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Atomic-scale models for hardening in fcc solid solutions

L. Proville and S. Patinet
CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette, France

Atomic-scale simulations are associated with an elastic line model to analyze thoroughly the
pinning strength experienced by an edge dislocation in some face centered cubic (fcc) solid solutions,
Al(Mg) and Ni(Al) with solute concentration comprise between 1 and 10 at. %. The one-dimensional
elastic line model is developed to sketch out the details of the atomic-scale. The account of such
details is shown to yield a proper description of the dislocation statistics for the different systems.
The quantitative departure between hardening in Al(Mg) and Ni(Al) is then demonstrated to hinge
on the difference in the short range interaction between the partial dislocations and the isolated
impurities. It is also shown that an accurate description of the solid solution hardening requires
the account for the dislocation geometry and the dislocation interaction with clusters of solute
atoms. The elastic line model allows us to perform some computations at the microscopic scales
meanwhile accounting for the most important atomic details. A comparison with experimental data
is attempted.

PACS numbers: 62.20.F–

I. INTRODUCTION

The solid solution hardening (SSH) of a metal stems
from the pinning of its dislocations on the solute atoms
introduced during material processing. The SSH depends
essentially on the nature of the dislocation interaction
with the impurities and the concentration of the lat-
ter. In order to estimate the stress threshold to which
the dislocation depinning proceeds in face centered cubic
(fcc) alloys, several statistical theories1–5 were devised
on the so-called line tension model, in which the disloca-
tion is thought of as a one-dimensional (1D) elastic line
dragged on a planar random landscape. From the dif-
ferent theoretical treatments applied to this model, the
critical resolved shear stress (CRSS) required to liberate
the dislocations was found to vary as the power law of the
solute content, with an exponent η comprised between
1/2 and 1. The main differences between various theo-
ries arise from the assumptions made about the obstacle-
dislocation interaction and about the typical roughness
of the dislocation profile when the depinning proceeds. A
number of studies contributes to the development of the
1D elastic line model (ELM) to tentatively release some
of the rougher approximations introduced in the early
SSH theories (see for instance Refs. [6–11]).

Since SSH hinges on the pinning of dislocations in a
crowd of atom-sized obstacles, the problem is worth be-
ing approach from the atomic-scale. Employing the em-
bedded atom method (EAM)12–14 to compute the inter-
atomic forces in a nano-crystal, the dislocation depin-
ning has already been simulated in a collection of bi-
nary alloys.15–20 In dislocation theory, the main interest
of such atomic-scale computations (ASC) is to integrate
the crystal deformation in the region near the disloca-
tion core where the nonlinearity of the inter-atomic forces
cannot be neglected. The EAM remains however an ap-
proximation and as such it presents some flaws varying
with the system and that may be corrected by suitable
developments as the bound order potentials (BOP) (see

for instance [21]) or the modified-EAM (MEAM) (see for
instance [22]).

The present work intends a quantitative comparison
between the CRSS computed at the atomic-scale and the
CRSS predicted throughout ELM. The ASC are carried
out in two different fcc alloys, Al(Mg) and Ni(Al) with
the EAM developed by different authors.15,23 The ELM
is properly extended to sketch out the atomic details of
the dislocation-obstacle interaction. In the early analyti-
cal theories for SSH the dislocation pinning was resumed
into the interaction of an elastic line with a single type of
obstacle, which was regarded as an average obstacle. By
contrast, we shows that in order to model quantitatively
SSH in fcc alloys, the ELM must account thoroughly for
the atomic details as: (i) the dissociation of the disloca-
tion core in two Shockley partials (see Fig. 1) due to the
low stacking fault energy in (111) fcc crystal planes; (ii)
the pinning force variation according to the solute atom
position, above or below the glide plane; and (iii) the
pinning by clusters of solute atoms in concentrated solid
solutions.

In order to integrate the pertaining atomic details, a
discrete version of the ELM has been developed. The dis-
crete nature of this model allows us to describe the crys-
tallography of the systems, thence sketching out the dis-
location core structure as well as the dislocation-obstacle
interaction for obstacles situated at various positions
nearby the glide plane. The comparison between the
depinning statistics computed independently from ASC
and from ELM demonstrates that the latter is accu-
rate enough to capture the main atomic scale features of
SSH. Interestingly, the ability in ELM for switching on or
switching off selectively some of these features shows that
the quantitative departure between hardening in Al(Mg)
and Ni(Al) hinges on the difference in the short range
interaction between the partial dislocations and the iso-
lated impurities. The same method allows us to deter-
mine how the solute atom clusters contribute to the dis-
location pinning. Another important property of ELM,
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FIG. 1: (color online) Plane view for an edge dislocation
pinned by Mg solute atoms in Al(Mg) alloy, modeled within
EAM.23 The Mg atoms situated in the nearest planes that
bound the (11̄1) glide plane are colored in grey while the
atoms involved in the Shockley partial dislocations are col-
ored in orange. The rest of the crystal atoms are not shown.
The Mg concentration is cs = 2 at. %.

employed here, is that the integration of the small scale
details does not impede ELM working with large dimen-
sions, i.e., of few micro-meters, much larger than those
afforded by ASC. The comparison of ELM predictions
with the low temperature experimental works performed
by different authors24 on Al(Mg) solid solutions demon-
strates a satisfactory agreement.

The paper is organized as follows: In Sec. II, the ASC
are described and our computations for the dislocation
depinning in different model solid solutions are presented.
In Sec. III, the ELM for the solution hardening in fcc al-
loys is introduced and its predictions for the depinning
statistics are discussed in regard of the ASC in the sec-
tions Sec. IV to Sec. VI. In Sec. VII, the ELM is
eventually used to perform a multi-scale study of dislo-
cation static depinning. Our results are discussed in Sec.
VIII.

II. THE ATOMIC-SCALE SIMULATIONS

A. Geometry of the simulation cell

In the ASC, the inter-atomic forces are modeled
throughout the EAM developed previously by different
authors.13–15,23,25,26 The simulation cell (see Fig. 1) is
oriented such as that the horizontal Z planes are the (11̄1)
planes of the face centered cubic (fcc) lattice. The edge
dislocation Burgers vector b =

a0

2
[110] points at the glide

direction, hereafter denoted as Y. The simulation box size
along the directions i = X, Y, Z is denoted by Li. The
periodic boundary conditions are applied along X and Y
while the external applied stress τ is produced by impos-
ing extra forces to the atoms in the upper and lower Z
free surfaces.19,27 In order to form a dislocation between
the two (11̄1) central mid-planes, the displacement field
of the elastic solution for a dislocation with Burgers vec-
tor b is applied to the atoms of the simulation box. The
ASC are performed to minimize the total enthalpy under
a fixed applied shear stress. The external applied stress
is incremented by 0.3 MPa and for each increment the
enthalpy minimization procedure is repeated until it ei-
ther converges to a required precision (with interatomic

forces inferior to 10−7 eV/Å) or until the dislocation has
glided over a certain distance dg, fixed later on. This
procedure allows us to determine the static stress thresh-
old associated with the dislocation depinning. The same
method was employed in Ref. [17,20] with same nota-
tions but switching the axis label X and Y. The atoms
involved into the dislocation core are identified by their
first neighbor cells which differ from the perfect crystal.27
In the simulations the thermal effects are not present
so the solute atom diffusion and the thermally activated
glide are frozen. We thence work in an ideal case where
the distribution of foreign atoms does not evolve and the
dislocation glide occurs through a static depinning. Be-
cause of the rather low staking fault energy (SFE) of the
(111) planes in fcc metals, the dislocation core dissoci-
ates in two Shockley partial dislocations (SPD). Such a
dissociation appears spontaneously in our enthalpy min-
imization procedure applied to ASC, as shown in Fig.
1.

B. Different solute random distributions

In order to decipher the statistics of the dislocation
depinning in a fully 3D random solid solution, we ana-
lyze different simplified situations. Four different types
of solute atoms distributions are studied: (i) a single ob-
stacle is introduced in the atomic simulation cell other-
wise made of pure metal; (ii) the (11̄1) planes situated
just above the dislocation glide plane contains a random
distribution of foreign atoms with an in-plane atomic
concentration cs; (iii) the two (11̄1) planes that bound
the glide plane contains a random distribution of foreign
atoms with an atomic concentration cs; and (iv) the so-
lute atoms distribution is fully 3D. The ASC have been
performed for the three types of constrained distributions
and the fully random solid solution in both Al(Mg) and
Ni(Al) alloys.

C. Single isolated obstacle

To analyze the elementary interaction between a
dislocation and a single isolated solute atom at the
atomic level, the simulations are carried out in a cell
where only one atom of the pure crystal has been
substituted with a foreign atom. Hereafter, such an
isolated obstacle will be referred as to type I obstacle.
The applied shear stress τ is incremented from zero
to τm above which the dislocation liberates from the
obstacle. Since the simulation cell is periodic along
X, the obstacle and its periodic images form a regular
array of obstacles separated by a distance Lx. The
Peierls stress for the edge dislocation in the two pure fcc
crystals was found negligible so the balance between the
Peach-Kohler force and the obstacle pinning strength
denoted by fm leads to fm = τmbLx. The maximum
pinning force fm has been computed for a single isolated
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impurity with different positions, i.e., above or below
the glide plane, inside or outside the stacking fault
ribbon. The absolute values found for fm are presented
in Fig. 2 (a) against the apical distance H to the glide
plane. The same type of computations were performed
for screw dislocations and confirmed an earlier study,20
where it was found that both types of dislocations
experienced similar pinning strengths. This similarity
might be presented as a satisfactory explanation for the
isotropy of the fcc alloy microstructure. The asymmetry
of the obstacle strength fm in tensile and compressive
regions, i.e., above and below the glide plane is ascribed
to the inter-atomic potentials anharmonicity. This
asymmetry, well understood for edge dislocations which
the deformation field changes of sign at the crossing
of the glide plane, is also present in the case of screw
dislocations, mainly because of the edge components of
the partial dislocations. A precise comparison between
the different dislocation types is under progress.28

Once fm has been computed for an obstacle situated at
a certain position, we restart the simulation but with an
external stress maintained to a constant value, slightly
larger than τm. Then the variations of the internal en-
ergy Ucell of the simulation cells are analyzed during the
dislocation bypassing. Such quantity is merely the sum
of the inter-atomic EAM potentials over the whole sim-
ulation cell. After a steep drop of Ucell, over a few nu-
merical steps, the internal energy Ucell varies smoothly.
The rapid transient stage stems from the relaxation of
the elastic displacement field imposed by the applied
shear stress. The internal energy Ucell is recorded af-
ter the simulation cell has passed the rapid transient
stage. We remarked that the use of a fast quench pro-
cedure to minimize the simulation cell enthalpy yields
some jerky fluctuations of Ucell. A noiseless Langevin
dynamics, with a suitably adjusted damping allowed us
to record a continuous Ucell function against the ASC
numerical increment, though the latter proved far much
slower than a fast quench. In Figs. 2 (b) and (c), the
data for Ucell have been reported for the two different
alloys, against the dislocation center of mass distance to
the obstacle, for different positions of the latter, i.e., ei-
ther in the nearest (11̄1) plane above the glide plane or
in the nearest (11̄1) plane underneath. One clearly no-
tices the non-monotonous variations of the energy as the
distance deviates from the energy maximum, in contrast
to the predictions drawn from a first order Volterra elas-
tic theory.29 This also contrasts with the assumptions
made in an analytical model2 for SSH. Such variations
are particularly marked in Ni(Al) where up to 6 differ-
ent extrema may be noticed for an obstacle situated just
above the glide plane (see Fig. 2 (c)). The energy Ucell

actually includes an elastic contribution stemming from
the whole deformation of the crystal pieces, above and
below the glide plane.30 Though, under a constant exter-
nal stress the energy variations associated with such an
elastic deformation remain very small in comparison to
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FIG. 2: In (a), maximum pinning forces fm (nano-Newton)
against the position of the solute atom with respect to the
glide plane for every Shockley partial of the edge dislocation
(leading: triangles up, trailing: triangles down) and for dif-
ferent systems: Al(Mg) (full symbols) and Ni(Al) (open sym-
bols). Lines are guide to eyes. Underneath, internal energy of
the simulation cells, Ucell against the position of the edge dis-
location bypassing a solute atom: in (b) Mg in the Al crystal
and in (c) Al in the Ni crystal. The different symbols cor-
respond to the ASC realized as detailed in the text Sec. II
(circles for the obstacles situated in the nearest (11̄1) plane
above the glide plane and squares for those in the nearest
(11̄1) plane below). The continuous lines have been obtained
from the adjustment of the 1D elastic line model presented in
Sec. III.

(a)

(b) (c)

the variations involved by the plastic deformation. The
energy variations associated with the elastic deformation
of the crystal will be discarded in our ELM analysis.

In Fig. 2 (a), it is worth noticing that some pinning
forces, corresponding to the obstacles situated in the next
nearest (11̄1) planes that bound the glide plane are still
appreciable in comparison to those associated with the
nearest obstacles. In some cases, the strength of the for-
mer can even dominate those of the latter. In early SSH
theories a single average obstacle was regarded as a rea-
sonable approximation. The confrontation of such an
approximation with the results reported in Fig. 2 raises
a question about how to define such an average.20 This
problem becomes increasingly complicate as the solute
concentration rises up to values where the pinning may
result from the entanglement between the isolated ob-
stacles and the solute atom dimers, or still even larger
clusters.
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FIG. 3: Critical resolved shear stress computed for Ni(Al) and
Al(Mg) from the atomic-scale computation (ASC) (full sym-
bols) for an edge dislocation passing through a crystal with a
single (11̄1) random plane situated just above the glide plane
(referred as SRP in the text). The elastic line model (ELM)
predictions (open symbols with full lines) were obtained as
detailed in Sec. III. The error bars corresponds to the mean
square root of the ELM sampling.

D. Single random plane

The single random plane (SRP) distribution consists of
a crystal made of the pure metal where the solute atom
distributions is constrained in the only (11̄1) plane situ-
ated just above the glide plane. To ease notations, the
(11̄1) crystal planes that bound the glide plane, above
and below the glide plane, are denoted by (A1) and (B1),
respectively. The next nearest planes, above and below
are denoted by Aj and Bj where j = 2 for the second,
j = 3 for the third (11̄1) planes, et cetera. The number
of foreign atoms equals cs times the number of atom sites
in the (A1) plane. The ASC for SSH in SRP solid solu-
tions are realized as described previously, by increasing
adiabatically the applied stress τ . The dimensions of the
simulation cell in X and Y directions are given in Ref.
[31]. The total course of the dislocation is here fixed to
dg = 60 Å. Once the dislocation has run over dg the sim-
ulation is stopped. The value of τ required to reach dg is
averaged over a sampling of 20 different random distribu-
tions to determine the CRSS denoted by τc. Our results
for τc against cs have been reported in Fig. 3 for both
systems. The CRSS is larger in the Ni(Al) SRP solutions
than in the Al(Mg) ones. This agrees with the larger pin-
ning strength fm for the Al substitutional impurities in
Ni, as seen from the comparison in Fig. 2 (a). To under-
stand how the data reported in Fig. 2 (a-c) might explain
those reported in Fig. 3 a statistical model is required.
This will be the purpose of the work reported in Sec. III.

E. Two contiguous random planes

The entanglement between the pinning forces from ob-
stacles situated below and above the glide plane was dis-
carded in the early analytical theories1,2,4 for SSH. Differ-
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FIG. 4: Same as in Fig. 3 but for different constrained solu-
tions, referred as to TRP in the text, made of a pure crystal
with solute atoms situated in the two contiguous planes that
bound the dislocation glide plane. The corresponding elastic
line model (ELM) is detailed in Sec. III.

ent mixing laws were proposed depending on the strength
of disorder.32 To analyze how the pinning forces combine,
a third type of distribution is employed. Instead of limit-
ing the foreign atoms distribution in the (A1) plane, the
impurities can now also occupied the crystal sites situ-
ated below the glide plane, in the (B1) plane. The edge
dislocation statistics is then studied in such a solid so-
lution, hereafter called a two random planes (TRP) con-
figuration. This study allows us to approach cautiously
the realistic fully 3-dimensional solid solution. The ge-
ometry of the simulation cell and the distribution sam-
pling are the same as for the SRP solutions. The ASC
results for the CRSS against cs have been presented in
Fig. 4. The comparison between the SRP (see Fig. 3)
and the TRP solutions shows that the CRSS in the latter
is slightly higher than the one found in the former. The
entanglement of the obstacles situated above and below is
not simply a linear superimposition of the pinning forces.
The maximum applied stresses in TRP increase roughly
by 20 percents in both Ni(Al) and Al(Mg) in comparison
to the SRP in the same systems.

F. Fully random distribution

The ideal 3D solid solutions are formed by substitut-
ing some atoms of the pure crystal, randomly chosen,
with solute atoms in the proportion fixed by cs. The
ASC for such fully random distributions (FRD) integrate
the contributions from solute atoms situated at different
positions. The thermally activated solute diffusion be-
ing frozen in our static ASC, the dislocation are pinned
by an ideal random distribution with an homogeneous
solute concentration, since no solute atoms atmosphere
may form. The CRSS obtained in ASC for the edge dislo-
cation depinning has been reported in Fig. 5. The com-
parison for the CRSS between FRD and previous other
distributions shows that the main contribution to the dis-
location pinning stems from the nearest crystal planes,
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FIG. 5: Same as in Fig. 3 and Fig. 4 but for fully random solid
solutions (referred in the text as to FRD). The corresponding
elastic line model (ELM) is detailed in Sec. III.

namely (A1) and (B1). The CRSS computed from ASC
in TRP approach reasonably well those in FRD. As for
SRP and TRP distributions, the dislocation pinning in
Ni(Al) solutions proves much stronger than in Al(Mg),
over the whole range of concentration. In order to de-
termine to which extent our results could depend on the
EAM employed in the ASC, we performed the same type
of simulations but with some inter-atomic potentials dif-
ferent from those in use here. The comparison of SSH
in the different atomic-scale models is presented in App.
A where it is noted that the CRSS differ roughly of a
factor 2 in the two systems. It seems therefore difficult
to conclude about the precision of the EAM and a com-
parison with some experimental data is required. The
Al(Mg) SSH will be the purpose of such a comparison in
Sec. VII.

III. THE ELASTIC LINE MODEL

A. Harmonic spring ladder model

To analyze the CRSS against solute content in the dif-
ferent alloys, an extended version of the ELM is intro-
duced. In its simplest version, the ELM requires :2,11 (i)
a typical interaction potential between a single isolated
obstacle and the dislocation and (ii) the dislocation stiff-
ness, also named after line tension, and denoted as Γ. At
the atomic-scale, such parameters multiply17,20 as each
of them depends on the obstacle position with respect to
the glide plane and which SPD is concerned, i.e., leading
or trailing one. As remarked by Arsenault et al.9 the po-
tential interaction never vanishes totally because of the
Coulomb-type elastic stress field of the edge dislocation.
It is then an interesting theoretical question whether it is
reasonable to follow Nabarro2 and introduce a distance
cutoff over the interaction potential, without altering the
CRSS computation.

To tackle the aforementioned difficulties, we develop
the ELM model as follows: (i) to account for the mul-
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FIG. 6: (a) Schematic representation of the transformation
from the fcc crystal sites to a perfect hexagonal lattice. (b)
Schematic representation for the one-dimensional ELM with
two bound elastic lines. Circles represent the lattice sites and
the triangles correspond to the nodes of a discrete elastic lines.
b stands for the norm of the Burgers vector (see Sec. II).
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b

√
3

2
b

tiplicity of the obstacles a discrete elastic line model is
introduced; (ii) to sketch out the fcc crystal SPD in such
a model, we consider two elastic lines bound by some
elastic interactions; and (iii) to describe accurately the
interaction potentials between the solute atoms and the
SPD (see Fig. 2 (b-c)) the elastic lines random potentials
are constructed from the superimposition of some inde-
pendent effective interaction potentials, adjusted on the
ASC reported in Sec. IID. The method is now described
thoroughly.

In order to account properly for the different atomic
configurations of the nearest obstacles, a discrete version
of the ELM33 must be introduced, allowing distinction
between the crystal sites. In order to simplify the sym-
metries of the problem, we transform the fcc 3D perfect
lattice into an hexagonal lattice as shown in Fig. 6 (a).
Our extended version for ELM is then depicted in Fig. 6
(b) for the case of an edge dislocation. The dislocation
is actually thought of as a ladder of harmonic springs,
each linking some nodes (triangles in Fig. 6 (b)) that are
dragged along the rows of the perfect hexagonal lattice.
The spring ladder represents the dislocation core dissoci-
ated in two SPD. Along the elastic lines, in X direction,
the distance between two nearest rows is b

√
3/2 whereas

in the Y direction it is b/2. To work with a dimension-
less square lattice we rescale the dimensions in X and Y
directions with the associated inter-row distances. The
dimensionless node position is denoted as yk for the lead-
ing chain and y′k for the trailing one. The Peach-Koehler
(PK) force stemming from the applied shear stress ap-
plies equally on each dislocation segment. The PK force
applied to a segment of length

√
3b/2 is reported totally

on the nearest nodes. The over-damped Langevin equa-
tion for the chain node k of the leading chain writes as
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follows:

λẏk =
Γ√
3
∆kyk − γ[yk − y′k − d∗] + τs

−
∑

i,j

V ′
I−j(yk − ak,i,j) (1)

where λ is a damping coefficient with no physical im-
portance in our static computations, s =

√
3b2/4 is the

unit area of our hexagonal lattice, ∆k the discrete Lapla-
cian, d∗ is the equilibrium distance between the SPD, Γ
and γ are the spring constants, ak,i,j is the coordinate
of the ith obstacle in the kth row of the plane labeled
j ∈ [(An), (Bn)] with n ∈ N and VI−j(x) is the interac-
tion potential between a chain node and the type I obsta-
cle situated in plane j. The same equation holds for y′k
but switching the sign of γ and replacing the interaction
potential VI−j with the appropriate form associated with
the trailing partial, and denoted as WI−j . In App. B, Eq.
1 is derived from the continuous model for a 1D elastic
line, also known as the line tension model. The Coulomb
type interactions between the segments of a given par-
tial are neglected in the present approach. The two
chains are bound together with harmonic springs that
intend to represent the SPD interactions. The strength
of these springs is obtained from the SPD interaction
force per unit length, derived from the dislocation elas-
tic theory:34 Fs = γI − αµb2/2πr where γI is the SFE
per unit area, r is the dissociation width and α is a ge-
ometric factor varying with Poisson’s ratio ν and with
the true direction of the SPD Burgers vectors. For some
perfect SPD34 α = (1/(1 − ν) − 1/3)/4 which gives ap-
proximately α ≈ 0.3 in Al and α ≈ 0.26 in Ni if one uses
for Poisson’s ratio νAl = 0.347 and νNi = 0.28. The other
physical constants needed here are the (11̄1) shear mod-
ulus µ = (C11 − C12 + C44)/3 which gives µAl = 30833
Mpa and µNi = 74600 MPa and the norm of the disloca-
tion Burgers vector b = a0/

√
2 with a0 = 4.031 Å in Al

and a0 = 3.52 Å in Ni.
Because of the limited dimensions of ASC, the elastic

interactions between the SPD and their periodic images
along the Y direction must be accounted for, which leads,
for the leading partial to a force per unit length:

Fs(r) = γI−α
µb2

2π
[
1
r
+

∑

j≥1

− 1
(jLy)− r

+
1

(jLy) + r
]. (2)

This equation can be reduced using a well-known identity
of the Riemann zeta function :

Fs(r) = γI − α
µb2

2Ly
[cot (

πr

Ly
)]. (3)

According to the previous elastic theory applied to our
atomistic simulation cell, the equilibrium distance be-
tween SPD would then be

dSPD =
Ly

π
arctan (

αµb2

2LyγI
). (4)

In Eq. 1, the dimensionless separation distance between
SPD has been denoted by d∗ = 2dSPD/b. For very large

Ly in comparison with d0 = (
αµb2

2πγI
), the width of the

stacking fault ribbon tends to d0 as expected in an infinite
media.34 Through ASC, both dSPD and the stacking fault
energy γI can be computed independently in pure Ni and
pure Al. The former is simply obtained from simulations
with a dislocation in the computational cell as presented
in Sec. II, while the latter is obtained by construction of
another simulation cell35,36 with three-periodic bound-
ary conditions allowing to produce some perfect stacking
faults, i.e., not bounded by dislocations. In Ni, we found
γI = 89 mJ/m2 whereas in Al γI = 109 mJ/m2. The SFE
computed within the present EAM underestimate the ex-
perimental estimations found by Carter and Holmes37 in
Ni and Westmacott and Peck38 in Al, with γI = 120−130
mJ/m2 and γI = 120 − 144 mJ/m2, respectively. Using
the same computational method as in Sec. II with no
external shear stress applied, the dissociation distance is
computed in ASC. For a simulation cell with dimensions
given in Ref. [31], it is found that dSPD = 28.6 Å in Ni
and dSPD = 17.1 Å in Al. To render the ASC for dSPD

compatible with those for γI through the elastic theory
Eq. 4 we must adjust the dimensionless coefficient α to
α = 0.462 in Ni and α = 0.503 in Al.

The variation of the SFE with solute concentration
may be important in FRD solid solutions. The SFE has
been computed for solid solutions as for the pure metals
but introducing randomly the impurities in the simula-
tion cell as in Sec. II F. The SFE is found to decrease
linearly with the solute content cs :

γI = 89− 670cs in Ni(Al) and
γI = 109− 249cs in Al(Mg), (5)

with numerical coefficients unit in mJ/m2. The steepest
decrease is noticed for Ni(Al). The ASC presented in
Sec. II F also allowed us to compute the average distance
between SPD, dSPD for a finite concentration with no ap-
plied stress. While dSPD hardly varies with cs in Al(Mg),
its variation is much more pronounced in Ni(Al). The
analytical computations for dSPD in Eq. 4, where γI is
given by Eq. 5 provides us a satisfactory approximation
for dSPD in comparison to ASC in Ni(Al). The coefficient
α in Eq. 4 has been adjusted only to fit the ASC data
for cs = 0 meanwhile for finite cs it was not required to
change the value fixed at cs = 0. In Al(Mg) the same
analytical treatment overestimates our ASC data. Con-
sequently, in the following ELM computations dSPD will
be invariant against cs in the case of Al(Mg) whereas in
Ni(Al) we shall employ Eq. 4 combined with Eq. 5 to
fix dSPD, and subsequently d∗ in Eq. 1. The ASC per-
formed with SRP and TRP constrained solid solutions
(see Sec. II D and Sec. II E) showed us that the stack-
ing fault ribbon width depends marginally on the solute
content in both alloys. Such variations will then be dis-
carded when the ELM computations will concern these
constrained solid solutions.
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The first order expansion of Fs in Eq. 3, around the
equilibrium distance dSPD yields a linear force propor-
tional to (r − dSPD):

Fs(r) = − απµb2

2L2
y sin (πdSPD

Ly
)
2 (r − dSPD). (6)

Multiplying Fs by the unit area of our dimensionless lat-
tice s =

√
3b2/4, we obtain the spring constant γ of the

transversal springs in the elastic ladder presented in Fig.
6 (b):

γ =
απµsb2

2L2
y sin (πdSPD

Ly
)
2 . (7)

Although the inter-dislocation forces are usually pre-
sented as long range elastic Coulomb type forces, the
transversal springs in the ELM link only the nodes that
are situated in the same lattice row, along the Y direc-
tion. We acknowledge that this may be thought of as a
rather rough approximation which the reliability is yet
supported by the following analysis for the profile of an-
chored dislocations. The study of such profiles also allows
us to determine the strength Γ associated with the lateral
springs in the elastic ladder.

Some ASC with a single foreign atom are realized as
described in Sec. II C. The dislocation is then anchored
by an isolated obstacle and it takes different profile ac-
cording to the external shear stress inferior to the crit-
ical value. In order to span a wide range of stress and
thus to gain in precision on the computation of the dis-
location bowing, the foreign atom is substituted with a
fictitious atom, which the first neighbor bonds are arti-
ficially maintained invariant during the simulation, such
that the dislocation cannot pass the obstacle (unless the
stress attains the Orowan threshold which is out of pur-
pose here). In Figs. 7 (a-b), the profiles of the disloca-
tion computed from ASC have been reported for different
applied stresses. The triangles represent the position of
each dislocation segment in the ASC. The different con-
figurations were obtained for an obstacle situated in (A1)
plane, in front of the leading partial in Al (Fig. 7 (a))
and in front of the trailing partial, in the stacking fault
ribbon in Ni (Fig. 7 (b)). In order to reproduce such
computations within the ELM we introduce also a fic-
titious obstacle like in ASC, with an arbitrary form for
the potentials VI−j and WI−j , sufficiently hard to im-
pede the passage of the elastic ladder. Then we proceed
the same as in ASC to determine the configuration of the
elastic ladder under the same applied stress. The elas-
tic ladder profiles in ELM eventually can be compared
to the ASC as done in Figs. 7 (a-b) where the profiles
of the elastic ladders are represented by continuous lines.
The adjustment of the spring constant Γ in the ELM was
realized such that we found similar anchored profiles in
both ELM and ASC. The comparisons were performed
for different length Lx and different external stresses τ .
The adjustment of Γ, obtained for a set of parameters
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FIG. 7: Configuration for an edge dislocation, anchored on
an arbitrary strong obstacle situated either in front of the
trailing partial (a) or in between both partials (b), in a crystal
of Al (a) and in a crystal of Ni (b) for different applied shear
stresses (see insets). The triangles represent the dislocation
segments computed within atomic-scale simulations and the
continuous lines correspond to the results from the elastic line
model presented in Figs. 6 (b).
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Lx and τ proves to be valid over a broad range of those
parameters.

Throughout such an adjustment, we found ΓAl = 0.101
nN and ΓNi = 0.162 nN. According to the analytical
elastic theory39 for an edge dislocation, the line tension
can be estimated with the formula :

Γel = µb2 1− 2ν

4π(1− ν)
ln(R/b), (8)

where R corresponds to the outer cutoff of the elastic
theory. In our simulation cell, R would correspond to
Lz/2, i.e., the shortest distance between the dislocation
and the free surfaces of the cell. With Lz in Ref. [31], Eq.
8 yields Γel

Al = 0.2 nN and Γel
Ni = 0.5 nN. The discrep-

ancy between Eq. 8 and our computations is partly due
to the fact that Eq. 8 applies to a dislocation that is not
dissociated whereas in our problem the coefficient Γ con-
cerns the stiffness of a single SPD. To tentatively reduce
the discrepancy we apply the general formula from the
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dislocation elastic theory39 to the case of a single partial
dislocation :

Γel =
µb2

p

[
(1 + ν) cos2(β) + (1− 2ν) sin2(β)

]

4π(1− ν)
ln(R/b),

(9)
where this time, bp = a0/

√
6 stands for the norm of the

partial burgers vector while β ∈ [π/3, 2π/3] is the an-
gle between the line direction and the burgers vector of
either the leading or the trailing partials. Eq. 9 yields
Γel

Al = 0.132 nN and Γel
Ni = 0.25 nN which proves closer

from our computations in both systems though it still
overestimates it. Actually applying Eq. 9 to SPD still
corresponds to a quite rough approximation where the
SPD are considered as some isolated dislocations which
is by far not realistic since the SPD are in contact with
a stacking fault. Nevertheless the comparison with the
elastic theory of dislocation allowed us to confirm the
order of magnitude of Γ.

In order to test further our harmonic spring ladder
model, we determine the variation of the separation dis-
tance dSPD between anchored partial dislocations against
the applied stress. The ASC data have been presented
for both alloys in Figs. 8 (a-b) with symbols. Depend-
ing on the position of the obstacle, i.e., outside or inside
the stacking fault ribbon, the distance dSPD either de-
creases or increases with τ , respectively. Once again, the
same type of computations performed within the ELM
(see lines in Figs. 8 (a-b)) demonstrates a satisfactory
agreement with ASC.

From the previous comparisons, we estimate that the
elastic properties of the dissociated dislocation have
been successfully capture within the spring chain ladder.
The short range harmonic interaction between the chain
nodes allows us to avoid the computational load that
would imply the numerical treatment of the long range
Coulomb type interactions. It is worth noticing that the
latter however enter effectively into the determination of
the spring constant Γ and γ, since these ELM parameters
are adjusted to fit the ASC where the long range elastic
effects are present.

B. Isolated solute atoms pinning potentials

In the ELM, we assume that the obstacle forces apply
solely on the ladder nodes in the lattice row where is sit-
uated the obstacle. The interaction potentials VI−j and
WI−j between the obstacles and the elastic ladder nodes
are constructed with a series of cubic polynomials, inter-
polating the zeroes of the potential energy derivatives.
The position of such zeroes and the values taken by the
potential energy at such points serve as adjustable vari-
ables. The coefficients of the polynomials are determined
consistently by the conditions of continuity of the poten-
tial and its first derivative. The adjustable variables are
tuned such that to sketch out the internal energy Ucell

between the partial dislocations and the foreign atoms,
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FIG. 8: Width of the stacking fault ribbon dSPD for an edge
dislocation anchored on an arbitrary strong obstacle situated
either in front of the trailing partial or in between both par-
tials, in a crystal of Al (a) and in a crystal of Ni (b). The
symbols represent the computations from atomic-scale simu-
lations and the lines correspond to the elastic line model pre-
sented in Figs. 6 (a-b) with the same geometric parameters
given in Ref. [31].
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in the ASC presented in Sec. II D. In Figs. 9 (a) and (b),
the end results from our spline procedure is presented for
the two systems and for the interaction potential between
the leading partial and an isolated obstacle either situ-
ated in the (A1) plane (full line) or in the (B1) plane
(dashed line). The same procedure has been applied to
derive the interaction potential with the trailing partial.
The total energy associated with Eq. 1 is simply given
by:

EELM =
b

2

∑

k

{ Γ
2
√

3
[(yk − yk−1)2 + (y′k − y′k−1)

2]

+
γ

2
(yk − y′k − d∗)2 +

∑

i,j

VI−j(yk − ak,i,j)

+
∑

i,j

WI−j(y′k − ak,i,j)}. (10)

Such an energy is computed as the spring ladder bypasses
the isolated obstacle for an external force larger than the
critical threshold that corresponds to the obstacle. The
results of our adjustment have been reported as continu-
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FIG. 9: Interaction potentials VI−j between the elastic line
corresponding to the leading partial, for different systems and
different positions of the obstacle above (A1) and below (B1)
the glide plane. These potentials have been constructed with
a series of cubic polynomials, interpolating the coordinates
for the first derivative zeroes.
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ous lines in Figs. 2 (b) and (c) for some obstacles situated
in planes (A1) and (B1), respectively. It is worth notic-
ing that in the ASC the internal energy Ucell, in addition
to the interaction potential between the dislocation and
the obstacle, also involves the elastic energy of the dis-
location bowing. In the procedure of adjustment for the
potentials VI−j and WI−j , the total line length has been
chosen equal to the dislocation length Lx and the dis-
sociation distance dSPD and the spring stiffness γ were
determined from Eq. 4 and Eq. 7 with the proper Ly,
i.e., corresponding to the cell of the ASC. Moreover the
ASC and the ELM computations where performed with
the same applied stress. In such conditions, and on the
basis of the results shown in Figs. (7) and (8) we may
expect that the ELM yields a satisfactory computation
of the elastic energy contribution from the dislocation
bowing.

In Figs. 10 (a-f), we also present the ASC results and
the corresponding ELM adjustments for the isolated ob-
stacles situated in the next nearest (11̄1) planes, namely
(An) and (Bn) for n ∈ [2, 4]. For the type I obsta-
cles interaction with the trailing SPD, we found that
a satisfactory description of the potentials could be ob-
tained with some functions that are simply the symmetric
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FIG. 10: (color online) Internal energy of the simulation cell
Ucell for an edge dislocation bypassing a type I obstacle sit-
uated in the nearest planes (11̄1) above and below the glide
plane. The planes are referred as a function of their apical
height (see the text). The continuous lines have been obtained
from the elastic ladder model (ELM), detailed in the text.
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of the interaction potentials with the leading SPD, i.e.,
WI−j(x) = VI−j(−x). In order to specify the location of
a type I obstacle, the subscript I is completed with the
notation for the (11̄1) plane where it is situated. For in-
stance a type I obstacle in the (A3) plane will be referred
as to an obstacle of type I-A3. From the comparison be-
tween Figs. 2 (b-c) and Figs. 10 (a-f), one notes that the
interaction potentials, with multiple extrema when the
obstacle is near the glide plane show only one extremum
per SPD when the obstacle is situated further in the next
nearest planes, as it is expected from a Volterra elastic
theory.17,29

C. Dimers pinning potentials

In previous studies bearing on the SSH in Ni(Al)
system,15,17 the role of clusters was put forward to ex-
plain the CRSS rate against cs. Here we first examine
the first neighbor dimers which the inter-atomic bonds
are oriented along either [110], [011] or [101̄]. The three
configurations have been represented in Figs. 11 (a-c)
and they are associated with 3 new types of obstacles,
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FIG. 11: Schematic representation for the first neighbor
dimer configurations in the (11̄1) plane. Portion of the 2
nearest (11̄1) planes that bound the dislocation glide plane.
The square symbols correspond to the solute atoms whereas
the circles represent crystal atoms. Open symbols represent
atoms situated above the glide plane, the full symbols the
ones below the glide plane. The arrows indicate the relative
motion of the atom in the course of the dislocation passage.

(a) (b) (c)

hereafter denoted by type II, type III and type IV, re-
spectively. Only the dimers situated either in (A1) or in
(B1) planes are concerned. As done previously for type I,
the interaction potentials that correspond to these obsta-
cles are introduced in the ELM by fitting the ASC data
obtained as described in Sec. II C. There are 12 new po-
tential forms. For instance, the three potentials VII−A1,
VIII−A1, VIV−A1 concern the interactions between the
leading partial and the dimers situated in the (A1) plane
whereas WII−B1, WIII−B1 and WIV−B1 are for the trail-
ing partial and the dimers situated in the plane (B1).
The same procedure as for VI−j and WI−j is applied to
derive these new interaction potentials. Replacing VI−j

and WI−j in Eq. 1 and in Eq. 10 with Vt and Wt where
t ∈ [II−A1, III−A1, IV −A1, II−B1, III−B1, IV −
B1], the variation of the energy in the course of the spring
ladder is computed for each type of dimer. The adjust-
ment of the cubic polynomials associated with the differ-
ent interaction potentials allows us to describe accurately
the data obtained from ASC for Ucell, when an edge dis-
location bypasses the different dimers. The energy vari-
ation computed from the ELM has been reported with
continuous lines in Figs. 12 (a-f) for the dimers situated
in the (A1) plane and in Figs. 13 (a-f) for the dimers
situated in the (B1) plane. For comparison, the vari-
ations of Ucell obtained from ASC and targeted in the
adjustment procedure have been represented in the same
figures with symbols. Because of the asymmetry of the
obstacles with respect to the X direction (see Fig. 11
(a-c)), the potential forms Vt and Wt have not the same
symmetry as for VI−j and WI−j .

In addition to the previous dimers, parallel to the (11̄1)
planes we also consider some dimers, the bonds of which
cross the glide plane. Figure 14 (a) sketches out the for-
mation of a first neighbor dimer during the bypassing
of a dislocation, whereas Fig. 14 (b) shows the oppo-
site process, i.e., the dissociation of a pre-existing first
neighbor dimer. The variations of the potential energies
associated with these processes are presented in Figs. 14
(c-f) for the two systems. The account of such dimers
led us to the introduction of two new obstacle types in
the ELM, denoted hereafter as type V and type VI. In
Ni(Al), a marked variation of the potential energy, ex-
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FIG. 12: Internal energy Ucell in ASC for an edge disloca-
tion bypassing dimers situated in the (11̄1) planes just above
the glide plane (A1). On the left hand side Al(Mg) and on
the right Ni(Al). Symbols represent the ASC data and the
continuous line corresponds to ELM which the interaction po-
tentials Vi−n and Wi−n (i ∈ [II, III, IV ] and n =(A1)) have
been properly adjusted on the atomistic data.
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tending over the whole stacking fault ribbon contributes
to the dislocation pinning, being absent from or negligi-
ble in Al(Mg). This variation corresponds to an increase
in the case of the formation of a first neighbor dimer and
to a decrease when a first neighbor dimer is dissociated
in the course of the dislocation passage. Such a variation
has its physical origin in the fact that the order energy
is much more important in Ni(Al) than in Al(Mg). With
the interatomic potential used in the present study for
Ni(Al), it was found that the formation energy for a first
neighbor dimer is 0.35 eV while it is −0.2 eV for the
second neighbor dimers. These formation energies were
computed within independent ASC, i.e., with no dislo-
cation inside the simulation cell. The potential energy
difference between the two configurations is then 0.55
eV which corresponds to the increase (resp. decrease) of
energy in Fig. 14 (d) (resp. Fig. 14 (f)). As the poten-
tial energy rise extends over the entire staking fault, the
mean force is close from 0.55 eV divided by the stack-
ing fault ribbon width, around 28 Å in our EAM model
for Ni(Al), which would therefore give a pinning strength
close from 0.03 nN. This is the same order as the maxi-
mum pinning forces reported in Fig. 2 (a). In Al(Mg) the
difference between the dimer formation energies is one or-



11

-40 -20 0 20 40

dislocation position (Å)

-0.2

-0.15

-0.1

-0.05

0

in
te

ra
ct

io
n 

en
er

gy
 (

eV
)

[110] Mg dimer in Al

obstacle
position

-40 -20 0 20 40

dislocation position (Å)

-0.15

-0.1

-0.05

0

in
te

ra
ct

io
n 

en
er

gy
 (

eV
)

[110] Al dimer in Ni

-40 -20 0 20 40

dislocation position (Å)

-0.2

-0.15

-0.1

-0.05

0

in
te

ra
ct

io
n 

en
er

gy
 (

eV
)

[10-1] Mg dimer in Al

obstacle

-40 -20 0 20 40

dislocation position (Å)

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

in
te

ra
ct

io
n 

en
er

gy
 (

eV
)

[10-1] Al dimer in Ni

-40 -20 0 20 40

dislocation position (Å)

-0.2

-0.15

-0.1

-0.05

0

in
te

ra
ct

io
n 

en
er

gy
 (

eV
)

[011] Mg dimer in Al

-40 -20 0 20 40

dislocation position (Å)

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

in
te

ra
ct

io
n 

en
er

gy
 (

eV
)

[011] Al dimer in Ni

FIG. 13: Same as in Figs. 12 (a-f) but for dimers situated in
(11̄1) planes just below the glide plane j =(B1).
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der smaller as we found 0.03 eV in our EAM model for
Al(Mg). Then, accordingly the associated pinning effect
is negligible. In an earlier publication,15 the large energy
formation in Ni(Al) leads the authors to regard the type
V and VI dimers as strong contributions to the disloca-
tion pinning. On the basis of the present work one will
be able to answer the question raised in Ref. [15].

IV. DISLOCATION STATISTICS IN SRP SOLID
SOLUTIONS

Here, first we must emphasize that the ELM parame-
ters have been adjusted to fit the elementary interactions
between the edge dislocation and the obstacles and that
such an adjustment remains independent of the follow-
ing statistical study, where no adjustable parameter is
required. The random potential landscape of the elas-
tic ladder is constructed by selecting randomly the sites
of the hexagonal lattice (Fig. 6 (a)) that are occupied
by the obstacles. The distance dg over which the elas-
tic ladder is dragged, the total chain length Lx and the
simulation cell size in Y direction, Ly have been chosen
equal to those in the ASC in Secs. II D, II E and II F (see
Ref. [31]). In ELM for SRP solid solutions, the total
number of obstacles, distributed on the discrete lattice is
No = csLxdg/s. Each site of the hexagonal lattice can
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FIG. 14: In (a) and (b) schematic representation of the so-
lute atom relative flip for a the dislocation bypassing some
solute atom dimers which the bond crosses the glide plane
(see legend in Fig. 11). The corresponding variation of Ucell

computed from ASC are reported in (c) and (e) for Al(Mg)
and in (d) and (f) for Ni(Al) as symbols. The continuous lines
correspond to the ELM adjustments (see in text).
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take two possible states: (i) unoccupied or (ii) occupied
by an obstacle of type I-A1. Then the nearest neighbor
sites of each occupied site are probed in order to rec-
ognize the dimers, i.e., the obstacles of type II, III and
IV (see Figs. 11 (a-c)), distinguished by the direction of
their bonds. According to the bond direction the type
of obstacle is identified as either II-A1, III-A1 or IV-A1.
Then one of the two sites concerned by the dimer is con-
sidered as bearing the obstacle with the suitable type and
the other one is forced into the unoccupied state. This
avoids the double counting of the dimer obstacles. The
lattice sites can then take 5 different states.

The dynamical equation for the leading spring chain is
extended to the case with multiple types of obstacle:

λẏk =
Γ√
3
∆kyk − γ[yk − y′k − 2d/b] + τs

−
∑

i,t

V ′
t−A1(yk − at

k,i,A1), (11)

where now at
k,i,A1 is the Y-coordinate of the ith obstacle

of type t∈ [I, II, III, IV ] in the kth row of the dimension-
less hexagonal lattice, corresponding to the plane (A1).
The ELM predictions for the edge dislocation CRSS in
the two different systems have been reported in Fig. 3 as
continuous lines with open symbols. The excellent agree-
ment between the ELM and the ASC demonstrates that
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FIG. 15: Critical shear stress computed for Ni(Al) and
Al(Mg) SRP solid solutions, within the elastic line model
(ELM), as detailed in the text and sketched out in Fig. 6.
The open symbols correspond to the same ELM as in Fig.
3. The full symbols correspond to the computations from an
ELM where the solute atom dimers are approximated as the
linear superimposition of the single solute atoms taking part
to the dimers.

the account of the different physical quantities, important
in SSH, is correctly achieved. A quantitative agreement
is obtained in both system Ni(Al) and Al(Mg) over the
whole range of concentration. To determine the aver-
age critical shear stress, we used for every concentration
a sampling of 20 configurations in ASC and 80 in the
ELM where the computations are much shorter, i.e., few
minutes each on a standard mono-processor. The mean
square root of the CRSS dispersion computed from the
ELM has been reported in Fig. 3 with error bars. The
CRSS dispersion computed from ASC was found to be
similar but less regular against cs, because of the limited
sampling. From Fig. 3, one notes clearly that the CRSS
dispersion increases with cs in the two systems.

Switching off the dimer recognition in the ELM, the
dimer-dislocation interaction then consists of the linear
superimposition of the interaction between the two so-
lute atoms and the dislocation. The critical CRSS has
been computed in such a modified ELM in order to quan-
tify the role of the dimers in the dislocation pinning. In
Fig. 15, the results are compared with those obtained
from the previous ELM, involving the potentials specific
to dimers. For higher concentrations, above 4 at. %, the
CRSS from the second ELM neatly deviates from the
former model and becomes erroneous in comparison to
the ASC reported in Fig. 3. In Ni(Al) the contribution
specific to dimers enhances the CRSS while in Al(Mg),
by contrast, it lowers it. In both systems, at cs = 10 at.
% the difference between the CRSS derived from the two
different ELM may reach 15-20 % of the CRSS. In or-
der to accurately approach the dislocation statistics, we
are therefore compelled accounting for the pinning poten-
tials of the dimers situated in the nearest (11̄1) planes.
The contribution of dimers proves though far much less
important than what was expected from the analytical
theory proposed in Ref. [17] by one of us (LP).
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FIG. 16: Critical stress computed for Ni(Al) and Al(Mg) TRP
solid solutions within ELM. The open symbols are the same
as in Fig. 4. The full symbols correspond to a different ELM
where type V and VI dimers are approximated as the linear
superimposition of single solute atoms.

V. DISLOCATION STATISTICS IN TRP SOLID
SOLUTIONS

To extend the ELM to the case of TRP solid solutions,
we conserve the hexagonal lattice as presented in Fig.
6 (a) and we describe the sites of the two (11̄1) planes
contiguous to the glide plane by a same single hexagonal
lattice. This corresponds to the shift in the X direction
presented in Fig. 6 (a), which leads to superpose the two
(11̄1) planes. The total number of obstacles is fixed to
No = 2csLxdg/s. Each site of the hexagonal lattice can
take 3 different states : unoccupied, occupied by a type
I-A1 obstacle or occupied by a type I-B1 obstacle. The
dimers are then identified by probing the nearest neigh-
bor sites of an occupied lattice site, following the same
procedure as in SRP (see Sec. IV). The ELM predic-
tions for the pinning strength of TRP are shown in Fig.
4 and they demonstrate again a remarkable agreement
with ASC. In the ELM, it is possible to cancel arbitrarily
the recognition of type V and type VI obstacles. Then
these solute atom dimers only contribute to the elastic
ladder pinning through the linear superimposition of the
force fields due to the type I-A1 and I-B1 obstacles as-
sociated to form the dimer. With such a modified ELM,
the computations for the TRP CRSS is presented in Fig.
16 for the two systems, along with the results obtained
earlier with the original ELM, that is with specific poten-
tials for type V and type VI obstacles. For concentration
larger than 4 at. %, the account of these dimers may
increase of more than 10 % the CRSS in Ni(Al) and low-
ers it in Al(Mg). This reflects the same trend as for the
type II, III and IV obstacles in SRP (see Fig. 15). Such
a comparison allows us to establish to which extent the
larger order energy in Ni(Al) impacts the SSH in the ideal
random solid solutions.
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VI. DISLOCATION STATISTICS IN FRD SOLID
SOLUTIONS

In addition to the pinning forces arising from the so-
lute atoms situated in the two planes that bound the glide
plane, we now consider those situated in the next nearest
planes above and below, up to the fourth (11̄1) planes,
namely (An) and (Bn) with n ≤ 4 in our notations. It
is equivalent to introducing a upper distance cutoff on
the dislocation-obstacle interaction as earlier suggested
by Nabarro in his analytical SSH theory.2,40 We also stud-
ied the ELM statistics, including in our computations the
contribution from further (11̄1) planes, with n ≤ 7, but
no significant increase of the CRSS has been noticed in
comparison to the case n ≤ 4. This confirms Nabarro’s
assumption. In plane (An) and (Bn) with n > 1, i.e.,
further than the planes that bound the glide plane, we
assume that the dislocation interaction with dimers and
other clusters could be approximated as the linear super-
imposition of those with type I obstacles. This assump-
tion proves satisfactory and allows us to limit the number
of different types of obstacles that must be accounted for.

The total number of obstacles in the height nearest
(11̄1) planes is fixed to No = 8csLxdg/s. The obstacle
recognition proceeds the same as for SRP and TRP (see
Secs. IV and V). In Fig. 5, the CRSS computed for
Al(Mg) and Ni(Al) is plotted against cs. An excellent
agreement is obtained between the ASC and the ELM
predictions for the dislocation statistics in the two dif-
ferent systems. The ELM thus provides a satisfactory
description of the edge dislocation statistics at the atom-
istic level. Such a result indicates clearly that the physi-
cal origin of SSH stems from a local interaction between
solute atoms and the SPD.

In Fig. 5, we note that the scattering of the CRSS
increases with solute content and even reaches same or-
der as the CRSS itself, for cs = 10 at. %. Here the
computations have been performed for a single disloca-
tion. With an assembly of N independent dislocations
the CRSS scattering can be expected to reduce by a
factor

√
N , according to the central limit theorem. In

a macroscopic samples, this factor is much larger than
unity which thence leads to a negligible CRSS scatter-
ing.

VII. MULTI-SCALE ELASTIC LINE MODEL

In Fig. 17, we reproduced the experimental data (open
triangles), obtained by different authors through tensile
tests,24 applied to Al(Mg) monocrystalline samples. The
low temperature data have been treated such as to obtain
the static depinning threshold,3 avoiding strength loss
due to the very low temperature effects.41 This strength
loss, either due to the dislocation inertia42, to some quan-
tum effects or to the weakness of the metal conductivity43

must actually be ignored to properly evaluate the static
depinning threshold. A mere extrapolation3 of the ex-

perimental data from the temperature range where the
stress-temperature rate is negative is expected to yield
a satisfactory estimate for the static CRSS. Concerning
Ni(Al), we did not found low temperature tensile tests as
for Al(Mg). We tentatively examined some experimental
data from various sources as the deformation tests per-
formed by Nembach and Neite44 above 90 K, the com-
pressive tests by Mishima et al.45 above 73 K and the
nanoindentations46 measuring hardness (H), from which
the yield stress σ can be deduced empirically by apply-
ing the linear relation H = 3σ (established for metallic
crystalline materials47,48). However, those experimental
data scatter too much and it has not been possible to ex-
trapolate them against temperature in order to deduce
the static CRSS. We thus choose to limit the compari-
son between our theoretical results and the experimental
data to the Al(Mg) system.

The distance Ly has been chosen equal to 1 µm. For
such Ly, dSPD = d0 is a very good approximation. The
total dislocation length has been fixed to Lx = 0.8 µm,
above which we found a CRSS invariant against Lx, in-
dicating that the Larkin length33,49,50 is inferior to 0.8
µm. A series of ELM computations were performed with
different glide distances dg. In Fig. 17, the results are
presented for Al(Mg) and they agree quite well with the
experimental data, particularly for dg = 4 nm. Inter-
estingly, we note that the CRSS increases with dg. The
CRSS dependence in dg is the mere consequence of the
increasing probability for the dislocation to encounter
stronger obstacles in its course. This has been studied
thoroughly in a simpler ELM33,51 where the CRSS was
shown to increase with dg as :

τc = A(cs) ln(dg)α, (12)

where A is a function of cs and α < 1 is an exponent that
varies linearly with [− ln(cs)]. With the present ELM,
the parameter α has been adjusted such as to reproduce
our numerical results (shown in Fig. 17) for cs = 0.1
in Al(Mg). It was found that α ≈ 0.3. The logarithmic
variation of τc against dg indicates that such a variation
should be negligible in relative value for very large dg.

In the present tentative to compare the theory with
experiments, the distance Ly may be thought of as the
shorter inter-dislocation distance, such that Ly =

√
1/ρd

where ρd corresponds to a realistic dislocation density in
a weakly deformed alloy, i.e., ρd ≈ 1012 m−2. The lat-
ter density leads to a typical inter-dislocation distance
of one micro-meter, corresponding to the one employed
previously to compute the CRSS in Fig. 17. However,
the dislocation density in the tensile tests is known to
vary during the deformation process, which hinders a
precise comparison between theory and experiments. In
a same manner it is difficult to estimate dg from the
experimental works. Here we propose to integrate the
Orowan relation between the deformation rate and the
average dislocation velocity. It is then easy to show that
ε = ρdbdg. With ρd ≈ 1012 m−2 and dg = 100 nm, we ob-
tain ε = 2.5 10−5 %, which proves far much smaller than
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the true elastic limit found in macroscopic tensile tests
(see for instance Ref. [45]) Certainly, a manner to estab-
lish a more accurate comparison with experiments would
be to work with data obtained from in-situ studies where
the glide of a single dislocation can be followed at low
temperatures.52–54 On the basis of the Orowan relation,
a true elastic limit of few tenth of percent, more realistic
in macroscopic tests, leads to dg much longer than the
ones used in our computations, reported in Fig. 17. How-
ever Eq. 12 yields a relative variation of the CRSS that
becomes negligible for sufficiently large dg. For instance,
the same type of ELM computations as reported in Fig.
17 but for dg = 0.5 µm yields a CRSS only slightly larger
than for dg = 0.1 µm. We therefor consider that the
CRSS computed with dg = 0.1 µm is a good approxi-
mation for the CRSS in a macroscopic sample where dg

is expected to be much larger. Then the agreement be-
tween the theory and the experimental data reported in
Fig. 17 is not very good since the computations over-
estimate the CRSS measurements in Al(Mg) by a factor
1.6. The agreement obtained for dg = 4 nm proved actu-
ally a fortuitous results that is due to dimensional effects.
The uncertainty of our computations might be put on the
EAM employed to model the Al(Mg) inter-atomic forces.
In App. A, a comparison between the different EAM is
reported to computing the CRSS from ASC in Al(Mg).
The EAM version proposed by Mendelev et al.55 leads to
a CRSS still larger than the one obtained with the EAM
chosen in our study. Therefore we cannot expect that
the change in EAM would solve the discrepancy, noticed
between the experimental data and the theory.

The present work concerns the edge dislocations.
Thence one may wonder whether the interplay of screw
dislocation could explain our CRSS discrepancy. Since
the transmission electron microscopy in the fcc alloys,56
shows that the proportion of screw dislocations is simi-
lar to the edge ones, the screw depinning must occur for
stresses comparable to the edge dislocations,28 otherwise
the microstructure of a deformed sample would imply a
majority of edge dislocations. It seems therefor difficult
to invoke the depinning of screw dislocations as a possible
explanation for the theory failure.

We remark in Eq. 8 that according to the dislocation
elastic theory the line tension Γ is expected to vary with
the log of R, the outer cutoff radius. Such a quantity is
usually related to the dislocation distance to nearest ex-
tended defects that can be a surface, a grain boundary or
another dislocation. In theory, it is standard to assume
that R ∝

√
1/ρd. Though, in our previous ELM appli-

cation to microscopic scales we assumed that Γ could be
kept equal to the value determined throughout our ad-
justment on the ASC dislocation profile (see Sec. III).
In order to determine what Γ should be when ρd ≈ 1012

we assume that the logarithmic law for Γ, predicted by
the dislocation elastic theory is verified but that the pre-
factor of such a law can be rescaled in order to mach our
computation for Γ at the atomic-scale. Our new assump-
tion is equivalent to suppose that the ratio Γ/Γel is con-
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FIG. 17: ELM computations for the CRSS against solute
atomic concentration cs in Al(Mg), for different glide dis-
tances dg (see legend). For comparison, the experimental
data from Ref. [24] for Al(Mg) were reported as triangles.
The rescaling for the line tension Γ is detailed in the text.

stant in the scale transition toward microscopic scales.
With R =

√
1/ρd/2 we obtain a rescaled line tension

Γ = 0.278 nN instead of the ΓAl = 0.101 nN in Sec. III.
Putting the new value for the line tension Γ in the ELM,
the CRSS has been computed against the solute concen-
tration for dg = 0.1 µm. The corresponding results are
shown in Fig. 17 as a continuous line with open square
symbols which now slightly overestimates the experimen-
tal data. According to our estimation the increase of Γ
along the scale transition seems thus sufficient to resolve
a large part of the theoretical discrepancy with the ex-
periments.

For the sake of consistency between the different
atomic-scale models, when we compared the dislocation
statistics in ELM and ASC, i.e., in Sec. VI the stack-
ing fault energy γI in the ELM computations was fixed
to the one computed in our ASC, i.e., within the EAM
described in Sec. II. The ELM can also be employed in-
dependently from these EAM, in order to determine how
the CRSS would vary with γI . According to the first
principle computations realized by Woodward et al.,57
the separation distance between SPD is 8 Å for the edge
dislocation in Al. In the EAM model employed here, we
found dSPD =18 Å. We thus correct in Eq. 4 the SFE
in order to obtain dSPD = 8 Å in the ELM. This leads
us to an SFE 2.5 larger than the one found in our EAM
computations (see Eq. 5). We then performed the same
ELM computations in Sec. VI but with the new value of
SFE. It was found a CRSS of few percents smaller than
those reported in Fig. 17. A strong SFE variation seems
thus not to yield an important change in SSH.

A valuable property of ELM lies in that large sam-
plings can be performed with a minimum of computa-
tional force, so that we obtain easily the CRSS with a
very good precision. It is then of some interest to exam-
ine also the CRSS rate against cs. Taking as targeted
data the ELM results similar to those presented in Fig.
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fective concentration exponent η is reported for each set of
data.

17, we adjust a power law of the form τc = Acη
s , as it is

predicted by different analytical theories for SSH.1,2,4,5
In our fits of the ELM data in Fig. 17, the parame-
ters A and η are adjusted on the different CRSS curves,
corresponding to different dg. We obtained: η = 0.61 for
dg = 2.5 nm and η = 0.67 for dg = 0.1 µm. Clearly the ef-
fective concentration exponent η increases with the glide
distance dg,51 a feature absent in the standard analytical
SSH theories. It is however important to stress that the
latter predict correctly that the CRSS decreases as the
inverse of the line tension and that it increases with the
maximum pinning force and with the solute content cs.
All these features are actually confirmed by our compu-
tations. On a pedagogical ground the early SSH theories
remain therefor highly valuable.

From our study of different simulation cell geometries,
we also noticed that τc decreases with Ly when Ly is
small enough to yield a separation distance dSPD inferior
to d0. Such a decrease is the consequence of the staking
fault ribbon tightening, under the effect of the Coulomb
type interactions between the SPD and their periodic im-
ages in the Y direction. Actually the decrease of dSPD

with Ly (see Eq. 4) leads to an increase of the spring
constant γ in Eq. 7, which contributes to stiffer the en-
semble of the elastic ladder and thus alters the total pin-
ning strength. We exemplify the effect of a variation in
Ly in the case of the random Ni(Al) solid solutions in
Fig. 18. Here it appears neatly that for a small enough
inter-dislocation distance Ly, the CRSS is inferior to the
value computed for Ly = 1 µm. In Al(Mg), for some
geometries with small enough Ly, the computed values
for the CRSS were comparable to the experimental data
reported in Fig. 17, but such an agreement remains a
fake yielded by the dimensional effect on Ly, which is

then far too small in comparison with the realistic value
of Ly = 1 µm. The same type of fit in concentration
power law as performed previously for Al(Mg) was real-
ized in Ni(Al). Some of our results are reported in Fig.
18. For comparable dislocation geometries, Lx = 80 nm,
Ly = 1 µm and dg = 0.1 µm, the effective exponent η
is found larger in Ni(Al) than in Al(Mg), i.e., η = 0.79
in Ni(Al) against η = 0.67 in Al(Mg). In order to con-
firm the importance of dimers in the pinning strength of
FRD, as we noticed in SRP and TRP constrained solid
solutions, we employ again the ELM where the dimer
pinning potentials are approximated by the linear super-
imposition of the single solute atom ones. The results for
the Ni(Al) FRD are presented in Fig. 18 where one notes
that the ELM predictions deviate above cs = 4 at. % and
that for cs = 10 at. % the linear approximation on the
dimer potential underestimates by 10 % the true predic-
tions. Below cs = 4 at. % the SSH can be described in
term of an interaction between the dislocation and the
isolated solute atoms whereas above this concentration
the account of the solute atom dimer is required in order
to provide an accurate computation. The adjustment of
an effective power law for the CRSS gives an exponent
η = 0.73 which is inferior to the value found in the ELM
with specific dimer potentials (η = 0.79) but which is still
significantly larger than in Al(Mg) (η = 0.67). In addi-
tion to the previous approximation on the solute atom
dimers, we also performed some computations with the
same ELM where the SFE is fixed to a constant, inde-
pendent from cs, that is the SFE computed in the pure
Ni (see Eq. 5). The result for the CRSS is presented
in Fig. 18 where one notices that the CRSS still de-
creases with the new approximation. The reason for this
is that fixing the SFE impedes the stacking fault ribbon
to broaden with cs, which according to Eq. 7 leads to
a more rigid elastic ladder as it was analyzed previously
about the CRSS variation against Ly. The adjustment
of an effective power law gives an exponent η = 0.66
which is, this time, comparable to the exponent found in
Al(Mg) for the same geometry. We thus conclude that
the difference in the CRSS rate between the two systems
stems from the association of the dimer pinning strength
with the variation of the SFE with the solute content.

VIII. DISCUSSION

Our analysis of the solid solution hardening (SSH) in
different model alloys, i.e., Ni(Al) and Al(Mg) showed
that it is possible to obtain a quantitative agreement
between atomic-scale computations (ASC) and a suit-
ably extended elastic line model (ELM). Our develop-
ments for ELM demonstrate how to transfer the data
acquired at the atomic-scale toward larger scales. On
the basis of such a work, we believe that bridging ASC
to multi-dislocations simulations as discrete dislocations
dynamics58 (DDD) could proceed through the develop-
ment of a discrete version of ELM as the one presented
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here. We admit though that the work realized here is
not yet sufficient to finalize an ASC to DDD bridging.
Actually such a task would also require to account for
the thermal activation of the dislocation glide as well as
other processes as the solute diffusion and the dislocation
cross-slip. The integration of such mechanisms in ELM
may be thought of as a long-standing work but it presents
an encouraging perspective for a truly multi-scale simu-
lation.

A valuable property of the ELM lies in the fact that
the different physical features introduced phenomenolog-
ically in the model can be switched off arbitrarily in order
to determine their importance in the dislocation statistics
and thence in SSH. Following such a scheme, the main
contributions that differentiate hardening in Al(Mg) and
Ni(Al) have been worked out whereas those of less impor-
tance could have been discarded, thereby leading us to-
ward a consistent understanding of SSH. Here we demon-
strated that the main contribution to SSH in fcc met-
als stems from the short range interaction between the
Shockley partial dislocations (SPD) and the single iso-
lated solutes situated in the nearest planes that bound
the dislocation glide plane. In addition the use of ELM
allowed us to characterize the pinning contributions from
(i) the solute atom obstacles situated in the vicinity of the
glide plane, (ii) the solute atom dimers and (iii) the effect
of broadening of the stacking fault ribbon. These fea-
tures were found to be the physical ingredients needed in
ELM to obtain a quantitative agreement with the disloca-

tion statistics simulated through ASC. Noteworthily the
Coulomb type interaction between the solute atoms and
the dislocation, stemming from the long ranging disloca-
tion stress field was discarded in the present version of
ELM, whereas it was integrated consistently in the ASC.
The agreement obtained between the ELM and the ASC
for the dislocation statistics shows us that the long range
interaction has a negligible weight in the determination
of the CRSS, as it was early expected by Nabarro.2,40 Ac-
cording to our computations, the pinning of solute atoms
becomes ineffective when they are situated farther than
the fourth neighbor crystal planes from the glide plane.

Finally, it is worth stressing that qualitatively, the
ELM is independent from the EAM model chosen to
adjust its input parameters. Some atomistic data dif-
ferent than those derived from the present EAM can
be used to adjust these parameters. For instance the
obstacle-dislocation interaction potentials and the dis-
location elastic features could be derived from differ-
ent EAM interatomic potentials as those proposed by
Mendelev et al.55 and Purja Pun et al.59 (see App. A)
or else from some first principle studies. The important
result of the present study was to show the feasibility
of a quantitative agreement between the statistics of the
ELM and the statistics of a dislocation in ASC. The com-
parison with the experimental tensile tests as exemplified
with Al(Mg)24 in Sec. VII requires though to work fur-
ther the multi-scale approach.
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APPENDIX A: COMPARISON OF SSH IN
DIFFERENT EAM

For the same geometry of the simulation cell31 as the
ASC described in Sec. II F, the simulations are per-
formed with different EAM to compute the CRSS in the
fully random Al(Mg) and Ni(Al) solid solutions. The re-
sults obtained with the inter-atomic potentials employed
in the present study, i.e., the EAM proposed by Liu et
al.23 for Al(Mg) and the EAM proposed by Rodary et
al.15 for Ni(Al) are compared with those obtained from
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FIG. 19: Critical resolved shear stress computed from ASC
for the fully random solid solutions of Al(Mg) and Ni(Al)
with different concentrations cs and with the geometry given
in Ref. [31]. Different EAM are employed for the two systems
(see legend). The EAM chosen for the present study are those
developed by Liu et al.23 for Al(Mg) and by Rodary et al.15

for Ni(Al).

the more recent EAM developed by different authors: the
EAM proposed by Mendelev et al. in Ref. [55] for Al(Mg)
and the one proposed in Ref. [59] for Ni(Al) by Purja Pun
and Mishin. The different sets of data for the CRSS are
presented in Fig. 19 where the results that correspond to
the earlier EAM versions are the same as those already
shown in Fig. 5. The comparison shows us that the CRSS
computed from different EAM for a same system diverge
which demonstrates the importance of the atomic-scale
details into the SSH. With the recent EAM, the CRSS in
the two systems are comparable. The choice to work with
the EAM developed earlier in Refs. [15,23] was merely
motivated by historical reasons since the present work
started much before the publication of the recent EAM.
Our study bearing essentially on the development of the
elastic line model (ELM) for the dislocation depinning
statistics, the proper choice of an EAM potential is not
the purpose of our study.

APPENDIX B: DISCRETE VERSION OF THE
ELASTIC LINE MODEL

In the continuous version for the elastic line model
(ELM), the athermal Langevin dynamics of the elastic
body is given by the following equation:

BYt(X, t) = ΓYXX − v′(Y ) + fA

(B1)

where Y (X, t) is the position of the string segment sit-
uated at the coordinate X, Γ is the stiffness of the line,
fA is the external applied force per unit length, v(Y ) is
the random potential field per unit length and B is a
mobility coefficient. The single line model Eq. B1 is ex-
tended to the case of two bound elastic lines. Then, the
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Langevin dynamics of the ensemble now composed with
two strings is given by:

BYt(X, t) = ΓYXX − v′(Y ) + fA + g(Y − Y ′)
BY ′

t (X, t) = ΓY ′
XX − w′(Y ′) + fA − g(Y − Y ′), (B2)

where Y (X, t) (resp. Y ′(X, t)) is now the position of
the leading (resp. trailing) string segment and v(Y ) and
w(Y ′) are the random potential fields per unit length for
the leading and the trailing lines. In Eq. B2, we in-
troduced the interaction force per unit length between
the lines, denoted as g(Y − Y ′). In the case of 2 par-
tial dislocations, fA stems from the Peach-Kohler force
related to the applied stress τ . The component of such a
force in the direction of motion is equal for both partials
fA = τb/2 where b is the total Burgers vector. In or-
der to account for the atomic-scale details, Eq. B2 must

be discretized. To work with the hexagonal lattice, cor-
responding to the fcc (11̄1) plane symmetry, we divide
the dislocation line into segments of length L =

√
3b/2

(see Fig. 6 (a)). The coordinate Y and X are rescaled:
y = 2Y/b and x = 2X/

√
3b. Multiplying Eq. B2 by the

elementary segment length L, a new equation is obtained
for the dimensionless dynamics of the leading string:

λyt(x, t) = Γ
[yx+1 + yx−1 − 2yx]√

3
−V ′(y)+τs+G(y−y′),

(B3)
where s =

√
3b2/4, V (y) = Lv(Y ), G(y) = Lg(Y ) and

λ = sB. The same equation holds for the trailing string
with proper notations, switching the sign in front of G.
The expression for the latter is derived in Sec. III.
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