChOOjETTBFCfKUoMTy3BRDF7KyJDrDAxNqeiDcFbfnmVNC8qnlvxbm0aFZijAMdwAufgwSVU4Qbq0AAC9/AAT/DsjJ1H58V5nbfmnMXMEfyB8/YDKmqVTQ==</latexit><latexit sha1_base64="XupeiMK/ORWONMo4A1UtaBGQWtY=">AAAB9HicbVC7SgNBFL0bH4nxFbW0GQyKVdi1UawCaSwjmAckS5idzCZDZmfWmdnAsuQ7bCwUsfU/bO38BsFvcPIoNPHAhcM593LvPUHMmTau++nk1tY3NvOFreL2zu7efungsKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjGpTvzWmSjMp7kwaUz/CA8FCRrCxkt+kioVpTSbCXLu9UtmtuDOgVeItSLma//6Kz3Lv9V7po9uXJImoMIRjrTueGxs/w8owwumk2E00jTEZ4QHtWCpwRLWfzY6eoFOr9FEolS1h0Ez9PZHhSOs0CmxnhM1QL3tT8T+vk5jwys+YiBNDBZkvChOOjETTBFCfKUoMTy3BRDF7KyJDrDAxNqeiDcFbfnmVNC8qnlvxbm0aFZijAMdwAufgwSVU4Qbq0AAC9/AAT/DsjJ1H58V5nbfmnMXMEfyB8/YDKmqVTQ==</latexit><latexit sha1_base64="V3gSUy5lgYf9IUZ+A1dUtwll2no=">AAAB9HicbVBNSwMxEM36WetX1aOXYBE8LVkviqdCLx4r2A9ol5JNZ9vQbLIm2cJS+ju8eFDEqz/Gm//GtN2Dtj4YeLw3w8y8KBXcWEK+vY3Nre2d3dJeef/g8Oi4cnLaMirTDJpMCaU7ETUguISm5VZAJ9VAk0hAOxrX5357AtpwJR9tnkKY0KHkMWfUOilsgeZxXleZtHekX6kSnyyA10lQkCoq0OhXvnoDxbIEpGWCGtMNSGrDKdWWMwGzci8zkFI2pkPoOippAiacLo6e4UunDHCstCtp8UL9PTGliTF5ErnOhNqRWfXm4n9eN7PxbTjlMs0sSLZcFGcCW4XnCeAB18CsyB2hTHN3K2YjqimzLqeyCyFYfXmdtK79gPjBA6nW/CKOEjpHF+gKBegG1dA9aqAmYugJPaNX9OZNvBfv3ftYtm54xcwZ+gPv8wdzcJHM</latexit>

When n
validators

confirm the
binding
request,
domain

completes the
binding of Pk
and Domain

name

'RPDLQ 9DOLGDWRU

Figure 4: Count Based Domain Authentication
Framework.

Count-Based Domain Process: Hypothesis
Suppose A owns key fairs and domain name ex-
ample.com such that: (PkA∥SkA∥Dmexam ple.com);
verifier B owns key fairs: (PkB∥SkB).

Transaction Type: In count based the trans-
action verification process includes the followings:
– Binding transaction request:

(PkA∥Dmexam ple.com) binder issues a binding
request containing its own public key and
domain name example.com.

– Reporting transaction: T xre p if the verification
node finds that the binding information is not
accurately placed then identity binding can be
rejected.

– Verification transaction: T xv f y validator com-
pletes the comparison of the verification in-
formation, the validator sends the transaction
that has passed the verification process.
Binding Process:
Authentication process based on the num-

ber of validations require more interaction be-
tween the validators and the blockchain than time
based.
• A Publishes binding transaction Txreq

(PkA,∥example.com) on the blockchain.
• A gets the block information In f oblock of the

location where Txreq is located, and calculates
its value (Path, Chal) = F(In f orcvBlock) to put
it under domain control.

• B obtains the verification content from exam-
ple.com/Path, submits the transaction T xv f y
(PkB, PkA, V code) to complete the certificate

verification. Once the K has been verified,
the binding is complete. The entire process
same as time-based requiring the binder to
publish her public key PkA, domain name ex-
ample.com onto the blockchain.

4.2 Reporting Misbehaviour

Two different identity binding schemes given
above are used in order to report any suspi-
cious transactions or fake binding to complete
the process. When an honest verification node
C discovers a suspicious binding, it initiates
a report transaction to the blockchain which
is basically the same as the content submit-
ted by the authentication transaction, but re-
places the last V code with the domain name
address that needs to be bound, so the report
transaction contains its own public key PkC
and binding the public key PkA and the do-
main name example.com.
However, for a malicious verification node, it
may also initiate a report transaction against
a true and valid binding. In order to con-
firm the validity of a report transaction, it
is necessary to judge the transaction by the
verification node on the blockchain. At this
point, the reported transaction and the do-
main name submitted by the binding trans-
action are single entities in the P2P network
to verify the request. When the report trans-
action is submitted to the network and con-
firmed by the blockchain just like the binding
request randomly select n validators to verify
the request and determine the validity of the
reporter.

4.3 Selection Verifier or Look Up

In spite the advantages provides by Auth-
Ledger to weaken the CAs to issue certificates
to any domain, clients also have to be pre-
vented from the use of corrupted/ erroneous
certificate. In Time-based scheme, a process
for selecting a verifier is necessary to prevent
the node from colluding the verification trans-
actions of other nodes for its own benefit.
Moreover, if the verification node is not fil-
tered by certain rules other node can verify
the binding identity. In this scenario, the ma-
licious binder can use different public keys as
the authentication node and then confirm the
malicious binding to launch an attack ().

Meanwhile, in order to get more rewards, the
legitimate verifier will also use as many ac-
counts as possible to verify the transaction
in order to get more incentives. In order to
avoid the above situation, this scheme designs
a method of randomly selecting verification
nodes according to the binding information to
ensure that the verification can be carried out
effectively. When the binding information is
publish on the blockchain, it is converted to
the reference value hashcm p according to the
binding information PkA, example.com and the
block information In f orcvBlock of the transac-
tion location:
hashcmp =SHA512
(PkA�example.com�InforcBlock) (3.3) Af-
ter the reference value is obtained, the
verification node will be judged by signing
the block in- formation incorporated into
the block, the method of judgment is shown
below:
distham =SHA512 (Sigprc(InfocurBlock)),
hashcmp)<=d+�t(3.4)
Where distham(a,b) represent two numbers a
and b; Prs represents the private key of the au-
thentication node.d ; �t;just; In f ocurblock; sig
is a unique signature algorithm. The above
judgment method enables a verifier to make
an attempt every time a block is generated,
and judge whether or not it would become a
verification node. also, as time passes, the dif-
ficulty of becoming a verification node is also
decreasing, ensuring that a verifier will be se-
lected. table
add
In the Time-based scheme, a protocol for se-
lecting a verifier is needed to prevent the node
from incorporating or lagging the verification
transactions of other nodes for its own bene-
fit; more importantly, if the verification node
is not filtered by certain rules rather, each
node can verify the binding identity. In this
scenario, the malicious binder can use differ-
ent public keys as the authentication node
and then confirm the malicious binding that
is launch an attack().
Meanwhile, in order to get more rewards, the
verifier will also apply for as many accounts
as possible to verify the transaction.
When the binding information is publish on
the blockchain, it is converted to the refer-
ence value hashcm p according to the binding
information PkA, example.com and the block

information In f orcvBlock of the transaction lo-
cation:
hashcm p =sha512
(PkA∥example.com∥In f orcBlock)(3.3)

After obtaining the based value the verifica-
tion will judge by signing the block infor-
mation in the blockchain. Whether or not
you have the right to verify this request, the
method of judgment is as shown in 3.4:
distham =sha512
(Sigprc(In f ocurBlock)),hashcm p) <=
d +∆t\tad just (3.4)

4.4 Verify the accompanying
information for the transaction:

The verification node monitors the identity
binding request submitted on the blockchain at
any time together with the corresponding report
information. When the two messages are posted
on the blockchain, it means that the verification
node needs to participate in the confirmation
of the event, and each verification node there
will be a chance to be the node to verify the
event. For the identity binding request and the
confirmation of the prosecution information,
both the public key PkC and the binders public
key PkA must be submitted. The difference
is that one needs to provide the verification
content V code, and the other needs to provide
the domain name example.com. On this basis,
the verifier is also required to provide a content
based on the capacity proof, to ensure that the
identity is not generated at random, but at a
certain cost. Suppose the proof of capacity to
be provided is pr f , which needs to meet the
following conditions: Verify(Pkc,Prf)= SHA512
(PkA�Vcode|example.com�InfocurBlock)(3.5)
Where Veri f y is the verification function of the
capacity proof.

4.5 Financial Incentives

In order to encourage enough verification nodes
to join the network and ensure the identity bind-
ing can be completed, some rewards should be
given to the verification nodes. During the verifi-
cation process, if there is a domain name that is
not reasonably placed with the verification infor-
mation, the report transaction can be initiated to

the blockchain, and after the transaction is con-
firmed, it can be rewarded accordingly; In order
to ensure the reward balance in the system, the
initiator of the binder has to pay a certain fee,
and the verifier will get the corresponding reward
when discovers the error. Because these entities
exist in a network, all identities are represented
by public keys (or addresses converted from pub-
lic keys); as described in the previous scenario,
assuming the domain name has PkA, the verifier
has PkB , and the reporter has PkC , each has
its own account balance on the blockchain. The
penalty and reward mechanism for related op- er-
ations are shown in table 3:
As shown in table 1:
First rule In table 1, fee is deposited by the

initiator, instead of unlimited arbitrary identity
binding operations; thus avoiding malicious ad-
versary to initiate unlimited invalid identity bind-
ing. Second rule prevent the verification node
from randomly initiating a reporter transaction to
disrupt the completeness of the normal binding;
The third rule node that incentivises the verifica-
tion operation to attract more nodes, but needs
to deposit a fee to prevent some nodes from mis-
behaving Fourth rule same as third rule attract
more nodes to join the system.

5 SECURITY ANALYSIS

we analyze the security of the proposed design
based on two perspectives: Blockchain and Do-
main client server. We also compare AuthLedger
with the current approaches of the PKI authenti-
cation schemes from security and privacy point of
view in table 4. We analyzed the security of our
proposed system from the Blockchain perspective
according to the following properties:
Property 1: Full node in the blockchain net- work
with p proportion is controlled by malicious at-
tackers to launch %51 Attack obviously, when p
> 1/2, the attacker can complete the control of
the blockchain network regardless of whether the
under- lying blockchain uses the PoW consensus
mechanism.
Property 2: Malicious Binding Analysis. When
an authentication request is initiated, it needs to
be verified from the verification node selected in
the network. According to the selection process
of the previous validator, it is known that the
process of selecting the validator each time is a
random process. In this case, if the random al-

Table 1: Table describe incentive parameters.
Txt. Name Initiator PK Txt. Def. Txt. Fee Incentives Balance

T xreq Domain Name PkA
Binding
Identity -P1 0 Balance (PkA)−P1

T xre p Reporter PkC Reporting -P2 R1 =P2+ P1
2 Balance (PkC)+P1

2
T xv f y1 Validator PkB Validation -P3 R2 =P3+ P1

K Balance (PkB)+P1
K

T xv f y2 Validator PkB Confirm -P3 R3 =P3+ P1
2n Balance (PkB)+P1

2n

gorithm we designed is completely random, then
the probability of selecting entire K nodes as ma-
licious nodes is:

Pr1 =
K−1

∏
i=0

qN − i
N − i

(1)

Following our design requirements, when the re-
port transaction is generated, the validator will
be selected according to the content of the re-
port transaction, and half of the votes will be
confirmed. The probability of passing the con-
firmation is:

Pr2 =
n/2

∏
i=0

qN − i
N − i

(2)

Therefore, when an attacker has a verification
node that accounts for the entire network q, the
prob- ability of completing a malicious binding is
as shown in Equation 3.

Prattack = Pr1 +(1−Pr1)∗Pr2

= Pr1 +Pr2 −Pr1 ∗Pr2

=
K−1

∏
i=0

qN − i
N − i

+
n/2

∏
i=0

qN − i
N − i

−
K−1

∏
i=0

qN − i
N − i

∗
n/2

∏
i=0

qN − i
N − i

(3)
Property 3:Denial binding analysis. we assume
when binding authentication request is initiated,
identity binding is completed after waiting for the
validator to complete the verification. However,
in case malicious attacker may disrupt the bind-
ing. The probability of successfully disrupting
this request is shown below:

Prdenial =
n/2

∏
i=0

qN − i
N − i

(4)

Property 4:Sybil Attack. the biggest security
flaws of decentralised systems are malicious nodes
(Sybil nodes) Blockchain is built based on open
P2P network any node can generate number of
identities to increase the probability as verifica-
tion node. Therefore, additional information is

required including a verifiable workload certifi-
cate. (Counter measures)
Property 4:Hard Fork.
(Solat, 2017) fork arises when there are too dif-
ferent block discover in the network at the same
time the fork inadvertently poses a security vul-
nerability wherein attackers can replicate trans-
actions into the other network; this continues to
this day, and we quantify this behavior by us-
ing.....
Domain server perspective includes the following
properties:
Property 1: We assume most of the Certificate

authorities and validating authorities are mali-
cious which act arbitrarily such as binding fake
certificate or certificate can be issued from invalid
CA. We assume that Domain name server (DNS)
are corrupted.
We assume most of the Certificate authorities and
validators are malicious which act arbitrarily such
as fake binding certificate or certificate can be
issued either from CA which is invalid or cor-
rupted due to insufficient security policies. We
assume that Domain name server (DNS) are as-
sume to be corrupted. In addition to that, when
a malicious attacker gain control over the domain
name, in this case, may likely to have a control
over the trusted CA to launch an attack. In or-
der to reduce the impact of this situation, in this
this paper we suggests that the do- main name
should place a trust list change monitoring pro-
gram on different servers, and promptly give re-
minders when the trust list changes, for the do-
main name owner to confirm. Meanwhile to en-
sure the authentication binder has a control over
the domain name server, in the above scenario,
the submitted Tx r e q is used to generate the
authentication content Path and Chal, which en-
sures the correlation between the verification con-
tent and the submission request as in formula (1).
The submitted content is converted to the verifi-
cation content by using sha256 as a hash function,
which is an reversible processes. In the placement
of the verification content, Vc o d e is used to bind

the public key corresponding to the private key
signature of the Chal, to ensure the ownership of
the private key binder.
Property 2: Browser client. Whether Browser

is performing checking relevant to a CA may fil-
ter erroneous or corrupted certificates. As men-
tioned in this paper the main purpose is to weaken
the CA to issue a certificate of any domain us-
ing blockchain technology. In order to make sure
any certificate issued by adversary is detected,
additional checks need to be conducted to the
client side. Therefore browser need to interact
with Blockchain to query whether the received
certificate is granted by a trusted CA. Additional
checks need to be conducted from the client side
to ensure any certificate issued by adversary is
detected.
Advantages/Benefit of Blockchain Based PKI

Security Comparison of the PKI Authentication
system as described in table 2.

6 EVALUATION

6.1 Implementation Prototype.

Entities involve in the implementation process in-
clude the followings: 1. User: domain sends iden-
tity binding request and update trusted CA list
to interact interface in the Blockchain. 2. Re-
lying Party: relying party obtains a certificate
through a browser and establishes secure com-
munication, it needs to check the validity of the
certificate through Blockchain by query trusted
CA list. 3. Verification Nodes: verify any do-
main name initiated authentication requests on
the blockchain. Also verification node needs to
monitor and report any misbehaviour during ver-
ification process. 4. Full node: Monitor all trans-
actions in the Blockchain network. Each time a
block is created, the initiator will get the reward
corresponding to the proportion of the computa-
tional power use. Figure 5 describe the system
architecture of the proposed system.

6.2 Smart Contract Solidity

All entities in the proposed system need to be
connected through a blockchain. The functions
in the smart contract include the followings:
The domain name authentication function: When
the domain name calls this function, a series of

Relying
Party

Interface

Key management
Put the
 verification

Get verification data

Confirmation

Request

Domain name

Send binding request

Modify trusted CA list

Get certificate Query trusted CA list

Browser extension plug-in

Users

Key Magmt.

Validator client

Verification Nodes

 Blockchain

Identity binding interface

Confirm interface

Report interface

Modify trusted CA list
interface

Query trusted CA list
interface

Full
nodes.

Blocks

1

2

3

4

Modify
Read

Modify
Read

Figure 5: System Architecture

verification nodes are selected to complete the
verification through the verification node.
Trusted list storage: Update the data stored in
the smart contract and complete the control of
its own trusted CA.
Trust list query: complete the query of the
trusted CA list of a specific domain name.
Implementation of these modules relies on
Ethereum smart contract to perform the func-
tions of the above interfaces using Solidity pro-
gramming language. Moreover, Solidity is used
to complete the mapping between the Ethereum
contract address and the domain name. Sample
code for interactions describe below.

struct Domain {
string name;
uint count;
string trustCAs;
uint stBlock;
address[] validator;
address addr;
bool isEntity;

}
mapping(address => Domain)reg_domain;
mapping(string => Domain)auth_domain;
uint constant auth_times = 10;
uint constant limit_blocks = 100;

Meanwhile based on the the underlying
blockchain platform, transactions that cause
any changes in the Ethereum blockchain need
to consume so-called Gas. In order to call
transaction on ethereum smart contract, the
transaction needs to be sent to the blockchain
first. The required cost is called transaction
costs, which is calculated according to the large
size of the data. While execution cost, it needs
to be based on the calculation of the transaction
to perform cost assessment. The current Gas

Table 2: Table describe security comparison of the proposed system.

DNSSEC-DANE CAA AuthLedger
Level of Trust Weak Weak Strong
50% attack protection N/A N/A Strong
Sybil attack protection N/A N/A Strong
Fake binding detection Weak Weak Strong
Domain compromise Strong Strong weak
Misbehaviour Incentives Weak Weak Strong
Browser validation Weak Weak Strong

station estimate is : 1 gas = 3 Gwei4. The cost
of the binding and trust list modification for
example.com describe below:

6.3 Browser Plug-in Validation

Browser selection: The main operation of plug-in
is to obtain the trust CA list of the domain name
in the blockchain and and compares with the cer-
tificate issuer. Browser validate of the trust CA
list that has been recorded on the blockchain. it
can be done based on the peer to peer network.

6.4 Experiment

In order to test the performance of the proposed
system, we used Ali Cloud server configuration
is as follows: CPU: 1 core, Operating System:
Ubuntu 16.04 (64 bit), Memory: 2GB, Disk:
40GB, Golang: 1.8. and Ethereum: Titanium
(v1.8.7). Meanwhile machine configuration we
used, CPU: 8 cores, Operating System: macOs
High Sierra (version 10.13.3) and Chrome: Ver-
sion 66.0.3359.139 (64-bit).
Blockchain network contain five Ali cloud servers:
full node; to complete the blockchain mainte-
nance network; the other five servers as the au-
thentication nodes, each server starts 10 authenti-
cation clients, a total of 50 authentication nodes;
one Ali cloud deploys web services as a domain
name server and runs the domain name guest.
The local PC acts as a relying party, simulates
the access to the domain name and completes the
acquisition of the trusted CA list.

4https://ethgasstation.info/

Figure 6: System configuration

7 CONCLUSION AND FUTURE
WORK

In this paper, we proposed AuthLedger a novel
Blockchain-based domain name authentication
scheme using Ethereum smart contract to allows
a client to trust which CA can issue a certificate
for the domain using Blockchain technology. The
paper demonstrated an efficient and trustwor-
thy algorithm for certificate authentication pro-
cess. we also analyze security implication of the
proposed scheme by discussing different security
threats and countermeasures. Moreover, since
this is a short paper, future work will concen-
trate on detail implementation of the AuthLedger
to get more experimental results. Will conduct a
detailed performance and usability analysis of the
proposed system.

Table 3: Trade execution cost.
Name of
Trade

Send Data Tx. Fee
(Gas)

Impl.
Cost
(Gas)

TTL
Cost
(Gas)

Price ($)

Binding re-
quest

PkA,example.com 189451 165555 355006 1.977

Verification
operation

PkA,example.com,
Vcode

208475 197342 405 817 2.26

Modify trust
list operation

”CA List” 36906 14674 51580 0.287

Acknowledgement This work is partially sup-
ported by the National Key Research and Devel-
opment Program of China NO.2018YFB0803601.
and NSFC No.61672060.

REFERENCES

Namecoin. https://namecoin.org/. Accessed:
2019-01-24.

Aishwarya, C., Raghuram, M., Hosmani, S., San-
nidhan, M., Rajendran, B., Chandrasekaran,
K., and Bindhumadhava, B. (2015). Dane:
An inbuilt security extension. In Green
Computing and Internet of Things (ICG-
CIoT), 2015 International Conference on,
pages 1571–1576. IEEE.

Ali, M., Nelson, J. C., Shea, R., and Freedman,
M. J. (2016). Blockstack: A global naming
and storage system secured by blockchains.
In USENIX Annual Technical Conference,
pages 181–194.

Anon (2015 (accessed May 15, 2019)). DNSSEC is
Unnecessary. https://sockpuppet.org/blog/
2015/01/15/against-dnssec/.

Baldi, M., Chiaraluce, F., Frontoni, E., Gottardi,
G., Sciarroni, D., and Spalazzi, L. (2017).
Certificate validation through public ledgers
and blockchains. In ITASEC, pages 156–165.

Berkowsky, J. A. and Hayajneh, T. (2017).
Security issues with certificate authorities.
In Ubiquitous Computing, Electronics and
Mobile Communication Conference (UEM-
CON), 2017 IEEE 8th Annual, pages 449–
455. IEEE.

Dong, Y., Kim, W., and Boutaba, R. Conifer:
centrally-managed pki with blockchain-
rooted trust.

Dukhovni, V. and Hardaker, W. (2015). Smtp
security via opportunistic dns-based authen-
tication of named entities (dane) transport
layer security (tls). Technical report.

Enisa (2016). The WoSign Incident and Consid-
erations.

Fries, J. (2017 (accessed May 20, 2019)). Us-
ing the blockchain to add automated
financial incentives to the Public Key

Infrastructure,. https://www.net.in.tum.
de/fileadmin/TUM/NET/NET-2017-09-1/
NET-2017-09-1_05.pdf.

Gourley, S. and Tewari, H. (2018). Blockchain
backed dnssec. In 1st Workshop on
Blockchain and Smart Contract Technolo-
gies - 21st International Conference on
Business Information Systems, Fraunhofer
FOKUS, Berlin, 18-20 July, 2018, pages 357–
388. Fraunhofer FOKUS, Berlin.

Kalodner, H. A., Carlsten, M., Ellenbogen, P.,
Bonneau, J., and Narayanan, A. (2015). An
empirical study of namecoin and lessons for
decentralized namespace design. In WEIS.
Citeseer.

Kamat, P. and Gautam, A. S. (2018). Recent
trends in the era of cybercrime and the mea-
sures to control them. In Handbook of e-
Business Security, pages 243–258. Auerbach
Publications.

Karaarslan, E. and Adiguzel, E. (2018).
Blockchain based dns and pki solutions.
IEEE Communications Standards Magazine,
2(3):52–57.

Khan, S., Zhang, Z., Zhu, L., Li, M., Safi, K.,
Gul, Q., and Chen, X. (2018). Accountable
and transparent tls certificate management:
An alternate public-key infrastructure with
verifiable trusted parties. Security and Com-
munication Networks, 2018.

Kiayias, A., Russell, A., David, B., and
Oliynykov, R. (2017). Ouroboros: A prov-
ably secure proof-of-stake blockchain pro-
tocol. In Annual International Cryptology
Conference, pages 357–388. Springer.

Kubilay, M. Y., Kiraz, M. S., and Mantar, H. A.
(2018). Certledger: A new pki model with
certificate transparency based on blockchain.
arXiv preprint arXiv:1806.03914.

Lencse, G. and Kadobayashi, Y. (2018).
Methodology for dns cache poisoning vul-
nerability analysis of dns64 implementa-
tions. INFOCOMMUNICATIONS JOUR-
NAL, 10(2):13–25.

Letz, D. (2019). Blockquick: Super-light client
protocol for blockchain validation on con-
strained devices. IACR Cryptology ePrint
Archive, 2019:579.

Linkova, J. (2016 (accessed May 15, 2019)). Let’s

talk about IPv6 DNS64 DNSSEC,.
https://blog.apnic.net/2016/06/09/
lets-talk-ipv6-dns64-dnssec/.

Matsumoto, S. and Reischuk, R. M. (2016).
Ikp: Turning a pki around with blockchains.
IACR Cryptology ePrint Archive, 2016:1018.

Matsumoto, S., Reischuk, R. M., Szalachowski,
P., Kim, T. H.-J., and Perrig, A. (2017).
Authentication challenges in a global envi-
ronment. ACM Transactions on Privacy and
Security (TOPS), 20(1):1.

Qin, B., Huang, J., Wang, Q., Luo, X., Liang,
B., and Shi, W. (2017). Cecoin: A decen-
tralized pki mitigating mitm attacks. Future
Generation Computer Systems.

Rashid, F. Y. (2015). Google threatens action
against Symantec-issued certificates follow-
ing botched investigation.

Ruohonen, J. (2018). An empirical survey
on the early adoption of dns certification
authority authorization. arXiv preprint
arXiv:1804.07604.

Scheitle, Q., Chung, T., Hiller, J., Gasser, O.,
Naab, J., van Rijswijk-Deij, R., Hohlfeld, O.,
Holz, R., Choffnes, D., Mislove, A., et al.
(2018). A first look at certification authority
authorization (caa). ACM SIGCOMM Com-
puter Communication Review, 48(2):10–23.

Sehgal, A. and Dixit, A. (2019). Securing web
access—dns threats and remedies. In Emerg-
ing Trends in Expert Applications and Secu-
rity, pages 337–345. Springer.

Shulman, H. and Waidner, M. (2017). One key to
sign them all considered vulnerable: Evalua-
tion of dnssec in the internet. In NSDI, pages
131–144.

Wang, Z., Lin, J., Cai, Q., Wang, Q., Jing, J., and
Zha, D. (2018). Blockchain-based certificate
transparency and revocation transparency�.
Financial Cryptography and Data Security.
Springer International Publishing.

Wei-hong, H., Meng, A., Lin, S., Jia-gui, X., and
Yang, L. (2017). Review of blockchain-based
dns alternatives. ���������, 3(3):71–77.

Xander Lammertink, M. D. (2015 (accessed May
15, 2019)). Namecoin as alternative to
the domain name system,. https://www.
sidnlabs.nl/downloads/theses/report.

Yakubov, A., Shbair, W., Wallbom, A., Sanda,
D., et al. (2018). A blockchain-based
pki management framework. In The
First IEEE/IFIP International Workshop
on Managing and Managed by Blockchain
(Man2Block) colocated with IEEE/IFIP
NOMS 2018, Tapei, Tawain 23-27 April
2018.

Zhu, L., Wessels, D., Mankin, A., and Heide-
mann, J. (2015). Measuring dane tlsa de-
ployment. In International Workshop on
Traffic Monitoring and Analysis, pages 219–
232. Springer.

