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Reliability-oriented sensitivity analysis aims at combining both reliability and sensitivity analyses by quantifying the
influence of each input variable of a numerical model on a quantity of interest related to its failure. In particular, target
sensitivity analysis focuses on the occurrence of the failure, and more precisely aims to determine which inputs are more
likely to lead to the failure of the system. The Shapley effects are quantitative global sensitivity indices which are able
to deal with correlated input variables. They have been recently adapted to the target sensitivity analysis framework.
In this article, we investigate two importance-sampling-based estimation schemes of these indices which are more
efficient than the existing ones when the failure probability is small. Moreover, an extension to the case where only an
i.i.d. input/output N -sample distributed according to the importance sampling auxiliary distribution is proposed. This
extension allows to estimate the Shapley effects only with a data set distributed according to the importance sampling
auxiliary distribution stemming from a reliability analysis without additional calls to the numerical model. In addition,
we study theoretically the absence of bias of some estimators as well as the benefit of importance sampling. We also
provide numerical guidelines and finally, realistic test cases show the practical interest of the proposed methods.

KEY WORDS: Reliability-oriented sensitivity analysis, Target sensitivity analysis, Rare event estima-
tion, Dependent inputs, Shapley effects, Importance sampling, Nearest-neighbour approximation.

1. INTRODUCTION

More and more physical phenomenons and complex systems are numerically represented by black-box numerical
models, which are often computationally expensive to evaluate, and whose complexity makes it impossible to study
analytically. For safety and certification purposes, tracking the potential failures of a system is crucial, but it is not an
option to do so experimentally with critical systems because it could lead to dramatic environmental, human or finan-
cial consequences. Numerical models enable to simulate the behaviour of a system far from nominal configurations.

The reliability analysis of a numerical model mainly consists in the estimation of its failure probability. The
failure is often a rare event and thus has a small probability. The high computational cost of one evaluation of the
numerical model (several minutes to several days CPU) and the low value of the probability make the usual quadrature
methods [1] and Monte Carlo sampling [2] inappropriate to handle this problem, but various techniques reviewed in
[3] have been developed to estimate more precisely a such probability at a limited computational cost, including
importance sampling [4] for example.

Global sensitivity analysis (GSA) aims at studying the impact of the input variables of a numerical code on the
behaviour of its output to provide a better understanding of the model. It can be carried out for various purposes
such as fixing non influential input variables to nominal values or identifying the most influential ones to decrease
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their variability, see for example [5]. A deeper analysis of the failure of the system consists then in combining both
reliability and sensitivity analyses by performing a GSA on a quantity of interest (QoI) characterizing the failure of
the system. This new specific framework is called reliability-oriented sensitivity analysis (ROSA) and can be divided
into two categories [6]:

• target sensitivity analysis (TSA) aims at determining the influence of each input variable on the occurrence of
the failure of the system

• conditional sensitivity analysis (CSA) aims at performing a global sensitivity analysis of the numerical code
restricted to the failure domain.

In the present article, we only focus on TSA. The well-known Sobol indices for variance-based GSA [7] have been
adapted to TSA and first specific estimation schemes have been introduced in [8,9]. However, as in GSA, the inter-
pretability of these indices requires the strong assumption of independent input variables. Several approaches have
been investigated in GSA to adapt the Sobol indices to the case where the inputs are correlated [10] but recently, new
GSA indices based on game theory [11] and which are more naturally able to deal with correlated inputs have been
introduced: the Shapley effects [12]. Their adaptation to the TSA framework is recent [13] and the authors proposed
first estimation schemes based on a classical Monte Carlo sampling according to the input distribution.

As illustrated in our numerical simulations in Section 4, the existing estimators of the Shapley effects for TSA
based on a Monte Carlo sampling from [13] are not efficient when the failure probability is small because they require
too many calls to the numerical code to be accurate. In this article, we introduce then new importance-sampling-
based estimators of these indices which are able to deal more efficiently with a small failure probability. Moreover,
we extend these new estimators to the case where only an i.i.d. input/output N -sample distributed according to the
importance sampling auxiliary distribution is available, using the nearest neighbour approximation described in [14].
A major practical advantage is that our extended estimators enable to estimate efficiently the Shapley effects for
TSA without additional calls to the function after the estimation of the failure probability by importance sampling.
In addition, under the condition that the reliability analysis has been done efficiently, we show theoretically that the
proposed estimators improve the estimation of the Shapley effects for TSA compared to the existing ones when the
failure probability is getting smaller and finally, we give some numerical guidelines.

The remainder of this paper is organized as follows. First, Section 2 consists in a review on variance-based global
sensitivity analysis, importance sampling and reliability-oriented sensitivity analysis. Then, Section 3 introduces and
describes the proposed importance-sampling-based estimators of the Shapley effects for TSA. In addition, Section 4
illustrates the practical interest of the new estimators on numerical examples: the Gaussian linear case, a cantilever
beam problem and a fire spread model. Finally, Section 5 concludes the present article and gives future research
perspectives stemming from this work.

2. A REVIEW ON GLOBAL SENSITIVITY INDICES: DEFINITIONS, ESTIMATION SCHEMES AND
ADAPTATION TO RELIABILITY

In this section, we recall the main principle of variance-based GSA and we describe very common existing sensi-
tivity indices as well as some of their estimation schemes proposed in the literature. Next, after a brief reminder of
importance sampling, we also review some tools from ROSA.

First of all, let us begin by introducing the notations that will be used throughout the paper. We let X =

(X1, . . . , Xd) be the input random vector on the input domain X =
⊗d

i=1 Xi ⊆ Rd with joint PDF fX. Then,
the black-box function is defined by:

φ : X −→ R
x 7−→ y = φ (x) .

(1)

No regularity hypothesis on φ is required but the random output Y = φ (X) ∈ R is supposed to be square integrable,
i.e. E

(
Y 2
)
< +∞. Moreover, we let P(d) = {u ⊆ [[1, d]]} denote all the subsets of [[1, d]] = {1, . . . , d}. Then, for

any u ∈ P(d), let us write −u = [[1, d]]\u for the complementary of the set u. In particular, for all i ∈ [[1, d]], −i
refers to the subset [[1, d]]\{i}. In addition, for any non-empty subset u ∈ P(d), letting u = {i1, . . . , ir} with i1 <
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Reliability-oriented Shapley effect estimation 3

· · · < ir, let Xu =
⊗r

j=1 Xij ⊆ Rr be the input domain of the random sub-vector Xu = (Xi1 , . . . , Xir ) = (Xi)i∈u.
Furthermore, for u ∈ P(d)\{∅, [[1, d]]}, for any xu ∈ Xu and for any x−u ∈ X−u, (xu,x−u) represents the vector
x̃ ∈ X such that x̃u = xu and x̃−u = x−u. We also write φ (xu,x−u) = φ (x̃). Finally, for any probability density
g : X −→ R+, we let Eg and Vg denote respectively the expectation and the variance operators of a random variable
distributed according to the law of PDF g. When there is no ambiguity, we may also write E and V for EfX and VfX .

2.1 From Sobol indices to Shapley effects

The Hoeffding functional decomposition [15] allows to represent a function defined on any subset of Rd as a sum
of elementary functions. When considering an input measure with independent components, this decomposition is
unique under orthogonality conditions stated by [7]. Then, in the sensitivity analysis framework with independent
inputs in X and a square integrable random output on the form Y = φ (X), this decomposition leads to a unique
functional decomposition of the variance of Y , also called ANOVA (ANalysis Of VAriance):

V (Y ) = V (φ(X)) =
∑

u∈P(d)\{∅}

V (φu(Xu)) , (2)

where for u ∈ P(d)\{∅}, φu(Xu) = E (φ(X)|Xu) +
∑

v(u(−1)|u|−|v|E (φ(X)|Xv). Then, the well-known
first-order Sobol indices [7] for GSA are obtained for all i ∈ [[1, d]] by:

Si =
V [E (φ (X) |Xi)]

V (φ (X))
∈ [0, 1]. (3)

The index Si quantifies the part of variance of the output explained only by the input Xi. From (2), it is also possible
to define higher-order Sobol indices which take into account the interactions between the input variables inφ but their
number increases exponentially with the dimension d and evaluating all of them becomes impossible. Thus, instead
of computing higher-order indices, one typically prefers to consider another family of indices, the total-order Sobol
indices introduced by [16], where each of them quantifies the part of variance of the output explained by the input Xi

in interaction with any other group of variables. In practice, when d is large, the first-order and the total-order indices
give satisfying information for the sensitivity analysis of the model.

When the inputs are correlated, the Hoeffding decomposition is no longer unique and even if it is still possible
to define and compute Sobol indices, they don’t allow to clearly identify the origin of the variability of the output
anymore. To address this issue, by an analogy between game theory [11] and GSA, the author of [12] introduced
new variance-based sensitivity indices which are able to deal with correlated inputs called Shapley effects or Shapley
values, defined for all i ∈ [[1, d]] by:

Shi =
1

V (φ (X))

1
d

∑
u⊆−i

(
d− 1
|u|

)−1

(c(u ∪ {i})− c(u)) , (4)

with c : P(d) −→ R a cost function which is specific to how input influence is measured. The d input variables are
interpreted as players (from the game theory framework from [11]) and the author of [12] proposed to use as cost
function the unormalized closed Sobol indices, that are defined for all u ∈ P(d) by:

VEu = V [E (φ (X) |Xu)] . (5)

The increment
(
VEu∪{i} − VEu

)
quantifies the individual contribution of the variableXi to the variance of the output

in relation with the group of variables u ⊆ −i taking into account both interaction and dependence. Moreover, the
Shapley values using the alternative cost function EVu = E [V (φ (X) |X−u)] are equal to the ones using VEu [17],
which thus provides an alternative way to compute them. We call VEu and EVu the conditional indices. Practical
interest and theoretical properties of Shapley values for GSA have been widely studied since their introduction [17–
19]. Two important properties allow for an easy interpretation of these values: they are all non negative and sum to
one. Thus, they give a quantitative measure, as a percentage, of the influence of each input on the variability of the
output taking into account both interaction and dependence between input variables.
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Remark 1. Remark that VE∅ = EV[[1,d]] = 0 and that VE[[1,d]] = EV∅ = V (φ (X)). Thus, during the estimation
process of the Shapley effects described in the remaining of the article, it will not be necessary to estimate the
conditional indices for u ∈ {∅, [[1, d]]}.

2.2 Shapley effect estimation schemes

Obtaining an accurate estimation of the Shapley effects at a reasonable cost is very challenging and is an active
research topic. In the context of game theory, the authors of [20] presented a first algorithm to estimate the Shapley
effects which was improved by [17] in sensitivity analysis by reducing the number of calls to the function φ. New
approaches [14,21] and surrogate-model-based strategies [19,22,23] were explored to reduce even more the estimation
cost of these indices while the articles [24,25] were focused on the estimation of the Shapley effects with independent
groups of variable.

The estimation schemes of the Shapley effects considered in this paper can be divided into two parts:

1. estimation of the conditional indices VEu or EVu for some subsets u ∈ P(d)\{∅, [[1, d]]}

2. an aggregation procedure which consists in computing all the Shi using the previous estimations of the condi-
tional indices.

In the following, two sampling methods from the literature are presented for the estimation of the conditional
indices, with for each of them, an extension to the case where only an i.i.d. sample distributed according to the input
distribution and its corresponding output is available. Afterwards, we also present two aggregation procedures.

2.2.1 Estimation of EVu by double Monte Carlo

In this sub-subsection and the following one, for any u ∈ P(d)\{∅, [[1, d]]}, assume that:

• we can evaluate the code φ in any point of X

• it is possible to generate an i.i.d. sample from the distribution of Xu

• for any xu ∈ Xu, it is possible to generate an i.i.d. sample from the distribution of X−u|Xu = xu.

These assumptions define the given-model framework. The two different cost functions VEu and EVu provide
the same Shapley values, as mentioned above. However, the authors of [26] pointed out a natural double (or two-
level) Monte Carlo estimator of VEu but remarked that it is biased, whereas they suggested a natural double Monte
Carlo estimator of EVu which is unbiased. Hence, the authors of [17] chose to estimate EVu instead of VEu and then
suggested the following double Monte Carlo estimator:

ÊVu,MC =
1
Nu

Nu∑
n=1

1
NI − 1

NI∑
i=1

(
φ(X(n,i)

u ,X
(n)
−u)− φ(X

(n)
−u)
)2
, (6)

where (X
(n)
−u)n∈[[1,Nu]] is an i.i.d. sample from the distribution of X−u, where for all n ∈ [[1, Nu]], (X

(n,i)
u )i∈[[1,NI ]]

is an i.i.d. sample from the distribution of Xu|X−u = X
(n)
−u and where φ(X

(n)
−u) = N−1

I

NI∑
j=1
φ(X

(n,j)
u ,X

(n)
−u). This

estimator is composed of an inner loop of sizeNI for the conditional variance, and of an outer loop of sizeNu (which
depends on u) for the expectation. It requires NuNI calls to φ and it is unbiased.
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Reliability-oriented Shapley effect estimation 5

2.2.2 Estimation of VEu by Pick-Freeze

The basics of the Pick-Freeze method were introduced in [7,16]. When the components of X are independent, it is
possible to remove the expensive double loop in (6) by rewriting the conditional indices VEu as a single expecta-
tion, with the interpretation of picking and freezing some input variables [7]. Recently, the Pick-Freeze method was
generalized in [14] to the case where the inputs are correlated. The idea is to introduce a second random variable
Xu =

(
Xu,X

′
−u
)

with X′−u
d
= X−u|Xu and X′−u ⊥⊥ X−u|Xu, where ⊥⊥ is the independence symbol, and to

write:
VEu = V [E (φ(X)|Xu)] = E [φ(X)φ(Xu)]− E [φ(X)]

2
. (7)

The random variables X and Xu are correlated and have the same distribution. To obtain Xu from X, the component
according to u is frozen and the component according to −u is chosen independently conditionally to Xu. In order
to estimate the conditional index based on (7), let first Êφ,N be the natural Monte Carlo estimator of E [φ(X)] with
a sample of size N from the distribution of X. The following estimator of VEu was then suggested by [14]:

V̂Eu,PF =
1
Nu

Nu∑
n=1

φ(X(n)
u ,X

(n,1)
−u )φ(X(n)

u ,X
(n,2)
−u )−

(
Êφ,N

)2
, (8)

where (X
(n)
u )n∈[[1,Nu]] is an i.i.d. sample from the distribution of Xu and where for all n ∈ [[1, Nu]], (X

(n,i)
−u )i∈[[1,2]]

are two independent random variables from the distribution of X−u|Xu = X
(n)
u . The inner loop of size NI of the

Monte Carlo estimator (6) is replaced by the product φ(X
(n)
u ,X

(n,1)
−u )φ(X

(n)
u ,X

(n,2)
−u ). This estimator requires 2Nu

calls to φ and is unbiased.

2.2.3 Extension when only an i.i.d. sample is available

In this section, assume that the code φ is no longer available and that only an i.i.d. sample
(
X(n),φ

(
X(n)

))
n∈[[1,N ]]

with
(
X(n)

)
n∈[[1,N ]]

from the distribution of X is available. This is the given-data framework as defined in [14]. The
estimation of sensitivity indices in this framework was first explored in [27] but in restrictive cases, for example when
|u| = 1.

The authors of [14] extended the previous estimators (6) and (8) to the given-data framework. The difficult point
is that exact sampling from the conditional distributions Xu|X−u = x−u for some x−u ∈ X−u is no longer possible.
The nearest-neighbours approximation, which is fully described in [14], allows to approximate these distributions
with the available i.i.d. sample. To that end, for v ∈ P(d)\{∅, [[1, d]]} and (l, i) ∈ [[1, N ]]2, let us write kvN (l, i) ∈
[[1, N ]] for the index of the i-th nearest neighbour of the point X

(l)
v in the subspace Xv (according to the Euclidean

distance) among
(
X

(n)
v

)
n∈[[1,N ]]

. Moreover, (kvN (l, i))i∈[[1,N ]] are defined to be two by two distinct: if several points

are at equal distance from X
(l)
v for some l ∈ [[1, N ]], ties are broken arbitrarily.

Finally, the extended estimators of the conditional indices are given by:

ÊV
KNN
u,MC =

1
Nu

Nu∑
n=1

1
NI − 1

NI∑
i=1

φ(X(k−u
N (s(n),i))

)
− 1
NI

NI∑
j=1

φ
(
X(k−u

N (s(n),j))
)2

, (9)

and

V̂E
KNN
u,PF =

1
Nu

Nu∑
n=1

φ
(
X(ku

N (s(n),1))
)
φ
(
X(ku

N (s(n),2))
)
−
(
Êφ,N

)2
, (10)

with (s(n))n∈[[1,Nu]] a sample of uniformly distributed integers in [[1, N ]]. These estimators require no more calls to
φ than those used to obtain the i.i.d. sample. The most costly step is the search of the nearest neighbours and under
some assumptions, those given-data estimators are asymptotically consistent when N and Nu go to +∞ [14].
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2.2.4 Aggregation procedures

The final part of the estimation of the Shapley effects is the aggregation procedure. It consists in the use of the
previous estimations of the conditional indices to deduce an estimation of the d Shapley values.

The following procedure is immediate and natural, and is called subset procedure in [14]:

1. estimate the conditional indices for all u ∈ P(d)\{∅, [[1, d]]} (see Remark 1)

2. for all i ∈ [[1, d]], estimate Shi with (4).

In the given-model framework, the computational cost to estimate all the Shapley values with this aggregation proce-
dure is then NV + (2d− 2)NINO with the double Monte Carlo method and NV + 2(2d− 2)NO with the Pick-Freeze
method, where NV is the size of the sample used to estimate V (φ (X)) and NO = Nu for all u ∈ P(d)\{∅, [[1, d]]}
(notation of (6)). Note that 2d − 2 is the cardinal of P(d)\{∅, [[1, d]]}. Its computational cost prohibits its direct use
when d increases, however, note that [14] also suggests using different values of Nu for u ∈ P(d)\{∅, [[1, d]]} to
tackle larger values of d with a bounded computational budget.

The random-permutation procedure was introduced by [20] in the context of game theory and its computational
cost was later reduced by [17]. The idea is to rewrite the Shapley effect Shi as an expectation over the set of all the
permutations of [[1, d]], denoted as S(d):

∀i ∈ [[1, d]], Shi =
1

V (φ (X))
EΠ

(
VEPi(Π)∪{i} − VEPi(Π)

)
, (11)

where for π ∈ S(d), Pi(π) =
{
π(j)/j ∈ [[1, π−1(i)− 1]]

}
and Π is a random variable uniformly distributed over

S(d). The expectation is then estimated using an i.i.d. sample (πj)j∈[[1,m]] of permutations uniformly distributed over
S(d) with m � d!. In the given-model framework, the computational cost of the improved algorithm to estimate all
the Shapley values proposed by [17] isNV +m(d−1)NINO with the double Monte Carlo method andNV +2m(d−
1)NO with the Pick-Freeze method. The numerical experiments in [14] suggest that it has a higher variance than the
subset procedure but its computational cost can be controlled with the parameter m.

2.3 Extension to reliability-oriented sensitivity analysis

Reliability analysis consists in the estimation of the failure probability pt = P (φ (X) > t), for a fixed known thresh-
old t ∈ R. Classical Monte Carlo sampling is not adapted to this problem when pt is getting smaller because its
computational cost becomes too large to obtain an accurate estimation. Therefore, several techniques have been de-
veloped in order to estimate pt more accurately: one can mentioned FORM/SORM methods [28,29], subset sampling
[30] or line sampling [31] for example. Another method, importance sampling, is reviewed here before coming back
to sensitivity analysis for reliability purpose.

2.3.1 Importance sampling

Importance sampling (IS) is a very usual variance-reduction technique which was introduced by [32] and applied for
the first time in reliability analysis by [33]. In the case of the estimation of a failure probability pt = P (φ (X) > t) =
EfX (1 (φ (X) > t)), it consists in rewriting the expectation according to an auxiliary density g : X −→ R+ as
Eg (1 (φ (X) > t)wg (X)), where wg (x) = fX(x)/g(x) is the likelihood ratio. To get an unbiased estimate, the
support of g must contain the support of x ∈ X 7→ 1 (φ (x) > t) fX(x). The corresponding estimator is then given
by:

p̂ISt,N =
1
N

N∑
n=1

1
(
φ(X(n)) > t

)
wg
(
X(n)

)
, (12)

with
(
X(n)

)
n∈[[1,N ]]

an i.i.d. sample distributed according to the IS auxiliary distribution g. It is consistent and un-
biased, and it has zero-variance if and only if g = gopt with ∀x ∈ X, gopt (x) ∝ 1 (φ (x) > t) fX(x), which is the

International Journal for Uncertainty Quantification
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density of the input distribution with PDF fX restricted to the failure domain [4]. This optimal density can not be
considered in practice because the normalizing constant is pt, which is the quantity to estimate, but many techniques
exist to approach gopt by a near-optimal auxiliary density: methods based on the design point [34], non-parametric
methods [35] or the cross-entropy method [36,37].

2.3.2 Target sensitivity analysis

Reliability-oriented sensitivity analysis can be divided into two categories, regarding the goal considered [6,38]:
target sensitivity analysis and conditional sensitivity analysis. In this article, only the first one will be examined.
TSA combines both reliability and sensitivity analyses and aims at studying the influence of each input variable on
the occurrence of the failure event. To that end, one can apply the previous variance-based global sensitivity indices
described in Section 2.1 to the quantity of interest 1 (φ (X) > t) instead of the output Y = φ (X): these new indices
are called target indices [6,13]. In particular, the definitions (3) to (5) are directly extended by replacing φ (X) by
1 (φ (X) > t). Techniques based on Monte Carlo sampling [8] and non-parametric estimation [9] have been proposed
to estimate first-order and total-order target Sobol indices, whereas as far as we know, estimators of the target Shapley
effects T-Shi have only been recently suggested in [13] and are strongly inspired from those in [14]. The estimators
from [13] are based on a classic Monte Carlo sampling from the input distribution of PDF fX in both given-model
and given-data frameworks. In the latter framework in [13], a reliability analysis is first performed and leads to the
estimation of pt with a Monte Carlo sampling. Then, the target Shapley effects are estimated from the available
sample with the estimator in (9) combined with the random permutation procedure. However, numerical experiments
in Section 4 highlight their limits when the failure probability is getting smaller: their variance increases and a large
Monte Carlo sample is thus required to get an accurate estimation, and make them hardly applicable with a costly
computer model φ. The main goal of this article is thus to remedy these shortcomings with importance sampling.

3. TARGET SHAPLEY EFFECTS ESTIMATION BY IMPORTANCE SAMPLING

In this section, we suggest new estimators of the d target Shapley effects T-Shi, defined as in (4) with φ (X) replaced
by 1 (φ (X) > t), by importance sampling when the input variables are correlated. To that end, we propose four new
estimators of the target conditional indices T-VEu and T-EVu, defined as VEu and EVu with φ (X) replaced by
1 (φ (X) > t), based on those of the previous section:

1. an unbiased estimator of T-EVu by double Monte Carlo with importance sampling given-model

2. an estimator of T-EVu by double Monte Carlo with importance sampling given-data

3. an unbiased estimator of T-VEu by Pick-Freeze with importance sampling given-model

4. an estimator of T-VEu by Pick-Freeze with importance sampling given-data.

Recall that the given-model framework is described at the beginning of Section 2.2.1 and that the given-data frame-
work is described in Section 2.2.3. Then, the two aggregation procedures described in Section 2.2.4 provide eight
new estimators of the target Shapley effects which have a lower variance than the existing ones when the auxiliary
density is adapted to the problem, as will be shown numerically in Section 4.

For any subset u ∈ P(d)\{∅, [[1, d]]}, for any xu ∈ Xu, we let fXu
and fX−u|Xu=xu

denote respectively the
PDF of the marginal distribution of Xu and the PDF of the conditional distribution of X−u|Xu = xu. In addition,
let g : X→ R+ be the PDF of the IS auxiliary distribution as in Section 2.3.1 and gXu

and gX−u|Xu=xu
be the PDFs

of its marginal and its conditional distributions. Moreover, in order to lighten the notations, for all t ∈ R and for all
x ∈ X, let us write:

ψt (x) = 1 (φ (x) > t) and wg
t (x) = ψt (x)

fX (x)

g (x)
. (13)

Finally, in the following, the convention 0/0 = 0 will be used, and in particular, this implies that for all x−u ∈ X−u,
fX−u|Xu=xu

(x−u) = 0 for any xu ∈ Xu such that fXu
(xu) = 0 (see also Remarks 3 and 4).

Volume x, Issue x, 2022



8 J. Demange-Chryst, F. Bachoc & J. Morio

3.1 Estimation of T-EVu by double Monte Carlo with importance sampling

For the same reasons as in [17], for u ∈ P(d)\{∅, [[1, d]]}, we choose to estimate the target conditional index T-EVu

by double Monte Carlo. However, contrary to the existing literature, in order to introduce importance sampling in the
estimation process we write this target conditional index as:

T-EVu = EfX [VfX (ψt(X)|X−u)] = pt − EfX

[
EfX (ψt(X)|X−u)

2
]
. (14)

The estimator p̂IS
t,N in (12) already provides an unbiased and convergent estimation of the failure probability pt by

importance sampling. The main problem is thus to estimate EfX

[
EfX (ψt(X)|X−u)

2
]

by importance sampling. Let
us rewrite this quantity according to the IS auxiliary density g (see APPENDIX A):

EfX

[
EfX (ψt(X)|X−u)

2
]

= Eg

[
Eg

(
ψt(X)

fXu|X−u
(Xu)

gXu|X−u
(Xu)

∣∣∣∣X−u)2
fX−u (X−u)

gX−u (X−u)

]
. (15)

However, in the rest of the article, we will not assume that it is possible to evaluate directly the conditional PDFs
fXu|X−u=x−u

and gXu|X−u=x−u
at any point of Xu for all x−u ∈ X−u, as it can be a restrictive hypothesis in

practice, especially with non trivial input distributions. Therefore, using the definition of the conditional PDF, we
choose to rewrite the ratio fXu|X−u

/gXu|X−u
in the form fX/fX−u × gX−u/gX. From this point, some calculations

developed in APPENDIX A lead to the following lemma.

Lemma 1. For any IS auxiliary density g : X −→ R+, we have:

EfX

[
EfX (ψt(X)|X−u)

2
]

= Eg

[
Eg (wg

t (X) |X−u)
2 gX−u

(X−u)

fX−u
(X−u)

]
. (16)

Proof. See APPENDIX A.

Because of the described transformation, one can notice that the likelihood ratios in (16) are not all in the classic
form fX/g, there is a term in the form g/fX in the outer expectation. From (16), it is thus possible to introduce
double Monte Carlo estimators by importance sampling of the target conditional index T-EVu in both given-model
and given-data frameworks.

3.1.1 Given-model framework with importance sampling

In the given-model framework with importance sampling, assume that:

• we can evaluate the code φ in any point of X

• it is possible to generate an i.i.d. sample from the distribution of gX−u

• for any x−u ∈ X−u, it is possible to generate an i.i.d. sample from the distribution of gXu|X−u=x−u

• it is possible to evaluate fX and g in any point of X

• it is possible to evaluate fX−u
and gX−u

in any point of X−u.

The third hypothesis is reasonable because we are free to choose g such that the sampling from the conditional
distributions is not problematic. Moreover, it is no longer necessary to evaluate the conditional PDFs of fX and g,
which is convenient as discussed above. The new writing (16) suggests then to introduce the following double Monte
Carlo estimator by importance sampling:

T̂-EV
IS
u,MC = p̂IS

t,N −

 1
Nu

Nu∑
n=1

(
ψIS

t (X
(n)
−u)
)2 gX−u

(
X

(n)
−u

)
fX−u

(
X

(n)
−u

) − ÊIS
bias,u

 , (17)
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where
(
X

(n)
−u

)
n∈[[1,Nu]]

is an i.i.d. sample from the distribution of gX−u , where for all n ∈ [[1, Nu]],
(
X

(n,k)
u

)
k∈[[1,NI ]]

is an i.i.d. sample from the distribution of g
Xu|X−u=X

(n)
−u

and

ψIS
t

(
X

(n)
−u

)
=

1
NI

NI∑
k=1

wg
t

(
X(n,k)

u ,X
(n)
−u

)
, (18)

and where the term ÊIS
bias,u is defined by:

ÊIS
bias,u =

1
Nu

Nu∑
n=1

1
NI − 1

[
1
NI

NI∑
k=1

wg
t

(
X(n,k)

u ,X
(n)
−u

)2
−
(
ψIS

t

(
X

(n)
−u

))2
]
gX−u

(
X

(n)
−u

)
fX−u

(
X

(n)
−u

) . (19)

As in [17], this estimator is composed of an inner loop of size NI for the inner conditional expectation and an outer
loop of size Nu (which depends on u) for the outer expectation. Moreover, it is clear that for all n ∈ [[1, Nu]],

ψIS
t (X

(n)
−u) is an unbiased estimator of Eg

(
wg

t (X) |X−u = X
(n)
−u

)
. However,

(
ψIS

t (X
(n)
−u)
)2

is not an unbiased es-

timator of Eg

(
wg

t (X) |X−u = X
(n)
−u

)2
because of the square which creates a bias. This bias from the inner loop

spreads itself into the outer loop and finally the bias of the uncorrected double Monte Carlo estimator by importance
sampling of T-EVu (obtained by removing ÊIS

bias,u in (17)) is Eg

[
Vg

(
ψIS

t (X−u)|X−u
)
gX−u(X−u)

/
fX−u(X−u)

]
,

where for all x−u ∈ X−u:

ψIS
t (x−u) =

1
NI

NI∑
k=1

wg
t

(
X(k)

u ,x−u

)
, (20)

with
(
X

(k)
u

)
k∈[[1,NI ]]

an i.i.d. sample from the distribution of gXu|X−u=x−u
. The term ÊIS

bias,u in (19) is then an

unbiased estimator of the latter bias and allows to correct it. This leads to the main result of this section:

Proposition 1. T̂-EV
IS
u,MC in (17) is an unbiased double Monte Carlo estimator by importance sampling of the condi-

tional index T-EVu, and requires NuNI calls to the function φ in addition to those to estimate pt.

Proof. See APPENDIX B.

3.1.2 Given-data framework with importance sampling

In the given-data framework with importance sampling, assume that:

• an i.i.d. input/output sample
(
X(n),ψt

(
X(n)

))
n∈[[1,N ]]

with
(
X(n)

)
n∈[[1,N ]]

distributed according to the IS
auxiliary distribution g is available

• it is possible to evaluate fX and g in any point of X

• it is possible to evaluate fX−u
and gX−u

in any point of X−u.

Contrary to the given-model framework, here the black-box model φ is no longer available and it is not possible to
generate any additional sample from any distribution. Typically, in the context of ROSA, the i.i.d. sample from g is
already obtained from a previous importance-sampling-based estimation of pt (see Section 3.3). The extension of
the double Monte Carlo estimator of T-EVu by importance sampling (17) to the given-data framework is based on
the nearest-neighbours method introduced in [14] and briefly described in Section 2. Here, for i ∈ [[1, N ]], the exact
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sampling from the conditional auxiliary PDF g
Xu|X−u=X

(i)
−u

is approximated by the NI nearest neighbours of X
(i)
−u

among the sample
(
X

(n)
−u

)
n∈[[1,N ]]

. Then, the extended estimator is:

T̂-EV
IS,KNN
u,MC = p̂IS

t,N −

 1
Nu

Nu∑
n=1

(
ψIS,KNN

t,u (X(s(n)))
)2 gX−u

(
X

(s(n))
−u

)
fX−u

(
X

(s(n))
−u

) − ÊIS,KNN
bias,u

 , (21)

where (s(n))n∈[[1,Nu]] is a sample of uniformly distributed integers in [[1, N ]], where for all n ∈ [[1, Nu]],

ψIS,KNN
t,u

(
X(s(n))

)
=

1
NI

NI∑
k=1

wg
t

(
X(k−u

N (s(n),k))
)
, (22)

with k−uN defined in Section 2.2.3 and where the term ÊIS,KNN
bias,u is defined by:

ÊIS,KNN
bias,u =

1
Nu

Nu∑
n=1

1
NI − 1

[
1
NI

NI∑
k=1

wg
t

(
X(k−u

N (s(n),k))
)2
−
(
ψIS,KNN

t,u

(
X(s(n))

))2
]
gX−u

(
X

(s(n))
−u

)
fX−u

(
X

(s(n))
−u

) . (23)

It does not require any additional call to φ to those from the already available i.i.d. sample. In the same way as the
existing given-data estimators in GSA and ROSA (see Section 2), the costly part of this algorithm is the computation
of the nearest neighbours at each step. Moreover, both estimators (17) and (21) have the same general structure. In
(17), the bias created by the square in the inner loop is corrected by the estimator (19). This structure is kept in (21)
and (23). Nevertheless, for given finite values of Nu and NI , the given-data estimator (21) still has a bias caused by
the nearest neighbour approximation, and as far as we know, no article has proposed any theoretical study of this bias.

Remark 2. Let us provide some additional motivations for the given-data with importance sampling framework.
First, we assumed here that the computer model is no longer available and that we can only use the available sample
to estimate the target Shapley effects. One can notice that it might be possible to get around this problem by fitting
a surrogate model, such as a Gaussian process for example, with the available sample and then coming back to
the given-model framework. However, this approach has some drawbacks that a practitioner may prefer to avoid.
In fact, when N is large, it is not straightforward to fit efficiently a surrogate model, even more when the input
dimension increases. Furthermore, even if the given-model framework with a surrogate model does not suffer from
the nearest-neighbour approximation, the surrogate model introduces another approximation error which is hard to
quantify and is added to the estimation error of each index. This error is not necessarily lower than the error due to
the nearest-neighbour approximation when the dimension increases.

Second, we assumed that it is not possible to draw additional samples from any distribution. In the given-model
framework, it is necessary to be able to draw samples according to the conditional distributions of g. In practice, most
of the time, Gaussian auxiliary distributions are chosen and it is then straightforward to sample from their conditional
distributions. However, in some cases, auxiliary distributions belonging to other parametric families could be more
relevant but do not satisfy this criterion.

3.2 Estimation of T-VEu by Pick-Freeze with importance sampling

For any subset u ∈ P(d)\{∅, [[1, d]]}, we estimate the target conditional index T-VEu by Pick-Freeze and with
importance sampling. In ROSA with correlated inputs, we recall the fundamental equation of Pick-Freeze (7):

T-VEu = VfX [EfX (ψt(X)|Xu)] = EfX [ψt(X)ψt(X
u)]− p2

t , (24)
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where Xu =
(
Xu,X

′
−u
)

with X′−u
d
= X−u|Xu and X′−u ⊥⊥ X−u|Xu. For

(
X(n)

)
n∈[[1,N ]]

an i.i.d. sample dis-
tributed according to the IS auxiliary distribution g, the estimator

p̂IS,ub
t,N =

(
p̂IS
t,N

)2 − 1
N − 1

[
1
N

N∑
n=1

wg
t

(
X(n)

)2
−
(
p̂IS
t,N

)2

]
(25)

is easily shown (see APPENDIX C) to be an unbiased estimator by importance sampling of p2
t . The main problem is

then to estimate the expectation EfX [ψt(X)ψt(X
u)] by importance sampling. Let us rewrite it according to the IS

auxiliary density g:

Lemma 2. For any IS auxiliary density g : X −→ R+, we have:

EfX (ψt(X)ψt(X
u)) = Eg

(
wg

t (X)wg
t (Xu)

gXu
(Xu)

fXu
(Xu)

)
. (26)

Proof. See APPENDIX D.

The term in the expectation is a function of the three random variables Xu, X−u and X′−u with the correlation
structure described above. From (26), it is then possible to propose Pick-Freeze estimators by importance sampling
of the target conditional index T-VEu in both given-model and given-data frameworks.

3.2.1 Given-model framework with importance sampling

Here, we make the assumptions of the given-model with importance sampling framework defined in Section 3.1.1.
The writing (26) suggests then to introduce the following Pick-Freeze estimator of T-VEu by importance sampling:

T̂-VE
IS
u,PF =

1
Nu

Nu∑
n=1

wg
t

(
X(n)

u ,X
(n,1)
−u

)
wg

t

(
X(n)

u ,X
(n,2)
−u

) gXu(X
(n)
u )

fXu
(X

(n)
u )
− p̂IS,ub

t,N , (27)

where (X
(n)
u )n∈[[1,Nu]] is an i.i.d. sample from the distribution of gXu and where for all n ∈ [[1, Nu]], (X

(n,k)
−u )k∈[[1,2]]

are two independent random variables from the distribution of g
X−u|Xu=X

(n)
u

. This then leads to the main result of
this sub-section:

Proposition 2. T̂-VE
IS
u,PF in (27) is an unbiased estimator of T-VEu and it requires 2Nu calls to the function φ in

addition to those to estimate p2
t .

Proof. The first term in the estimator (27) is an unbiased estimator of the expectation Eg

(
wg

t (X)wg
t (Xu)

gXu(Xu)

fXu(Xu)

)
since it is its empirical mean, and p̂IS,ub

t,N in (25) is an unbiased estimator of p2
t . The linearity of the expectation con-

cludes the proof.

3.2.2 Given-data framework with importance sampling

We make here the same assumptions of the given-data with importance sampling framework defined in Section 3.1.2.
In particular, an i.i.d. input/output sample

(
X(n),ψt

(
X(n)

))
n∈[[1,N ]]

with
(
X(n)

)
n∈[[1,N ]]

distributed according to the
IS auxiliary distribution g is available. Once more, we will use the nearest-neighbour approximation to extend the
Pick-Freeze estimator by importance sampling (27) of T-VEu to the given-data framework and the corresponding
estimator is:

T̂-VE
IS,KNN
u,PF =

1
Nu

Nu∑
n=1

wg
t

(
X(ku

N (s(n),1))
)
wg

t

(
X(ku

N (s(n),2))
) gXu

(X
(s(n))
u )

fXu
(X

(s(n))
u )

− p̂IS,ub
t,N , (28)
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where (s(n))n∈[[1,Nu]] is a sample of uniformly distributed integers in [[1, N ]] and where kuN is defined in Section 2.2.3.
This estimator does not require any additional call to the function φ to those from the already available i.i.d. sam-
ple and more generally, all the remarks previously made in Section 3.1.2 about the double Monte Carlo given-data
estimator by importance sampling (21) of T-EVu are still valid.

Remark 3. In all the above estimators (17) (21) (27) and (28), for v ∈ {u,−u}, it can be possible to draw a sample

X
(i)
v according to the IS auxiliary distribution gXv

such that fXv

(
X

(i)
v

)
= 0 which is at the denominator. However,

this implies that for all x−v ∈ X−v , fX
(
X

(i)
v ,x−v

)
= 0 and then wg

t

(
X

(i)
v ,x−v

)
= 0. Thus, the convention

0/0 = 0 adopted at the beginning of the section allows to set as 0 the term corresponding to this sample in all the
previous estimators.

3.3 From reliability analysis to reliability-oriented sensitivity analysis

In practice, the ROSA of a complex system always comes after the reliability analysis, i.e. the estimation of the failure
probability. When the latter has been done with importance sampling, we already have at our disposal a sub-optimal
auxiliary PDF g close to the optimal one gopt (x) ∝ 1 (φ (x) > t) fX (x) (see Section 2.3.1), as well as an i.i.d. N -
sample distributed according to it. In order to check if it is beneficial to re-use the available data from the reliability
analysis to estimate the target conditional indices and thus the target Shapley values, let us consider the variance of the
previous new estimators when the auxiliary density is gopt. Since it is based on a double loop, it may be complicated
to write the variance of the double Monte-Carlo estimator (17) in closed form, but this is feasible for the Pick-Freeze
estimator (27) since it is an empirical mean. Considering Nu as fixed, we have (see APPENDIX E.1):

Vgopt

(
T̂-VE

IS
u,PF

)
≤ p2

t

Nu
∝ p2

t . (29)

This result does not prove that gopt is the optimal IS auxiliary distribution to estimate the target closed Sobol
index T-VEu from (27), but it proves that using gopt as the IS auxiliary density improves its estimation in comparison
to its existing estimators without importance sampling in the regime where pt → 0. Indeed, letting T̂-VEu,PF be the
unbiased estimator by Pick-Freeze without importance sampling of T-VEu, defined as in (8) with φ replaced by ψt,
we have (see APPENDIX E.2):

VfX

(
T̂-VEu,PF

)
≥ 1
Nu

(
VfX [EfX (ψt(X)|Xu)] + p2

t

) (
1−

(
VfX [EfX (ψt(X)|Xu)] + p2

t

))
. (30)

Thus, at best, when φ depends only on X−u, we have VfX [EfX (ψt(X)|Xu)] = 0 and then VfX

(
T̂-VEu,PF

)
≥

p2
t

(
1− p2

t

)
/Nu ∝ p2

t

(
1− p2

t

)
∼

pt→0
p2
t . At worst, when φ depends only on Xu, we have VfX [EfX (ψt(X)|Xu)] =

pt (1− pt) and then VfX

(
T̂-VEu,PF

)
≥ pt (1− pt) /Nu ∝ pt (1− pt) ∼

pt→0
pt. Since pt is the probability of a rare

event, pt � 1 and so p2
t � pt, thus using gopt as the IS auxiliary density improves the estimation of all the target

closed Sobol indices in the regime where pt −→ 0, and then of the d target Shapley effects.
However, in practice, the available sample is not drawn exactly from gopt but from an IS auxiliary distribution g

close to gopt, but we can still expect a significant improvement in the estimation of the target closed Sobol indices.
Hence, this theoretical analysis supports the intuition that it is beneficial to re-use the available data from the reliability
analysis to estimate the target Shapley effects.

Remark 4. The input domain X is not necessarily equal to Rd. Nevertheless, it can be practically convenient to use
an IS auxiliary distribution supported on Rd (or more generally on a subset of Rd strictly greater than X) such as a
normal distribution for example. To that end, the solution adopted in this article consists in extending the input domain
of φ and fX on Rd by setting φ (x) = 0 and fX (x) = 0 for any x ∈ Rd\X. The convention 0/0 = 0 allows then
to ignore the samples drawn by g on Rd\X during the estimation process (see Remark 3). However, if the reliability
analysis has been done efficiently, the IS auxiliary distribution g should be close to gopt (x) ∝ 1 (φ (x) > t) fX(x)
and therefore very few samples should be drawn in Rd\X.
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4. NUMERICAL APPLICATIONS

In order to illustrate the practical interest of the previous efforts, this section aims to evaluate numerically the perfor-
mances of the suggested estimators of the target Shapley effects on various test functions with correlated input vari-
ables and to compare them to the performances of the existing estimators. The code to reproduce the numerical exper-
iments is publicly available at: https://github.com/Julien6431/Target-Shapley-effects.git

In the following examples, as explained in Section 3.3, we will consider that the reliability analysis has already
been done, i.e. that an IS auxiliary density g close to gopt has been determined. The present article does not aim
to compare different importance sampling techniques, therefore we choose here to compute the IS auxiliary PDF
g only by adaptive importance sampling with the cross-entropy algorithm [37], from one of the two following IS
parametric families: the Gaussian distributions (single Gaussian, IS-SG) [37] and the Gaussian mixture (IS-GM)
distributions [39].

Moreover, the dimension of the following problems will be low or moderate, therefore only the subset aggregation
procedure will be used, and we adopt then the following numerical parameters:

• Ntot = 2× 104 which represents the total number of calls to φ

• NI = 3 in Sections 4.1 and 4.2 as suggested in [14,17], NI = 2 in Section 4.3, the size of the inner loop in the
double Monte Carlo estimator

• NV = 104 the size of the sample to estimate V (ψt (X)) in the given-model framework

• in the given-model framework, for u ∈ P(d)\{∅, [[1, d]]}, Nu = NO =
⌊
(Ntot −NV)

(
NI(2d − 2)

)−1
⌋

with the double Monte Carlo estimators and Nu = NO =
⌊
(Ntot −NV)

(
2(2d − 2)

)−1
⌋

with the Pick-Freeze
estimators, in order to reachNtot calls or less toφ (according to both expressions ofNtot given in Section 2.2.4)

• in the given-data framework, for all u ∈ P(d)\{∅, [[1, d]]}, Nu = NO = 103

• nrep = 200 realisations of each estimator to represent the results as boxplots.

For different reasons described in more details in APPENDIX G, the preprocessing procedure presented in AP-
PENDIX G.1 will be applied as soon as a given-data estimator will be used. It is based on Theorem 9 stated by [18].

In the following, results will be presented as boxplots. Let us define first the acronyms that will be used in the
legends:

• IS-SG refers to estimators with importance sampling using an auxiliary distribution in the single Gaussian
family determined by the cross-entropy algorithm,

• IS-GM refers to estimators with importance sampling using an auxiliary distribution in the Gaussian mixture
family determined by the cross-entropy algorithm.

Then, each box extends from the first to the third quartile values of the data, with a line at the median. The whiskers
extend from the box to show the range of the data, and flier points are those past the end of the whiskers.

4.1 Gaussian linear case

First, let us consider the simple Gaussian linear example. For d ≥ 2 and a vector β ∈ Rd\{0}, let us define the
d-dimensional linear function φβ by:

φβ : Rd −→ R
x 7−→ β>x.

(31)

Then, the input vector X is assumed normally distributed with mean vector µ ∈ Rd and covariance matrix Σ ∈
Md (R) which is symmetric positive-definite, i.e. X ∼ Nd (µ,Σ). Moreover the covariance matrix Σ is here con-
sidered non-diagonal in order to include dependence between the input variables. Finally, since the failure domain is
here clearly located in one region of Rd, only Gaussian auxiliary IS distributions will be considered.
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FIG. 1: Estimation of the target Shapley effects in the 3-
dimensional Gaussian linear example in the given-model
framework.

FIG. 2: Estimation of the target Shapley effects in the
3-dimensional Gaussian linear example in the given-data
framework.

The parameters of the toy case are specified by β =
(
1 1 1

)>
, µ =

(
0 0 0

)>
, Σ =

1 0 0
0 1 −0.3
0 −0.3 1


and t = 4. The failure threshold is set at t = 4 such that the failure probability is pβt ≈ 4.9 × 10−3. Reference
values of the target Shapley effects will be computed with (F.5), (F.4) and the definition in (4). The performances of
the estimators with and without importance sampling in both given-model and given-data frameworks are compared
graphically respectively in Figure 1 and Figure 2 (recall that the acronyms are defined above). As expected, in both
frameworks, when the IS auxiliary density is adapted to the problem, the estimators with importance sampling give
a much better estimation of the target Shapley effects when the failure probability is small. Despite few outliers, the
corresponding boxplots have a much smaller stretch and they are centered on the reference values. This first example
highlights then that importance sampling has a huge positive impact on the quality of the estimation of the target
Shapley effects with a low failure probability.

4.2 Cantilever beam

4.2.1 Presentation of the model

The second example is a real structure engineering problem which is presented in [40,41]. Consider a rectangular
cantilever beam structure. The dimensional parameters of the beam are denoted lX , lY and L. The elastic modulus
of the structure is represented by E. Two random forces FX and FY are exerted on the tip of the section. The goal
function is then the maximum vertical displacement of the tip section, which can be given analytically according to
the previous parameters by:

φ (FX , FY , E, lX , lY , L) =
4L3

ElX lY

√(
FX

l2X

)2

+

(
FY

l2Y

)2

. (32)

The maximum vertical displacement allowed is t = 0.066 m, which is then the failure threshold of the reliability
problem.
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Input variable Distribution Mean Coefficient of variation

1 FX LogNormal 556.8 N 0.08
2 FY LogNormal 453.6 N 0.08
3 E LogNormal 200.109 Pa 0.06
4 lX Normal 0.062 m 0.1
5 lY Normal 0.0987 m 0.1
6 L Normal 4.29 m 0.1

TABLE 1: Distributions of each input variable of the cantilever beam example.

T-Shref
1 T-Shref

2 T-Shref
3 T-Shref

4 T-Shref
5 T-Shref

6

0.146 0.001 0.103 0.282 0.254 0.214

TABLE 2: Reference values of the target Shapley effects in the cantilever beam problem.

The distributions of each input variable are listed in Table 1. Moreover, the dimensional variables are linearly
dependent through the following Pearson correlation coefficients:

ρlX ,lY = −0.55 and ρL,lX = ρL,lY = 0.45. (33)

We do not know anything about the form of the failure domain, therefore both Gaussian and Gaussian mixture
IS auxiliary distributions will be used in order to evaluate the influence of the IS auxiliary density on the estimation
of the target Shapley effects with importance sampling. First, we will compare the performances of the given-data
estimators, according to the framework described in Section 3.3. Then, in order to evaluate graphically the error
due to the nearest neighbour approximation, we will evaluate the performances of the given-model estimators with
importance sampling with a Gaussian IS auxiliary distribution. Since the input vector X = (FX , FY , E, lX , lY , L)

>

is not Gaussian, we will not generate samples according to the input conditional distributions and thus we will not
evaluate the performances of the existing given-model estimators without importance sampling.

4.2.2 Procedure to obtain the reference values

A Monte Carlo estimation with a sample of size N = 106 gives a reference value for the failure probability: pref
t ≈

1.5 × 10−2. Next, one can remark that a random variable following a LogNormal distribution can be written as
a bijective transformation of a Gaussian random variable. Then, thanks to Theorem 9, we decide to transform the
input random variable X = (FX , FY , E, lX , lY , L) into a 6-dimensional Gaussian random vector with the correct
mean vector and covariance matrix. At last, reference values of the target Shapley effects are computed using the
double Monte Carlo existing estimator in (6) combined with the non-given data sampling procedure described in
APPENDIX I with the input distribution and finally, with N = 106, NO = 106 and NI = 3, we obtain the reference
values presented in Table 2.

4.2.3 Numerical results

The results of the ROSA of the cantilever beam problem in the given-data and given-model frameworks are respec-
tively given in Figures 3 and 4. Once more, when the IS auxiliary density is adapted to the problem, the estimators
with importance sampling give a better estimation of the target Shapley effects than the existing estimators for the
same reasons as in the previous example. In addition, unreported numerical simulations provide that the failure do-
main is here located in one region of the input space which explains why both Gaussian and Gaussian mixture IS
auxiliary densities provide similar performances. Both figures show that the dimensional parameters of the beam are
the most influential inputs on the occurrence of the failure and show that the estimators with importance sampling
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FIG. 3: Estimation of the target Shapley effects in the cantilever beam example, in the given-data framework and with the prepro-
cessing described in APPENDIX G.1.

provide the same hierarchy of importance of the inputs as the reference values of the target Shapley effects whereas
the existing estimators without importance sampling switch the importance of T-Sh4 and T-Sh5.

In addition, one can remark that the dispersion of each given-model boxplot in Figure 4 is bigger than the
dispersion of each given-data boxplot in Figure 3. In fact, in both cases, the maximal number of calls to φ allowed is
Ntot = 2×104. In the given-model framework, it is necessary to choose the parametersNI ,NO andNV such that we
exactly reach Ntot calls to the function, whereas in the given-data framework, we are free to chose NI and NO as we
want because we already have the Ntot-sample at our disposal. In both frameworks, the value of NI is already fixed.
As a consequence, in the given-model framework, the value of NO must be equal to the one given in the introduction
of Section 4, which is always lower than 102 in each numerical example here, whereas in the given-data framework,
we choose NO = 103. This gap between the value of NO in both frameworks explains the larger dispersion observed
in the given-model algorithms.

Moreover, Figure 3 illustrates a problem already mentioned in Section 3.1.2. On some indices in Figure 3, there
is a gap between the boxplot median and the reference value whereas the boxplots of the given-model estimators
with importance sampling presented in Figure 4 are centered on the reference values. Indeed, when the dimension
increases, distances between points tend to become larger and thus the nearest neighbour approximations of the
conditional distributions are getting less accurate. This phenomenon might create a bias in the estimation of the
target Shapley effects with the given-data estimators when the dimension increases. However, one can remark on
Figure 3 that importance sampling seems to reduce this error. Indeed, without importance sampling, the points of
interest, the failure points, are in the tail of the distribution, where the concentration of points is small and thus where
the distances between points are larger than on average, which is not the case with importance sampling when the
auxiliary distribution is adapted to the problem. This is another advantage of using importance sampling to estimate
the target Shapley effects. Finally, as seen in Figure G.8 in APPENDIX G, the preprocessing introduced and described
in APPENDIX G.1 seems as well to reduce significantly the error.
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FIG. 4: Estimation of the target Shapley effects in the cantilever beam example, in the given-model framework.

4.3 Fire spread

4.3.1 Presentation of the model

The Rothermel’s model introduced in [42] is a semi-physical model which aims at modeling the spread of forest
fires. It has two main outputs: the rate of spread of a point in the fire front (R given in cm · s−1) and the reaction
intensity (IR given in kW ·m−2 · s−1). The initial equations from [42] have been modified several times since their
introduction and in the present study, we adopt the point of view of [17,43]. In the same way, we take into account the
modifications of [44] on the net fuel loading and the optimum reaction velocity and the modifications of [45] on the
moisture damping coefficient and the heat preignition. In addition, we adopt as well the modifications of the marginal
input distributions introduced and explained in [17].

The model considered in the present article has 10 input variables grouped in the random input vector X =
(δ,σ, h, ρp,ml,md, ST , U, tan ϕ, P ) and whose physical meanings as well as their marginal distributions are given
in Table 3. Moreover, real observations in [46] highlight a negative correlation between the moisture content of dead
fuel md and the wind speed U , i.e. the windier it is, the less moisture the dead fuels contain. We suppose here that the
correlation is strong and that it is specified by the following Pearson correlation coefficient:

ρmd,U = −0.8. (34)

The joint distribution of (md, U) is then based on a Gaussian copula. Finally, in order to ensure the physical consis-
tency of the model, the following rules are adopted:

• all negative values of any input variable are rejected

• all values of ST and P over 1 are rejected
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Input variable Symbol and unit Distribution

1 Fuel depth δ (cm) LogN (2.19, 0.517)
2 Fuel particle area-to-volume ratio σ (cm−1) LogN (3.31, 0.294)

3 Fuel particle low heat content h (Kcal · kg−1) LogN (8.48, 0.063)

4 Oven-dry particle density ρp (D ·W · g · cm−3) LogN (−0.592, 0.219)

5 Moisture content of the live fuel ml (H2OgD ·W · g−1) N (1.18, 0.377)

6 Moisture content of the dead fuel md (H2OgD ·W · g−1) N (0.19, 0.047)

7 Fuel particle total mineral content ST (MIN · gD ·W · g−1) N (0.049, 0.011)

8 Wind speed at midflame height U (km · h−1) 6.9LogN (1.0174, 0.5569)
9 Slope tan ϕ N (0.38, 0.186)
10 Dead fuel loading to total fuel loading P LogN (−2.19, 0.64)

TABLE 3: Distributions of each input variable of the fire spread example. D.W.: dry weight - MIN: mineral weight
- N (µ,σ): the 1-dimensional normal distribution with mean µ ∈ R and standard deviation σ > 0 - aLogN (µ,σ):
the distribution of a exp (A) with A a 1-dimensional normal random variable of mean µ ∈ R and standard deviation
σ > 0.

T-Shref
1 0.152 T-Shref

2 0.247 T-Shref
3 0.011 T-Shref

4 0.003 T-Shref
5 0.162

T-Shref
6 0.145 T-Shref

7 0.016 T-Shref
8 0.182 T-Shref

9 0.009 T-Shref
10 0.073

TABLE 4: Reference values of the target Shapley effects in the fire spread problem.

• all values of md lower than 3/0.6 are rejected since this value is the smallest possible surface area to volume
ratio for fuels with a diameter less than 6mm.

This means that the input distribution is given by the distribution defined by Table 3 and (34), conditioned to the
fact that none of the above rules lead to a rejection. In practice, we use truncated distributions in order to handle the
inputs numerically. To sum up, given the random input vector X = (δ,σ, h, ρp,ml,md, ST , U, tan ϕ, P ), the rate
of spread is obtained through the system of equations in APPENDIX H. Finally, the critical threshold of the rate of
spread is arbitrarily set to t = 60 cm · s−1.

4.3.2 Reference values

A Monte Carlo estimation with a sample of size N = 107 gives a reference value for the failure probability: pref
t ≈

1.4 × 10−4. Next, since the random input vector X = (δ,σ, h, ρp,ml,md, ST , U, tan ϕ, P ) is composed of normal
and LogNormal random variables, as in the previous example, we transform it into a 10-dimensional Gaussian random
vector with the correct mean vector and covariance matrix. At last, reference values of the target Shapley effects
are computed using the double Monte Carlo existing estimator in (6) combined with the non-given data sampling
procedure described in APPENDIX I with the input distribution and finally, with N = 107, NO = 106 and NI = 3,
we obtain the reference values presented in Table 4.

4.3.3 Numerical results

The results of the ROSA of the fire spread problem in the given-data framework with Ntot = 2 × 104 are given
in Figure 5. First, since the failure probability is around pref

t ∼ 10−4, the existing estimators without importance
sampling with samples of size Ntot = 2× 104 drawn according to the input distribution return a value very close to 0
almost every time because there are too few failure points. Thus, for the sake of conciseness, it is not worthy to show
their boxplots. Second, unreported numerical simulations provide that the failure domain is once more located in one
region of the input space and explain why both Gaussian and Gaussian mixture IS auxiliary densities provide similar
performances.
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Figure 5 shows the practical interest of the previous efforts on a real semi-physical model. Indeed, when the
IS auxiliary density is adapted to the problem, the performances of the suggested estimators with importance sam-
pling are satisfying because they have a low variance and a moderate bias. Note nevertheless that the hierarchy of
importance of the inputs is not exactly the same for the reference values of the target Shapley effects. In contrast, the
existing estimators can not give meaningful results as explained above. Comparing both results presented in Figure 5
and in [17], one can remark that on the fire spread example, the five most influential inputs on the variability of the
output R and on the variability of the random variable 1 (R > 60) are the same: the fuel depth δ, the fuel particle
area-to-volume ratio σ, the moisture contents of the live and dead fuel ml and md, and the wind speed at midflame
height U .

Moreover, this test case highlights the importance of the choice of the size of the inner loop NI for the double
Monte Carlo estimator in the given-data framework when the dimension is getting higher. Indeed, as in the previous
examples, we first applied the double Monte Carlo estimator with the valueNI = 3 as suggested in [14,17]. However,
the estimations were inaccurate: the variance of each estimator was extremely high and the estimation of each target
Shapley effect was very often over 1040 in absolute value whereas the effect should theoretically lie between 0 and 1.
Unreported numerical tests show that this phenomenon is getting even worse when NI increases. Recalling that NI

is the number of nearest neighbours to find in the given-data framework, the origin of this problem seems to be once
more the nearest neighbour approximation, which is getting less accurate when the dimension increases. With impor-
tance sampling, the error does not only come from the gap between the target value ψt

(
X

(n0)
u ,X

(ku
N (n0,k))
−u

)
and its

approximationψt

(
X(ku

N (n0,k))
)

(for n0 ∈ [[1, N ]] and k ∈ [[1, NI ]]) but also from the gap between the likelihood ratios

evaluated in both points fX
(
X(ku

N (n0,k))
) /
g
(
X(ku

N (n0,k))
)

and fX
(
X

(n0)
u ,X

(ku
N (n0,k))
−u

)/
g
(
X

(n0)
u ,X

(ku
N (n0,k))
−u

)
,

which might become extremely large when the approximation is not accurate. To decrease this error, we hence de-
cided to reduce the size of the inner loop to NI = 2 such that the double Monte Carlo algorithm has to find as
many neighbours as in the Pick-Freeze algorithm, and the corresponding results presented in Figure 5 are much more
satisfying.

In order to evaluate the error due to the nearest neighbour approximation, Figure 6 represents the estimated
ROSA indices for the fire spread problem in the given-model framework with Ntot = 2 × 104 and the numerical
parameters from the beginning of Section 4. In contrast to the given-data results presented in Figure 5, the reference
value of each target Shapley effect is included in its corresponding boxplots and the boxplot medians are close to the
reference value. The dispersion of the boxplots is nevertheless relatively large. Figure 7 provides a deeper analysis and
represents graphically the performances of the given-data and given-model estimators with importance sampling with
samples of size Ntot = 105, with NV = 104 and NO as specified in the beginning of Section 4 using the new value
of Ntot in the given-model framework. The given-model estimators provide the same hierarchy of importance of the
inputs as the reference values and for each index, the boxplot medians are almost centered on the reference value,
with moderate dispersion. In contrast, even if the bias of the given-data estimators seems to be smaller with larger
samples, there is still a gap between the boxplot medians and the reference values, and the hierarchy of importance
of the inputs provided is not exactly the same as the reference values. These observations reaffirm on an example in
dimension 10 the effect of the nearest neighbour approximation on the given-data estimators for the estimation of the
target Shapley effects.

Remark 5. In all the figures, one can remark that there is no benefit to use the Pick-Freeze estimators instead of the
double Monte Carlo estimators. This fact can be counter-intuitive knowing what happens in the independent case: the
authors of [47] proved that some Pick-Freeze estimators are asymptotically efficient. A similar remark has already
been made in [14], which can also be applied to our case. They highlighted first that the authors of [47] estimate the
variance of the output Y in their procedure to estimate each Sobol indices, and second that the double Monte Carlo
estimators are based on different observations from the Pick-Freeze estimators.
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FIG. 5: Estimation of the target Shapley effects in the fire spread example, in the given-data framework, with the preprocessing
described in APPENDIX G.1 and with NI = 2.

FIG. 6: Estimation of the target Shapley effects in the fire
spread example, in the given-model framework with Ntot =
2× 104.

FIG. 7: Estimation of the target Shapley effects in the fire
spread example, in both given-model and given-data frame-
works with Ntot = 105.
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5. CONCLUSION

In the present article, we are interested in the estimation of the target Shapley effects, whose goal is to quantify the
influence of each input variable on the occurrence of the failure of the system and which are able to handle correlated
inputs. We suggest new importance-sampling-based estimators of the target Shapley effects, extending the previous
works of [13,14], which are more efficient than the existing ones when the failure probability is low. Moreover, we
also introduce less expensive importance-sampling-based estimators requiring only an i.i.d. input/output N -sample
distributed according to the IS auxiliary distribution, which enable to estimate efficiently the target Shapley effects
without additional calls to the function φ after the estimation of the failure probability by importance sampling. In
addition, we show theoretically that using the optimal IS auxiliary distribution for estimating a failure probability by
importance sampling as the IS auxiliary distribution in the Pick-Freeze estimator improves the estimation of the target
Shapley effects in comparison to the existing Pick-Freeze estimators. This result has a massive practical advantage
because it justifies that it is beneficial to reuse the available sample from the reliability analysis to estimate the
target Shapley effects by importance sampling. Finally, we illustrate and discuss the practical interest of the proposed
estimators on the Gaussian linear case and on two real physical examples, all involving correlated inputs.

The main perspective for improvement of the suggested approach is to make the proposed estimators more robust
faced with the dimension. Indeed, as explained and illustrated in the article, the nearest neighbour approximation
creates an error which is getting larger when the dimension increases. The preprocessing procedure introduced in
APPENDIX G.1 seems to reduce this error, but potentially not enough so in higher dimension. Note also that in
the highest dimension considered here, d = 10 in Figure 5, the performances provided by the nearest neighbour
approximation are not as good as in the other settings. This classic problem in the analysis of a complex system
is called the curse of dimensionality. Nevertheless, new approaches based on projected random forests [23] could
improve the estimation of the target Shapley effects when the dimension increases. It might be possible to adapt the
proposed method to our framework by taking into account the weights from importance sampling in the construction
of the random forests. One can also mention recent projection methods [48] to reduce the dimension of the problem.

Finally, it could be interesting to inspect methods to estimate the target Shapley effects efficiently while build-
ing a surrogate-model with importance sampling, in the same way as the method presented in [49]. At last, subset
simulation could be used to estimate efficiently the target Shapley effects when the failure probability is very small
instead of importance sampling. It may be done in low dimension by extending the work presented in [9] which aims
to estimate the first and total orders target Sobol indices with a failure sample obtained by subset simulation.
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APPENDIX A. PROOF OF LEMMA 1

First of all, let us remark that the convention 0/0 = 0 introduced and adopted at the beginning of Section 3 prevents
the following proofs from any possible problem caused by a division by 0 or caused by a non-definition of any
conditional PDF.
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For any IS auxiliary density g : X −→ R+, we have:

EfX
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=
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Then, using the definition of the conditional PDF, remark that:

∀ (xu,x−u) ∈ Xu × X−u,


fXu|X−u=x−u

(xu) =
fX (xu,x−u)

fX−u
(x−u)

gXu|X−u=x−u
(xu) =

g (xu,x−u)

gX−u
(x−u)

.

By replacing in the above, we have:
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That concludes the proof of Lemma 1. �

APPENDIX B. PROOF OF PROPOSITION 1

First of all, recall that for n ∈ [[1, Nu]], the estimator ψIS
t (X

(n)
−u) in (18) is given by:
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Then, let us write ÊIS
u,MC for the uncorrected double Monte Carlo estimator of the term EfX
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Then, this proof can be divided into two steps:

1. compute the bias of the estimator ÊIS
u,MC in (B.2)

2. propose an unbiased estimator of the latter bias in order to correct it.

APPENDIX B.1 Bias in the inner loop
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APPENDIX B.2 Bias of the outer loop

Second, let us derive the bias of the uncorrected double Monte Carlo estimator ÊIS
u,MC in (B.2) of the double expecta-
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(X−u)

fX−u
(X−u)

]
= EfX

[
EfX (ψt(X)|X−u)

2
]

+ Eg

[
Vg

(
ψIS

t (X−u)|X−u
) gX−u

(X−u)

fX−u(X−u)

]
thanks to Lemma 1.

Therefore, the bias of ÊIS
u,MC is Eg

[
Vg

(
ψIS

t (X−u)|X−u
)
gX−u(X−u)

/
fX−u(X−u)

]
. The problem is now to esti-

mate it in order to propose an unbiased estimator of T-EVu by double Monte Carlo with importance sampling.

APPENDIX B.3 Estimation of the bias

To estimate the previous bias, let us before prove the following lemma.

Lemma 3. Let (Zn)n∈[[1,N ]] be a sequence of independent and identically distributed random variables such that
E
(
Z2

1

)
< +∞. Let us consider the empirical estimator ẐN = N−1∑N

n=1 Zn of the mean value of Z1. Then:

V̂Z =
1

N − 1

[
1
N

N∑
n=1

Z2
n − Ẑ2

N

]
(B.3)

is an unbiased estimator of V
(
ẐN

)
.
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Proof. Let us compute the expectation of the estimator V̂Z :

E
(
V̂Z

)
= E

(
1

N − 1

[
1
N

N∑
n=1

Z2
n − Ẑ2

N

])

=
1

N − 1

[
E
(
Z2)− E

(
Ẑ2
N

)]
=

1
N − 1

E (Z2)− E

 1
N 2

N∑
n=1

Z2
n +

1
N 2

∑
1≤i6=j≤N

ZiZj


=

1
N − 1

[
E
(
Z2)− 1

N
E
(
Z2)− N − 1

N
E (Z)

2
]

=
1

N − 1

[
N − 1
N

(
E
(
Z2)− E (Z)

2
)]

=
N − 1

N(N − 1)
V(Z)

=
1
N

V(Z)

= V(ẐN ).

That concludes the proof of this lemma.

By applying the previous lemma to the i.i.d. sequence
(
wg

t

(
X

(n,k)
u ,X

(n)
−u

))
k∈[[1,NI ]]

for all n ∈ [[1, Nu]], the es-

timator (NI − 1)
−1

[
N−1

I

NI∑
k=1

wg
t

(
X

(n,k)
u ,X

(n)
−u

)2
−
(
ψIS

t

(
X

(n)
−u

))2
]

estimates without bias the conditional vari-

ance Vg

(
ψIS

t (X
(n)
−u)|X−u = X

(n)
−u

)
. Then, since the outer loop is only an empirical mean, ÊIS

bias,u in (19) is therefore

an unbiased estimator of the bias Eg

[
Vg

(
ψIS

t (X−u)|X−u
)
gX−u(X−u)

/
fX−u(X−u)

]
and allows to correct the

bias created by the square in the inner loop. Finally, by the linearity of the expectation, ÊIS
u,MC − ÊIS

bias,u is an unbi-

ased estimator of Eg

[
Eg (wg

t (X) |X−u)
2
gX−u (X−u)

/
fX−u (X−u)

]
, and thus T̂-EV

IS
u,MC in (17) is an unbiased

estimator by double Monte Carlo with importance sampling of T-EVu. That concludes the proof of Proposition 1. �
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APPENDIX C. PROOF THAT THE ESTIMATOR IN EQ. (25) IS AN UNBIASED ESTIMATOR OF P 2
T

Let us compute the bias of the estimator
(
p̂IS
t,N

)2
in (25):

Eg

((
p̂IS
t,N

)2
)

= Eg

( 1
N

N∑
n=1

wg
t

(
X(n)

))2


=
1
N 2 Eg

(
N∑

n=1

wg
t

(
X(n)

)2
)

+
1
N 2 Eg

 ∑
1≤i6=j≤N

wg
t

(
X(i)

)
wg

t

(
X(j)

)
=

N

N 2 Eg

(
wg

t (X)
2
)

+
N(N − 1)

N 2 Eg (wg
t (X))Eg (wg

t (X))

=
1
N

Eg

(
wg

t (X)
2
)

+
N − 1
N

Eg (wg
t (X))

2

= Eg (wg
t (X))

2
+

1
N

(
Eg

(
wg

t (X)
2
)
− Eg (wg

t (X))
2
)

= Eg (wg
t (X))

2
+

1
N

Vg (wg
t (X))

= p2
t + Vg

(
p̂IS
t,N

)
.

Then, Lemma 3 justifies that (N − 1)
−1
[
N−1

N∑
n=1

wg
t

(
X(n)

)2 −
(
p̂IS
t,N

)2
]

is an unbiased estimator of Vg

(
p̂IS
t,N

)
.

Therefore, by the linearity of the expectation, p̂IS,ub
t,N in (25) is an unbiased estimator of p2

t . �

APPENDIX D. PROOF OF LEMMA 2

To begin with, let us prove the following lemma.

Lemma 4. The PDF of the joint distribution of the random vector
(
Xu,X−u,X

′
−u
)

satisfies for all xu,x−u,x
′
−u ∈

Xu × X−u × X−u:

fXu,X−u,X′−u
(xu,x−u,x

′
−u) = fX(xu,x−u)

fX(xu,x
′
−u)

fXu(xu)
. (D.1)

Proof. Let xu,x−u,x
′
−u ∈ Xu × X−u × X−u. Then, regardless whether xu is in the support of fXu

or not, the
convention 0/0 = 0 allows to write:

fXu,X−u,X′−u
(xu,x−u,x

′
−u) = fXu

(xu)fX−u,X′−u|Xu=xu
(x−u,x

′
−u)

= fXu
(xu)fX−u|Xu=xu

(x−u)fX′−u|Xu=xu
(x′−u)

= fXu
(xu)

fXu,X−u
(xu,x−u)

fXu(xu)

fXu,X′−u
(xu,x

′
−u)

fXu(xu)

= fX(xu,x−u)
fX(xu,x

′
−u)

fXu(xu)
.

That concludes the proof of the lemma.
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Then, by remarking that the term in the expectation Ef (ψt(X)ψt(X
u)) is a function of the three random vari-

ables Xu, X−u and X′−u with the correlation structure described above, we have:

EfX (ψt(X)ψt(X
u)) = EfX

(
ψt (Xu,X−u)ψt

(
Xu,X

′
−u
))

=

∫
Xu

∫
X−u

∫
X−u

ψt(xu,x−u)ψt(xu,x
′
−u)fXu,X−u,X′−u

(xu,x−u,x
′
−u)dx′−udx−udxu

=

∫
Xu

∫
X−u

∫
X−u

ψt(xu,x−u)ψt(xu,x
′
−u)

fXu,X−u,X′−u
(xu,x−u,x

′
−u)

gXu,X−u,X′−u
(xu,x−u,x′−u)

gXu,X−u,X′−u
(xu,x−u,x

′
−u)dx′−udx−udxu

= Eg

(
ψt (Xu,X−u)ψt

(
Xu,X

′
−u
) fXu,X−u,X′−u

(Xu,X−u,X
′
−u)

gXu,X−u,X′−u
(Xu,X−u,X′−u)

)

= Eg

ψt (Xu,X−u)ψt

(
Xu,X

′
−u
) fX(Xu,X−u)

fX(Xu,X
′
−u)

fXu
(Xu)

g(Xu,X−u)
g(Xu,X

′
−u)

gXu
(Xu)



= Eg

ψt (X)ψt (Xu)

fX(X)
fX(Xu)

fXu(Xu)

g(X)
g(Xu)

gXu(Xu)


= Eg

(
ψt (X)ψt (Xu)

fX(X)fX(Xu)gXu
(Xu)

g(X)g(Xu)fXu
(Xu)

)
.

That concludes the proof of the Lemma 2. �

APPENDIX E. PROOFS OF INEQUALITIES OF SECTION 3.3

APPENDIX E.1 Proof of inequality (29)

First, recall that gopt defined for all x ∈ X by gopt (x) = p−1
t ψt (x) fX (x) is the optimal IS auxiliary density to

estimate the failure probability by importance sampling, and its marginal PDF according to Xu is given by:

∀xu ∈ Xu, goptXu
(xu) =

1
pt

∫
X−u

fX (xu,x−u)ψt (xu,x−u) dx−u. (E.1)
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Therefore, when the considered IS auxiliary distribution is gopt, the variance of the Pick-Freeze given-model estimator

with importance sampling T̂-VE
IS
u,PF in (27) of T-VEu satisfies:

Vgopt

(
T̂-VE

IS
u,PF

)
= Vgopt

 1
Nu

Nu∑
n=1

w
gopt
t

(
X(n)

u ,X
(n,1)
−u

)
w

gopt
t

(
X(n)

u ,X
(n,2)
−u

) goptXu
(X

(n)
u )

fXu(X
(n)
u )

− p̂IS,ub
t,N︸ ︷︷ ︸
pt


= Vgopt

(
1
Nu

Nu∑
n=1

w
gopt
t

(
X(n)

u ,X
(n,1)
−u

)
w

gopt
t

(
X(n)

u ,X
(n,2)
−u

) goptXu
(X

(n)
u )

fXu
(X

(n)
u )

)

=
1
Nu

Vgopt

(
w

gopt
t (X)w

gopt
t (Xu)

goptXu
(Xu)

fXu
(Xu)

)

=
1
Nu

Vgopt

(
ψt (X)ψt (Xu)

fX(X)fX(Xu)goptXu
(Xu)

gopt(X)gopt(Xu)fXu(Xu)

)

=
1
Nu

Vgopt

(
p2
t ×

1
pt

∫
X−u

fX(Xu,x−u)ψt (Xu,x−u) dx−u

fXu(Xu)

)
by integrating the exact expressions of gopt and goptXu

given above

=
1
Nu

Vgopt

(
pt

∫
X−u

fX(Xu,x−u)

fXu
(Xu)

ψt (Xu,x−u) dx−u

)

=
p2
t

Nu
Vgopt

(∫
X−u

fX−u|Xu
(x−u)ψt (Xu,x−u) dx−u

)

=
p2
t

Nu
Vgopt [Ef (ψt (X) |Xu)]

≤ p2
t

Nu
.

That concludes the proof of inequality (29). �

APPENDIX E.2 Proof of inequality (30)

The estimator T̂-VEu,PF by Pick-Freeze given-model without importance sampling of T-VEu is given by:

T̂-VEu,PF =
1
Nu

Nu∑
n=1

ψt

(
X(n)

u ,X
(n,1)
−u

)
ψt

(
X(n)

u ,X
(n,2)
−u

)
− p̂2

t,N , (E.2)

where p̂t,N is the empirical Monte Carlo estimator of pt and where the required samples are drawn according to
the input distribution fX. In the given-model framework, independent samples are used to estimate the Pick-Freeze
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expectation EfX [ψt(X)ψt(X
u)] and the square failure probability p2

t . Therefore, the variance of T̂-VEu,PF satisfies:

VfX

(
T̂-VEu,PF

)
= VfX

(
1
Nu

Nu∑
n=1

ψt

(
X(n)

u ,X
(n,1)
−u

)
ψt

(
X(n)

u ,X
(n,2)
−u

)
− p̂2

t,N

)

= VfX

(
1
Nu

Nu∑
n=1

ψt

(
X(n)

u ,X
(n,1)
−u

)
ψt

(
X(n)

u ,X
(n,2)
−u

))
+ VfX

(
p̂2
t,N

)
≥ VfX

(
1
Nu

Nu∑
n=1

ψt

(
X(n)

u ,X
(n,1)
−u

)
ψt

(
X(n)

u ,X
(n,2)
−u

))

=
1
Nu

VfX (ψt(X)ψt(X
u))

=
1
Nu

EfX (ψt(X)ψt(X
u))− 1

Nu
EfX (ψt(X)ψt(X

u))
2

=
1
Nu

(
VfX [EfX (ψt(X)|Xu)] + p2

t

)
− 1
Nu

(
VfX [EfX (ψt(X)|Xu)] + p2

t

)2

thanks to (24)

=
1
Nu

(
VfX [EfX (ψt(X)|Xu)] + p2

t

) (
1−

(
VfX [EfX (ψt(X)|Xu)] + p2

t

))
.

That concludes the proof of inequality (30). �

APPENDIX F. THEORETICAL VALUES OF THE TARGET SHAPLEY EFFECTS IN THE GAUSSIAN
LINEAR FRAMEWORK

Let us consider the Gaussian linear framework introduced in Section 4.1, and a failure threshold t ∈ R. Recall that
the input covariance matrix is symmetric positive-definite and that β 6= 0, thus we have β>Σβ > 0.

Moreover, let us recall the following theorem:

Theorem 6. For k ≥ 1, if A ∈Mk,d (R), b ∈ Rk and X ∼ Nd (µ,Σ), then:

AX + b ∼ Nk

(
Aµ + b,AΣA>

)
. (F.1)

APPENDIX F.1 Theoretical value of the failure probability

Theorem 7. The failure probability is given by:

pβt = 1− Φ

 t− β>µ√
β>Σβ

 . (F.2)

Proof. In the Gaussian linear framework, the failure probability satisfies:

pβt = P (φβ (X) > t) = P
(
β>X > t

)
= P

β>X− β>µ√
β>Σβ

>
t− β>µ√
β>Σβ

 , (F.3)

with β>Σβ > 0. Then, Theorem 6 provides that
(
β>X− β>µ

)/√
β>Σβ ∼ N1 (0, 1). Finally, we have:

pβt = 1− Φ

 t− β>µ√
β>Σβ

 , (F.4)
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where Φ is the CDF of the 1-dimensional standard Normal distribution.

APPENDIX F.2 Theoretical values of the target closed Sobol indices

Theorem 8. For u ∈ P(d)\{∅, [[1, d]]}, the target closed Sobol index is given by:

T-VEu =


V

Φ

 t− β>u Xu − β>−u
(
µ−u + Σ−u,uΣ−1

u,u (Xu − µu)
)√

β>−u
(
Σ−u,−u −Σ−u,uΣ−1

u,uΣu,−u
)
β−u

 if β−u 6= 0

pβt

(
1− pβt

)
else,

(F.5)

where for u1, u2 ∈ P(d), Σu1,u2 = (Σi,j)i∈u1,j∈u2
. At last, using the definition in (4), one can derive the theoretical

values of the target Shapley effects in the Gaussian linear framework.

Proof. For any subset u ∈ P(d)\{∅, [[1, d]]}, let us compute the theoretical value of T-VEu in the Gaussian linear
framework.

• Case 1: β−u 6= 0
In that case, we have:

E (1 (φβ (X) > t) |Xu = xu) = P (φβ (X) > t|Xu = xu)

= P
(
β>X > t|Xu = xu

)
= P

(
β>−uX−u > t− β>u xu|Xu = xu

)
.

Then, recall that the conditional normal distribution satisfies:

X−u|Xu = xu ∼ N|−u|
(
µ−u + Σ−u,uΣ−1

u,u (xu − µu) ,Σ−u,−u −Σ−u,uΣ−1
u,uΣu,−u

)
. (F.6)

Therefore, thanks to Theorem 6, the conditional distribution of β>−uX−u|Xu = xu is given by:

β>−uX−u|Xu = xu ∼

N1

[
β>−u

(
µ−u + Σ−u,uΣ−1

u,u (xu − µu)
)
,β>−u

(
Σ−u,−u −Σ−u,uΣ−1

u,uΣu,−u
)
β−u

]
. (F.7)

Finally, we have:

E (1 (φβ (X) > t) |Xu = xu) = 1− Φ

 t− β>u xu − β>−u
(
µ−u + Σ−u,uΣ−1

u,u (xu − µu)
)√

β>−u
(
Σ−u,−u −Σ−u,uΣ−1

u,uΣu,−u
)
β−u

 , (F.8)

an so:

T-VEu = V

Φ

 t− β>u Xu − β>−u
(
µ−u + Σ−u,uΣ−1

u,u (Xu − µu)
)√

β>−u
(
Σ−u,−u −Σ−u,uΣ−1

u,uΣu,−u
)
β−u

 . (F.9)

• Case 2: β−u = 0
In that case, the linear function φβ depends only on xu. Then:

E (1 (φβ(X) > t) |Xu) = 1 (φβ(X) > t) , (F.10)

and finally:
T-VEu = V [E (1 (φβ(X) > t) |Xu)] = V (1 (φβ(X) > t)) = pβt

(
1− pβt

)
. (F.11)

To sum up, we have just proved the required result in (F.5) .
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APPENDIX G. PREPROCESSING PROCEDURE FOR THE GIVEN-DATA ESTIMATORS

APPENDIX G.1 Presentation of the procedure

The preprocessing procedure presented below will be applied as soon as a given-data estimator will be used, and it is
based on the following theorem stated by [18].

Theorem 9. Consider a family of uni-dimensional bijective transformations (τi)i∈[[1,d]]. Let us define the following
function:

φ̃ :
⊗d

i=1 τi (Xi) −→ R
z 7−→ φ

(
τ−1

1 (z1) , . . . , τ−1
d (zd)

)
,

(G.1)

its random input vector Z = (τi (Xi))i∈[[1,d]] and let us write
(

S̃hi
)
i∈[[1,d]]

its Shapley effects. Recalling that (Shi)i∈[[1,d]]

are the Shapley effects of φ, then:
∀i ∈ [[1, d]], Shi = S̃hi. (G.2)

In other words, this theorem shows that the Shapley effects are unchanged when bijective transformations are
applied on each input variable. Practically, the preprocessing consists in applying the following procedure:

1. choose a sampling distribution h ∈ {fX, g}

2. if it is possible, for all i ∈ [[1, d]], compute the exact values of µ(h)
i = Eh (Xi) and

(
σ

(h)
i

)2
= Vh (Xi), else

estimate them

3. for all i ∈ [[1, d]], define the linear bijective transformations by:

∀xi ∈ R, τi (xi) =
xi − µ(h)

i

σ
(h)
i

(G.3)

4. from a sample
(
X(n)

)
n∈[[1,N ]]

drawn according to h, build the transformed sample
(
Z(n)

)
n∈[[1,N ]]

defined for

all n ∈ [[1, N ]] by Z(n) =
(
τi

(
X

(n)
i

))
i∈[[1,d]]

5. apply the previous given-data estimators proposed in this article to the new sample
(
Z(n)

)
n∈[[1,N ]]

.

Hence, Theorem 9 applied to ψt : x ∈ X 7→ 1 (φ (x) > t) with the family of linear bijective transformations
(τi)i∈[[1,d]] defined in (G.3) justifies that the described preprocessing procedure should theoretically provide the ex-
pected target Shapley effects. Moreover, the transformations (τi)i∈[[1,d]] defined in (G.3) only consist here in a stan-

dardisation of the input sample
(
X(n)

)
n∈[[1,N ]]

drawn according to h ∈ {fX, g}, i.e. a re-scaling by
√
Vh (Xi) and a

shifting by Eh (Xi) of each component of each point. In particular, the nearest-neighbour search is performed among
the new sample

(
Z(n)

)
n∈[[1,N ]]

in which distances between points are expected to be more homogeneous.

APPENDIX G.2 Motivations and practical interest

In order to motivate the introduction of the preprocessing procedure presented in APPENDIX G.1, let us reconsider
the cantilever beam example of Section 4.2. If we estimate the target Shapley effects of this problem without apply-
ing the preprocessing procedure, we obtain the results presented in Figure G.8. The existing given-data estimators
without importance sampling, especially those of the second, fourth and sixth indices, seem to be badly biased. This
phenomenon can perhaps be explained by the huge scale difference between the third variable, the elastic modulus
E, and the others. When 3 is in a subset u ∈ P(6)\{∅, [[1, 6]]}, the distance in the subspace Xu is approximately
equal to the distance in X{3}, which makes the nearest neighbour approximation of a conditional distribution given
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FIG. G.8: Estimation of the target Shapley effects in the cantilever beam example, in the given-data framework and without the
preprocessing described in APPENDIX G.1.

some xu ∈ Xu very inaccurate. This phenomenon is getting worse without importance sampling because the points
of interest, the failure points, are in the tail of the distribution, where the concentration of points is small and thus
where the distances between points are even larger.

Consequently, the preprocessing procedure described in APPENDIX G.1 aims to restructure the available sam-
ple such that each component has the same scale in order to decrease the error due to the nearest neighbour ap-
proximation. By definition, for a given u ∈ P(d)\{∅, [[1, d]]}, this error mainly comes from the gap between
ψt

(
X

(n)
u ,X

(ku
N (n,2))
−u

)
, the target value on the subspace

{
x ∈ Rd/xu = X

(n)
u

}
, andψt

(
X(ku

N (n,2))
)

which is its ap-
proximation, for all n ∈ [[1, Nu]]. The restructuring caused by the linear bijective transformations defined in (G.3) aims
then at reducing this error. Indeed, the nearest neighbour of some points of the new sample

(
Z(n)

)
n∈[[1,N ]]

might not be

the same as in the starting sample
(
X(n)

)
n∈[[1,N ]]

. Figure G.9 illustrates this phenomenon. More precisely, for all u ∈
P(d)\{∅, [[1, d]]}, there can exist some n0 ∈ [[1, N ]] such that kux(n0, 2) 6= kuz (n0, 2), where kux(n0, 2) and kuz (n0, 2)
represent the indices of the second nearest neighbour of the point n0 respectively in the x-space and in the z-space,
and thus ψt

(
X(ku

x(n0,2))
)
6= ψ̃t

(
Z(ku

z (n0,2))
)
. At last, we expect that most of the time, this change leads to a reduc-

tion of the error, i.e.
∣∣∣ψ̃t

(
Z(ku

z (n0,2))
)
− ψ̃t

(
Z

(n0)
u ,Z

(ku
z (n0,2))
−u

)∣∣∣ ≤ ∣∣∣ψt

(
X(ku

x(n0,2))
)
−ψt

(
X

(n0)
u ,X

(ku
x(n0,2))
−u

)∣∣∣.
A more advanced theoretical study is required to better understand this preprocessing procedure and potentially to
improve it, but it seems beneficial in our examples, especially on the cantilever beam example. At last, note that in
Section 4.1, we apply the preprocessing procedure with the given-data estimators. However, we would obtain almost
exactly the same results without having applied it because in those examples, the transformations have a very mild
impact.
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FIG. G.9: The upper figure represents in the x-space a sample of N = 200 points drawn according to a zero-mean bi-dimensional
normal distribution with independent components and such that V (X1) = 109 and V (X2) = 1. The lower figure represents in the
z-space the same sample after having applied on each component the transformations defined in (G.3). On both figures, the dotted
red line represents the limit state of the linear function φ(1 1) (x1, x2) = x1 + x2 defined by the failure threshold t = 1350, the
red point represents the point n0 ∈ [[1, 200]] and the green point represents its nearest neighbour among the corresponding sample
with the 2-dimensional distance. In both cases, the red point is in the failure domain. Moreover, in the x-space (upper figure), the
green point is in the safe domain whereas in the z-space (lower figure), the green point is in the failure domain.
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APPENDIX H. EQUATIONS OF THE FIRE SPREAD MODEL IN SECTION 4.3

Given the random input vector X = (δ,σ, h, ρp,ml,md, ST , U, tan ϕ, P ), the rate of spread is obtained through the
following system of equations:

R =
IRξ (1 + φW + φS)

ρbεQig
rate of fire-spread, ft ·min−1

where

w0 =
4.8

4.8824
× 1

1 + exp [(15− δ)/3.5]
fuel loading, kg ·m−2

Γmax =
σ1.5

495 + 0.0594σ1.5 maximum reaction velocity, min−1

βop = 3.348σ−0.8189 optimum packing ratio
A = 133σ−0.7913

θ∗ =
301.4− 305.87(ml −md) + 2260md

2260ml
θ = min (1,max (0, θ∗))
µM = exp [−7.3Pmd − (7.3θ+ 2.13)(1− P )ml] moisture damping coefficient
µS = 0.174S−0.19

T mineral damping coefficient
C = 7.47 exp

[
−0.133σ0.55

]
B = 0.02526σ0.54

E = 0.715 exp
[
−3.59× 10−4σ

]
wn = w0(1− ST ) net fuel loading, lb · ft−2

ρb =
w0

δ
ovendry bulk density, lb · ft−3

ε = exp

[
−138
σ

]
effective heating number

Qig = 130.87 + 1054.43md heat of preignition, Btu · lb−1

β =
ρb

ρp
packing ratio

Γ = Γmax

(
β

βop

)A

exp

[
A

(
1− β

βop

)]
optimum reaction velocity, min−1

ξ =
exp

[(
0.792 + 0.681σ0.5

)
(β+ 0.1)

]
192 + 0.2595σ

propagating flux ratio

φW = CUB

(
β

βop

)−E
wind coefficient

φS = 5.275β−0.3 (tan ϕ)
2 slope factor

IR = ΓwnhµMµS reaction intensity, Btu · ft−2 ·min−1.

Note that the expression of the fuel loading w0 according to the fuel depth δ is conjectured from the data analysis
performed in [43]. In addition, it is important to remark that almost all the above equations, which mainly come from
[42], are given in imperial units whereas the inputs are specified in metric units in Table 3. In order to have consistent
results, it is thus necessary to convert the input variables into the imperial units at the beginning of the numerical
calculus and to convert the output into cm · s−1 at the end.

APPENDIX I. COST-REDUCTION ESTIMATION PROCEDURE IN THE GIVEN-MODEL FRAMEWORK

In practice, the ROSA of a complex system always comes after the reliability analysis, i.e. the estimation of the
failure probability. The given-model estimators (17) and (27) of the target conditional indices and thus the corre-
sponding target Shapley effect estimators have a high computational cost, and the reliability analysis provides an
i.i.d. input/output N -sample

(
X(n),ψt

(
X(n)

))
n∈[[1,N ]]

with
(
X(n)

)
n∈[[1,N ]]

distributed according to the IS auxiliary
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density g. We present here a new procedure which re-uses the available sample in order to reduce the computational
cost of the previous given-model estimators of the target conditional indices T-VEu and T-EVu and thus of the target
Shapley effects. Remark first that estimators by importance sampling of pt and VfX (1 (φ (X) > t)) can be easily
computed with only the available sample and so do not require additional calls to φ.

APPENDIX I.1 Double Monte Carlo procedure

With the double Monte Carlo method in (17), for u ∈ P(d)\{∅, [[1, d]]}, set the parameters Nu and NI and consider
a sequence (s(n))n∈[[1,Nu]] of uniformly distributed integers in [[1, N ]] and apply the following scheme:

1. for n ∈ [[1, Nu]], draw an i.i.d. sample
(
X̃

(s(n),2)
u , . . . , X̃

(s(n),NI)
u

)
distributed according to the conditional

distribution of g
Xu|X−u=X

(s(n))
−u

2. for k ∈ [[2, NI ]], computewg
t

(
X̃

(s(n),k)
u ,X

(s(n))
−u

)
and use the value ofwg

t

(
X(s(n))

)
for the term corresponding

to k = 1

3. compute the estimators (19) and then (17).

This procedure requires Nu (NI − 1) additional calls to φ to those from the reliability analysis to estimate the target
conditional index T-EVu by double Monte Carlo with importance sampling. Typically, the authors of [17] suggest to
use NI = 3 for numerical purposes, thus the proposed procedure is interesting because it does not require too many
additional calls to the code φ.

APPENDIX I.2 Pick-Freeze procedure

With the Pick-Freeze method in (27), for any subset u ∈ P(d)\{∅, [[1, d]]}, set the parameterNu, consider a sequence
(s(n))n∈[[1,Nu]] of uniformly distributed integers in [[1, N ]] and apply the following scheme:

1. for n ∈ [[1, Nu]], draw a random variable X̃
(s(n),2)
−u from the conditional distribution of g

X−u|Xu=X
(s(n))
u

2. computewg
t

(
X

(s(n))
u , X̃

(s(n),2)
−u

)
and use the value ofwg

t

(
X(s(n))

)
for the first term in the Pick-Freeze product

3. compute the estimator (27).

This procedure requiresNu additional calls toφ to those from the reliability analysis to estimate the target conditional
index T-VEu by Pick-Freeze with importance sampling.

APPENDIX I.3 Cost reduction provided

In the above cost-reduction procedure with the double Monte Carlo (resp. Pick-Freeze) method, the sampling from the
marginal distribution gX−u

(resp. gXu
) is replaced by picking a random sub-sample among the sample

(
X

(n)
−u

)
n∈[[1,N ]]

(resp.
(
X

(n)
u

)
n∈[[1,N ]]

) through the random sequence (s(n))n∈[[1,Nu]]. Then, for any n ∈ [[1, Nu]], a sample of size

NI − 1 (resp. 1) is drawn according to the conditional distribution g
Xu|X−u=X

(s(n))
−u

(resp. g
X−u|Xu=X

(s(n))
u

) and the

missing point is set to X
(s(n))
u (resp. X

(s(n))
−u ) such that we obtain an i.i.d. sample of size NI (resp. 2) distributed

according to the corresponding conditional distribution. The latter missing point belongs to the available sample and
does not require to be evaluated and so allows to save one call to φ. Eventually, given the data from the reliability
analysis, this new procedure allows to save Nu calls to φ to estimate each target conditional index and so allows to
save NV +m(d− 1)NO calls to φ to estimate the d target Shapley effects with the random permutation aggregation
procedure and NV + (2d − 2)NO calls with the subset aggregation procedure, where NV and NO are defined in
Section 2.2.4.
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