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The discovery of the peculiar supernova (SN) 1998bw and its possible association with

the gamma-ray burst (GRB) 9804251,2,3 provide new clues to the understanding of the

explosion mechanism of very massive stars and to the origin of some classes of gamma-

ray bursts. Its spectra indicate that SN 1998bw is a type Ic supernova3,4, but its peak

luminosity is unusually high compared with typical type Ic supernovae3. Here we report

our findings that the optical spectra and the light curve of SN 1998bw can be well

reproduced by an extremely energetic explosion of a massive carbon+oxygen (C+O)

star. The kinetic energy is as large as ∼ 2 − 5 × 1052 ergs, more than ten times the

previously known energy of supernovae. For this reason, the explosion may be called a

‘hypernova’. Such a C+O star is the stripped core of a very massive star that has lost

its H and He envelopes. The extremely large energy, suggesting the existence of a new

mechanism of massive star explosion, can cause a relativistic shock that may be linked

to the gamma-ray burst.

SN 1998bw is classified spectroscopically as a type Ic supernova, because its optical spectra lack

any hydrogen and helium features and the Si II absorption feature is very different from those of

type Ia supernovae 5. Two recent type Ic supernovae, SNe 1994I6,7 and 1997ef8, have somewhat

similar spectra to that of SN 1998bw and their light curves were well reproduced by models of the

collapse-induced explosion of C+O stars (Fig.1). This has led us to construct hydrodynamical models

of exploding C+O stars also for SN 1998bw. The model parameters are the stellar mass MCO, the

explosion energy Eexp, and the mass of the synthesized 56Ni M56, assuming that the light is generated

by the 56Ni decay as in type Ia supernovae.

Despite their spectral similarity, these three type Ic supernovae have distinctly different bright-

nesses and light curve shapes as seen in Figure 1. This is because the brightness and light curve

shape depend mainly on M56 and on the pair of values (Eexp, MCO), respectively, while the spectral

features are sensitive to the chemical composition, which is basically similar in the C+O stars. The

peak bolometric luminosity ∼ 1.6× 1043 ergs s−1 implies that SN 1998bw produced ∼ 0.7M⊙ of 56Ni,

which is much more than in SNe 1994I6,7 and 1997ef8.

The above parameters are tightly constrained by comparing the light curves (Fig. 1), synthetic

spectra (Fig. 2), and photospheric velocities (Fig. 3) with the observations of SN 1998bw3. We

find that the optical properties of SN 1998bw are best reproduced by a model with MCO = 13.8M⊙,

Eexp = 3 × 1052 ergs, and M56 = 0.7M⊙ (hereafter designated as CO138). A C+O star of this mass

originates from a ∼ 40 M⊙ main sequence star. A compact remnant of mass Mrem = 2.9M⊙ must have
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been left behind for 0.7M⊙
56Ni to be ejected, as required to reproduce the brightness of SN 1998bw.

Mrem exceeds the upper mass limit for a stable neutron star, suggesting the formation of a black hole.

In order to reproduce the light curve of SN 1998bw, the time of core collapse should be set to

coincide with the detection of GRB 980425 to within +0.7/-2 days. The rapid rise of the light

curve requires the presence of radioactive 56Ni near the surface, implying that large-scale mixing of

material took place because of hydrodynamical instabilities. The light curve shape can be reproduced

with different explosion models, because the peak width τLC, which reflects the time scale of photon

diffusion, scales approximately as τLC ∝ κ1/2M
3/4
ej E

−1/4
exp (ref.13), where Mej = MCO − Mrem is the

mass of the ejected matter, and κ denotes the optical opacity. However, the photospheric velocity

scales in a different manner, as v ∝ M
−1/2
ej E

1/2
exp , so that both Mej and Eexp can be constrained from

the spectroscopic data as follows.

Synthetic spectra14 of various explosion models were compared with the observed spectra of

SN 1998bw at 3 epochs: May 3, 11 and 23. The observed featureless spectra are the result of the

blending of many metal lines reaching large velocity and with a large velocity spread. Extensive

blending can only be achieved with models that have a large mass in high velocity regions. Therefore,

the models that are more massive and have a larger kinetic energy give better fits. For models with

Mej < 10M⊙, the photosphere forms at velocities much smaller than those of the observed lines and

the lines do not blend as much as in the observed spectra. Figure 2 shows that model CO138 gives

consistent fits to the spectra at all three epochs.

Figure 3 shows that the evolution of the photospheric velocity computed from model CO138

(appeared in lines) agrees with that obtained from spectral fits (filled circles), and with the observed

velocities of the Si II (open circles) and Ca II (square) lines, within the uncertainty arising from the

light curve fitting (dotted lines). These velocities are among the highest ever measured in supernovae

of any types and thus the smaller mass C+O star progenitors can be ruled out. By taking into

account the uncertainties, we conclude that massive C+O star models with Eexp ∼ 2− 5 × 1052 ergs

and MCO ∼ 12− 15M⊙ reproduce the observed light curve and spectra of SN 1998bw well.

Here we call the supernova with such an extremely large explosion energy ( > 1052 ergs) a

‘hypernova’15 . The evolutionary process leading to the hypernova could be as follows: The mas-

sive progenitor of initially ∼ 40M⊙ had a particularly large angular momentum and a strong magnetic

field owing possibly to the spiraling-in of a companion star in a binary system. The collapse of the

massive Fe core at the end of the evolution led to the formation of a rapidly rotating black hole. Then

the large rotational energy of the black hole was extracted with a strong magnetic field to induce a

successful explosion15,16.
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The hypernova could induce a gamma-ray burst in the following way: At the shock breakout in

the energetic explosion, the surface layer is easily accelerated to produce a relativistic shock. When it

collides with circumstellar or interstellar matter, non-thermal electrons that are produced at the shock

front emit high-energy photons via synchrotron emission. The energy of these photons is given by ∼

160 keV (Γ/100)n
1/2
1 (ref.17), where Γ denotes the Lorentz factor of the expanding shell and n1 is the

density of the interstellar matter in cm−3. Thus the event could be observed as a gamma-ray burst if

Γ becomes as large as ∼ 100. Our preliminary calculations show that spherically symmetric models

may not produce large enough energies in gamma-rays. However, an axi-symmetric explosion could

produce particularly high speed material by a focused shock wave in the polar direction. The strong

radio emission at early phases, which suggests the existence of such a relativistic flow18, is consistent

with the above scenario. Preliminary spectral polarization measurements show that polarization is

small (∼ 1% but possibly decreasing between 4 May and 20 May). Some degree of asymmetry in

the envelope morphology is therefore possible, but the precise form depends on the undetermined

orientation relative to the line-of-sight. In the near future, late time spectra will provide the heavy

element abundances and their velocities in SN 1998bw to test our prediction (given in the legend of

Figure 1). The late time decline rate of the light curve is also expected to give further constraints on

the model parameters19.
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Figure 1: The bolometric light curve of model CO138 (MCO = 13.8M⊙, Eexp = 3× 1052 ergs, M56 = 0.7M⊙)

compared with the observations of SN1998bw. The time of the core collapse is set at the detection of the

GRB980425. The distance to the host galaxy ESO 184-G82 is taken to be ∼ 39 ± 1 Mpc, as estimated from

the redshift z ∼ 0.0085 ± 0.0002 and a Hubble constant 65 km s−1 Mpc−1. The light curves of other type

Ic supernovae SNe 1997ef8,9 and 1994I10 are also shown, for comparison, together with the corresponding

theoretical models, CO60 (ref.8, MCO = 6.0M⊙, Eexp = 1051 ergs, M56 = 0.15M⊙) and CO21 (ref.6, MCO =

2.1M⊙, Eexp = 1051 ergs, M56 = 0.07M⊙), respectively. Note that Eexp and M56 of CO138(SN 1998bw) are

very much larger than in the models for the other two type Ic supernovae. The observed V light curves are

transformed into the bolometric light curves assuming that the bolometric correction is negligible. The light

curves are computed with a radiative transfer code8, assuming a detailed balance between photo-ionizations

and recombinations and adopting a simplified treatment of line opacity. The explosive nucleosynthesis was

calculated using a detailed nuclear reaction network11,12 including a total of 211 isotopes up to 71Ge. Our

calculation predicts the amount of other radioactive nuclei, 1.4 ×10−3 M⊙
44Ti and 1.4 ×10−2 M⊙

57Ni, and

other stable elements, 16O: 7.6, 20Ne: 0.44, 23Na: 1.2 ×10−6, 24Mg: 0.46, 27Al: 0.18, 20Si: 0.82, 40Ca: 5.0

×10−2, 20Ne: 0.44 (in M⊙).
6



4000 6000 8000
0

1

2

3

4

SN 1998bw

Model CO138

3 May 1998

11 May 1998

23 May 1998

Figure 2: Three observed spectra (full lines, Patat et al., in preparation), where the galaxy background has

been subtracted, are compared with the synthetic spectra (dashed lines) computed with the Monte Carlo code14,

improved with the inclusion of photon branching (Mazzali & Lucy, in preparation), using model CO138. The

synthetic spectra were computed using the luminosity derived from the light curve and a distance of 39 Mpc,

and assuming no reddening. The observed featureless spectra are the result of the blending of many metal lines

reaching large velocity and with a large velocity spread. The apparent emission peaks are actually low opacity

regions of the spectrum where photons can escape. The 3 May and the 11 May spectra have been shifted

upwards by 3.0 and 1.5 × 10−14 erg s−1 cm−2 Å−1, respectively. The most important lines are marked on the

23 May spectrum, but they also contribute to the 3 May and 11 May spectra, although with somewhat different

ratios. Line blending in the case of SN 1998bw is even more severe than it was in the massive type Ic supernova

1997ef8, indicating an even larger mass. The massive progenitor model is the only one that gives the correct

extent of line blending. Differences in the blue band between the observed spectrum and the synthetic one are

probably due to uncertainties in the determination of the abundance and distribution of Fe-group elements in

high velocity parts of the ejecta. The possible presence of O I line absorption in the early spectra complicates

any derivation of velocities in the high velocity wings of the feature conceivably ascribed to Ca II absorption.
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Figure 3: The evolution of the calculated photospheric velocities of CO138, CO60, and CO21 (solid lines), the

photospheric velocities obtained from spectral models (filled circles), the observed velocity of the Si II 634.7,

637.1 nm line measured in the spectra at the absorption core (open circles, Patat et al. in preparation), and

that of the Ca II H+K doublet measured in the spectrum of May 23 (square, ref.4). The observed velocities

are in good agreement with the photospheric velocities of CO138, which are much larger velocity than in CO21

and CO60 because of the much larger explosion energy. The upper and lower dotted lines are the velocities of

models with (MCO, Eexp) = (15 M⊙, 5 ×1052 ergs) and (12 M⊙, 2 ×1052 ergs), respectively. The light curves

of these two models also fit SN 1998bw well. This indicates the acceptable ranges of MCO ∼ 12 − 15M⊙ and

Eexp ∼ 2− 5× 1052 ergs.
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