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RESUME

La prolongation de la durée de vie des centrales nucléaires est considérée comme un enjeu énergétique mondial. C'est pourquoi, l'analyse des risques et l'étude des différents facteurs qui pourraient potentiellement représenter un danger pour une exploitation sûre à long terme sont nécessaires.

La méthodologie utilisée pour le dimensionnement en fatigue des composants du réacteur à eau pressurisée (REP) est basée sur l'utilisation de courbes de conception établies à partir d'essais réalisés dans l'air à 20°C sur des éprouvettes standard en intégrant un coefficient de sécurité couvrant la dispersion des essais associés aux effets des structures.

Pour intégrer formellement ces effets, certains codes internationaux ont déjà proposé et suggéré une modification de la courbe de fatigue des aciers inoxydables austénitiques combinée à un calcul d'un facteur environnemental, à savoir Fen, qui doit être multiplié par le facteur d'usage de fatigue. L'objectif de cette communication est de présenter un nouveau dispositif "FABIME2E" développé au CEA-LISN en collaboration avec EDF et FRAMATOME. Ces nouveaux essais permettront de quantifier avec précision l'effet de l'environnement REP sur les éprouvettes quasi-structure. Ce nouveau dispositif combinera l'effet structure tel que l'équibiaxialité, la presence d'une contrainte moyenne et l'effet aggravant de l'environnement REP sur la durée de vie en fatigue.

Mots clés : fatigue multiaxiale, environnement REP, acier austéntique inoxydable.

INTRODUCTION AND AIM

The question of assessing the margins and safety factors in the fatigue analyses which are widely used today (ASME BPV III, RCC-M, JSME, EN-13445-3, etc… [START_REF]Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials[END_REF][2][3] [START_REF] Rcc-Mrx | Règles de Conception et de Construction des Matériels Mécaniques des Installations Nucléaires applicables aux structures à haute température et à l'enceinte à vide ITER[END_REF]) is a very challenging one.

The fatigue rules used today in the nuclear industry were initially built and integrated into the ASME code in the 1960's. Establishing fatigue rules is a challenge in itself since fatigue degradation depends on the wear of components which undergo repeated cycling: fatigue tests can therefore be very long and costly, if led on full-size components. As a result, the testing is in practice conducted on small laboratory specimens, which then triggers the question of how to extrapolate results to a full size component. Another difficulty is that the rules need to remain easy to apply in order to be applied for industrial engineering calculations. Since 2007, the USA with the NUREG/CR-6909 [START_REF]Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials[END_REF], have now included the evaluation of environmental effects in their official regulation. Indeed, on the curves presented in Figure 1 and Figure 2, PWR water environment effect on the fatigue lifetime of material used in the manufacture of reactor components compared with the ANL fatigue life models which represent mean values of fatigue life in Air are illustrated. The 304L and the 316L stainless steel are used for the manufacturing of the pressurized water reactors (PWR). Many components of this type of reactors are subjected to a multiaxial thermo-mechanical cycling [START_REF] Fissolo | Crack Initiation under thermal fatigue: an overview of CEA experience, Part 1: thermal fatigue appears to be more damaging than uniaxial isothermal fatigue[END_REF] and [START_REF] Baglion | Comportement et endommagement en fatigue oligocyclique d'un acier inoxydable austénitique 304L en fonction de l'environnement (vide, air, eau primaire REP) à[END_REF]. Therefore, the multiaxial fatigue assisted by environment is considered as one of the main degradation mechanisms affecting the life of the PWR components.

To formally integrate these effects, some international codes have already proposed and suggested a modification of the austenitic stainless steels fatigue curve combined with a calculation of an environmental penalty factor, namely Fen, which has to be multiplied by the usual fatigue usage factor.

Unfortunately, there is no sufficient experimental data available concerning fatigue strength for the austenitic stainless steels subjected to structural loadings [START_REF] Lefebvre | Hydrostatic Pressure effect on Life Prediction in Biaxial Low-cycle fatigue[END_REF]

[7][8][9][10],
which are used for power plants components. In order to obtain fatigue strength data under structural loading, biaxial test means with and without PWR environment were developed at LISN [START_REF] Bradaï | Study of crack propagation under fatigue equibiaxial loading[END_REF][14] [START_REF] Pvp ; Bradai | Crack Initiation under Equibiaxial Fatigue, Development of a particular Equibiaxial Fatigue Device[END_REF].

Two kinds of fatigue device have been developed. Within the same specimen geometry, structural loads can be applied in varying only the PWR environment.

The first device (FABIME2) is devoted to study the effect of biaxiality and mean strain/stress on the fatigue life. A second and new device based on FABIME2 is for the study of the impact of the environmental effect. With these new experimental results, we will highlight a PWR effect on the fatigue life of stainless austenitic steels.

THE FIRST EXPERIMENTAL DEVICE [14]

To obtain an equibiaxial strain state, we have chosen to apply different oil pressure values on each side of a spherical diaphragm. The basic idea of the disc bending fatigue test was presented by Ives et al [START_REF] Ives | Equibiaxial low-cycle fatigue properties of typical pressure-vessel steels[END_REF] and Shewchuk et al [START_REF] Shewchuk | Low-cycle fatigue of 7075-T651 aluminum alloy in biaxial bending[END_REF] about 50 years ago. In this test technique, a disc specimen is subjected to bending load by applying air pressure on the specimen surface.

By altering the constraining condition at the edge of the specimen, a crack can be initiated at the specimen center even when a uniform thickness specimen is used, but the specimen diameter has been more than 250 mm [START_REF] Kamaya | Development of disc bending fatigue test technique for equi-biaxial loading[END_REF]. In our case, to reduce the specimen diameter, the thickness is varying along the radius to initiate a fatigue crack at a specimen center and the possibility to increase the thickness has been kept. The objective of this first fatigue test was to dissociate the effect of the mean stress and equibiaxial state loading. Indeed, we try to obtain a negative load ratio in order to get the same results as the uniaxial data and eliminate the residual strain.

In this study, equibiaxial state loading generated from fatigue has been considered. It was used to optimize the geometry of a disk specimen refined in its center. It was used as a circumferentially embedded diaphragm with an applied pressure on both sides in order to obtain an equivalent strain in each loading direction in the plane (Figure 3). 

THE EXPERIMENTAL RESULTS [15]

Biaxial fatigue tests were carried out on two austenitic stainless steels: "316L THY", and "304L CLI". The first material has been provided by Thyssen Krupp Materials France as a 15mm thickness rolled sheet. The second material supplied by EDF is characterized by a thickness of 30 mm rolled sheet. In order to obtain a homogeneous austenitic phase, the sheet was subjected of a thermal treatment: keeping at high temperature (between 1050 and 1150°C) followed by rapid cooling.

Fatigue tests on 316L

The first fatigue test campaign was performed on austenitic stainless steel type 316L.

Five levels of deflection were studied: 1.6 / 1.4 / 1.2 / 1.1 and 0.9 mm.

Fatigue tests on 304-CLI

In the frame of CEA-EDF-AREVA working group, a second fatigue test campaign was performed on austenitic stainless steel 304-CLI provided by EDF. This material completely 10 agrees with the RCC-M and RCC-MRx [START_REF] Rcc-Mrx | Règles de Conception et de Construction des Matériels Mécaniques des Installations Nucléaires applicables aux structures à haute température et à l'enceinte à vide ITER[END_REF] specification. Three levels of deflection were carried out 1.4 / 1.3 and 1.2 mm.

A first comparison of the experimental fatigue data between the two austenitic stainless steels (316L and 304-CLI) is presented on Figure 5. These experimental fatigue data show that 316L steel undergoes longer fatigue lives than 304-CLI. However, the behavior of these two materials is slightly different, as 304-CLI presents a secondary hardening unlike 316L.

SEM observations of fracture surfaces

SEM observations are realized on the surface crack of FABIME2 specimen which has undergone an equibiaxial fatigue loading of 1.4 mm in displacement are presented in Figure 6.  On the surface: Striae of fatigue perpendicular to the surface of the specimen.

(Figure 6 (c))

At a higher magnification, we can distinguish crack propagation rivers. This demonstrates that the main crack propagates in the same time both in length and depth.

INTERPRETATION OF THE EXPERIMENTAL RESULTS

All tests performed in this study are carried out with imposed displacement (strain)

with alternating load (without mean stress or strain), means with a stress ratio R=-1.

To compare the experimental data obtained from uniaxial and equibiaxial tests, it is necessary to define a total equivalent strain.

Two definitions of equivalent strain are proposed: the first is based on the definition of von Mises (used in the RCC-MRx) and the second on the definition of TRESCA (used in the RCC-M, RSE-M).

Thus, the first equivalent strain used is the von Mises equivalent strain defined by the following equation:

∆ε eq = √ 1 1 + ν′ (∆ε ̇∶ ∆ε ̇) = 2 3 (1 + ν ′ ) (1 -ν ′ ) ∆𝜀 1 (1) 
with: ∆ε ̇∶ strain deviatoric component ∆ε ̇= ∆ε -1 3 tr(∆ε), ε1 the principal strain and ν' the "real" Poisson's ration (elastic =0.3 and plastic =0.5 part) [START_REF]RCC-M -Design and Construction Rules for mechanical components of nuclear PWR islands -2007[END_REF] The second equivalent strain is the TRESCA equivalent strain defined by the following equation:

∆ε eq = 1 1 + 𝜈′ 𝑀𝑎𝑥|𝜀 𝑖 -𝜀 𝑗 | (2) 
The proposal approach to determine the level of the equivalent strain for each FABIME2 test is as follows:

-Determination of the value of the radial strain corresponding to the imposed deflection from the strain-deflection calibration curve obtained in Figure 7 (a). With a similar mechanical behavior, the calibration curve can be used for the two materials.

-Determination of the von Mises or TRESCA equivalent strain from the relation between the radial strain and the equivalent strain (von Mises or TRESCA). This 

SPECIFICATION OF THE NEW DEVICE FABIME2E

The second fatigue device (FABIME2E, E for environment) has been developed to apply on the same specimen geometry the same structural loads in varying only the PWR environment.

Compared to FABIME2, specification changes for FABIME2E device mainly focused on the following points:

 Specimen is in contact with a PWR environment, With these severe experimental conditions, four major technical difficulties had to be taken into account:


 The cohabitation of the PWR environment with the hydraulic oil at room temperature and 100 bar maximum.

 The PWR environment temperature stability: variations less than 1 °C up to several weeks should be allowed in order to detect the initiation of cracks.

 Monitor and adjust if necessary dissolved hydrogen level.

 The perfect sealing of the device during the tests.

A double cylinder system has been proposed to separate PWR and hydraulic fluids to apply a mechanical solicitation to the specimen (Figure 9). A double acting cylinder would be moved by the hydraulic unit. Its movement would be mechanically transmitted (by the water incompressibility) to a primary cylinder to modify the volume of the PWR environment contained in each half-shell. Similarly to FABIME2 this system applies a differential pressure, up to 100 bars, to the specimen. The difference here is that the pressure variation around the specimen is between 150 and 350 bar, respectively the biphasic threshold of the PWR environment and the maximum pressure allowed by FABIME2E. If the required pressure in the PWR environment is obtained by its constraint thermal dilation, this phenomenon must be avoided during the test. A variation of 1 °C would cause a variation of several bars around the specimen. These pressure fluctuations may compromise the detection of the initiation of cracks by compliance. A stronger fluctuation could even lead the PWR environment under its biphasic threshold. This would require a test stop. To avoid this, a temperature regulation system with a great stability was required.

The evolution of the chemical composition of the environment was one of the concerns for this new bench. Hydrogen is the most volatile part of this, so the ability to measure and if necessary adjust its level was needed.

In the end, the requested instrumentation would enable the monitoring of the evolution of the following data, for each half-shell: temperature, pressure, displacement and dissolved hydrogen level.

THE NEW EXPERIMENTAL DEVICE: FABIME2E

The Because of much higher pressures and temperatures, the FABIME2E cell has more imposing dimensions than its predecessor FABIME2 (Figure 11). However, the specimen geometry remains absolutely identical to be usable indifferently on the both test benches. For mechanical and hydraulic reasons (two kinds of environment, oil and PWR), the maximum frequency of loading is limited at 1 Hz. 

CLAMPING AND SEALING:

Two metal rings are disposed on each side of the specimen to ensure the sealing of the cell during the test period. Clamping is achieved by means of a hydraulic clamp machine to ensure flatness, sealing and repeatability. Height heavy section attachment studs ensure the two half shells clamping around the specimen (Figure 10).

PWR ENVIRONMENT:

FABIME2E cell has a 100 ml volume. After filling the cell and high-pressure pipes the heating achieves the desired pressure because of the thwarted thermal dilation of the primary water.

The integration of four Pd-Ag sensors makes the dissolved hydrogen level measurement and modification possible. 

MECHANICAL SOLLICITATION:

The same hydraulic group provides oil to both FABIME2 and FABIME2E test benches.

As shown in Figure 9, a hydraulic cylinder allows transmitting loadings to the primary cylinder to deform the specimen.

As it is possible to do with the bench FABIME2, pressure, displacement or strain control is allowed. The development of the control software in the CEA laboratory allows great flexibility: cycling shape, holds, control mode modifications, mean pressure or strain.

TESTS CONTROL:

The low-level tasks such as security management, hydraulic control and data reading require determinism and speed of processing. That is the reasons why they are devolved to realtime autonomous software running on a COMPACT RIO device (NATIONAL INSTRUMENT).

The tests management, acquisition and data analysis are performed by software running on a conventional PC. This second software controls each test sequence: from the filling of the PWR fluid till the crack initiation estimation through sending orders to the CRIO software and the EUROTHERM controllers.

CONCLUSION

This paper is focusing on the description of two kinds of experimental devices to perform fatigue tests on "structural" specimen with or without the effect of PWR environment.

The first device (FABIME2) is devoted to study the effect of biaxiality and mean strain/stress on the fatigue life. Biaxial fatigue tests are carried out on two austenitic stainless steels: 316L THY and 304L CLI. The results obtained show that crack initiation have a low impact on the fatigue life, which remains in the field covered by the design curve defined and used in the codification.

A second and new device based on FABIME2 is under development for the study of the impact of the environmental effect. This device will study the impact of the equibiaxial
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 112 Figure 1: Fatigue life of 304L steel in PWR water compared with the ANL model Air curve
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 3 Figure 3: Principle of the first fatigue test
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 4 Figure 4: View of the spherical bending device: fatigue cell
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 5 Figure 5: Fatigue data obtained on the two austenitic stainless steels (316L and 304-CLI)
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 6 Figure 6: Macroscopic observation of fracture surface

  relation has been determined by elasto-plastic calculation of the fatigue test (Figure7(b)). Theses elastic-plastic behavior computations are used to determine the "real" value of the Poisson's ratio by taking into account the elastic and plastic part. In our case, the Poisson's ratio is 0.415 for the largest deflection test (±1.63 mm) and 0.396 for the lower deflection test (±0.9 mm). a) Calibration curve: Deflection versus radial strain b) Determination of the equivalent strain with the "transfer" curve: radial strain versus equivalent strain
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 7 Figure 7: Method to determine the equivalent strain versus the deflection
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 8 Figure 8: Fatigue data obtained on the two austenitic stainless steels (316L and 304L-CLI)



  An operating temperature of 340 °C,  A maximum pressure up to 350 bar, Monitoring and adjustment of dissolved hydrogen level during testing,  A perfectly flat and reproductive clamping of the specimen.

Figure 9 :

 9 Figure 9: Double cylinder system for separation of PWR and Hydraulic fluid



  realization of FABIME2E was entrusted to French company TOP INDUSTRY. The maximum experimental conditions of the new device are 350 bar and 340 ° C.The main organs of this new device are:  A cell consisting of two half shells for holding the specimen,  A hydraulic clamping system is achieved by four hydraulic bolt tensioners to ensure flatness, sealing and repeatability,  A sealing system compatible with the PWR environment,  A closed PWR environment circuit,  A « double cylinder » system to apply the mechanical solicitations on the specimen, An accurate and reliable heating system,  A system for measuring and adjusting the level of dissolved hydrogen in the PWR environment, Instrumentation for temperature, pressure, displacement.

Figure 10 :

 10 Figure 10: View of the fatigue new bending device FABIME2E

Figure 11 :

 11 Figure 11: Comparison between FABIME2 and FABIME2E fatigue cells (same scale and

  at 0.4 bar. A LVDT compatible with the PWR environment, with a displacement range ± 5 mm to measure the deflection of the specimen, with an uncertainty of calibration measured at 6.3 m. Two hydrogen sensors Pd -Ag from AREVA: one for measuring and one for adjusting the dissolved hydrogen level if necessary.

Figure 12 :

 12 Figure 12: Detail of the FABIME2E cell -attachment stud
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