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Limit shape for regularisation of large partitions under the
Plancherel measure

Salim Rostam∗

Abstract

A celebrated result of Kerov–Vershik and Logan–Shepp gives an asymptotic shape for large
partitions under the Plancherel measure. We prove that when we consider e-regularisations
of such partitions we still have a limit shape, which is given by a shaking of the Kerov-
Vershik-Logan-Shepp curve. We deduce an explicit form for the first asymptotics of the
length of the first rows and the first columns for the e-regularisation.

1 Introduction
Partitions of a given integer n are the different way to decompose n as an unordered sum
of positive integers. In other words, a partition of n ∈ Z≥0 is a non-increasing sequence
λ = (λ1 ≥ . . . ) of non-negative integers with sum n. This mathematical object appears
for instance in the study of the symmetric group Sn of permutations of {1, . . . , n}, since
partitions of n index the conjugacy classes (via the cycle decomposition).

A representation of Sn of dimension N over a field k is a group homomorphism ρ : Sn →
GLN (k). We focus for the moment at the case where k is the field C of complex numbers,
in which case we say that we have a complex representation. As any integer decomposes
into a product of primes, any complex representation decomposes into a sum of irreducible
complex representations. It turns out that the fact that the set Pn of partitions of n index the
conjugacy classes implies that Pn also index the set of irreducible complex representations. If
we denote by ρλ the irreducible complex representation associated with λ ∈ Pn, a standard
result of complex representation theory shows that:

#Sn = n! =
∑
λ∈Pn

(dim ρλ)2. (1.1)

A remarkable fact is that we are able to explicitly compute the numbers dim ρλ (namely with
the famous hook length formula). We refer for instance to Sagan [Sa] or James–Kerber [JaKe]
for more details on the complex representations of Sn.

Now if we want to study the representations of Sn over the field k = Fp with p elements
(with p a prime number; we will say that we have a p-representation), almost everything
that is known for complex representations falls apart. A fundamental difference is that
some representations may not decompose into a sum of irreducible ones. Nevertheless, the
study of irreducible representations is still interesting since any representation can always be
decomposed into irreducible constituents via a composition (or Jordan–Hölder) series.

A general theorem of Brauer says that the irreducible p-representations are in bijection
with the p-regular conjugation classes, that is, with conjugation classes formed by elements
whose order does not divide p. For the symmetric group, one can see that the set of p-regular
conjugation classes is in one-to-one correspondence with the set of p-regular partitions,
that is, partitions with no p (or more) consecutive equal parts. Note that the dual notion
of p-restricted partitions is also present in the literature, where the difference between two
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consecutive parts of a p-restricted partition it at most p − 1. If λ is a p-regular partition,
we will denote by ρpλ the associated irreducible p-representation. Contrary to the complex
case, there is no formula expressing the dimension of ρpλ (yet). We refer for instance to
James–Kerber [JaKe] for more details on the p-representations of Sn.

A way to understand p-irreducible representations is to study the p-irreducible representa-
tions that appear in the decomposition series of an irreducible complex representation reduced
modulo p. More explicitly, it can be shown that any irreducible complex representation can
be realised over Z, that is, we can assume that ρλ : Sn → GLN (Z). The reduction modulo p,
that we denote by ρp : Sn → GLN (Fp), is then simply the reduction modulo p of the matrix
entries. Now if we return to the problem of determining which irreducible p-representations
appear in a decomposition series of ρλ, James [Ja] gave an explicit combinatorial construction
of a p-regular partition rege(λ) such that ρpλ appears in a decomposition series of ρλ. This
partition rege(λ) is the p-regularisation of λ. The p-regularisation operation has in fact a
meaning also when p is not prime, in the context of the Iwahori–Hecke algebra of Sn (see,
for instance, Mathas [Ma]). In particular, for an integer e ≥ 2 we will also use the terms
e-regular and e-regularisation. Note that the e-regularisation map was recently generalised
by Millan Berdasco [Mi] to an (e, i)-regularisation map on partitions: it is likely that our
results generalise to this setting.

We now go back to (1.1). This equation shows that Pln(λ) := (dim ρλ)2

n! is a probabil-
ity measure on the set Pn of partitions of n, called the Plancherel measure. Via some
calculations involving the hook integral (defined in the spirit of the hook length formula),
Kerov–Vershik [KeVe] and Logan–Shepp [LoSh] proved independently that there is a curve
Ω so that the upper rim ω̃λ of the Young diagram (in the Russian convention) of a large
partition λ converges uniformly in probability to Ω. An illustration of this convergence is
given in Figure 1 (note1). This limit shape theorem allowed to determine the first asymp-
totics of the length of the first row (and first column) of a Young diagram, taken under the
Plancherel measure. Note that, via the Robinson–Schensted correspondence (which provides
a bijective proof of (1.1)), this provides a solution to the Ulam problem on the length of a
longest increasing subsequence of a word in Sn chosen uniformly. We refer for instance to
Romik [Rom] for more details on the Plancherel measure and related asymptotics.

In the previous context of regularisation of partitions, the following question in thus
natural: for an integer e ≥ 2, what can be said about the partition rege(λ) when λ is a large
partition taken under the Plancherel measure? The aim of this paper is to give a first answer
to this question.

Figure 1: The limit shape theorem for large partitions under the Plancherel measure
1All the computations were made using SageMath [SM].
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L

symmetrisation

shaking

Figure 2: Examples of symmetrisation and shaking with respect to a line L

Steiner symmetrisation is a useful tool to study (namely) the isoperimetric problem.
More precisely, if K is a compact convex subset of R2 then its symmetrisation with respect
to the line L is the set SL(K) that we obtain after sliding the different slices of K (with
respect to the orthogonal direction of L) until the midpoint of the slice is on L. An example
of symmetrisation with respect to a vertical line in given in Figure 2. The link with the
isoperimetric problem is that SL(K) has the same area as K but a smaller perimeter. Note
the following result, known as the sphericity theorem of Gross: from any compact convex
subset of R2 one can obtain the unit disk after a succession of (possibly infinite number
of) symmetrisations. Note that this concept of symmetrisation can also be extended to
maps, with for example Schwarz symmetric rearrangment, which is a powerful tool to study
functional inequalities. We refer for instance to Gruber [Gr] or Krantz–Parks [KrPa] for
more details on the Steiner symmetrisation.

A variation of Steiner symmetrisation is the notion of shaking. This notion was first
introduced by Blaschke [Bl] to solve Sylvester’s “four points problem”. The difference with
Steiner symmetrisation is that we slide the slices until we meet L. An example is given in
Figure 2. Shaking and Steiner symmetrisation share many properties, for instance, Gross
theorem holds with “unit disk” replaced by “simplex”. We refer to [CCG] for fore details
on the shaking operation. We will in fact use the shaking operation in a context where the
slices are not orthogonal to the line L; such an operation is for instance used in [FrLu].

We can now state our main result (Theorems 4.7 and 6.1).

Theorem A. Let e ≥ 2. Under the Plancherel measure Pln, the upper rim ω̃rege(λ) of the
Young diagram (in the Russian convention) of rege(λ) converges uniformly in probability to
the shape Ωα as n→ +∞, in other words, for any ε > 0 we have

Pln
(

sup
R

∣∣ω̃rege(λ) − Ωα
∣∣ > ε

)
n→+∞−−−−−→ 0.

The shape Ωα is obtained by shaking the part Y(Ω) of the graph of Ω that is above the graph
of the absolute value, with respect to the line of equation y = −x and angle α := 1− 2e−1,
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and is given by:

Ωα(x) = Ω(x), for all x ≤ x−α ,
Ωα(x+ δx) = Ω(x) + αδx, for all x ∈ (x−α , x+

α ),
Ωα(x) = x, for all x ≥ sα,

where:
• x+

α = Ω′−1(α) ∈ [0, a),
• δx = (1− α)−1Fα(x)− F−1

α

(
Fα(x)

)
, where Fα : x 7→ Ω(x)− αx and F−1

α denotes its
inverse on (x+

α , a),
• x−α ∈ (−a, x+

α ) (is the unique point that) satisfies Fα(x−α ) = (1− α)a,
• (1− α)sα = Fα(x+

α ) = Ω
(
Ω′−1(α)

)
− αΩ′−1(α) ∈

[
Ω(0)− αΩ(x+

α ),Ω(0)
]
.

We illustrate the convergence in Figure 3 and compare the limit shapes Ω0 and Ω. The
fact that Ω0 is obtained via the horizontal shaking of Y(Ω) (with respect to the line of
equation y = −x) is highlighted in Figure 4. In the particular case e = 2, the statement of
Theorem A becomes explicit (Corollary 4.14 and Theorem 6.1).

Corollary B. Under the Plancherel measure Pln, the upper rim ω̃reg2(λ) of the Young
diagram (in the Russian convention) of reg2(λ) converges uniformly in probability to the
shape Ω0 given by:

Ω0(x) = Ω(x), for all x ≤ −2,
Ω0
(
2x+ Ω(x)

)
= Ω(x), for all x ∈ (−2, 0),

Ω0(x) = x, for all x ≥ Ω(0).

Figure 3: Example of 2-regularisation of a large partition, with in green the limit shape Ω0 of
Corollary B and in red the limit shape Ω of Kerov-Vershik-Logan-Shepp

Despite the fact that Theorem A is not fully explicit, we are able to deduce the asymptotic
behaviour of the length of the first line and of the first column of rege(λ) (Corollary 6.5).

Corollary C. Let e ≥ 2. Under the Plancherel measure Pln:
(i) the rescaled size 1√

n
rege(λ)1 of the first row of rege(λ) converges as n → +∞ in

probability to 2;
(ii) the rescaled size 1√

n
rege(λ)′1 of the first column of rege(λ) converges as n → +∞ in

probability to 2e
π sin π

e .
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Figure 4: The maps Ω0 (in blue) and Ω (in red). In green the tangent for Ω at 0. The left
magenta segments are what is “added” to the red curve, and comes from the right magenta
segments by shaking Y(Ω).

We now give the outline of the paper. In Section 2 we recall the definition of the
e-regularisation map on the set of partitions of n and we state the limit shape result of
Kerov–Vershik and Logan–Shepp for large partitions taken under the Plancherel measure.
The short Section 3 is devoted to the (non-orthogonal) shaking operation on compact subsets
of R2. Section 4 contains the first main result of the paper, Theorem 4.7, which compute
the shape associated with the shaking of the graph of a convex function (more precisely, the
part of the graph that is above the graph of the absolute value). We give in Corollary 4.14 a
particular case when the shaking is made by horizontal slices, where the result is explicit. In
Section 5 we introduce two approximations ρ±(λ) for the upper rim ωλ of the Young diagram
(in the Russian convention) of a partition λ, in order to facilitate the shakings computations.
More precisely, in §5.2 we define the outer regularisation ρ+(λ) of an e-regular partition λ
(Definition 5.4) and in Proposition 5.5 we prove that ρ+(λ) is both close to ωλ and that its
graph ρ+(λ) is stable under the shaking operation. A similar construction is made in §5.3
for the inner regularisation ρ−(λ). Finally, Section 6 is devoted to the proof of the second
main result, Theorem 6.1, which states that the (rescaled) upper rim ω̃rege(λ) of the Young
diagram (in the Russian convention) of the e-regularisation of a partition taken under the
Plancherel measure converges uniformly in probability to the shape defined in Theorem 4.7.
The proof uses the results of Sections 4 and 5. We also prove the convergence of the support
of ω̃λ − | · | (Theorem 6.4), and we deduce the asymptotic length of the first row and the first
column of rege(λ) (Corollary 6.5).

Acknowledgements The author would like to thank François Bolley and Vincent Beck
for useful discussions. The author also thanks the Centre Henri Lebesgue ANR-11-LABX-
0020-0. This research was funded, in whole or in part, by the Agence Nationale de la
Recherche funding ANR CORTIPOM 21-CE40-001. A CC-BY public copyright license has
been applied by the author to the present document and will be applied to all subsequent
versions up to the Author Accepted Manuscript arising from this submission, in accordance
with the grant’s open access conditions.

2 Background on partitions
We recall in §2.1 the combinatorial notion of e-regularisation of a partition. In §2.2 we recall
the limit shape result of Kerov–Vershik and Logan–Shepp for large partitions under the
Plancherel measure.
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2.1 Regularisation
A partition is a finite non-increasing sequence λ = (λ1 ≥ · · · ≥ λh > 0) of positive integers.
If |λ| :=

∑h
i=1 λi = n then we say that λ is a partition of n. We denote by Pn the set of

partitions of n. The Young diagram of a partition λ = (λ1 ≥ · · · ≥ λh > 0) is the subset of
Z2
≥1 given by:

Y(λ) =
{

(a, b) ∈ Z2
≥1 : 1 ≤ a ≤ h and 1 ≤ b ≤ λa

}
.

Note that we will consider that the a-coordinate in the Young diagrams goes downwards. A
node is an element of Z2

≥1.
Example 2.1. The Young diagram of the partition λ = (4, 4, 1) is . The node in blue

has coordinates (1, 2).

Definition 2.2. Let e ≥ 2. A partition λ = (λ1, . . . , λh) is e-regular if no parts repeat e
times or more, that is, if λi > λi+e−1 for any i ∈ {1, . . . , h− e}.

As we mentioned in the introduction, the notion of e-regular partitions appears for
instance in the context of the representation theory of the Iwahori–Hecke algebra Hq(Sn)
of Sn (a certain deformation of CSn), with q ∈ C× having order e, see, for instance, [Ma]
(note that in [Ma] the dual notion of e-restricted partition is used). The next two definitions
are due to James [Ja].

Definition 2.3. Let e ≥ 2.
• The e-ladder number (or simply ladder number) of a node γ = (a, b) ∈ Z2

≥1 is:

lade(γ) := a+ (e− 1)(b− 1) ∈ Z≥1.

• Let ` ≥ 1. The (e, `)-th ladder (or simply `-th ladder) is the (finite) set of all nodes of
Z2
≥1 with e-ladder `. The e-ladder of a node γ is the (e, lade(γ))-th ladder.

Example 2.4. In the Young diagram of λ = (4, 4, 3, 3, 3, 3, 3, 1), in each node we write the
corresponding 4-ladder numbers:

1 4 7 10
2 5 8 11
3 6 9
4 7 10
5 8 11
6 9 12
7 10 13
8

.

Definition 2.5. Let e ≥ 2 and let λ be a partition. The e-regularisation of λ is the partition
rege(λ) that we obtain after moving each node of Y(λ) as high as possible in its e-ladder.

Note that rege(λ) is an e-regular partition, and if λ is e-regular then rege(λ) = λ. As
we have mentioned in the introduction, the e-regularisation map has a significance in terms
of modular representation theory of the symmetric group (or its associated Iwahori–Hecke
algebra).
Example 2.6. The 4-regularisation of the partition of Example 2.4 is (5, 4, 4, 3, 3, 2, 2, 1). The

6



x

y

y = ωλ(x)

Figure 5: Russian convention for the Young diagram of λ = (4, 4, 2, 1)

4-ladders of the added (respectively, deleted) nodes are in green (resp. red).

1 4 7 10 13
2 5 8 11
3 6 9 12
4 7 10
5 8 11
6 9 12
7 10 13
8

2.2 Limit shape
Russian convention Rotating the Young diagram of λ = (λ1 ≥ · · · ≥ λh > 0) ∈ Pn by
an angle of 3π

4 and embedding it inside R× R≥0 so that the box (1, 1) has bottom vertex at
(0, 0) and each box has area 2 (i.e. semi-diagonal length 1) gives the Russian convention
for the Young diagram of λ. Note that the node (a, b) ∈ Y(λ) corresponds to the (square)
box with top vertex (a − b, a + b) in R × R≥0. We denote by ωλ : R → R the upper rim
of the resulting diagram, extending ωλ by ωλ(x) := |x| outside the diagram. Then ωλ is a
continuous piecewise linear function such that:

• for each k ∈ Z we have
ω′λ|(k,k+1) = ±1, (2.7)

• we have ωλ(x) = |x| for |x| � 0 (more precisely, for x ≤ −λ1 or x ≥ h),
• we have

∫
R
[
ωλ(x)− |x|

]
dx = 2n.

An illustration of the construction of ωλ is given in Figure 5. (We warn the reader that in
the literature the convention is sometimes reversed, that is, our ωλ is sometimes reflected
with respect to the axis {0} ×R.) We will use a particular rescaling ω̃λ : R→ R of ωλ, given
by ω̃λ(s) := 1√

n
ωλ
(
s
√
n
)
. Note that the area between the graphs of ω̃λ and | · | is 2.

Plancherel measure Let λ ∈ Pn. A standard tableau of shape λ is a bijection t :
Y(λ) → {1, . . . , n} such that t increases along the rows and down the columns, in other
words for (a, b) ∈ Y(λ) we have t(a, b) < t(a+ 1, b) if (a+ 1, b) ∈ Y(λ) and t(a, b) < t(a, b+ 1)

7



if (a, b + 1) ∈ Y(λ). We denote by Std(λ) the set of standard Young tableaux of shape λ.
We have the following standard identity:

n! =
∑
λ∈Pn

#Std(λ)2.

Definition 2.8. The Plancherel measure on the set Pn of the partitions of n is given by

Pln(λ) := #Std(λ)2

n! ,

for all λ ∈ Pn.

The next result describes the Plancherel measure Pln for large n.

Theorem 2.9 ([LoSh], [KeVe], [Rom, Theorem 1.26]). Let Ω : R→ R be defined by

Ω(s) :=
{

2
π

(
s arcsin( s2 ) +

√
4− s2

)
, if |s| ≤ 2,

|s|, otherwise.

Then, under the Plancherel measure Pln, the function ω̃λ converges uniformly in probability
to Ω as n→ +∞. In other words, for any ε > 0 we have

Pln
(

sup
R

∣∣ω̃λ − Ω
∣∣ > ε

)
n→+∞−−−−−→ 0.

Moreover, we also have convergence of the supports, that is:

inf
{
s ∈ R : ω̃λ(s) 6= |s|

}
−→ −2,

and
sup
{
s ∈ R : ω̃λ(s) 6= |s|

}
−→ 2,

in probability under Pln as n→ +∞.

An illustration of Theorem 2.9 for n = 1000 is given in Figure 1. Note that the limit
shape Ω has a much simpler form after derivation.

Lemma 2.10. The map Ω is an antiderivative on R of:

s 7→

{
arcsin

(
s
2
)
, if |s| ≤ 2,

sgn(s), if |s| > 2.

In particular, the minimum of Ω on R is Ω(0) = 4
π .

3 Shakings
The aim of this paper is to put together the notions of §2.1 and §2.2. As a first step, we
show in Figure 6 what do the 4-ladders of Example 2.4 look like in the Russian convention.

Proposition 3.1. In the Russian convention, the e-regularisation makes the nodes going as
left as possible in the direction of y =

(
1− 2e−1)x.

Proof. In the Young diagram we know that the node (e, 1) ∈ Z2
≥1 goes to (1, 2). In the

Russian convention it means that the box with top vertex at (e−1, e+1) goes to the box with
top vertex (−1, 3). The corresponding slope is thus e+1−3

e−1−(−1) = e−2
e = 1−2e−1 as announced

(note that the slope do not change when both axes are rescaled by a same constant).

We now define the shaking operation that will be of interest for us. As we mentioned in the
introduction, this is a variation of Steiner symmetrisation first introduced by Blaschke [Bl].
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Figure 6: 4-ladders in the Russian convention for λ = (4, 4, 3, 3, 3, 3, 3, 1)

KShα(K)

Figure 7: Example of the map Shα with α = 0

Definition 3.2. Let α ∈ R≥0 and let vα be the unit vector positively collinear to (1, α)>.
If K is a compact subset of R2, its shaking with direction α (against y = −x) is the compact
subset Shα(K) of R2 that we obtain by sliding the set K along the direction of (Lα) : y = αx
until we meet the line (L) : y = −x, that is:

Shα(K) :=
⊔
x∈L

Kv,

where Kv is the segment with extreme points x and x+
∣∣K ∩ (x+ Lα)

∣∣vα with | · | denoting
the one-dimensional Lebesgue measure.

In the usual definition of shaking the direction Lα is orthogonal to the the line L against
which we shake. This non-orthogonal variation is for instance considered in [FrLu, §5].
Example 3.3. Take α = 0 and let K be the unit square with bottom left corner at (1, 1). Then,
as shown on Figure 7, the set Shα(K) is the parallelogram with vertices (−2, 2), (−1, 2), (0, 1)
and (−1, 1).

The following property is a standard property of Steiner symmetrisations and shakings.
The proof is immediate from the definition.

Proposition 3.4. If K ⊆ K ′ are compact subsets of R2 then Shα(K) ⊆ Shα(K ′).

Proof. See [FrLu, Lemma 5.3]. Note that the proof is in fact the same as for the usual
(orthogonal) shakings.

9



Recalling Proposition 3.1, we are interested in special cases of shakings.

Definition 3.5. For any e ≥ 2, we denote by she the shaking Shα with direction αe :=
1− 2e−1.

4 Shaking the limit shape
Let a ∈ R>0. We define Ya to be the set of all functions f : R→ R of class C1 such that:

f is even, (4.1a)
for any |s| ≥ a we have f(s) = |s|, (4.1b)
f is strictly convex on [−a, a]. (4.1c)

Note that by Lemma 2.10 we have Ω ∈ Y2.
Example 4.2. Let Σ : R→ R be given by Σ(x) = |x| if |x| ≥ 1 and Σ(x) = 1

2 (x2 +1) otherwise.
Then Σ ∈ Y1.

Note that the last two equations in (4.1) imply that for all |s| < a we have:

f(s) > |s|, (4.3a)

since f is above its tangent at s = a, and:

|f ′(s)| < 1, (4.3b)

for all s ∈ (−a, a), since f ′ is strictly increasing on [−a, a].
Before studying the shaking operation on the elements of Ya, we first define a map

between some sets Ya via double scaling.

Definition 4.4. Let f : R → R be any map and let ε ∈ (0, 1). We define the two maps
f±ε : R→ R by, for any s ∈ R,

f±ε(s) := (1± ε
2 ) f

(
s

1± ε
2

)
.

For instance, the maps Ω±1 are as follows:

Ω

Ω+1

Ω−1

We now gather some informations about f±ε.

Lemma 4.5. Let f ∈ Y2 and ε ∈ (0, 1).
(i) We have f±ε ∈ Y2±ε.

(ii) For any s ∈ R we have (f±ε)′(s) = f ′
(

s

1± ε2

)
.

(iii) The maps g+ε := f+ε − f and g−ε := f − f−ε are decreasing on R≥0.
(iv) For any s ∈ R we have f−ε(s) ≤ f(s) ≤ f+ε(s), and:

(a) we have f−ε(s) = f(s) if and only if |s| ≥ 2,
(b) we have f+ε(s) = f(s) if and only if |s| ≥ 2 + ε,

(v) We have ‖f − f±ε‖∞ = ε
2f(0).

10



Proof. (i) Clear.
(ii) Clear.

(iii) Follows from the previous point and from the fact that f ′ is increasing.
(iv) Since the functions are even, it suffices to prove the inequality on R≥0. We prove only

the relations for f+ε, the ones for f−ε being similar. By the previous point, we know
that g+ε is decreasing on R≥0, thus we deduce that g ≥ 0 since g(s) = |s| − |s| = 0 for
s � 0. For the equality case, first note that the necessary condition holds. For the
sufficient condition, since f is strictly convex on [−2, 2] we have in fact g′(s) < 0 for all
s ∈ (0, 2] thus as before we have g(s) > 0 for all s ∈ [0, 2]. Now for s ∈ [2, 2 + 2ε) we
have g′(s) = f ′

(
s

1+ε
)
− 1 < 0 since 1 = f ′(2) and f ′ is strictly increasing on [0, 2] and

we conclude the proof as before.
(v) Again we only prove the result for f+ε. With the previous notation, we know that

g = f+ε − f is non-negative and decreases on R≥0 thus its maximum is reached at
s = 0.

We need one more definition before giving the main result of this section.

Definition 4.6. Let f : R→ R be a map. We denote by Y(f) the part of the graph of f
that is above the graph of the absolute value, that is:

Y(f) := {(x, y) ∈ R2 : |x| ≤ y ≤ f(x)}.

For instance, we picture here in blue the set Y(Ω):

Theorem 4.7. Let α ∈ [0, 1) and a ∈ R>0. For any f ∈ Ya we have:

Shα
(
Y(f)

)
∪ Y(idR) = Y(fα),

where fα : R→ R is given by:

fα(x) = f(x), for all x ≤ x−α ,
f(x+ δx) = f(x) + αδx, for all x ∈ (x−α , x+

α ),
fα(x) = x, for all x ≥ sα := x+

α + δx+
α
,

where:
• x+

α = f ′−1(α) ∈ [0, a),
• δx = (1− α)−1Fα(x)− F−1

α

(
Fα(x)

)
, where Fα : x 7→ f(x)− αx and F−1

α denotes its
inverse on (x+

α , a);
• x−α ∈ (−a, x+

α ) (is the unique point that) satisfies Fα(x−α ) = (1− α)a.

Note that Y(idR) = {(x, x) : x ∈ R≥0}.
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y = Σ(x)

x+
αx−α

x x+δx x′ x′+δx

Figure 8: Illustration of the proof of Theorem 4.7 with f = Σ and α = 1
4

Proof. As in Definition 3.2, let Lα be the line of equation y = αx. For M ∈ R2, the line
LMα := M + Lα cuts the curve of f at most twice since f is strictly convex. Note that we
can ignore the parts of Y(f) outside (−a, a) since it has measure 0 there. Note also that
there is only one intersection point if and only if Y(f) ∩ LMα is stable under Shα. Moreover,
it suffices to choose M of the form (0, yM ), and if yM0 is the unique real number such that
LM0
α contains (a, a) then:

for any y ≤ yM0 then LMα intersects the curve of f in (−a, a) only once.
Let x−α < a be such that LM0

α intersects the curve of f at
(
x−α , f(x−α )

)
. This means that:

fα(x) = f(x), for all x ≤ x−α .

Note that x−α ≥ −a since f(−a) = a and α ≥ 0. Now there is also a real number yM1 such
that LM1

α does not intersects the curve of f apart from
(
yM1 , f(yM1)

)
. Again by convexity,

this yM1 is given by the unique point such that LM1
α is tangent to the curve of f at some

point Mα =
(
x+
α , f(x+

α )
)
. By (4.1) we know that such an Mα is unique and is determined by

f ′(x+
α ) = α, in other words, by:

x+
α = f ′−1(α)

(where f ′−1 denotes the inverse of f ′|(−a,a)). Note that x+
α ≥ 0 since α ≥ 0 and f is even,

thus f ′(0) = 0 ≤ α, and f ′ is increasing by strict convexity. Similarly, we have x+
α < a

since f ′(a) = 1 > α, moreover the line between
(
x+
α , f(x+

α )
)
and (a, a) has slope > α thus

x+
α > x−α .
Hence, to determine fα, it suffices to determine for each x ∈ (x−α , x+

α ) the measure m
of (M + Lα) ∩

(
Y(f) ∩

(
(x, a) × R≥0

)
, with M =

(
x, f(x)

)
, and to add it to f(x) in the

direction α. More precisely, if:
• x′ > x is the unique other abscissa where Lxα := M + Lα crosses the curve of f ,
• δx > 0 is the unique positive real number such that x′ + δx is the abscissa of the

intersection between Lxα and the line with equation y = x for x ≥ 0,
then the point

(
x, f(x)

)
becomes:(

x+ δx, f(x) + x′ + δx − f(x′)
)
. (4.8)

In Figure 8 we give an example of the various quantities that we have introduced so far
for f being the map Σ of Example 4.2.
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We will now determine x′ and δx as functions of x. We first determine x′. The line Lxα
has equation (s− x)α+ f(x) for s ∈ R, thus x′ is given by:

f(x′) = (x′ − x)α+ f(x),

thus:
f(x′)− αx′ = f(x)− αx. (4.9)

Now the function Fα : s 7→ f(s)− αs has derivative f ′(s)− α, thus since α ∈ (0, 1) we know
that s 7→ f(s)− αs is decreasing for s ≤ x+

α and increases (to +∞ by (4.1b)) by for s ≥ x+
α .

Hence, we deduce that there is indeed a unique x′ > x+
α such that (4.9) is satisfied. Note

that Fα is invertible on (x+
α ,+∞) and if F−1

α denotes its inverse on this interval then:

x′ = F−1
α

(
Fα(x)).

Note that (4.9) writes:
Fα(x′) = Fα(x).

Note also that x < x+
α < x′ so that x′ 6= x. Finally, note that x−α satisfies:

Fα(x−α ) = Fα(a) = f(a)− αa = (1− α)a,

as announced.

We now determine δx. First note that the equation of Lxα becomes αs+ Fα(x′). We thus
find that δx satisfies

x′ + δx = α(x′ + δx) + Fα(x′), (4.10)
= f(x′) + αδx, (4.11)

in particular (4.10) gives:
x′ + δx = (1− α)−1Fα(x′). (4.12)

Recalling (4.9) and (4.11), the second coordinate in equation (4.8) becomes:

f(x) + x′ + δx − f(x′) = f(x) + αδx,

as announced.
To prove that the set of points that we obtain is the curve of a function, it suffices to

prove that x 7→ x + δx is increasing on (x−α , x+
α ), thus it suffices to prove that x 7→ δx is

increasing. By (4.12) we have:

δx = (1− α)−1Fα(x′)− x′.

Note that x 7→ x′ = F−1
α

(
Fα(x)

)
is decreasing on (x−α , x+

α ). Indeed, we have F ′α(x) = f ′(x)−α
that is increasing since f is strictly convex, and by definition f ′(x+

α ) = 0 thus F ′α(x) < 0
for x < x+

α thus Fα is decreasing on (x−α , x+
α ). Now Fα is increasing on (x+

α ,+∞) thus F−1
α

is also increasing. By composition, we deduce that x 7→ x′ = F−1
α

(
Fα(x)

)
is decreasing on

(x−α , x+
α ), with values in (x+

α , a).
Hence, to prove that x 7→ δx = (1− α)−1Fα(x′)− x′ is increasing on (x−α , x+

α ), it suffices
to prove that g : t 7→ (1− α)−1Fα(t)− t is decreasing in t ∈ (x+

α , a). But this is clear since
the derivative of g is, after multiplication by 1− α,

F ′α(t)− (1− α) =
(
f ′(t)− α

)
− (1− α)

= f ′(t)− 1,

which is strictly negative since f ′ is increasing (by strict convexity) and f ′(t) < 1 for all
t < a by (4.1b).

In Figure 4 we represent the curve of fα for f = Ω and α = 0.
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Proposition 4.13. Let α ∈ [0, 1) and a ∈ R>0. For any f ∈ Ya we have:

(1− α)sα = f
(
f ′−1(α)

)
− αf ′−1(α) ∈

[
f(0)− αf(x+

α ), f(0)
]
.

Proof. Recall that from Theorem 4.7 and its proof that sα = x + δx for x = x+
α . In this

setting we have x′ = x thus (4.12) gives:

(1− α)sα = Fα(x+
α )

= f(x+
α )− αx+

α

= f
(
f ′−1(α)

)
− αf ′−1(α),

which gives the desired equality. Now by the mean value theorem, there exists c ∈ (0, x+
α )

such that Fα(x+
α ) = Fα(0) + F ′α(c)x+

α . Hence, since f is strictly convex we know that Fα is
also strictly convex, thus we have F ′α(0) = f ′(0) − α = −α < F ′α(c) < F ′α(xα) = 0 (where
f ′(0) = 0 since f is even). Recalling that Fα(0) = f(0) gives the announced inequality.

We have the following particular case of Theorem 4.7 and Proposition 4.13 for α = 0 (as
pictured in Figure 4).

Corollary 4.14. Let a ∈ R>0 . For any f ∈ Ya, the map f0 : R→ R is given by:

f0(x) = f(x), for all x ≤ −a,
f0
(
2x+ f(x)

)
= f(x), for all x ∈ (−a, 0),

f0(x) = x, for all x ≥ f(0).

We conclude this part by relating the shapes fα and f±εα := (f±ε)α.

Proposition 4.15. Let α ∈ [0, 1) and a ∈ R>0. Let f ∈ Ya and ε ∈ (0, 1). With the
notation of Theorem 4.7 we have:

(f±ε)α = (fα)±ε =: f±εα .

Proof. We denote by δ±εx and F±εα the quantities that appear in Theorem 4.7 for f±ε. Note
that:

F±εα (x) = f±ε(x)− αx

= (1± ε
2 )f

(
x

1± ε
2

)
− (1± ε

2 )α x

1± ε
2

= (1± ε
2 )Fα

(
x

1± ε
2

)
= (Fα)±ε(x),

and we deduce that (F±εα )−1 = (F−1
α )±ε. We deduce that:

δ±εx = (1± ε
2 )δ x

1±ε/2
. (4.16)

Now note that the equality f(x+ δx) = f(x) + αδx holds in fact for any x ∈ R. If g denotes
the inverse of x 7→ x+ δx on R (which exists since x 7→ x+ δx is strictly increasing by the
proof of Theorem 4.7), if y = x + δx we thus have x = g(y) and thus δx = y − g(y). We
deduce that:

fα(y) = f
(
g(y)

)
− α

(
y − g(y)

)
= Fα

(
g(y)

)
− αy. (4.17)

Now we deduce from (4.16) that the inverse of x 7→ x+ δ±εx is g±ε (in the sense of Defini-
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tion 4.4), thus by (4.17) we obtain:

f±εα (y) = F±εα
(
g±ε(y)

)
− αy

= (1± ε
2 )Fα

(
g

(
y

1± ε
2

))
− αy

= (1± ε
2 )
[
Fα

(
g

(
x

1± ε
2

))
− α y

1± ε
2

]
= (1± ε

2 )fα
(

y

1± ε
2

)
= (fα)±ε(y),

which is the announced result.

Proposition 4.18. Let α ∈ [0, 1) and a ∈ R>0. Let f ∈ Ya. We have 0 < ‖fα−f±εα ‖∞,R →
0 as ε→ 0.

Proof. First, note that the infinite norm is positive indeed since fα and f±εα are continuous
(even of class C1) by (4.17), by Lemma 4.5 and since the shaking preserve the area (this is
a simple consequence of Fubini theorem, see, for instance, [FrLu, Lemma 3.2]). To prove
that is goes to 0 as ε→ 0, it suffices to prove that fα is Lipschitz. Indeed, if h : I → R is
L-Lipschitz and bounded then:

h±ε(x)− h(x) = (1 + ε
2 )h

(
x

1 + ε
2

)
− h(x)

= h

(
x

1 + ε
2

)
− h(x) + ε

2h

(
x

1 + ε
2

)
,

thus: ∣∣h+ε(x)− h(x)
∣∣ ≤ L|x| ∣∣∣∣ 1

1 + ε
2
− 1
∣∣∣∣+ ε

2‖h‖∞

≤ (L|x|+ ‖h‖∞)ε,

with a similar calculation for h−ε. Note that it suffices to study f − fα on a segment since
this function vanishes for |x| � 0. Recalling (4.17), we have:

f ′α(y) = g′(y)F ′α
(
g(y)

)
− α

= g′(y)
[
f ′
(
g(y)

)
− α

]
− α.

We know that f ′ is bounded by (4.1). For g′, recall from the proof of Theorem 4.7 that
x 7→ δx is increasing thus the derivative of x 7→ x + δx is greater than 1, thus ‖g′‖∞ ≤ 1.
This concludes the proof.

5 Shaking partitions
Let λ be a partition. Proposition 3.1 implies the following result.

Lemma 5.1. We have she
(
Y(ωλ)

)
= she

(
Y(ωrege(λ))

)
and she

(
Y(ω̃λ)

)
= she

(
Y(ω̃rege(λ))

)
.

Hence, to study the shaking operations on partitions it suffices to study the shaking
operations on regular partitions. In fact, the shaking of Y(ω̃rege(λ)) for λ an e-regular partition
is a bit delicate to determine. Instead, we will bound the latter graph by two close graphs
that are stable under the shaking operation.
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x

y

y = ωλ(x)

Figure 9: Outer corners (in red) and inner corners (in blue) for λ = (4, 4, 2, 1)

5.1 Corners
We say that c ∈ Z is an outer corner (resp. inner corner) of λ if ω′λ|(c−1,c) = 1 (resp. −1)
and ω′λ|(c,c+1) = −1 (resp. 1). We give in Figure 9 an example of outer and inner corners.

The following standard result follows from the definition of inner and outer corners and
from the fact that ωλ(x) = |x| for x� 0.
Lemma 5.2. Let λ be a partition. If {o1 < · · · < ok} (resp. {i1 < · · · < i`}) is the set of
outer (resp. inner) corners then ` = k + 1 and im < om < im+1 for all m ∈ {1, . . . , k}.

In the sequel, fix e ≥ 2 and let Le be the linear subspace of R2 with slope αe = 1− 2e−1.

5.2 Outer regularisation
If λ has no outer corners then we define ρ+(λ) = ρ+

0 (λ) := ωλ, otherwise let {c1 < · · · < cr}
with r ≥ 1 the set of outer corners. Assuming by induction on k ∈ {1, . . . , r} that we have
constructed the piecewise linear function ρ+

k−1(λ) : R→ R, then we construct the piecewise
linear function ρ+

k (λ) : R→ R as follows. Let L(k)
e be the affine line

(
ck, ωλ(ck)

)
+ Le.

(i) For s ≥ ck then ρ+
k (λ)(s) := ρ+

k−1(λ)(s);

(ii) at s = ck, we follow the line L(k)
e (in the negative direction) until we meet the curve of

ρ+
k−1(λ), at point of abscissa hk;

(iii) for s ≤ hk then ρ+
k (λ)(s) := ρ+

k−1(λ)(s) again.
Proposition 5.3. Assume that the partition λ is e-regular. With the above notation we
have hk ∈ [ck−1, ck). In particular, the functions ρ+

k−1(λ) and ρ+
k (λ) coincide on (at least)

R \ (ck−1, ck), and for any s ∈ (ck−1, ck) we have 0 ≤ ρ+
k (λ)(s)− ρ+

k−1(λ)(s) ≤ e.

Proof. Since αe < 1, the curve of ωλ can cross L(k)
e only after an inner corner, that is, if

c′ < ck is the inner corner preceding ck (cf. Lemma 5.2) then h < c′. Moreover, by definition
of an inner corner we have ωλ(c′ − 1) = ωλ(c′) + 1, thus the line joining

(
ck, ωλ(ck)

)
and(

c′ − 1, ωλ(c′ − 1)
)
has slope:

α := ωλ(ck)− ωλ(c′)− 1
ck − c′ + 1 .

Since ωλ(c′) = ωλ(ck)− ck + c′, we obtain:

α = ck − c′ − 1
ck − c′ + 1 = 1− 2

ck − c′ + 1 .
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But now λ is e-regular thus c′ ≥ ck − e+ 1. We thus have ck − c′ + 1 ≤ e and thus, since
ck − c′ + 1 > 0 (since c′ ≤ ck):

α ≤ 1− 2e−1 = αe.

Finally, we have α ≤ αe < 1 thus c′ − 1 ≤ hk < ck, in other words, the line L(k)
e meet the

curve of ωλ somewhere between the points of abscissa c′ (excluded) and c′ − 1 (included)
thus this concludes the first part of the proof.

Now for any s ∈ (ck−1, h) we have ρ+
k (λ)(s) = ρ+

k (λ)(s), and by construction for any
s ∈ (h, ck) we have ρ+

k (λ)(s) > ρ+
k (λ) thus we obtain the first member of the announced

inequality. The second one follows from the fact that αe ∈ [0, 1] and from the fact that on
(ck−1, ck), the function s 7→ ρ+

k (λ)(s)− ρ+
k (λ)(s) reaches its minimum at s = hk, where:

ωλ(ck) ≥ ρ+
k (λ)(hk) ≥ ρ+

k−1(λ)(hk) ≥ ωλ(c′).

Now we already saw that: {
ωλ(c′) = ωλ(ck)− ck + c′,

ck − c′ + 1 ≤ e,

thus we obtain:
ωλ(ck)− ωλ(c′) = ck − c′ ≤ e− 1,

whence the result.

Definition 5.4. Let e ≥ 2 and let λ be an e-regular partition. Let r ≥ 0 be the number of
outer corners of λ. We define ρ+(λ) := ρ+

r (λ).

Note that, by Proposition 5.3, the map ρ+(λ) does not in fact depend on the order that
we chose on the outer corners. An example of a map ρ+(λ) is given in Figure 10.

x

y

y = ρ+(λ)(x)

c1 c2 c3

Figure 10: The map ρ+(λ) (in thick red) for the 3-regular partition λ = (4, 4, 2, 1). In green are
the different lines L(k)

e .

Proposition 5.5. Recall that λ is e-regular.
(i) For all s ∈ R we have 0 ≤ ρ+(λ)− ωλ(s) ≤ e.

(ii) The graph G+
λ := Y

(
ρ+(λ)

)
is stable under the shaking operation with slope αe, that is,

we have she(G+
λ ) = G+

λ .

Proof. The first point follows directly from Proposition 5.3 since the intervals (ck−1, ck) are
pairwise disjoints. For the second point, it follows from the simple observation that the slopes
of ρ+(λ) are either −1 or αe (except the part ρ+(λ)(s) = s for s� 0). As a consequence, if
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for x ∈ R the line L′ := x+Le intersects the curve of ρ+(λ) at a point s ∈ R then L′ remains
below the curve ρ+(λ) on (−∞, s). Observing that L′ intersects the curve of | · | on (−∞, 0)
since αe < 1 gives the result.

5.3 Inner regularisation
We now define a similar construction as ρ+(λ) but for inner corners. We give the statements
without proofs since they are entirely similar.

Define ρ−r+1(λ) := ωλ and let {c1 < · · · < cr+1} with r ≥ 0 the set of inner corners
(in particular, note that a partition has always at least one inner corner). Assuming by
decreasing induction on k ∈ {1, . . . , r} that we have constructed the piecewise linear function
ρ−k+1(λ) : R→ R, then we construct the piecewise linear function ρ−k (λ) : R→ R as follows.
Let L(k)

e be the affine line
(
ck, ωλ(ck)

)
+ Le.

(i) For s ≤ ck then ρ−k (λ)(s) := ρ−k+1(λ)(s);

(ii) at s = ck, we follow the line L(k)
e (in the positive direction) until we meet the curve of

ρ−k+1(λ), at point of abscissa hk;
(iii) for s ≥ hk then ρ−k (λ)(s) := ρ−k+1(λ)(s) again.
Proposition 5.6. Assume that the partition λ is e-regular. With the above notation we
have hk ∈ [ck, ck+1). In particular, the functions ρ−k+1(λ) and ρ−k (λ) coincide on (at least)
R \ (ck, ck+1), and for any s ∈ (ck, ck+1) we have −e ≤ ρ−k (λ)(s)− ρ−k+1(λ)(s) ≤ 0.

An example of a map ρ−(λ) is given in Figure 11.

x

y

y = ρ−(λ)(x)

c1 c2 c3 c4

Figure 11: The map ρ−(λ) (in thick blue) for the 3-regular partition λ = (4, 4, 2, 1). In green are
the different lines L(k)

e .

Definition 5.7. Let e ≥ 2 and let λ be an e-regular partition. We define ρ−(λ) := ρ−1 (λ).
Proposition 5.8. Recall that λ is e-regular.

(i) For all s ∈ R we have −e ≤ ρ−(λ)− ωλ(s) ≤ 0.
(ii) The graph G−λ := Y

(
ρ−(λ)

)
is stable under the shaking operation with slope αe, that is,

we have she(G−λ ) = G−λ .

6 Limit shape for regularisation of large partitions
We can now state our main theorem. Recall from Theorem 4.7 the definition of Ωα for α ≥ 0.
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Theorem 6.1. Let e ≥ 2 and take α = αe = 1− 2e−1. Under the Plancherel measure Pln,
the function ω̃rege(λ) converges uniformly in probability to Ωα as n→ +∞. In other words,
for any ε > 0 we have

Pln
(

sup
R

∣∣ω̃rege(λ) − Ωα
∣∣ > ε

)
n→+∞−−−−−→ 0.

Proof. Let ε > 0. Recalling the notation of Definition 4.4, define:

m± := inf
{
|Ω±ε(s)− Ω(s)| : |s| ≤ 2± ε

2
}
.

By Lemma 4.5 applied with f = Ω, we have m± > 0. Now let Mn be the set of partitions
λ ∈ Pn such that:

‖ω̃λ − Ω‖R < min(m+,m−),
inf{s ∈ R : ω̃(s) 6= |s|} > −2− ε

2 ,

sup{s ∈ R : ω̃(s) 6= |s|} < 2 + ε
2 .

Note that by Theorem 2.9 we have Pln(Mn)→ 1 as n→ +∞. By Lemma 4.5, for all λ ∈Mn

we have:
Ω−ε(s) ≤ ω̃λ(s) ≤ Ω+ε(s),

for all s ∈ R. In other words, for all λ ∈Mn we have:

Y
(
Ω−ε

)
⊆ Y

(
ω̃λ
)
⊆ Y

(
Ω+ε).

By Proposition 3.4, Theorem 4.7 together with Lemma 5.1, we deduce that:

Y
(
Ω−εα

)
⊆ she

(
Y
(
ω̃rege(λ)

)
⊆ Y

(
Ω+ε
α

)
. (6.2)

In particular, note that we can apply Theorem 4.7 for Ω±ε indeed by Lemma 4.5, and
Ω±εα := (Ω±ε)α. Now by Propositions 5.5 and 5.8, for all s ∈ R we have:

ρ̃−(λ)(s) ≤ ω̃λ(s) ≤ ρ̃+(λ)(s)

(where ρ̃±(λ)(s) = 1√
n
ρ±(λ)(

√
ns) is rescaled as ω̃λ, see §2.2), thus:

Y
(
ρ̃−(λ)

)
⊆ Y(ω̃rege(λ)) ⊆ Y

(
ρ̃+(λ)

)
.

By Propositions 5.5 and 5.8 again and Proposition 3.4, we deduce that:

Y
(
ρ̃−(λ)

)
⊆ she

(
Y(ω̃rege(λ))

)
⊆ Y

(
ρ̃+(λ)

)
. (6.3)

By (6.2) and (6.3), we deduce that:

Y
(
Ω−εα

)
⊆ Y

(
ρ̃+(λ)

)
, and Y

(
ρ̃−(λ)

)
⊆ Y

(
Ω+ε).

Thus, we conclude that for any s ∈ R we have:

Ω−εα (s) ≤ ρ̃+(λ)(s), and ρ̃−(λ)(s) ≤ Ω+ε
α (s).

We deduce that for any s ∈ R we have:

ρ̃−(λ)(s) ≤ Ω+ε
α (s)

≤ Ω−εα (s) + ‖Ω−εα − Ω+ε
α ‖∞

≤ ρ̃+(λ)(s) + ‖Ω−εα − Ω+ε
α ‖∞

≤ ρ̃−(λ)(s) + 2e√
n

+ ‖Ω−εα − Ω+ε
α ‖∞ by Propositions 5.5 and 5.8.
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Thus, again using Proposition 5.8, we deduce that for any s ∈ R we have:∣∣ω̃rege(λ)(s)− Ωα(s)
∣∣ ≤ ∣∣ω̃rege(λ)(s)− ρ−(λ)(s)

∣∣+
∣∣ρ−(λ)(s)− Ω+ε

α (s)
∣∣+
∣∣Ω+ε
α (s)− Ωα(s)

∣∣
≤ 2e√

n
+
(

2e√
n

+ ‖Ω−εα − Ω+ε
α ‖∞

)
+ ‖Ω+ε

α − Ωα‖∞,

whence:
sup
R

∣∣ω̃rege(λ) − Ωα
∣∣ ≤ 4e√

n
+ 3‖Ω+ε

α − Ωα‖∞.

Thus, by Proposition 4.18 deduce that for n� 0 we have:

sup
R

∣∣ω̃rege(λ) − Ωα
∣∣ ≤ 4‖Ω+ε

α − Ωα‖∞.

Recalling that λ ∈Mn with Pln(Mn)→ 1 as n→ +∞, we deduce that:

Pln
(

sup
R

∣∣ω̃rege(λ) − Ωα
∣∣ > 4‖Ω+ε

α − Ωα‖∞
)

n→+∞−−−−−→ 0,

which, again by Proposition 4.18, proves the desired convergence.

We illustrate the convergence of Theorem 6.1 for e = 2 in Figure 12 and for e ∈ {3, 4} in
Figure 13, with in red the usual limit shape Ω and in blue the map ω̃rege(λ) for λ a partition
of 3× 104 taken under the Plancherel measure.

Figure 12: Example of 2-regularisation of a large partition, with in green the limit shape of
Corollary B

Theorem 6.4. The convergence of Theorem 6.1 also holds for the supports, that is:

inf
{
s ∈ R : ω̃rege(λ)(s) 6= |s|

}
−→ −2,

and
sup
{
s ∈ R : ω̃rege(λ)(s) 6= |s|

}
−→ sα,

in probability under Pln as n→ +∞, where sα is the constant on Proposition 4.13 for f = Ω.

Proof. We use the same set Mn and the same strategy as in the proof of Theorem 6.1.

Finally, we deduce the asymptotic behaviour of the first part and the first column.

Corollary 6.5. Let e ≥ 2. Under the Plancherel measure Pln:

20



Figure 13: Example of 3- and 4-regularisation of a large partition, respectively on the left and
right.

(i) the rescaled size 1√
n

rege(λ)1 of the first row of rege(λ) converges as n → +∞ in
probability to 2;

(ii) the rescaled size 1√
n

rege(λ)′1 of the first column of rege(λ) converges as n → +∞ in
probability to 2e

π sin π
e .

Proof. The first point is clear by Theorem 6.4. For the second one, by the same theorem it
suffices to prove that the announced value is equal to sα. Proposition 4.13 applied for f = Ω
we have:

sα = (1− α)−1
[
Ω
(
Ω′−1(α)

)
− αΩ′−1(α)

]
.

Recall that α = 1 − 2e−1 and Ω′(s) = 2
π arcsin( s2 ). We have Ω′(s) = t ⇐⇒ arcsin( s2 ) =

πt
2 ⇐⇒ s = 2 sin πt

2 thus Ω′−1(t) = 2 sin πt
2 . We thus have:

Ω′−1(α) = 2 sin πα2

= 2 sin π(1− 2e−1)
2

= 2 sin
(
pi

2 −
π

e

)
= 2 cos π

e
.

We obtain:

sα = e

2

[
Ω
(
Ω′−1(α)

)
− αΩ′−1(α)

]
= e

2

[
Ω
(
2 cos π

e

)
− 2α cos π

e

]
.

We have, recalling the identity arcsin(cosx) = π
2 − x for x ∈ [−1, 1]:

Ω
(
2 cos π

e

)
= 2
π

[
arcsin

(
cos π

e

)
2 cos π

e
+
√

4− 4 cos2 π

e

]
= 2
π

[(π
2 −

π

e

)
2 cos π

e
+ 2 sin π

e

]
= 2
(
1− 2

e

)
cos πe + 4

π
sin π

e

= 2α cos πe + 4
π

sin π
e ,

thus we finally obtain:
sα = 2e

π
sin π

e
.
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Example 6.6. Here are approximations of the first values of the limit for 1√
n

rege(λ)′1:

e 2e
π sin π

e

2 1.27
3 1.65
4 1.80

The reader can check that they match the corresponding values of Figures 12 and 13.
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