Area: Wide band gap semiconductors

Electrically Active Traps in Bipolar 10 kV 8 A Silicon Carbide (SiC) PiN Diodes

P. Vigneshwara Raja^{1,2*}, Christophe Raynaud², Besar Asllani³, Hervé Morel², Dominique Planson²

¹Department of Electrical Engineering, IIT Dharwad, India, ²Univ. Lyon, INSA Lyon, CNRS, Ampère, Villeurbanne Cedex F-69621, France, ³Supergrid Institute, 23 Rue Cyprian, 69611, Villeurbanne Cedex, France. Email address: vigneshwararaja@iitdh.ac.in

4H-Silicon Carbide (4H-SiC) bipolar PiN diode rectifiers demonstrated ultra-high breakdown voltage (V_{BR} > 10 kV), high current handling capability (> 8 A), low reverse leakage current, and drift conductivity modulation, as compared to the well-developed 4H-SiC Schottky barrier diodes (SBDs). The concentration of the performance-limiting trap such as $Z_{1/2}$ ($E_C - 0.67 \text{ eV}$) in the n-type 4H-SiC epilayer has been considerably reduced (< $5 \times 10^{12} \text{ cm}^{-3}$) in recent years. The PiN diode structure integrates double p-type layers (p and p⁺). The p-type 4H-SiC layer quality is sub-standard than the n-type. The periphery protection was realized by Al⁺ ion-implantation (p⁺). The ion-implantation-induced crystal defects introduce electrically active traps and affect the PiN diode characteristics via charge trapping. So, this work focuses on identifying the traps in the 4H-SiC PiN diodes by deep-level transient Fourier spectroscopy (DLTFS).

The 4H-SiC PiN diodes with a DC blocking voltage of 10 kV and a continuous forward current of 8 A were used for this study. The active area of the diodes is about 8.69 mm². The junction termination extension (JTE) technique was employed in the diode structure to mitigate the electric field crowding at the junction edges (p^+ periphery production), thus yielding theoretically anticipated on-state and off-state performance.

The forward voltage drop across the diode at 1 mA is ~2.6 V. It is found that negligible current flow occurs for low forward bias < 1.6 V, then the diffusion current governs the forward current up to 2.7 V, beyond that series resistance effect comes into the picture. The diode exhibits a low reverse leakage current < 0.5 nA at -200 V. It is noted that the forward voltage drop decreases with the temperature rise due to the increase in intrinsic carrier concentration, at the same time on-state current increases; thus on-state conduction losses reduce with temperature. The reverse I-V (0 V to -200 V) remains unchanged even at 150°C, signifying the effectiveness of 4H-SiC PiN diodes for the elevated temperature operation.

Figure 1 shows the capacitance-DLTFS spectra acquired at two different emission transients ($T_E = 20.48$ ms and 2.048 s). In our measurements, positive and negative DLTFS peaks correspond to electron trap (located below conduction band $E_C - E_T$) and hole trap (i.e. $E_V + E_T$), respectively. Three hole traps H1 at $E_V + 0.16$ eV, H2 at $E_V + 0.3$ eV, and H3 at $E_V + 0.63$ eV and two electron traps E1 at $E_C - 0.19$ eV and E2 at $E_C - 0.67$ eV are identified in PiN diodes using Arrhenius analysis. Among these, electron traps $E_C - 0.19$ eV (Ti) and $E_C - 0.67$ eV ($Z_{1/2}$) are omnipresent defects in the n-type 4H-SiC layer. The hole traps namely $E_V + 0.16$ eV, $E_V + 0.3$ eV, and $E_V + 0.63$ eV may be originated from the ion-implanted p⁺ JTE region.

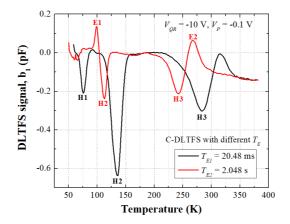


Figure 1: Capacitance-DLTFS spectra acquired at two different emission transients ($T_E = 20.48$ ms, 2.048 s) reveal three hole traps H1, H2, H3, and two electron traps E1 and E2 in the 4H-SiC PiN diodes.