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Abstract 19 

 20 

Neonicotinoids (neonics) are the most widely used insecticides worldwide and are considered 21 

to be of low risk to non-target organisms such as vertebrates. Further, they are reported to 22 

be rapidly excreted and metabolized, reducing their potential toxicity. Nevertheless, growing 23 

evidence of adverse effects of neonics on farmland bird species raise questions about the 24 

purported harmless nature of these pesticides. We attempted to search for pesticide residues 25 

in species of different trophic levels and at different life stages, by using multiple bird 26 

monitoring programs on a Long-Term Socio-Ecological Research (LTSER) platform. Three 27 

passerine birds—the blackbird (Turdus merula), cirl bunting (Emberiza cirlus), and common 28 

nightingale (Luscinia megarhynchos)—that feed on seeds and invertebrates were monitored 29 

during their reproductive period, and the grey partridge (Perdix perdix) that feeds on seeds 30 

was monitored during its wintering period. We also monitored chicks of an apex predator—31 

the Montagu’s harrier (Circus pygargus)—that preys mostly upon common voles but also upon 32 

insects. We found that the birds’ blood samples showed presence of residues of five neonics: 33 

three banned since 2018 in France—clothianidin, thiacloprid, and thiamethoxam—and two—34 

dinotefuran and nitenpyram—used for veterinary purposes only. While none of these neonics 35 

was detected in blackbirds, all were present in grey partridges. Clothianidin was detected in 36 

all species, except blackbirds. Concentrations of the three banned neonics were similar or 37 

higher than concentrations found in birds monitored elsewhere before the ban. These findings 38 

raise questions about the persistence of neonics within the environment and the mode of 39 

exposure to wild fauna. Future investigations on the sublethal effects of these neonics on life-40 

history traits of these farmland birds may help in providing a better understanding of the 41 
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effects of exposure of bird populations to these insecticides, and also to the consequent effect 42 

on human health. 43 

 44 

Keywords: 45 

Biomonitoring, farmland birds, passerines, pesticides, raptors.46 
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1. Introduction 47 

 48 

During the last century, the need for feeding the growing human population worldwide 49 

has led to an intensification of agricultural practices, including an extensive use of pesticides. 50 

Despite their use for millennia, several pieces of evidence implicate pesticides in the global 51 

decline in biodiversity (Wood & Goulson, 2017; Stanton et al., 2018; Moreau et al., 2022a). 52 

Moreover, other studies identify them as the cause of certain diseases in humans (Köhler & 53 

Triebskorn, 2013). As all living organisms in a given area share the same environment, 54 

protecting biodiversity by reducing pesticides inputs means also reducing humans’ exposure 55 

to pesticides, and this is necessary to ensure our own health and safety (One Health concept). 56 

One way is thus to capitalize on wildlife monitoring schemes to better understand the risk of 57 

pesticide exposure for humans (Moreau et al., 2022a). In that respect, wild bird species are 58 

valuable candidates as they are well-monitored worldwide, being involved in long-term 59 

banding programs over decades or more, which have highlighted a global declining trend in 60 

several taxa and especially in farmland birds, e.g., in France, Sweden, United Kingdom, US, 61 

Europe, and North America (Wretenberg et al., 2006; Comolet-Tirman et al., 2015; Stanton et 62 

al., 2018; Rosenberg et al., 2019; Li et al., 2020; Burns et al., 2021; DEFRA, 2021). Pesticide use 63 

has been often identified as a major component responsible for this decline (Campbell et al., 64 

1997; Geiger et al., 2010; Mineau & Whiteside, 2013; Chiron et al., 2014; Tassin de Montaigu 65 

& Goulson, 2020). Recent studies, for instance, showed a negative relationship between the 66 

abundance of northern bobwhites (Colinus virginianus) and their exposure to neonicotinoid 67 

insecticides (neonics) from 1978 to 2012 (Ertl et al., 2018a). Similarly, a wide-panel dataset 68 

regarding neonics use and birds’ population trends revealed a significant negative impact of 69 
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this family of pesticides on avian biodiversity from 2003 to 2010 in the Netherlands (Hallmann 70 

et al., 2014) and from 2008 to 2014 in USA (Li et al., 2020).  71 

Neonics are insecticides developed in the 1970s, with the first patent dating back to 72 

1977 for nithiazine (rapidly abandoned due to its poor stability), followed by patents for 73 

imidacloprid and thiacloprid in 1985, nitenpyram in 1988, acetamiprid and clothianidin in 74 

1989, thiamethoxam in 1992, and dinotefuran in 1994 (Tomizawa & Casida, 2005). Neonics 75 

target the neural function and are competitive agonists of nicotinic acetylcholine receptors 76 

(nAChR), which increase specificity to insects and not vertebrates (Tomizawa & Casida, 2003). 77 

In fact, in contrast to other insecticides such as carbamates and organophosphorous that also 78 

target the neural function by inhibiting the acetylcholinesterase (AChE) enzyme—an 79 

ubiquitous enzyme in the animal kingdom (review in Grue et al., 1997; Story & Cox, 2001; 80 

Walker, 2003; Mitra et al., 2011)—neonics were supposed to have minimal effects and a low 81 

toxicological impact on vertebrates and consequently on birds, due to the lower number of 82 

nAChRs they have and the lower sensitivity of their nAChRs compared to those of insects 83 

(Tomizawa & Casida, 2003, 2005; Ihara et al., 2017; Casida, 2018). Moreover, they were 84 

claimed to be rapidly metabolized and excreted, in a few hours (Bishop et al., 2018, 2020; 85 

Casida, 2018; Bean et al., 2019; English et al., 2021; Pan et al., 2022), but some reports 86 

question their fate along the trophic chain as they have been found in insectivorous birds, 87 

granivorous birds, piscivorous birds, and birds of prey (see references in the supplementary 88 

materials Table S1). Under experimental conditions, they seem to accumulate in the liver 89 

(Lopez-Antia et al., 2015a) and to be detectable in different organs and tissues, although they 90 

(at least for imidacloprid and thiamethoxam) seem to be rapidly cleared from birds’ organism 91 

(Bean et al., 2019; Pan et al., 2022). Several studies showed various effects of neonics 92 

exposure on birds at different physiological levels (review in Gibbons et al., 2015 and Moreau 93 
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et al., 2022a). Although neonics do not act directly on AChE, they may induce neuronal 94 

degeneration, which affects AChE activity (Abu Zeid et al., 2019; Rawi et al., 2019), altering 95 

more complex functions such as learning and migration behaviour (Eng. et al., 2017) but also 96 

having sublethal effects on important functions of the organism such as the haematocrit, 97 

antioxidant defences, immunity, or fecundity (Lopez-Antia et al., 2013, 2015a, 2015b; 98 

Tokumoto et al., 2013; Hoshi et al., 2014; Mohanty et al., 2017; Humann-Guilleminot et al., 99 

2019; Lv et al., 2020).  100 

Since the 1990s, the use of neonics has become widespread, making them the most 101 

widely used class of insecticide worldwide, mostly for coating seeds, despite being shown to 102 

impact non-target species, including humans (Tomizawa & Casida, 2005; Casida & Durkin, 103 

2013; Gibbons et al., 2015; Simon-Delso et al., 2015; Henry et al., 2015; Wood & Goulson, 104 

2017; Casida, 2018; Thompson et al., 2020; Zhang et al., 2022). In Europe, despite an EU 105 

moratorium in 2014, neonics were still detectable in bee-attractive crop nectar until 2018 at 106 

least (Wintermantel et al., 2020). Indeed, their degradation in soil (measured by DT50 which is 107 

the Detection Time 50% representing the time to detect a 50% decrease in pesticide 108 

concentration) can take quite a long time, up to more than 6900 days (i.e., 19 years for 109 

clothianidin; see Table 2 in Thompson et al., 2020). Therefore, banning harmful neonics does 110 

not necessarily eradicate the problem of exposure. In EU, dinotefuran and nitenpyram have 111 

never been considered for use in phytopharmaceutical products (PPP; July 2022, EU Pesticides 112 

database: https://food.ec.europa.eu/plants/pesticides_en) but are commonly used in 113 

veterinary medicine. In France, neonics are banned for outdoor use and in PPP since 114 

September 2018 (Décret n° 2018-675, July 2018), except for emergency authorized use of 115 

thiamethoxam and imidacloprid on sugar beet crops in production areas (EFSA, 2021). 116 

Nonetheless, the use of neonics is still allowed in veterinary medicine. 117 

https://food.ec.europa.eu/plants/pesticides_en
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In the present study, we use different bird monitoring programs on a long-term socio-118 

ecological research (LTSER) platform and a multiresidue analysis (Rodrigues et al., 2023) to 119 

evaluate the presence of neonics in an intensive farmland area where acetamiprid, 120 

clothianidin, imidacloprid, thiacloprid, and thiamethoxam were banned for 3 years for 121 

agricultural use. Nitenpyram and dinotefuran were also included in the screening to control 122 

for potential exposure of wild fauna to veterinary products. As the method was not specifically 123 

developed for neonics detection, acetamiprid and imidacloprid, were not detectable among 124 

the other 104 pesticide compounds. We selected five different species for their different 125 

ecology: (i) three passerine birds during their reproductive period: the blackbird (Turdus 126 

merula), cirl bunting (Emberiza cirlus), and common nightingale (Luscinia megarhynchos) that 127 

feed on seeds and invertebrates; (ii) the grey partridge (Perdix perdix) caught during its 128 

wintering period when it feeds only seeds; and (iii) an apex predator species, namely, the 129 

Montagu’s harrier (Circus pygargus) that preys mostly upon common voles but also upon 130 

orthopterans. For this fifth species, we focused on chicks that are fed by their parents during 131 

the rearing period. Beyond the interest of their contrasted ecologies, farmland bird species 132 

including buntings, blackbirds or raptors have been shown to be exposed to neonics, however, 133 

a limited number were subject of measures in blood samples (Lennon et al., 2020a). 134 

Additionally, grey partridge is recognised to be a focal species for pesticide risk assessment 135 

(Millot et al., 2017; Bonneris et al., 2018). Here, we aimed at monitoring potential exposure 136 

of multiple bird species in an area where there is presumably no use of neonics for agricultural 137 

purposes for 3 years and where nitenpyram used in veterinary medicine has never been 138 

assessed to our knowledge. We thus collected blood samples from all individuals to determine 139 

the presence and measure the level of exposure to neonics. We selected blood (whole blood, 140 

i.e., red blood cells and plasma) for the analyses in order to focus on the effects of short-term 141 
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exposure only (Espín et al., 2016), so that potential exposure of the migratory species (i.e., 142 

common nightingales, Montagu’s harriers, and blackbirds) at wintering areas can be 143 

neglected.  144 

 145 

2. Materials and methods 146 

 147 

2.1. Study area  148 

 149 

The study site is located in southwestern France (46°11′N, 0°28′W, Figure 1), in the Long-Term 150 

Socio-Ecological Research Zone Atelier Plaine & Val de Sèvres (LTSER ZAPVS), a 450 km² area 151 

where the soil occupancy and the agricultural practices are monitored each year since 1994 152 

(Bretagnolle et al., 2018). In this intensive farming area, winter cereal crops accounted for 153 

~41% (wheat: 33.8% and corn: 9.6%) of the area under cultivation; in addition, there were 154 

sunflower (10.4%), oilseed rape (8.3%), pea (2%), and meadows (13.5%) (average coverage 155 

between 2009 and 2016, Bretagnolle et al., 2018). In this area, organic farming (no pesticide 156 

use) is carried out in 18% of the agricultural area. Detailed data on pesticide applications was 157 

not available, however, until 2018 imidacloprid was used on cereal crops in the study area, 158 

thiacloprid, thiamethoxam and clothianidin for their part were mainly used in maize, oilseed 159 

rape and cereal crops. Different monitoring studies performed in this area showed the 160 

transfer of neonics in several compartments. For instance, imidacloprid was found in soils, 161 

oilseed rape nectar, earthworms, and small mammals in this area (Henry et al., 2015; 162 

Wintermantel et al., 2020; Pelosi et al., 2021; Fritsch et al. 2022). Thiacloprid was detected in 163 

soils, earthworms and small mammals’ hair while thiamethoxam was detected in nectar and 164 
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soils, and clothianidin in nectar and small mammals’ hair (Wintermantel et al., 2020; Pelosi et 165 

al., 2021; Fritsch et al. 2022). Acetamiprid has been detected in small mammals’ hair (Fritsch 166 

et al., 2022) despite its use is mainly for market gardening such as tomatoes, squash, and 167 

melon cultures which are not present in a substantial surface of the study area. All five neonics 168 

are banned for agricultural use in France since 2018, except imidacloprid and thiamethoxam 169 

for emergency authorizations on sugar beet crops. Still, sugar beet crops are only present in 170 

this area for their first year (seed production), and the use of neonics is banned for this 171 

purpose. Therefore, at the moment when birds were caught (2020–2022, see section 2.2.1), 172 

no neonics were being used for agricultural purposes. However, imidacloprid, dinotefuran, 173 

and nitenpyram may be in domestic use as veterinary treatment for domestic animals (cats, 174 

dogs, ferrets, and bunnies). There is no known screening of nitenpyram in the study area and 175 

dinotefuran has only been investigated in one previous study but was not detected in small 176 

mammals’ hair sampled (Fritsch et al., 2022). 177 

 178 

2.2. Model species and blood collection 179 

 180 

2.2.1. Model species 181 

 182 

2.2.1.1. Adult passerine birds 183 

 184 

The passerine species were sampled during the reproductive period from mid-April to end of 185 

June 2021. Birds were caught using net-trapping, following the same methodology as Moreau 186 

et al. (2022b). Among the 17 species trapped in this area, we selected three, namely, cirl 187 

buntings (N = 31), blackbirds (N = 64), and common nightingales (N = 34) because these species 188 
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were among the biggest of those captured, which allowed us to draw enough blood for 189 

analysis without risking any individual’s health. They were also the most caught in the study 190 

area allowing us to make a large spatial screening. 191 

 192 

2.2.1.2. Adult grey partridges 193 

 194 

Grey partridges were caught during two consecutive years from November 2020 to February 195 

2021 (winter 2020–2021) and from December 2021 to March 2022 (winter 2021–2022) in the 196 

study area. These individuals, even when caught in the wild, are gamebirds and have been 197 

probably raised in captivity before being released for hunting purposes; however, knowing 198 

the proportion of captive-born vs. wild-born partridges is almost impossible as banding before 199 

release is not mandatory. In winter, grey partridges are mostly herbivorous and granivorous, 200 

living in large coveys in winter crops and sleeping in ploughed fields at night. Thermal 201 

binoculars were used to spot them at nightfall and birds were then captured in the dark by 202 

dazzling them and using a landing net (i.e., a method inspired by Eurasian Woodcock catching 203 

technique; Williams, 2015). Blood samples were then collected, and birds were immediately 204 

released. A total of 23 and 31 partridges were caught during the 2020–2021 and 2021–2022 205 

winters, respectively. 206 

 207 

2.2.1.3. Montagu’s harrier chicks 208 

 209 

The Montagu’s harrier has been monitored in the ZAPVS since 1994 (Bretagnolle et al., 2018). 210 

In this intensive agricultural area, they nest mainly on the ground of cereal crops and lay up 211 

to eight eggs (Arroyo et al., 1998; Millon et al., 2008). The incubation period lasts 29 days, and 212 
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the rearing period is between 30 and 35 days (Arroyo et al., 2007). The mean productivity in 213 

this site is 2.05 fledglings per breeding attempt (Arroyo et al., 2004), this success depending 214 

mainly on the availability of its main prey, the common vole (Microtus arvalis) although in case 215 

of poor vole availability, harriers may also feed on orthopterans (Salamolard et al., 2000; Butet 216 

& Leroux, 2001). Blood samples of chicks that were 26 ± 2 days old were collected from June 217 

2021 to early August 2021. Fifty-five chicks from 22 nests were sampled. 218 

 219 

2.2.2. Blood sampling procedure 220 

 221 

For all species, blood samples were collected in 2021, and in 2020 and 2022 for grey 222 

partridges, on wild individuals included in different monitoring programs (see details in 223 

section 2.2.1). For all of them, blood sampling was conducted by puncturing the brachial vein 224 

using a sterile needle and using heparinized capillaries to collect 50 µL of blood. Blood samples 225 

were placed in Eppendorf tubes and kept refrigerated (0–5°C), before being returned to the 226 

laboratory where they were stored at -20°C for further analyses. 227 

 228 

2.3. Neonics analysis 229 

 230 

Neonic extractions were conducted following the method reported by Rodrigues et al. 231 

(2023; see also Table S2 in supplementary materials for a description of the neonics). Briefly, 232 

blood samples were defrosted and weighed, and a mixture of 2 mL of dichloromethane and 233 

ethyl acetate (1:1) was added to each sample, followed by homogenisation by using a vortex 234 

for 1 min. Extracts were then sonicated for 10 min. This sonication step was repeated three 235 

successive times. After each sonication step, a centrifugation step of 5 min was performed, 236 



 

 12 

and supernatants were collected, pooled, and then gently evaporated under a fume hood until 237 

a final volume of 500 µL. The extract was collected and stored at -20°C until the analyses to 238 

determine pesticide levels were performed by liquid chromatography coupled to tandem 239 

mass spectrometry (LC/MSMS) using multiple reactions monitoring (MRM) for quantification.  240 

LC/MSMS analyses were conducted with a Thermo Scientific TSQ Quantum Access 241 

Triple Quadrupole Mass Spectrometer operating in heated positive electrospray ionization 242 

mode (HESI+) coupled with a Thermo Accela 1250 pump and a Thermo Combi Pal 243 

autosampler. Analyses were performed on a Nucleodur C18 Pyramid column (150 mm × 3 mm, 244 

3 μm). Samples were analysed in the gradient mode using a mobile phase composed of water 245 

and acetonitrile with both containing 0.1% formic acid. 246 

The multiresidue analysis comprised detection and quantification of 104 pesticide 247 

molecules, including five neonics—clothianidin, dinotefuran, nitenpyram, thiacloprid, and 248 

thiamethoxam—performed using the MRM detection mode. The source was operated in the 249 

positive ionization mode with a spray voltage of 4500 V and the same spray and capillary 250 

temperatures of 300 °C each. Nitrogen was used as the sheath and auxiliary gas (20 and 10 251 

arbitrary units), while argon was used as the collision gas (1.5 arbitrary units). Two precursor 252 

product ion transitions for each analyte and internal standards were used for quantification. 253 

The transitions selected for MSMS analysis and retention times are shown in supplementary 254 

materials (Table S3). Data were acquired and processed using Excalibur software. 255 

The limits of detection (LOD) and quantification (LOQ) represent three and ten times 256 

the ratio of the average noise height on either side of a known amount of a compound's peak 257 

to the peak height, respectively. The objective was to determine the minimum peak heights 258 

that can be used to distinguish a compound's peak from the noise on either side of the peak. 259 
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The LOD and LOQ determined for each sample type are presented in Table S3. LODs varied 260 

from 0.001 to 0.012 pg·µL -1 and LOQs from 0.005 to 0.041 pg·µL -1. 261 

 262 

3. Results  263 

 264 

No neonics were detected in blackbirds. For the other species, all 5 neonics searched, namely, 265 

clothianidin, dinotefuran, nitenpyram, thiacloprid, and thiamethoxam were detected. A 266 

summary of the concentrations and occurrence of these neonics in our sampled bird species 267 

is provided in Table 1, and detailed neonicotinoid distribution among each individual is 268 

provided in Figure 2. Clothianidin was found in all species (except blackbirds), with average 269 

concentrations ranging from 0.05 pg·µL-1 in common nightingales to 951.60 pg·µL-1 in 270 

Montagu’s harriers. The number of individuals that exhibited concentrations higher than the 271 

LOQ ranged from ~5% among Montagu’s harriers up to ~26% among grey partridges sampled 272 

during the 2021–2022 winter. No clothianidin was detected in grey partridges sampled in the 273 

2020–2021 winter. Thiacloprid was detected in all cirl buntings and common nightingales but 274 

always at concentrations below the LOQ. It was detected in one Montagu’s harrier chick (89.58 275 

pg·µL-1) and one grey partridge (0.07 pg·µL-1) in the 2020–2021 winter. Thiamethoxam was 276 

detected in both passerine species and in grey partridges from both winters, with 277 

concentrations ranging from 0.06 pg·µL-1 in a common nightingale to 23.73 pg·µL-1 in a grey 278 

partridge from the 2020–2021 winter. The number of individuals that exhibited 279 

concentrations higher than the LOD ranged from ~4% among common nightingales up to 12% 280 

among cirl buntings. Dinotefuran and nitenpyram were only detected in grey partridges: In 281 

the first winter (2020–2021), ~13% and ~87% of the individuals exhibited dinotefuran and 282 

nitenpyram concentrations higher than the LOD, with the average concentrations being 6.20 283 
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and 23.10 pg·µL-1, respectively. In the second winter (2021–2022), dinotefuran and 284 

nitenpyram were detected with concentrations higher than the LOD in ~32 and ~94% of the 285 

individuals, respectively, with the average concentrations being 7.85 and 18.29 pg·µL-1, 286 

respectively. 287 

 288 

4. Discussion 289 

 290 

In the last few decades, neonics have attracted considerable interest (Klingelhöfer et al., 291 

2022), especially because of the rising concern about their effects on non-target species such 292 

as honeybees (Wood & Goulson, 2017) and humans (Cimino et al., 2017; Han et al., 2018). 293 

Because of their chemical properties such as their half-life in the soil (DT50), solvability, and 294 

leaching potential, and because of their extensive use for agricultural purposes, the 295 

assessment of their presence in farmlands is imperative (Thompson et al., 2020). Considering 296 

that no neonics were used on plants since 2018 in France and that the analytical method used 297 

here provided good sensitivity results (Rodrigues et al., 2023), we expected to find no or very 298 

low concentrations in bird blood samples as this matrix reflects short-term exposure (Espín et 299 

al., 2016). However, in the present study, we not only detected five out of seven neonics, 300 

three of which have been banned since 2018 in France (clothianidin, thiacloprid, and 301 

thiamethoxam) and two others (dinotefuran and nitenpyram) that are supposedly being used 302 

only for treating domestic pets (Table S2), but in some cases, at rather high concentrations. 303 

The remaining two neonics (imidacloprid and acetamiprid) are not discussed here as these 304 

compounds were not detectable with the multiresidue method used in this study. However, 305 

knowing the historical background of the study area and results from studies in the same area 306 

before neonics ban (see section 2.1), if titration had been possible, we would have expected 307 
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to find large amounts of imidacloprid in birds’ blood and probably no or very low 308 

concentrations of acetamiprid. 309 

 310 

4.1. Monitoring neonics in wild birds 311 

 312 

Neonics were increasingly studied during the last decade and several recent studies have 313 

focused on quantifying the level of exposure in wild birds. However, these studies differ from 314 

our work in several aspects. First, in these studies, several biological matrices—blood, 315 

carcasses, eggs, faecal pellets and cloacal fluids, feathers, liver, and/or gizzard—were 316 

considered (see Table S1 for detailed references). Correlations between neonics 317 

quantifications from different matrices can be found but are not systematic (reviewed in Espín 318 

et al., 2016). Indeed, pesticides are distributed in biological tissues with different temporal 319 

patterns. For instance, pesticide molecules are integrated into feathers during the moulting 320 

period (Humann-Guilleminot et al., 2022). The distribution of such neonic molecules in 321 

internal tissues such as the liver also depends on the chemical nature of the molecules and 322 

can be degraded if samples are taken on carcasses (Espín et al., 2016, and references therein). 323 

Then, a time lag might be observed between the exposure and the detection depending on 324 

the matrices used (Lennon et al., 2020b). Therefore, the results obtained from different 325 

matrices cannot be directly compared. 326 

Our results can thus be reasonably compared to those of five previous studies that 327 

tested for neonics in whole blood (or plasma) samples from wild birds (Taliansky-Chamudis et 328 

al., 2017; Byholm et al., 2018; Hao et al., 2018; Lennon et al., 2020b; and Humann-Guilleminot 329 

et al., 2021; Table S4). For clothianidin, our concentration range was similar to those found by 330 

Lennon et al. (2020b), although the maximum value was lower: they found concentrations 331 
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ranging from 0.5 (dunnocks) to 69300 pg·µL-1 (yellowhammers), whereas in our study, the 332 

values were 0.009 (common nightingale) to 2451.78 pg·µL-1 (Montagu’s harrier chick). The 333 

maximum clothianidin concentration found by Humann-Guilleminot et al. (2021) was 0.34 334 

pg·µL-1 in alpine swifts, which is similar to the lower values in the concentration range we 335 

obtained. Thiacloprid concentrations in all cirl buntings and common nightingales were below 336 

the LOQ, but concentrations in the grey partridges and the Montagu’s harrier chicks were far 337 

higher than those found in honey buzzards by Byholm et al. (2018) and in white-crowned 338 

sparrows by Hao et al. (2018). They ranged from 0.012 to 0.031 and 0.0025 to 0.0031 pg·µL-1 339 

for honey buzzards and white-crowned sparrows, respectively, and from 0.073 to 89.58 pg·µL-340 

1 in our study (Table S4). This result suggests that the grey partridges and the Montagu’s 341 

harrier chicks were exposed to high, or recent quantities of thiacloprid (see section 4.2 for 342 

further details). For thiamethoxam, the concentrations we found were above those obtained 343 

by Hao et al. (2018): they ranged from 0.06 (common nightingales) to 23.73 (grey partridges) 344 

pg·µL-1, whereas Hao et al. reported 0.0051–0.0337 pg·µL-1. Taliansky-Chamudis et al. (2017) 345 

detected imidacloprid in one Eurasian eagle owl (Bubo bubo) chick among the 30 sampled, 346 

but did not detect any other neonics, so comparisons with our results are not possible. The 347 

difference in the results despite all studies using blood samples may be because some of the 348 

studies considered whole blood samples (Taliansky-Chamudis et al., 2017; Byholm et al., 2018; 349 

our study), while others used only plasma (Hao et al., 2018; Lennon et al., 2020b; Humann-350 

Guilleminot et al., 2021), inducing differences in the detectability of some molecules whose 351 

levels vary according to their water/lipid solubility, and affinity to different proteins 352 

(Rodrigues et al., 2023; Zhang et al., 2023). Moreover, all these studies fundamentally differ 353 

in their sensitivity as they rely on their own developed chemical analysis methods [although 354 

they are all derived from the same method, i.e., Quick, Easy, Cheap, Effective, Rugged, and 355 



 

 17 

Safe (QuEChERS); Anastassiades et al., 2003]. If we consider clothianidin for instance, LOD and 356 

LOQ in our study (0.01 and 0.04 pg·µL-1, respectively; Table S3) were 5 (LOQ) and 15 (LOD) 357 

times lower, respectively, than those (0.15 and 0.21 pg·µL-1, respectively) of Lennon et al. 358 

(2020b), while LOQ was similar to that (0.05 pg·µL-1) reported by Humann-Guilleminot et al. 359 

(2021). This may induce a difference in the number of neonic positive samples between 360 

studies, hence differences in average concentrations as well. For instance, applying the LOD 361 

of clothianidin from the study of Lennon et al. (2020b) would have led to non-detection of 362 

positive samples in common nightingales while we found 8% of individuals with 363 

concentrations above our LOD.  It is not therefore easy to compare the results provided by 364 

the authors, especially when not all statistical values, such as the percentage of neonic 365 

detection among individuals or the mean concentration with its standard deviation, were 366 

obtained on the same basis (Table S4). As the use of the same methodology in all studies does 367 

not seem to be feasible, researchers should systematically report these values to allow direct 368 

comparisons.  369 

 370 

4.2. Exposure of wild fauna to neonics 371 

 372 

Previous studies reported the limitations of feather and internal tissue samples for 373 

determining timing of exposure to contaminants, so blood is considered most suitable for 374 

determining recent exposure (Espín et al., 2016; Lennon et al., 2020b). Neonics are supposedly 375 

“rapidly” excreted (in hummingbirds, English et al., 2021) and cleared from blood (24h in 376 

quails), according to data regarding imidacloprid (Bean et al., 2019) and thiamethoxam (Pan 377 

et al., 2022); however, extrapolation to the behaviour of other neonics may not be reliable. 378 

Based on blood samples used for this study we cannot estimate long-term exposure, 379 



 

 18 

therefore, possible exposure of the migratory species at their wintering areas may be 380 

disregarded. However, thiamethoxam/clothianidin were found in grey partridges’ eggs in 381 

another study (Bro et al., 2016), so in the case of the Montagu’s harrier chicks, we cannot 382 

exclude the possibility of maternal transfer of neonics, i.e., from the mother to the eggs. In 383 

other words, all tested positive individuals in the present study were probably recently 384 

exposed to neonics. This is important because the birds were sampled three and four years 385 

after EU banned neonics for PPP, and no derogation is known in our study area conversely to 386 

other regions in France. Nonetheless, we found three out of the five PPP neonics in our 387 

samples, with concentrations similar to those in birds sampled elsewhere before the ban 388 

(Byholm et al., 2018). Taken together, our results strongly suggests that clothianidin, 389 

thiacloprid, and thiamethoxam are still present in farmlands and raises questions about the 390 

mode of exposure to birds. Thiamethoxam is metabolized into clothianidin in animals, plants, 391 

and soil (Nauen et al., 2003, review in Simon-Delso et al., 2015; Pan et al., 2022) potentially 392 

explaining why it is more commonly present than thiamethoxam. These neonics’ DT50 ranged 393 

from few days for thiacloprid up to several years for clothianidin (Table S2) in the soil, meaning 394 

that they can still be incorporated into the diet of several detritivores such as earthworms 395 

(Pelosi et al., 2022). If so, at least some blackbirds, which are omnivorous and feed on different 396 

invertebrate species during the breeding season, including earthworms which are known to 397 

bioaccumulate pesticides (Pelosi et al., 2022; 2021), should have tested positive, but were not. 398 

This surprising result could have been first seen as a technical failure; however, other pesticide 399 

molecules than neonics were detected in blackbirds’ blood, so that an analysis problem can 400 

be discarded. The absence of neonics in blackbirds’ blood might be the consequence of several 401 

processes. One of them could be a higher detoxification capacity of blackbirds, mediated by 402 

their ability at monopolizing high amounts of carotenoids, which are antioxidants, involved in 403 
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sexual selection and known for their role in reducing oxidative stress (Møller et al., 2000, see 404 

Moreau et al., 2022a). Further analyses would be needed to explore this explanation. 405 

Granivorous birds, including grey partridges (as they were caught during the winter), cirl 406 

buntings, and common nightingales, which are omnivorous (mostly insectivorous during 407 

reproduction), tested positive. This suggests that the mode of exposure may include 408 

contaminated seeds from previous treated crops (Wintermantel et al., 2018) or organisms 409 

feeding on contaminated seeds. The higher concentrations found in Montagu’s harriers, which 410 

are apex predators (mostly preying upon common voles and orthopterans), might be a result 411 

of biomagnification, i.e., the accumulation of toxic neonics along the trophic chain (Badry et 412 

al., 2020). In fact, clothianidin and thiacloprid, two compounds quantified in Montagu’s 413 

harriers’ blood, were found in hairs of small mammals from the area, reinforcing that view 414 

(Fritsch et al., 2022). Further investigations would be needed, and one way to do so would be 415 

using chicks’ food pellets. These differences among species may also be attributable to the 416 

choices of individuals regarding their habitat and feeding resources for avoiding contaminated 417 

sources, as has been highlighted previously (McKay et al., 1999; Ruuskanen et al., 2020; Addy-418 

Orduna et al., 2022). Another explanation relies on the detoxification processes in wild birds 419 

that are still poorly investigated and deserved further investigations (Moreau et al., 2022a). 420 

Indeed, some individuals could be more efficient than others at protecting themselves against 421 

toxic substances (Arnold et al., 2015).  422 

Another important issue observed in our results is the high prevalence of dinotefuran 423 

and nitenpyram in grey partridges, although wildlife fauna is not supposed to be exposed to 424 

these as they are used only for pets and not farm animals, and consequently not for outdoor 425 

use in Europe, including France (Table S2). Even if grey partridges caught in this study area 426 

may originate mainly from captive breeding stocks (released for hunting purpose), the six 427 
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registered veterinary medicines containing dinotefuran and nitempyram neonics that are 428 

authorized for use in France are not intended for treating any bird species or farm animal 429 

(http://www.ircp.anmv.anses.fr/index.aspx). Imidacloprid is included in 36 different speciality 430 

medications, making this neonic potentially more common even if not detectable here (see, 431 

for example, Perkins et al., 2021). Neonics are either used for topical applications on the skin 432 

(dinotefuran) or per os (nitenpyram) to treat flea infestations in cats and dogs typically; 433 

further, nitenpyram is expected to be eliminated within 48 h (Jeschke & Nauen, 2005; Rust, 434 

2017). In Europe, veterinary regulatory processes are governed by the European Medicines 435 

Agency, which states that products for non-food animals are not supposed to be of major 436 

environmental concerns since these animals are treated individually with low concentrations 437 

of active neonics (CVMP/VICH, 2000). To our knowledge, these two neonics, investigated in 438 

few studies (Table S1), have only been detected in one sample of hummingbirds’ feather 439 

rinsate (i.e., not within the organism; Graves et al., 2019), suggesting contact and not 440 

ingestion. In the present study, the substantial concentrations of dinotefuran and nitenpyram 441 

found in grey partridges but not in any other species may indicate possible exposure during 442 

their stay in farms before release. This implies either an illegal use of these substances in 443 

farms, as they are not included in veterinary medicines for farm animals, or an unintentional 444 

contact of partridges through multiple potential pathways. One of these could be direct 445 

contact and/or ingestion of farmer’s dogs or cats’ urine, or indirect through contaminated 446 

drinking water. However, neonics being presumably rapidly excreted and blood reflecting 447 

short-term exposure, individuals sampled here, if contaminated in farms before release, 448 

should not test positive. Thus, we cannot exclude in our case that partridges once in the wild 449 

could have directly ingested contaminated water with cat and/or dog urine and/or after pet 450 

baths (Teerlink et al., 2017; Diepens et al., 2023). Besides, partridges that commonly use field 451 

http://www.ircp.anmv.anses.fr/index.aspx
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margins contrary to the other species, where pets walk and urinate, may have ingested these 452 

neonics while preening as the external surface of feathers are often contaminated and might 453 

even accumulate compounds (Pacyna-Kuchta, 2023). Indeed, there is growing evidence of 454 

veterinary products’ transfer to the environment from dogs’ hair and urine, and of secondary 455 

transfer to wildlife through nesting material or contaminated water (Diepens et al., 2023). 456 

Even though we cannot ascertain by which route the partridges were exposed to these 457 

neonics, our results indicate in line with Diepens et al. (2023), the urgent need for monitoring 458 

all pesticide or medicine compounds, irrespective of their intended use. Although treating 459 

domestic animals against ectoparasites might be of sanitary importance for public health 460 

(human and animal), these treatments may have the same adverse effects on wildlife as PPP 461 

(reviewed in Moreau et al., 2022a).  462 

It should be noted that the interpretations given to the results provided in the present 463 

study are only assumptions and that the origin of birds’ contamination remain unknown. 464 

Ongoing studies on neonics levels in soils and invertebrates of the study area since 2018 465 

should help to provide further clarifications on birds’ contamination pathways. Moreover, the 466 

method of multiresidue analysis used here could be improved to allow the detection of all 467 

neonics, including imidacloprid and acetamiprid, especially as imidacloprid was extensively 468 

applied in the crops of the study area and is still highly used in veterinary medicine. 469 

 470 

4.3. Conclusions 471 

 472 

Our results highlight several problems with the use of a class of chemicals that are among the 473 

most used worldwide. First, banning neonics for outdoor use does not prevent the exposure 474 

of wildlife fauna to them, at least a few years after ban. Although illegal use cannot be 475 
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disregarded, it cannot explain on its own their ubiquity in wild birds from a wide ecological 476 

range, caught at the scale of the study site. This is an important element to consider in 477 

countries where neonics are still massively applied, considering their impact on both animals 478 

and humans (reviewed in Moreau et al., 2022a). Second, the detection of neonics used for 479 

domestic animals in wildlife fauna raises questions regarding the manner in which risk 480 

assessment for such applications is performed (Perkins et al., 2021; Diepens et al., 2023). For 481 

instance, to our knowledge, few studies have investigated the effects of dinotefuran and 482 

nitenpyram on wildlife fauna (Wang et al., 2018). Although clothianidin, dinotefuran, 483 

nitenpyram, and thiamethoxam are considered to be of low toxicity to birds, as indicated by 484 

their acute oral LD50 (Table S2), thiacloprid, which was also found to be quite ubiquitous, is 485 

highly toxic to birds (Table S2). However, LD50 is indicative of acute lethal toxicity under 486 

laboratory conditions for model species and is not necessarily an appropriate estimate of 487 

sublethal effects, as shown in the numerous studies that investigated the adverse effects of 488 

neonics on birds (Moreau et al., 2022a). Considering that very low residual levels of pesticides 489 

may have considerable sublethal effects on birds’ reproduction (see Moreau et al., 2021, for 490 

example), the consequences of these exposures on bird populations as well as on human 491 

health (One Health concept) should be carefully considered.  492 
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Caption for figures 969 

 970 

Figure 1. Spatial distribution of birds’ catching sites across the Long-Term Socio-Ecological 971 

Research Zone Atelier Plaine & Val de Sèvres (LTSER ZAPVS). Landscape features provided 972 

correspond to data available for 2021 from our GIS database. Infrastructures correspond to 973 

buildings, sport fields, cemeteries, locks, and bridges present in the study area.  The five bird 974 

species monitored in the study area are blackbird (Turdus merula, N2021 = 64), cirl bunting 975 

(Emberiza cirlus, N2021 = 31), common nightingale (Luscinia megarhynchos, N2021 = 34), grey 976 

partridge (Perdix perdix, N2020-2021 = 23 and N2021-2022 = 31), and chicks of Montagu’s harrier 977 

(Circus pygargus, N2021 = 55). N corresponds to the number of adults sampled, except in the 978 

case of Montagu’s harrier where N corresponds to the number of chicks sampled. 979 

 980 

Figure 2. Wild farmland birds’ exposure to 5 neonicotinoids. Distribution of the different 981 

neonicotinoid molecules for each individual of each species are represented as one stacked 982 

bar. Distribution in percent was obtained from raw concentrations of each molecule in birds 983 

blood sampled.  984 

  985 
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Figure 1. 987 

Fuentes et al. 988 
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 990 

Figure 2. 991 

Fuentes et al.  992 
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Caption for tables 993 

 994 

Table 1. Summary of the mean concentrations [c] with standard deviations (SD) and range in pg·µL-1 with their sample size (n) obtained by LC-995 

MS/MS above the limits of detection (LOD) for each species. The sample size for each species is also provided (N). The percentage of samples 996 

above the LOD (n/N) is given in brackets (rounded to the nearest percent). Blackbirds are not referenced as no neonic was detected in the 997 

sampled individuals.  998 

  Clothianidin Dinotefuran Nitenpyram Thiacloprid Thiamethoxam 

Cirl buntings (N = 34)      

 n  5 (15%) 0 0 34 (100%) 4 (12%) 

 [c] ± SD 2.28±1.55 - - LOD < [c] < LOQ 2.59±1.37 

 range 1.04–4.87 - - - 1.61–4.56 

Common nightingales (N = 25)      

 n 2 (8%) 0 0 25 (100%) 1 (4%) 

 [c] ± SD 0.05±0.06 - - LOD < [c] < LOQ 0.06 

 range 0.009–0.093 - - - - 
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 999 

 1000 

Grey partridges (N = 54)      

Winter 2020/2021 (N = 23) n 0 3 (13%) 20 (87%) 1 (4%) 1 (4%) 

[c] ± SD - 6.20±3.62 23.10±11.33 0.07 23.73 

range - 2.14–9.10 1.24–41.03 - - 

       

Winter 2021/2022 (N = 31) n 8 (26%) 10 (32%) 29 (94%) 0 3 (10%) 

[c] ± SD 5.26±4.10 7.85±4.07 18.29±10.84 - 1.64±0.46 

range 1.92–14.26 3.32–16.61 1.78–43.53 - 1.23–2.14 

Montagu’s harriers (N = 55)      

 n 3 (5%) 0 0 1 (2%) 0 

 [c] ± SD 951.60±1299.21 - - 89.58 - 

 range 194.48–2 451.78 - - - - 


