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Mechanical cell competition kills cells via induction
of lethal p53 levels
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Rafael E. Carazo Salas3 & Eugenia Piddini1

Cell competition is a quality control mechanism that eliminates unfit cells. How cells compete

is poorly understood, but it is generally accepted that molecular exchange between cells

signals elimination of unfit cells. Here we report an orthogonal mechanism of cell

competition, whereby cells compete through mechanical insults. We show that MDCK cells

silenced for the polarity gene scribble (scribKD) are hypersensitive to compaction, that

interaction with wild-type cells causes their compaction and that crowding is sufficient for

scribKD cell elimination. Importantly, we show that elevation of the tumour suppressor p53 is

necessary and sufficient for crowding hypersensitivity. Compaction, via activation of

Rho-associated kinase (ROCK) and the stress kinase p38, leads to further p53 elevation,

causing cell death. Thus, in addition to molecules, cells use mechanical means to compete.

Given the involvement of p53, compaction hypersensitivity may be widespread among

damaged cells and offers an additional route to eliminate unfit cells.

DOI: 10.1038/ncomms11373 OPEN

1 The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
2 Laboratoire PhysicoChimie Curie, Institut Curie, Paris Sciences et Lettres Research University – Sorbonne Universités, Université Pierre et Marie
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C
ell competition is a remarkable phenomenon, conserved
from arthropods to mammals, that causes the elimination
of relatively less fit cells from tissues, helping to maintain

overall tissue health1–10. Despite important advances11–16, the
mechanisms that lead to the elimination of unfit cells are still little
understood and it is unclear whether one or multiple pathways
lead to cell killing17–22.

It has recently been reported that Madin–Darby canine kidney
(MDCK) epithelial cells silenced for the polarity gene scribble
(scribKD cells) are eliminated in the presence of wild-type MDCK
cells23, while they are viable on their own23. However, the
mechanisms by which scribKD cells are killed by wild-type cells
are largely unknown. We therefore took advantage of this recent
observation to investigate the mechanisms of cell competition.

Here we show that scribKD cells are out-competed by wild-type
cells through mechanical insults rather than molecular exchange.
We find that scribKD cells are hypersensitive to compaction and
that this is due to elevation of baseline p53 levels, which is both
necessary and sufficient to induce hypersensitivity to crowding
and confer a mechanical loser status. We further show that on
contact with wild-type cells, scribKD cells become compacted into
a high-density arrangement and that compaction is not only
required but also sufficient to eliminate scribKD cells. We also
delineate the mechano-transduction cascade that leads to scribKD

cell death. Specifically, we show that scribKD cells’ compaction
causes activation of the Rho-associated kinase (ROCK), which in
turn activates p38 leading to further p53 elevation and cell death.
Overall, this work demonstrates that mechanical forces can be
responsible for the elimination of cells during cell competition
and that p53 levels play a key role both in instructing the
mechanical loser status and in the execution of mechanical cell
competition.

Results
Compaction of scribKD cells induces mechanical competition. It
has previously been shown that scribKD MDCK cells are elimi-
nated when co-cultured with wild-type MDCK cells through cell
death and delamination (see ref. 23 and Supplementary Fig. 1a
and Supplementary Movie 1, left), while monocultures of scribKD

cells are viable (see ref. 23 and Supplementary Fig. 1b and
Supplementary Movie 1, right). To investigate the mechanisms of
scribKD-mediated cell competition, we first asked whether it is
mediated by soluble factors, as in other cases of in vitro cell
competition6,24. Growth rate (doubling time) profiles showed that
scribKD cells in pure cultures divide, albeit at a reduced rate, to
reach a steadily maintained number (Supplementary Fig. 1d),
whereas under competing conditions, their numbers collapse
following initial growth (Fig. 1a). Interestingly, we found that the
growth rate of scribKD cells is not affected by conditioned
medium from competing cultures (Fig. 1b and Supplementary
Fig. 1c). Similarly, in transwell systems that allow exchange of
solutes but prevent cell contact, scribKD cells grown together with
co-cultures of competing (wild-type/scribKD) cells grew
comparably to scribKD cells grown with other scribKD cells
(Fig. 1c and Supplementary Fig. 1c). This indicated that soluble
factors are not sufficient to induce cell competition and that cell
contact is required. We hypothesized that cell contact enables
molecular interactions essential for cell competition, as observed
by others11,12. However, to our surprise, we found that sustained
contact with wild-type cells is not sufficient for elimination of
scribKD cells (Fig. 1d, black arrow and Supplementary Movie 2)
and that scribKD clones are efficiently eliminated only when fully
surrounded by wild-type cells (Fig. 1d, white arrow and
Supplementary Movie 2). This suggested that a type of
exchange other than molecular signalling (which would be

enabled by contact) may be needed, and prompted us to look
for differences between scribKD clones that were surrounded and
peripheral clones that were simply contacted.

One striking feature of surrounded clones, which is not shared
by peripheral clones, is that they reach a dramatically higher cell
density than confluent scribKD pure cultures (Fig. 1e–g and
Supplementary Fig. 1e). scribKD cells acquire a flattened
morphology upon gene silencing23,25, which at confluence
results in a much lower (B1/3) final density compared with
wild-type cells (Fig. 1e–g). However, scribKD clones surrounded
by wild-type cells do not flatten and reach a density that is B4.5-
fold higher than that of pure scribKD cultures (Fig. 1e–g).
Furthermore, competing scribKD cells are taller than when grown
in single cultures (Fig. 1h–j). Together, this indicates that as a
result of their interaction with wild-type cells, scribKD cells
become more compacted than in their default state and this
correlates with and precedes their elimination.

We next asked whether cell compaction plays a role in scribKD

cell elimination, by assessing its effect on scribKD cells in complete
absence of wild-type cells. To that end, we used micropatterns to
form scribKD microcultures of a defined, homogenous density and
size (+¼ 800mm, ref. 26). When plated at high density, control
cells that had not undergone scribble silencing (without
tetracycline, �TET) continued to grow until they reached a
maximal density of 61±4 cells per 10,000 mm2, which they
maintained homeostatically (Fig. 1k,l and Supplementary Movie
3, left), as previously shown27,28. Remarkably, scribKD cultures
(þTET) instead saw their numbers and densities drop
(Fig. 1m,n, dark green and Supplementary Movie 3, right), due
to a combination of increased cell death and extrusion, the same
two events that lead to the elimination of scribKD cells during cell
competition (Supplementary Movie 1, left and ref. 23). Notably,
scribKD cells seeded at a lower density maintained that initial
density (Fig. 1n, light green) indicating that the drop in cell
number observed at higher density is not a general response of
scribKD cells to plating. This suggested that scribKD cells are
hypersensitive to compaction. To test this directly, we seeded
confluent monolayers of control (�TET) or scribKD (þTET)
cells on stretched polydimethylsiloxane (PDMS) substrates, which
we then released to induce cell compression27. Control cultures
showed no increase in apoptosis upon compression (Fig. 1o–q).
The scribKD cells, however, displayed a 3-fold increase in
apoptosis over their uncompressed baseline cell death, which
was already higher than control (Fig. 1p,q). Altogether, these
experiments show that scribKD cells display hypersensitivity to
cell density and cannot sustain levels of crowding normally
reached by wild-type cells. They further indicate that compaction
of scribKD cells into higher cell densities, like those imposed on
them by wild-type cells during competition, is sufficient to induce
cell death. This suggests that wild-type cells eliminate scribKD cells
through crowding-induced compaction. We name this new mode
of selective elimination of one cell population by another due to
differential sensitivity to crowding ‘mechanical cell competition’,
to contrast it with forms of cell competition that rely on
molecular exchange.

Corralling promotes but is not needed for scribKD elimination.
As shown in Fig. 1f,g, in subconfluent competing cultures, the
density of scribKD cells surpasses that of surrounding wild-type
cells. This indicates that their acquired density does not simply
reflect the density of the mixed culture, but is the result of
an active process. To understand how scribKD cells become
compacted during competition, we plated cells at low density and
observed what happens when wild-type and scribKD clones first
come into contact. Strikingly, we saw that, on contact, both
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scribKD and wild-type cells engage in collective cell migration
(Fig. 2a and Supplementary Movie 4). This behaviour was specific
to wild-type/scribKD encounters, as it was not observed upon
homotypic encounters of either cell population (Fig. 2b and
Supplementary Movie 5). Interestingly, this migration was highly
directional with scribKD cells always at the migrating front and,
conversely, wild-type cells always at the back. We next

characterized this migratory behaviour and assessed its con-
tribution to cell compaction and elimination. First, we repeated
the above experiment using a fluorescent nuclear label in each
population to facilitate cell tracking (Fig. 2c). Kymograph analysis
showed rapid activation of collective cell migration at the time of
contact between wild-type and scribKD cells, with both popula-
tions moving synchronously (Fig. 2d, top and Fig. 2e). By
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Figure 1 | Compaction of scribKD cells is both required and sufficient for their elimination. (a–c) Quantification showing growth rate of scribKD cells from

time-lapse movies of: competition versus pure cultures (a), pure cultures in mock conditioned versus competition conditioned medium; two biological

replicates (b) or transwell experiments, where scribKD cells were co-cultured across transwells with control or with competing cultures; three biological

replicates (c). Each dot represents the average of n fields of cells. See also Supplementary Fig. 1c. (d) Time course of cell competition assay between

unlabelled wild-type (WT) and GFP-labelled scribKD MDCK cells. Competition is observed in surrounded scribKD cells (white arrow), but not in cells that are

only contacted (black arrow), see corresponding Supplementary Movie 2. (e) Confluent GFP-labelled scribKDcells stained with phalloidin. (f) Competing

unlabelled WT and GFP-labelled scribKD cells counterstained with DAPI. (g) Quantification showing average (±s.e.m.) cell density values of confluent pure

scribKD cells and subconfluent competing WT and scribKDcells as in e and f. (h,i) Confocal xz sections of representative GFP-labelled scribKDcells pure (h) or

co-cultured with WT cells (i), stained with phalloidin (h,i) and DAPI (i). (j) Quantifications of cell height from images as in h and i. Black bars¼median.

(k,m) Representative stills from time lapse of GFP-labelled scribKD cells þ /�TET growing on micropatterns (800mm +), see corresponding

Supplementary Movie 3. (l,n) Quantifications of cell density over time from movies as in k and m. Each dotted line corresponds to a different movie. (o,p)

Cleaved Caspase-3 staining in WT (o) and scribKD (p) cells þ /� compression (high density and low density, respectively). (q) Quantification of cell death

events (cleaved Caspase-3) from images as in o and p. Data are pooled from three biological replicates. Black bars¼mean; three biological replicates

across two independent experiments. n¼ number of fields imaged in a single repeat (a–c,q) or n¼ number of cells (g,j). Scale bars, 100mm (movie

sequences) and 50mm (immunofluorescence images) here and throughout all figures. **Po0.005, ***Po0.0005 by KS test.
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contrast, similar kymographs of homotypic collisions did not
show significant cell displacement (Fig. 2d, centre and bottom;
and Fig. 2e). To further characterize the features of this collective
cell migration, we carried out single-cell tracking of both cell

populations before and after contact. The analysis of individual
cell trajectories shows that single-cell movement is faster and
more persistent for both wild-type and scribKD cells upon
heterotypic collision (Fig. 2f and Supplementary Fig. 2a–d). We
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Figure 2 | Contact-induced migration promotes compaction and cell competition. (a,b) Stills from movies of wild-type (WT) and GFP-labelled scribKD co-

cultures (a) or scribKD homotypic cultures (b), see Supplementary Movie 4,5. (c,d) Kymographs (d) from movies as in c. Velocities are shown before (above
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line is the position of the front average±s.d.; n¼ number of contact lines averaged. (f) Single-cell tracking of trajectories of WT and scribKD cells during

competition. Heat-map representation shows time-resolved position of single cells. (g) Micrograph exemplifying cell shape change (arrows) after contact

between WTand scribKD cells. (h) Bar plot representing aspect ratio of WT and scribKD cells as a function of distance from their contact point. n¼ 50 cells of

each type from three movies; error bars¼ s.d. (i) Distribution of angles between a cell’s long axis and its direction of motion; n (WT)¼ 18 cells; n

(scribKD)¼ 17 cells. (j,k) PIV analysis of images at time of contact (see Supplementary Movie 6) (j); and quantification of cell displacements (k) shows WT

cells begin migrating (arrows) before scribKD cells; n¼ 10 cells for each type from three independent movies. Coloured lines¼mean; shaded areas¼ s.d.

(l–o) Disrupting cell junctions by E-cadherin blocking antibody and calcium removal prevents contact-induced migration (m), compaction (n) and delays

competition (o) compared with control (l), see Supplementary Movie 8; error bars¼ s.e.m. (p) E-cadherin knockdown in WT cells (E-cadKD) prevents

contact-induced migration. (q) E-cadherin knockdown in scribKD cells (scribKD E-cadKD) prevents contact-induced migration, see Supplementary Movie 9.

Right panel displays anti-E-cadherin immunofluorescence at end of movie (see Supplementary Fig. 2h,i). Five independent repeats; n¼ 10 events showing

absence of directional migration, five were validated for E-cadherin levels and all five had WT levels. White dashed line¼ initial contact point; black dashed

line¼ final contact point; yellow dashed line separates WT from scribKD E-cadKD cells. *Po0.05, **Po0.005 by KS test.
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then looked more closely at the dynamic interplay between wild-
type and scribKD cells at the onset of migration. Interestingly,
analysis of cell shape at the interface between the two populations
revealed that both wild-type and scribKD cells become elongated
at the site of contact (Fig. 2g,h), indicating that they are under
anisotropic stress. Moreover, the cells in both populations move
in the direction of their short axis (Fig. 2i), suggesting that they
could be locally compressed. This could be the result of wild-type
cells beginning migration and locally ‘piling up’ against the
scribKD cells. In agreement with this, particle image velocimetry
(PIV) and single-cell tracking revealed that wild-type cells begin
migrating towards scribKD cells on average B2 h before the
scribKD cells start migrating away (Fig. 2j,k and Supplementary
Movie 6). Together, the chronology of these events and the local
cellular deformations suggest that cells might engage in a beha-
viour similar to the ‘chase and run’ migration reported for other
cell types29. These experiments do not distinguish whether
scribKD cells are pushed by wild-type cells or, conversely, whether
scribKD cells self-compact to avoid closer interaction wild-type
cells. However, it is clear that as migration progresses, scribKD

cells become corralled by wild-type cells and are compacted and
eliminated (Supplementary Movie 7), indicating that this
behaviour may facilitate compaction and outcompetition of
scribKD cells.

To directly test the relevance of directional cell migration in the
elimination of scribKD cells, we next sought to disrupt this
behaviour. Adhesion molecules play an important role in
collective cell migration30 and have also been implicated in
‘chase and run’ among mesenchymal cells29. In addition, scribble
downregulation has previously been shown to induce intracellular
accumulation of E-cadherin23,31 and we found that it causes an
increase of both total and cell surface E-cadherin levels
(Supplementary Fig. 2e–g). We therefore reasoned that
targeting E-cadherin-mediated adhesion might disrupt
directional migration between the wild-type and scribKD cells.
We undertook two separate approaches and found that either
blocking E-cadherin function in both populations, through a
combination of low calcium and addition of a blocking antibody
(Fig. 2l–o and Supplementary Movie 8), or silencing E-cadherin
only in wild-type cells (E-cadKD (ref. 32); Fig. 2p) was sufficient to
inhibit directional migration. Interestingly, disruption of
E-cadherin inhibited active cell compaction (Fig. 2l,m,
Supplementary Movie 8 and quantification in Fig. 2n) and
resulted in delayed elimination of scribKD cells (Fig. 2l,m,
Supplementary Movie 8 and quantification in Fig. 2o).
However, it did not rescue the scribKD cells from cell
competition, since they were eventually eliminated as the
culture became progressively more crowded due to proliferation
(Fig. 2l,m and Supplementary Movie 8).

Having established that E-cadherin-mediated adhesion is
involved in contact-induced migration between wild-type and
scribKD cells, we next asked whether the upregulation of
E-cadherin observed in scribKD cells (Supplementary Fig. 2e–g)
plays a role in this directional cell movement. We therefore
generated an inducible double scribKD E-cadherin knockdown cell
line (scribKD E-cadKD) and specifically selected clones that
displayed partial silencing, enough to bring E-cadherin down to
wild-type levels (Fig. 2q, right panel and Supplementary Fig. 2h,i).
Indeed, partial downregulation of E-cadherin inhibited contact-
induced migration, suggesting that high E-cadherin levels in the
scribKD cells are required for this process (Fig. 2q and
Supplementary Movie 9). As expected, these clones were still
outcompeted by wild-type cells (Supplementary Fig. 2j). In
contrast, we found that E-cadherin upregulation alone is not
sufficient to cause contact-induced migration, as cells over-
expressing E-cadherin at levels comparable to those of scribKD

cells (Supplementary Fig. 2k) did not engage in directional cell
migration with wild-type cells upon contact (Supplementary
Fig. 2l). Altogether, we conclude that directional cell migration,
by enabling corralling and active compaction of scribKD cells,
promotes but is not required for mechanical cell competition, and
that E-cadherin is necessary for corralling and active compaction
but it does not impact on loser cell status.

p53 is activated in scribKD cells before cell competition. Key to
the outcompetition of scribKD cells is their hypersensitivity to
compaction (Fig. 1k–q). To identify genes and pathways involved
in this behaviour, we carried out transcriptional profiling of
scribKD cells (scribKD þTET) and compared it with the tran-
scriptomes of control MDCK cells (scribKD �TET) and,
importantly, of an isolate of scribKD cells that is resistant to cell
competition (scribRES). Despite maintaining scribble gene
knockdown (Supplementary Fig. 3a), the scribRES cells do not
display elevated E-cadherin (Supplementary Fig. 3b), do not
engage in contact-induced migration with wild-type cells
(Supplementary Fig. 3c) and are not outcompeted in cell
competition assays (Supplementary Fig. 3d and Supplementary
Movie 10). Notwithstanding these fundamental differences, we
observed that the scribKD transcriptome is still substantially closer
to scribRES (with 523 differentially expressed genes) than to
control (scribKD �TET) cells (with 1,645 differentially expressed
genes; Fig. 3a, left and Supplementary Data 1 and 2). This allowed
us to rule out all genes that are differentially expressed in scribKD

versus wild-type cells but are similarly expressed between scribKD

and scribRES, as these are clearly not sufficient to induce cell
competition. Instead, we focused on the small intersection of 306
genes that are differentially expressed between wild-type and
scribKD cells but are also different between scribKD and scribRES

cells (Fig. 3a and Supplementary Data 3).
Gene Ontology term enrichment analysis highlighted p53

signalling as the top functionally enriched pathway (Fig. 3a,
middle). A number of known p53 target genes were moderately
upregulated in scribKD cells, suggesting p53 activation (Fig. 3a,
right). Consistent with this, we found that p21 (a known p53
target33 and the most highly upregulated p53 target in our gene
list; Fig. 3a) is specifically upregulated upon scribble knockdown
in scribKD cells (Fig. 3b, Supplementary Fig. 3e and
Supplementary Fig. 4d,e) but not in scribRES cells (Fig. 3b) and
that p53 levels are higher in scribKD cells than in wild-type cells
(Fig. 3c,d and Supplementary Fig. 3f), confirming pathway
activation. Thus, scribKD cells have high baseline p53 activity
and this correlates with their loser status.

p53 is further elevated in scribKD cells by compaction. Next we
asked whether cell competition affects p53 activity. Interestingly,
we found that in competing conditions, p53 levels in scribKD cells
increase above their already elevated baseline level, in a way that
correlates with the degree of cell compaction (Fig. 3c–e; r¼ 0.56
by non-parametric Spearman correlation). This suggested that
compaction increases p53 levels or, conversely, that higher p53
levels enable compaction. To distinguish between these two
possibilities, we looked at how compression alone affects p53,
using deformable PDMS substrates as before (Fig. 1o–q).
Importantly, we found that compression alone causes an increase
in p53 levels (Fig. 3f,g), as seen during competition. This indicates
that cell competition induces further p53 activation in the scribKD

cells via compaction-induced mechanical stress.
Given that p53 is upregulated during cell competition, we next

sought to ask whether it contributes to this process. Therefore we
mutated p53 in scribKD cells by CRISPR-mediated mutagenesis
(scribKD p53� /� cells, Supplementary Fig. 4a,b). The scribKD
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p53� /� cells failed to upregulate p21 following ultraviolet
irradiation (Supplementary Fig. 4b) or scribble knockdown
(Supplementary Fig. 4c–e), confirming functional p53 inactiva-
tion. Strikingly, we found that p53 inactivation in scribKD

p53� /� cells was sufficient to partially rescue their low
homeostatic cell density (Fig. 3h) and their hypersensitivity to
compaction (Fig. 3i). Remarkably, genetic (using scribKD p53� /�

cells) or chemical (using the inhibitor Pifithrin-a) inhibition of
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p53 in scribKD cells was also sufficient to prevent their
outcompetition (Fig. 3j and Supplementary Movie 11;
Supplementary Fig. 4f). Furthermore, scribKD p53� /� cells
maintained high E-cadherin levels (Supplementary Fig. 4g) and still
displayed contact-induced migration (Supplementary Fig. 4h),
demonstrating again that corralling is not sufficient for competition.
Altogether, we conclude that high baseline p53 activity in scribKD

cells is associated with their loser status and is required for them to
acquire a low homeostatic cell density and hypersensitivity to
compaction, two key features of the mechanical loser status.

Interestingly, though it has long been established that
scribble� /� cells are eliminated by cell competition in Droso-
phila34,35, when we tested whether this might happen via
mechanical insults in wing imaginal discs we found that, unlike
in MDCK cells, scribble� /� wing disc cells did not upregulate
E-cadherin (Supplementary Fig. 5a,b) and their outcompetition
was not rescued by p53 inhibition (Supplementary Fig. 5c). It is
possible that scribble� /� cells are not eliminated by mechanical
cell competition in Drosophila or that the function of Scribble or
p53 may not be conserved in this process. Alternatively and
perhaps more likely, mechanical cell competition may be
redundant with other mechanisms of cell competition that have
been described to target scribble� /� cells in that system36,37.

ROCK activates p38 leading to p53 elevation and cell death.
We next wondered how mechanical stress might lead to p53
activation. A potential candidate was p38 signalling, as it is
required for scribKD cell competition23, is known to promote p53
activity38–40 and has also been involved in the response to
mechanical stress41. Consistent with an involvement of p38, we
found that compression alone causes an increase in active
phosphorylated (T180/Y182) p38 (ref. 38; P-p38) in scribKD cells
(Fig. 4a,b) and that chemical inhibition of this pathway partially
rescues both the homeostatic density of scribKD cells (Fig. 4c) and
their compaction hypersensitivity (Fig. 4d). Moreover, the
upregulation of p53 in competing scribKDcells was reduced by
p38 inhibition (Fig. 4e). We conclude that in scribKD cells,
compression induces p53 via activation of p38.

We next asked how compression of scribKD cells causes p38
activation. We monitored cytoskeletal changes induced by
compression and found that both cortical Actin (by phalloidin
staining) and active phosphorylated-myosin (P-Myosin) are
upregulated in compacted scribKD cells during competition
(Fig. 4f,g). Since the cytoskeletal regulator ROCK42 is one of
the main kinases responsible for Myosin phosphorylation, this
suggested that ROCK might be activated. Indeed P-Myosin
upregulation was reduced in the presence of a ROCK inhibitor
(Supplementary Fig. 6a,b) and the ROCK target phospho-MYPT1
(ref. 43; p-MYPT1) was also elevated in compacted scribKD cells
(Fig. 4h), indicating that ROCK is activated in compacted scribKD

cells. This was potentially relevant because ROCK has been
shown to phosphorylate p38 (ref. 44). Thus, to ask whether
ROCK is upstream of p38 activation, we compressed pure
cultures of scribKD cells in the presence or absence of a ROCK
inhibitor and looked at P-p38 levels. ROCK inhibition led to a
partial reduction of P-p38 levels, thus placing ROCK upstream of
p38 signalling (Fig. 4i,j). In addition, ROCK inhibition was
sufficient to partially rescue the homeostatic density of scribKD

cells (Fig. 4k) and compression-induced cell death (Fig. 4l).
Importantly, inhibition of ROCK was also sufficient to prevent
the out-competition of scribKD cells, with no appreciable cell
death observed even though cells were compacted far beyond
standard competition densities (Fig. 4m and Supplementary
Movie 12). Altogether, these experiments indicate that
mechanical cell competition is caused by compaction-induced

ROCK activation, which activates p38, leading to p53 elevation
and cell death. Interestingly, ROCK has also been implicated in
apical extrusion of dying or crowded MDCK cells45,46. However,
in the case of Scribble competition, ROCK has a different
function, as it is involved in p53 activation and cell death. In
addition, while in that context ROCK was activated by S1P2 and
Piezo signalling45,46, inhibition of these pathways had no effect
on Scribble cell competition (Supplementary Fig. 7a,b), suggesting
a distinct upstream activation mechanism.

p53 activation turns wild-type cells into mechanical losers.
Finally, we decided to address how scribble knockdown earmarks
cells as losers. Our data indicated that a loser cell status is not an
obligate outcome of scribble silencing, as we could isolate scribKD

cells that are competition resistant (scribRES cells; Supplementary
Fig. 3d). Instead, our data showed that p53 is necessary for com-
petition and that mild p53 elevation is required for scribKD cells to
acquire key features of the mechanical loser status (Fig. 3h,i). This
prompted us to investigate whether p53 might actually be sufficient
to induce the mechanical loser status and cell competition.
Nutlin-3, a chemical inhibitor of the E3 ubiquitin ligase MDM2
(Mouse Double Minute 2 (ref. 47)), activates p53 in a dose-
dependent manner. This allowed us to establish conditions to
induce mild p53 activation in wild-type MDCK cells. Strikingly,
low-level p53 activation was sufficient to induce cell flattening
(Fig. 5a) and to lower the homeostatic density of wild-type cells
(Fig. 5b). Remarkably, Nutlin-3 treatment was also sufficient to
induce compaction hypersensitivity (Fig. 5c). Thus, mild p53
activation is sufficient to induce in wild-type cells all the features
that we observed in scribKD cells that are hallmarks of their
mechanical loser status. Therefore, we next asked whether differ-
ential p53 levels are sufficient to induce mechanical cell competi-
tion. To test this, we generated a p53 knockout cell line (p53� /� ),
which we then co-cultured with wild-type cells. Not surprisingly,
simply mixing wild-type and p53� /� cells was not sufficient to
induce competition (Supplementary Fig. 8a). Strikingly however,
mild p53 activation in wild-type cells, by Nutlin-3 addition at
sublethal doses, caused the elimination of these cells specifically in
the co-culture, but not when they were cultured alone (Fig. 5d,
Supplementary Fig. 8b and Supplementary Movie 13). Importantly,
p53-induced cell competition was indistinguishable from scribble
cell competition, as it resulted in loser cell compaction (Fig. 5e) and
only caused elimination when cells were compacted by p53� /�

cells (Fig. 5d). Overall, these results demonstrate that mild eleva-
tion of p53 is sufficient to phenocopy Scribble cell competition and
induce both hypersensitivity to cell crowding and the mechanical
loser status in otherwise wild-type cells.

To demonstrate the existence of p53-mediated mechanical cell
competition beyond the MDCK experimental paradigm, we
turned to primary cultures of epithelial cells, specifically to mouse
tracheal epithelial cells (MTECs), and looked for evidence of this
process. Under normal conditions, confluent MTEC monolayers
show little proliferation or change in cell density (Fig. 5f,g,
compare first and second time points, and Supplementary Movie
14, left, before Nutlin-3 addition). Interestingly however, when we
induced mild elevation of p53 (by Nutlin-3 treatment) in these
cultures, we found that this results in a 26% average reduction in
cell density, accompanied by cell extrusion, suggesting acquired
hypersensitivity to crowding (Fig. 5f,g, compare before and after
Nutlin-3 addition, and Supplementary Movie 14, left, after
Nutlin-3 addition). To test whether differential levels of p53
could induce cell competition in MTECs, we mixed Tomato-
labelled wild-type MTECs (MTEC Tomato; from Rosa26R-
nTomato-nGFP mice48) either with unlabelled wild-type
MTECs or with unlabelled p53 null MTECs (MTEC p53� /� ;
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Figure 5 | p53 activation is sufficient to induce crowding hypersensitivity and mechanical cell competition. (a) Addition of Nutlin-3 (8mM) causes

flattening of wild-type (WT) MDCK cells; n¼4 fields per repeat. (b) Time-resolved cell density measurement of growing WT MDCK cells þ /� Nutlin-3

(8 mM). (c) Quantification of cell death (cleaved Caspase-3) of WT MDCK cells with and without compression and þ /� Nutlin-3 (8 mM); black

bars¼mean; three biological replicates from two independent experiments. (d) Stills from time-lapse movies of WT and p53� /� MDCK co-cultures with

Nutlin-3 (8mM) see corresponding Supplementary Movie 13. (e) Cell density measurement from movies as in d; mean±s.e.m. (f) Stills from time-lapse

movies of primary cultures of unlabelled and Tomato-labelled WT MTECs (see corresponding Supplementary Movie 14). Nutlin-3 (17.5mM) was added at

t¼0. (g) Time-resolved cell density measurement from movies as in f of WT MTECs before and after Nutlin-3 (17.5mM) addition. (h) Stills from time-

lapse movies of primary cultures of unlabelled p53� /� and Tomato-labelled WT MTECs (see corresponding Supplementary Movie 15). Nutlin-3 (17.5mM)

was added at t¼0. (i) Time-resolved measurement of cell number from movies as in h of WT MTECs before and after Nutlin-3 (17.5mM) addition. (j,k)

Model of mechanical cell competition of scribKD cells; n¼ cell number in e or n¼ number of imaged fields of cells in b,c,g and i. For c and e, data are pooled

from three biological replicates. *Po0.05, ***Po0.0005 by KS test.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11373 ARTICLE

NATURE COMMUNICATIONS | 7:11373 | DOI: 10.1038/ncomms11373 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


from p53 null mice). Before Nutlin-3 addition, the proportion of
wild-type (Tomato) MTECs in the monolayer did not change for
several days when co-cultured with either p53� /� cells or more
wild-type cells (Fig. 5f–i, first two time points, and Supplementary
Movie 14, before Nutlin-3 addition). However and strikingly,
Nutlin-3 addition induced robust cell competition specifically in
wild-type/p53� /� MTEC co-cultures, causing the number of
wild-type cells to plummet within 6 days to B17% of their
starting number, with pronounced cell death and fragmentation
(Fig. 5h,i and Supplementary Movie 14, right). Thus, mild p53
elevation is sufficient to induce crowding hypersensitivity and
mechanical cell competition in MTEC cultures.

Discussion
In summary, our work demonstrates that in addition to molecular
signals, cells use mechanical means to compete (see model in
Fig. 5j,k), a concept that had previously only been speculated about
and proposed on theoretical grounds19,49. We show that
hypersensitivity to crowding provides an additional route to the
loser cell status, leading to mechanical cell competition and the
elimination of loser cells. One interesting prediction of our findings is
that they suggest that competition could take place between
genetically identical cells if they are endowed with differential
sensitivity to mechanical stress or if they reside in tissues with varying
mechanical properties50,51, a hypothesis that should be investigated.
In addition, given the involvement of p53, a general sensor of cell
stress, we suggest that mechanical cell competition may be
widespread among the damaged cells. Moreover, future work
should also examine the implications of our findings on the
behaviour of cancer cells. Since p53 is one of the most commonly
mutated genes in cancer52, our findings suggest that its loss could
enable neoplastic cells (scribble is a tumour-suppressor gene53,54) to
evade mechanical cell competition. Identifying the physiological
contexts where mechanical cell competition plays a role may help
better understand tissue biology and potentially cancer formation.

Note added in proof: Evidence of mechanical competition in
Drosophila was reported just prior to acceptance of this work55.

Methods
Antibodies and materials. For immunofluorescence we used:

Rabbit anti-p53 antibody (1:750, Cell Signaling Technology #9382), rabbit anti-
p21 antibody (1:200, Santa Cruz sc-397). In functional tests, both antibodies show
an increase in staining intensity þ ultraviolet-C treatment and a reduction or
complete absence of staining in scribKD p53� /� and p53� /� cells (Supplementary
Fig. 4b). In addition, the anti-p21 antibody is documented to cross-react in canine.
Mouse anti-E-cadherin antibody (1:600 total stain or 1:200 surface stain56), rabbit
anti-E-cadherin antibody (1:500 total stain or 1:50 surface stain57), both
documented to cross-react in canine. Rabbit anti-P-p38 MAPK (T180/Y182)
antibody (1:50, Cell Signaling Technology #9215) was used as in Norman et al.23

Rabbit anti-P-Myosin light chain (phospho S20) antibody (1:100, Abcam ab2480),
predicted to cross-react with all mammals. Goat p-MYPT1 (Thr 853) (1:50, Santa
Cruz sc-17432) antibody, documented to cross-react in canine. Rabbit anti-cleaved
Caspase-3 antibody (1:200, Cell Signaling Technology #9661s), predicted to cross-
react in canine based on 100% sequence homology. DAPI (1 mg ml� 1 Invitrogen);
Alexa Fluor conjugated secondary antibodies (1:1,000, Invitrogen); Alexa Fluor-568
and Alexa Fluor-647 conjugated phalloidin (1:40, Invitrogen).

For western blotting we used:
Rabbit anti-p53 antibody (1:1000, Cell Signaling Technology #9382), rabbit

anti-p21 antibody (1:500, Santa Cruz sc-397). Goat anti-Scribble antibody (1:500,
Santa Cruz sc-11048), functional tests show a decrease in signal intensity in scribKD

cells þTET and it is documented to cross-react in canine (Supplementary Fig. 3a).
Mouse anti-E-cadherin antibody (1:1,000; (ref. 56)), rabbit anti-b-tubulin antibody
(1:50,000, Abcam ab6046), HRP conjugated secondary antibodies (1:3,000, Bio-
Rad) and IRDye infrared fluorescent dyes (1:10,000, LI-COR).

Inhibitors and treatments were used at the following concentrations: Pifithrin-a
(Sigma) 10mM, p38 inhibitor SB202190 (Calbiochem) 10mM, ROCK inhibitor Y27632
(Sigma) 30mM, Piezo inhibitor gadolinium III chloride (Sigma) 100mM, S1P2 inhibitor
JTE013 (Tocris Bioscience) 10mM, tetracycline (Sigma) 5mg ml� 1 (except for
pre-treating scribKD cells for RNA-seq analysis where it was used at 10mg ml� 1),
doxycycline (Sigma) 1mg ml� 1, Nutlin-3 (Cayman Chemicals) was added as specified.

Cell culture and plasmids. The cell lines used in this publication are not listed in
the database of misidentified cell lines maintained by ICLAC. MDCK cell lines
were authenticated in our laboratory by RNA sequencing, which confirmed their
canine origin. All cell lines used in this publication have been tested in our
laboratory and were found to be negative for mycoplasma infection (EZ PCR
Mycoplasma Test Kit, Geneflow).

Wild-type MDCK, MDCK-pTR E-cadherin shRNA (EcadKD)32 and MDCK-
pTR scribble shRNA (scribKD) cells23 were a kind gift from Yasuyuki Fujita. Wild-
type and E-cadKD MCDK cells were cultured in DMEM (21885; Invitrogen)
supplemented with 10% fetal bovine serum (FBS, Invitrogen) in a humidified
incubator at 37 �C with 5% CO2. The scribKD cells were cultured as described for
wild-type cells with the addition of blasticidin 50 mg ml� 1 (Sigma) and G418
800 mg ml� 1 (Invitrogen) to the culture media. To establish MDCK cell lines that
stably express a nuclear green fluorescent protein (GFP) or red fluorescent protein
(RFP) marker, we used a modified pGIPZ-turboGFP-Puro (Thermo Scientific)
plasmid where we replaced turbo-GFP with either GFP-NLS or RFP-NLS. Selection
following infection was carried out with puromycin (0.65 mg ml� 1, Sigma).

Resistant scribKD MDCK cells (scribRES) were generated by culturing MDCK-
pTR scribble shRNA cells in 5 mg ml� 1 tetracycline for 20 days. The resulting final
population was expanded in the absence of tetracycline and tested for efficient
Scribble knockdown by western blotting.

The MDCK p53� /� and scribKD p53� /� cells were generated using Cas9
D10A CRISPR technology. sgRNAs against canine TP53 were manually designed
following published guidelines58

(p53_CRISPR#1_Fw: 50-GCAGAAGTGGCTGGCATCCT-30 , p53_CRISPR#2_Fw:
50-CCCTGGACCGGCCCCCTCC-30).

sgRNAs were individually cloned into the PX461 vector58 and the pair was
co-transfected into recipient cells. Pools of both p53� /� and scribKD p53� /� cells
were generated by functional selection with Nutlin-3 (20–30 mM) for 5–7 days and
either used immediately or expanded from single cells. p53 knockout was verified
by functional tests.

To knock down E-cadherin expression in MDCK scribble shRNA cells (scribKD

E-cadKD), the recipient cells were stably transfected with a modified version
(pSUPERIOR.hygroþ gfp E-cadherin shRNA) of a plasmid provided by Yasuyuki
Fujita (pSUPERIOR.neoþ gfp E-cadherin shRNA32). Selection was carried out
with Hygromycin B (75 mg ml� 1, Invitrogen). To overexpress E-cadherin in wild-
type MDCK cells, the E-cadherin-GFP cDNA59 was introduced into a modified
pTRIPZ-turboRFP-Puro plasmid (Thermo Scientific) in which turboRFP was
replaced by RFP-NLS (pTRIPZ-RFP-NLS-Puro). The cells infected with the
pTRIPZ ECAD-GFP-P2A-RFP-NLS construct express doxycycline-inducible
E-cadherin-GFP and RFP-NLS as a single transcript. Selection following infection
was carried out with puromycin (0.65 mg ml� 1, Sigma).

Primary mouse tracheal epithelial cells (MTECs) were obtained from
5-month-old animals from 26R-Tomato (Gt(ROSA)26Sortm1(CAG-tdTomato*,-

EGFP*)Ees) and p53-null (Trp53tm1tyj) strains, both of C57BL/6 background, using
a protocol adapted from published methods60. Tracheas were dissected from the
larynx to the bronchial main branches and collected in ice-cold DMEM:F12
(11330-32; Invitrogen) supplemented with a solution of 100 units ml� 1 penicillin
and 100 mg ml� 1 streptomycin (Invitrogen). The muscle, vascular tissue and
glands were then removed and the trachea cut into three to four rings. Each
fragment was washed in phosphate-buffered saline (PBS) and then incubated in
Dispase (BD Biosciences) at 7.5 Caseinolytic Units in PBS (total volume 450 ml
per trachea) for 25 min at room temperature (RT). Tracheal fragments were then
transferred into ice-cold DMEM:F12 and the sheets of epithelial tissue were
peeled off. The epithelial sheets and medium were transferred to an ice-cold
1.5 ml tube, and pelleted twice at 500 g for 3 min with a PBS wash in between. The
pellets were resuspended in 0.05% TE (Invitrogen) supplemented with 5 mM
EDTA for 30 min at 37 �C. Five hundred microlitres of DMEM:F12 supplemented
with 5% FBS was added to stop the reaction. The cells were pelleted (500 g,
3 min), resuspended in MTEC/Plus media and plated on collagen-coated
(50 mg ml� 1 rat tail collagen I (BD Biosciences)/0.02 M acetic acid) 24-well tissue
culture inserts (BD Falcon) in MTEC/Plus media at approximately 5� 104 cells
per insert. The MTEC cells were cultured in MTEC/Plus media consisting of:
DMEM:F12 basal media supplemented with a solution of 100 units ml� 1

penicillin and 100 mg ml� 1 streptomycin, 10 mg ml� 1 insulin (Invitrogen),
5.5 mg ml� 1 transferrin (Invitrogen), 6.7 mg ml� 1 selenium (Invitrogen),
0.1 mg ml� 1 cholera toxin (Sigma), 25 ng ml� 1 epidermal growth factor
(R&D Systems), 30 mg ml� 1 bovine pituitary extract (Invitrogen), 5% FBS,
15 mM HEPES and 0.01 mM freshly added retinoic acid (Sigma) in a humidified
incubator at 37 �C with 5% CO2.

Conditioned media and transwell assays. For competition-conditioned medium
experiments, media were conditioned for 48 h by cultures of GFP-labelled scribKD

and wild-type cells with (competition condition) or without (mock condition)
tetracycline. Recipient GFP-labelled scribKD cells were pre-treated with tetracycline
for 24 h and 10,000 cells per well were seeded into 24-well plates with 1 ml of
conditioned medium. For transwell assays, GFP-labelled scribKD cells (10,000 per
well) were seeded at the bottom of a 24-well plate. Co-cultures at a ratio of 1:10
(GFP-labelled scribKD: wild-type or GFP-labelled scribKD: scribKD) were plated onto
a transwell insert (3.0 mm pore size-polyester membrane, Corning) at 1,500 cells
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per insert). All scribKD and GFP-labelled scribKD cells were pre-treated for 24 h with
tetracycline before plating.

Fences system. Where applicable, immunofluorescence of cell competition was
carried out in a 24-well plate using ‘fences’ (Aix Scientifics, http://www.aix-scien-
tifics.co.uk/en/fences.html). The system allows two different populations of cells to
be seeded on either side of a silicone barrier, thus allowing experimental and
control conditions to be cultured, treated, imaged and (where applicable) stained
within the same well/coverslip.

Cell competition and contact-induced migration assays. Cell competition
assays on MDCK cells were carried out in 24-well plate fences. Control cultures
were plated in the centre of the fence (1,000 cells per fence) at a ratio of 1:10 GFP-
labelled scribKD: scribKD. Competition cultures were seeded on the outside of the
barrier (8,000 cells per fence) at a ratio of 1:10, scribKD: wild-type cells. The fences
were removed approximately 5 h after plating and the culture medium was replaced
with or without addition of tetracycline. Twenty hours later, the culture medium
was replaced with phenol red-free DMEM (þ 10% FBS and 1% L-glutamine,
Invitrogen) with or without tetracycline. Where specified, the chemical inhibitors
were also added at this point, except for the ROCK, Piezo and S1P2 inhibitors,
which were added after an additional 24 h. Live imaging was started 2–4 h after the
final media change and was continued for at least 50 h with regular media changes
every 2–3 days.

For cell migration assays, the cells were seeded as for competition assays, except
that they were plated at a lower density (1,000 cells in the centre of the fence,
2,000–5,000 cells in the outer chamber) and imaged more frequently (every 10 min
to every 2 h). Alternatively, where specified, cells for competition or migration
assays were plated on gridded tissue culture plates (m-Dish 35 mm Grid-500, Ibidi)
at 6,250 cells per plate. This allowed us to find specific clones of cells for
immunofluorescence analysis after live imaging had finished. Co-cultures, unless
otherwise specified, were plated at a ratio of 1:10 (scribKD: wild-type).

The MTEC cells were plated in collagen-coated tissue culture inserts and
allowed to grow for approximately 2 weeks until they reached homeostatic density
before commencing experiments. In control cultures, wild-type (unlabelled) cells
were plated with wild-type Rosa26R-Tomato (nuclear red) cells (MTEC Tomato)48

cells at a 2:1 ratio. In competition cultures, unlabelled p53-null cells
(MTEC p53� /� ) and wild-type Rosa26R-Tomato cells (MTEC Tomato) were
plated at a 2:1 ratio. Nutlin-3 was added at 17.5 mM on day 3 of live imaging. The
medium was changed every 2 days.

Homeostatic cell density assays. These assays were carried out in 96-well plates.
GFP-labelled scribKD and scribKD p53� /� cells (8,000–12,000 cells per plate) were
pre-treated with tetracycline for 12 h before plating where applicable, in the
presence or absence of inhibitors. Where applicable, Nutlin-3 was added 24 h after
plating. The whole well was then imaged and the individual images were stitched
together for further analysis to obtain data on total cell number and density. The
plates were imaged every 6 h and cell culture medium and drug treatments were
changed every 2 days.

Micropattern assays. For assays in micropatterns, GFP-labelled scribKD cells with
or without tetracycline pre-treatment (72 h) were plated onto circular adhesive
patterns (+ 800mm) within a PEG cell-repellent surface26,61. The cells were
flushed with culture medium 5 h after plating and the medium was replaced with
phenol red-free DMEM (þ 10% FBS and 1% L-glutamine, Invitrogen) with or
without tetracycline. Cell culture medium and drug treatments were changed every
2 days.

PDMS-based cell compression assays. The GFP-labelled scribKD cells were
plated onto a stretched flexible silicone substrate (Gel pak PF-60-X4, 150 mm
thickness, Teltek), held in a custom-made chamber (GREM; http://www.jove.com/
video/51193/stretching-micropatterned-cells-on-a-pdms-membrane). Before plat-
ing, the clamped membranes were coated with 25 mg ml� 1 fibronectin/PBS
(Sigma) for 1 h at 37 �C. The membranes were stretched precisely by 2 cm, which
provided a 57% stretch over the resting length (unless otherwise specified).
A PDMS rectangular chamber, with two compartments (6.6� 13 mm each) was
attached to the membrane with Baysilone paste (GE Bayer). Two densities (low and
high) of tetracycline pre-treated or Nutlin-3 pre-treated (48 h) GFP-labelled
scribKD cells were plated, one in each compartment. High-density cells were plated
between 75,000 and 120,000 cells per compartment, forming a confluent mono-
layer; low-density cells were plated at 25,000–35,000 cells per compartment. The
cells were allowed to adhere for 24 h and then the membrane was released to
induce compression. The cells were fixed in 4% PFA/PBS (3 h after release for p53
staining, 1.5 h for P-p38 staining and 5 h for cleaved Caspase-3 staining) and
processed for immunofluorescence. As per design, low- and high-density cells were
stained and imaged from the same stretcher avoiding sample-to-sample variability.
The p38 inhibitor was added one day before plating; the ROCK inhibitor was
added 1 h before releasing the membrane.

E-cadherin-blocking experiments. To block E-cadherin-dependent junctions,
20 h after the addition of tetracycline, the cells were incubated in 10 mM EDTA/
PBS for 5 min, followed by a 20 min incubation in calcium-free DMEM (Invitro-
gen). The cells were then cultured in calcium-free DMEM (þ 10% FBS and 1%
L-glutamine, Invitrogen), supplemented with an anti-E-cadherin-blocking antibody
(1:200; ref. 57). Live-image analysis was started 2–4 h after the final media change
and continued for at least 50 h.

Immunofluorescence. For immunofluorescence, the cells were cultured on glass
coverslips or on gridded dishes (m-Dish 35 mm Grid-500, Ibidi). The cells were
fixed for 10 min in 4% PFA/PBS, quenched for 10 min in 50 mM NH4Cl/PBS and
then permeabilized for 10 min with 0.1% Triton X-100/PBS. The cells were blocked
in 2% BSA, 2% FBS/PBS for 30 min. Primary and secondary antibodies were
diluted in blocking solution diluted 1:1 in PBS. The primary antibodies were
incubated for a minimum of 1 h at RT, followed by washes in PBS; secondary
antibodies were incubated for a minimum of 30 min at RT followed by washes in
PBS. Coverslips were mounted with FluorSave (Millipore). For immunostaining
against phosphorylated proteins, fixing solution was supplemented with PhosSTOP
(1 tablet per 10 ml, Sigma), all PBS solutions were substituted with TBS, and
blocking solution was substituted with 5% BSA/TBS. For surface immunostaining,
the cells were washed in ice-cold phenol red-free DMEM (Gibco) and incubated
with primary antibody diluted in ice-cold phenol red-free DMEM at 4 �C for
45 min. The cells were then washed in ice-cold PBS before fixation at RT in 4%
PFA/PBS for 10 min. Secondary antibody staining was then carried out as outlined
previously.

Western blotting. The cells were lysed in 1% SDS/PBS and 10–20 mg of protein
was separated on a 4–12% gradient gel (Invitrogen) and transferred onto PVDF
membrane for standard ECL blots (Anachem) or Immobilon FL PVDF for LI-COR
blots (Millipore, 0.45 mm pore size). The membranes were blocked with 5% Marvel/
0.05% Tween-20/PBS (PBST) for 1 h at RT, incubated in primary antibodies (in 2%
Marvel/PBST) overnight at 4 �C, washed in PBST and incubated in secondary
HRP-conjugated antibodies for ECL blots or Infrared fluorescent dyes (IRDye-
800CW and IRDye-680RD) for LI-COR blots, diluted in 2% Marvel/PBST for 1 h
at RT. After washes in PBST, the membranes were developed using standard ECL
(GE Healthcare) or scanned with a LI-COR Odyssey CLx near-infrared fluores-
cence imaging system. Quantifications for LI-COR blots were carried out using
Image studio lite (http://www.licor.com/bio/products/software/image_studio_lite/
?gclid=COWG_Yze98MCFYvpwgodfR8Adg), using Actin to normalize the
samples for loading. For original full blots, see Supplementary Fig. 9.

RNA-seq and differential expression analysis. RNA-seq libraries were prepared
with the TrueSeq RNA sample preparation V2 kit (Illumina) according to the
manufacturer’s instructions, and sequenced on an Illumina HiSeq 2000 instrument
in single-read mode at 36 or 40 base length. The resulting fastq files were filtered
for low-quality reads (oQ20) and low-quality bases were trimmed from the ends
of the reads (oQ20).

Genome-based RNA-seq mapping was carried out using Canis lupus familiaris
3.1 (NCBI/Dog Sequencing Consortium) as a reference genome. Transcript
sequences were assigned to genome using BLAT62. The resulting mappings were
filtered by a mismatch threshold (2%), as well as requiring 90% of the transcript to
match the genome and all exons to match a single chromosome. This resulted in
21,571 transcripts mapping to the genome. This mapping was used as a junction
file for Tophat 2 (ref. 63), which was used to map the RNA-seq reads to the
genome. To provide gene names, transcript sequences were downloaded from the
NCBI RefSeq database in March 2013 (24,538 sequences). Orthologues were found
against the Mus musculus proteome (downloaded in January 2013—NCBI RefSeq)
using Inparanoid64. The sequences were further annotated using InterProScan65 to
provide both InterPro Domains and Panther ontology terms66. For differential
expression, read counts were generated by quantifying overlaps with transcript
locations. These were then used to generate RPKMs. Comparisons were made
between pairs of conditions, each with at least four replicates. For a transcript to be
included, counts per million had to be above 10 for all samples in at least one
condition and within 2-fold between replicates. Differentially expressed transcripts
were then called using EdgeR67. Hits were selected applying the following
thresholds: P40.05 log FC (fold change) 40.5. Gene Ontology terms over-
represented among these lists were found using David Bioinformatics Resources68,
in particular, KEGG pathway analysis.

Experiments in Drosophila wing discs. Flies were raised on a standard fly food
containing yeast at 25 �C. The larvae were collected at wandering third instar stage.
Clones in wing discs were induced either with en-FLP (Supplementary Fig. 5a,b)
or with hs-FLP (with a 10-min heat-shock at 37 �C, 48–72 h before dissection;
Supplementary Fig. 5c). For immunofluorescence, late third instar larvae were
dissected in PBS followed by fixation in 4% formaldehyde/PBS solution for 20 min,
permeabilization in 0.25% Triton X-100 PBS for 20 min and blocking in 4% FBS/
PBS for 30 min. The primary and secondary antibodies were diluted in blocking
solution. The primary antibodies were incubated overnight at 4 �C, followed by
washes in 0.25% Triton X-100/PBS; secondary antibodies were incubated for a
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minimum of 1 h at RT followed by washes in 0.25% Triton X-100/PBS. The wing
discs were mounted in Vectashield (Vector Laboratories) and imaged on Leica SP5
or SP8 confocal microscopes. Optical sections were acquired with 0.8mm steps.
The images were processed in ImageJ and Photoshop. Genotypes: Supplementary
Fig. 5a,b en-flp, Act4STOP4Gal4, UAS-GFP/þ ; UAS-Scrib-RNAi,
Supplementary Fig. 5c (left) hs-FLP, tub-Gal4, UAS-GFP/þ ; þ /þ , FRT82, tub-
Gal80/ FRT82, scrib2 and Supplementary Fig. 5c (right) hs-FLP, tub-Gal4, UAS-
GFP/þ ; UAS-p53DN/þ , FRT82, tub-Gal80/ FRT82, scrib2. Antibodies used:
anti-Scribble (1:2000, from Chris Doe lab), anti-E-Cadherin (DSHB DCAD2,
1:200). Both the antibodies were raised against Drosophila antigens and have been
previously used in Drosophila.

Imaging and image analysis. Quantifications shown in the figures are from a
single representative experiment of a minimum of three independent repeats per
experiment, unless otherwise specified in the figure legend.

Fixed samples were imaged with a Leica SP5 or SP8 confocal microscope. For
live imaging, the cells (kept at 37 �C and 5% CO2) were imaged using a Nikon
BioStation CT with a � 10 air objective with imaging frequency between every
10 min and every 6 h (as indicated in the movie time stamps), with media changes
every 2–3 days. For each live imaging experiment, at least five fields were imaged by
time lapse and analysed. Movie sequences or individual field time points that lost
focus during the experiment were discarded from further analysis, as this precluded
accurate cell counting.

For Fig. 1a–c and Supplementary Fig. 1d, quantifications of cell number
over time were carried out using the open-source image analysis software Cell
Profiler (http://www.cellprofiler.org/), using the nuclear GFP signal to segment
cells.

To measure cell density in competition assays, the number of nuclei was
manually counted using DAPI and/or nuclear GFP and divided by surface area, as
calculated in Fiji (http://fiji.sc/Fiji; Fig. 1g and 2n, Fig. 5e, Supplementary Fig. 1e).

For Fig. 1k–n, cell number over time was quantified with the open-source image
analysis software Icy69, using Icy Protocols. The nuclei were detected using the
wavelet-based spot detection plugins. Areas with cysts, where nuclei were not
visible due to overexposure or because they were out of focus, and areas without
cells were excluded from both cell counting and from area measurements on a
frame by frame basis. For Fig. 3h, Fig. 4c,k and Fig. 5b, entire wells of a 96-well
plate were imaged by tiling. Individual images were then stitched and processed as
above.

Cell height (mm, Fig. 1h–j) was measured from apical to basal membranes using
the open image analysis software Fiji.

Cell death in compression assays was quantified as the number of activated
caspase-3 positive death events (Fig. 1o–q, Fig. 3i, Fig. 4d,l and Fig. 5c) divided by
total number of DAPI-positive nuclei.

Kymographs were generated by first registering the hyperstack containing the
different channels (bright-field, RFP and GFP) to remove any global motion or
drift over time of the cells (Fig. 2d). The position of the centroid for each nucleus at
each time point was extracted and the RFP and GFP channels were then projected
on the same mean direction of motion by re-slicing the stacks and then projecting
the maximum intensity of the centroid. For the control kymographs (GFP-labelled
scribKD: scribKD; RFP-labelled WT: WT), this was done only using the bright-field
channel and one fluorescent channel.

The directionality index of migrating cells (D¼Euclidean distance/total
distance, Supplementary Fig. 2b,d) was calculated after manual tracking of
individual cell nuclei (440 cells and 45 movies per condition) with the aid of
ImageJ (http://imagej.nih.gov/ij/). Data analysis was performed with Matlab
(MathWorks Inc.).

Analysis of cell shape and migratory features (Fig. 2g–k). The aspect ratio,
which is defined as the ratio of the long axis to the short axis of cells, was measured
from three independent movies by manually fitting the best fit ellipses to single
cells. To plot the distribution of angles between the cell’s long axis and the cell’s
direction of motion, we determined for each cell the orientation of the cell’s long
axis and calculated its angular deviation with respect to the cell’s direction of
motion (data were binned at 40� interval), by manual tracking. To measure the
displacement of wild-type and scribKD cells, we carried out PIV analysis, using a
custom algorithm based on the MatPIV software package for MATLAB, and
measured the displacement of individual cells within the first row of contact.
Trajectories across different movies were adjusted so that the first time point where
both populations formed a broad interface and moved concertedly was set at
t¼ 5 h. Distance is the projected distance along the axis that joins both cell
populations.

In Figs 3c–e and 4e, local density was measured for each cell by taking the sum
of the Gaussian-weighted distances to all other cells within 50 mm using a Gaussian
function with s¼ 20.

Nuclear p53 (Fig. 3f,g), nuclear phospho-p38 (Fig. 4a,b,i,j) and nuclear p21
(Supplementary Fig. 4d) mean intensity was measured using Volocity (http://
www.perkinelmer.co.uk/pages/020/cellularimaging/products/volocity.xhtml), using
DAPI as a mask to segment the nuclei.

For Fig. 5f–I, quantifications of cell number over time were carried out
in ImageJ (http://imagej.nih.gov/ij/), using the nuclear Tomato signal to
segment cells.

In Supplementary Fig. 2h–i, E-cadherin staining intensity was measured using
Fiji. The individual cells were manually selected on an average z stack projection
and their integrated density values were recorded.

Statistical analysis. No statistical methods were used to predetermine sample
size. Every experimental condition and treatment was carried out alongside a
complete control set of experiments or no treatment control. The sample size was
chosen to see a statistical difference between data sets. In the few instances where
no difference was observed, sample size was at least as big as in conditions that had
shown a difference. The experiments were not randomized and there was no
blinding during experiments or analysis, as samples were marked. We carried out a
minimum of independent three repeats for each experiment, unless otherwise
specified in the figure legend.

The t-Test was used in Supplementary Fig. 1e and Supplementary Fig. 2b,d,
where data were normally distributed and with equal variance. The Wicoxon rank-
sum test was used in Supplementary Fig. 3f. Non-parametric Spearman correlation
was used in Fig. 3e. Otherwise, the non-parametric KS test was used for all the
statistical tests, removing the requirement for normally distributed data and equal
variance. Throughout: *Po0.05, **Po0.005, ***Po0.0005.
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