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Abstract 

A new antenna design lighter, and with fewer mechanical connections between the elements has 

emerged. This concept consists of deploying a polygonal ring using the flexion energy present in the 

flexible joints connecting two consecutive bars. Shaped reflective surfaces can selectively avoid 

radiating to certain areas of the globe. However, these consist of rigid frames and are not deployable. 

Studies have been conducted to obtain a uniform tension in a mesh network. In order to tighten a shaped 

membrane into this new structure, a new type of network that can be inserted into the polygonal ring 

was studied. This new type of three-dimensional network that can fit into this ring or existing reflectors 
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has been developed with the aim of obtaining control points. Compared to the common cable domes 

used in civil engineering, the tension of this type of three-dimensional network is better distributed 

across all elements. Applications include shaped or meshed space antennas, and solar panel supports. 

Keywords: three-dimensional network, space structure, antenna, cable dome, uniform tension. 

I Introduction 

Deployable space antennas consist of a frame into which a network of cables is inserted. In the literature, 

two major types of space antenna frame structures can be identified: peripheral ring skeleton like the 

Astromesh antenna (Fig. 1.a) and radiating frame structures like the TerreStar reflector (Fig. 1.b). On 

this network a meshed reflective surface rests. To design the network, many solutions exist and a 

solution based on tensegrity compatible with small satellites is proposed [1]. The peripheral ring is 

shaped by means of cable that creates a deformable parallelogram [2]. To minimize mechanisms, a self-

deployable scissor-based and flexible joint based antenna concept has been developed at the LMGC [3]. 

The ring is directly prestressed thanks to the bending energy present in the flexible joints.  

 

                

 a. AstroMesh concept from Thomson 1997 [4]   b. Terrestar reflector Kellermeier 1986 [5] 

 

Fig. 1. Composition of a classic foldable antenna 

 

The truss is foldable and shaped by cables. The rim tension the front net thanks to the network (Fig. 2). 
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Fig. 2. Self deployable scissor based rim 

 

A new, lighter, deployable ring, in which mechanical connections between elements are minimised by 

removing the scissors, was developed by Bettini [6]. This concept consists of deploying a polygonal 

ring that can either have a voluminous or flat final shape (Fig. 3.). This rim unfolds as described by 

Morterolle’s [7], one using the flexion energy present in flexible joints connecting consecutively bars. 

 

a    b    c    d 

Fig. 3. Different apertures of the peripheral ring (volumic a, b, c, and planar d) 

 

Space antennas consist largely of a network of tensioned cables on which a reflective metallic mesh 

rests. In order to match at best a parabolic surface and obtain a better signal, uniform tension in a network 

is preferable [8, 9]. Another advantage of having a homogeneous distribution of tension on the cable net 

is a simpler effort of assembly and integration. As a result, a uniform tension algorithm was developed 

by Morterolle [8] for a cable network. However, these networks can only be used for surfaces whose 

geometry is a regular (not shaped) dish. The vast majority of space reflectors have a fixed and non-
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modifiable reflective surface. Shaped surfaces return signals to a contoured area of the globe. A new 

concept in space antennas, similar to that of meshed antennas, has emerged; a peripheral ring extending 

a three-dimensional network composed of bars and cables on which comes to rest a membrane (Fig. 4.). 

 

 

Fig. 4. Mesh antenna principle and new concept 

This allows broadcasts on certain regions of the globe, restricting the transmission from certain areas of  

the reflective surface: it is a shaped surface. Cable domes provide rigid supports on which a membrane 

can rest. These supports can be adjusted (Fig. 5) to obtain a shape containing concave and convex regions 

(with negative double curvature). 
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Fig. 5. Network with telescopic bars and shaped membrane 

 

The reflector presented by Rodrigues [10] is mechanically deformable and reconfigurable. Its reflective 

surface is deformable thanks to actuators which exert pressure on the membrane at a targeted point. This 

type of reflector allows a large number of reconfigurations. Curves on the surface are often approximated 

by splines (polynomial function per piece). The surfaces used to form shaped surfaces can be 

implemented of CFRS (Carbon Fiber Reinforced Silicon). As described by [11], CFRS offers thermal, 

mechanical and reflexive capabilities useful for space applications. A study of the thermo-deformation 

of the CFRS surface is presented by Datashvili [12]. The disadvantage of Rodrigues’s antenna is that it 

generates a considerable increase in antenna mass, which is not desirable in most cases. 

Straight-wired domes from civil engineering are a solution to best approach a shaped reflective surface. 

Tensioned by means of a peripheral ring, control points are formed from the compressed bars. The most 

common cable domes are Fuller and Geiger (Fig. 6.). These three-dimensional networks were studied 

by Fayos [13] with a view to their application in the space domain. 

 

Adjustable support Shaped reflective 
surface 

Control points 
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Geiger Fuller 

 

Fig. 6. Geiger and Fuller cable dome 

 

Negative double curvature surfaces are often used on reflectors whose surface can be modulated using 

actuators. These actuators act as checkpoints. With the aim of applying this process to deployable space 

antennas, the LMGC has focused development of this type of surface with self-deployable peripheral 

rings. Of primary importance to the scaling of spatial structures are the stiffness of the skeleton in its 

deployed configuration, surface accuracy, stability and the form of the reflective surface in an 

operational configuration. 

However, a problem with dome cables is the non-uniformity of tension. As explained by Fayos [14], the 

tension on the dome cable decreases markedly from to the periphery towards the center (Fig.7.). 
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Fig. 7. Geiger cable dome (cutting plane) 

 

Due to its low mass, the use of a cable-dome network is highly appreciated in the field of civil 

engineering for constructing roofs. Its curvature allows, among other things, for the drainage of rain 

water. The use of compressed bars allows for control points producing a topology containing concave 

and convex regions. 

In this paper, static and modal analyses of a new kind of cable dome will be presented. The first part 

will describe the geometry of the new network while analytical models of the static analyses for further 

cable nets and their optimization are proposed in the second part. The third part deals with a mechanical 

study for a completed solution of a space antenna. 

 

II Geometry and axial forces distribution of the new network 

II.1 Geometry 

One of the activities of the LMGC is the study of lightweight structures like tensegrity systems. These 

systems can be defined as reticulate, spatial, and in a stable state of selfstress. They include a 

discontinuous set of compressed elements and a continuous set of tensioned elements. Thus, the system 

is statically and cinematically undetermined. Statically, the selfstress state is defined with a 

multiplication factor a priori unknown. Cinematically some mechanisms can appear with infinitesimal 

strains in elements, stabilised by the selfstress [15]. 

�2 
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�8 
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The new dome configuration is inspired by Tensarch, a tensegrity grid elaborated by V. Raducanu, R. 

Motro in 2002 [16], made of an arrangement of bars, cables and tensioners (Fig.8). 

 

 

Fig. 8. Tensarch 

 

In comparison, the principle behind the new proposal truss is that bars are replaced by cables, and 

tensioners become bars, lightening the structure and creating control points (Fig.9). Thus, the structure 

presents a three-direction network instead of two directions as seen in traditional Tensarch architecture. 

For this configuration, networks are stable with three cables per node for each bar, which results in 

pyramidal patterns. 

 

 

 Fig. 9. Pyramidal network of 19 bars 
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For this type of network, two anchoring configurations have been modelled in order to obtain an optimal 

solution in terms of distribution of axial forces (Fig.10). It has been shown that the configuration (1) 

makes it possible to distribute the forces more evenly across the bars. 

 

 

  

Configuration (1)    Configuration (2)  

Fig. 10. Different network anchorage configurations 

 

This configuration can be tightened by a simple annular structure as shown in Figure 3. Figure 11 shows 

the assembly for a hexagonal ring with 6 attachment points on the beams of the ring. These attachment 

points are located in the centre of the ring bars and not at the ends for reasons of symmetry in the stowed 

configuration. 
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Fig. 11. A new concept for deployable antenna 

 

Compared to existing structures such as the Astromesh, the useful surface is not equal to the area of the 

peripheral ring. The chosen rigging method (Fig. 12, Fig. 12 A) is not optimal for the folding process 

because the number of bars is equal to the number of rigging points, which means that the rigging must 

be connected at the centre of the bars. However, it is possible to double the number of bars (Fig. 12 C) 

in order to attach to nodes (upper or lower to allow stowing), which also minimises the torque generated 

on the joints by the network tension. 

Anchor point of 
the network 

Membrane 

Three dimensional 
network 
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Fig. 12. Optimisation of the usable area 

Another advantage of this new configuration is that each membrane attachment point is unobtrusive; 

there is no interference from the cables as in the Fuller and Geiger versions (Fig.13 top). The position 

of the cable net relative to the ring is adjustable, with the cable length and the depth of the parabola 

being obtained from the variation of the bar heights. 
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Interference with the membrane from a Geiger network (radial cutting plane)  

 

 

  

 

 

 

 

 

 

Fig. 12. Unencumbered the reflective surface of a pyramidal network 

 

Moreover, Fuller and Geiger type cable dome structures require that the upper and lower part of the 

reflector have the same (orientation) convexity in order to have the bars compressed, this is not the case 

with a the pyramidal network. 

Figure 14 shows the distribution of bars for the different types of networks. Compared to the other cable 

domes, the pyramidal network allows for have control points distributed on a triangular equilateral mesh, 

regardless of the bars, with the distance between any two consecutive bars being identical. This pattern 

of bar distribution allows for a more optimal distribution of forces in the network. 
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       Fuller                  Geiger                   Pyramidal 

Fig. 14. Distribution of bars for various configurations (19 bars). 

Defining � the maximum number of bars on the radius �, the number of hook points for membrane in 

function of � for the different networks, is listed below in Tab. 1. 

Fuller Geiger Pyramidal 

6� 	 1 6�� � 1 	 1 3�� � 1� 	 1 

Tab. 1. Number of bars for a given radius 

As can be seen, the number of bars that can be inserted is of the order of 3�² for a pyramidal network 

compared to the Fuller and Geiger networks which are both of the order of 6�. This density of points in 

the mesh makes it possible to cover a larger area of membrane peaks and troughs, and avoids the need 

to privilege a radial distribution on which points need to be located. 

Figure 15 shows the spatial configuration of pyramidal networks for � � 2 and � � 3. 

� � � � � 3 � � 4 � � 3 
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Fig. 15. Pyramidal networks for � � 2 and � � 3 (configuration (2)) 

In order to determine the axial forces across the network in an analytical manner in section II, it is 

necessary to determine the different geometric variables involved in the design of the network. 

This section will focus on a 19-bar configuration pyramidal network �� � 3 as presented (Fig. 16.). T 

is the tension introduced by the flexional energy stored in the joints of the peripheral ring. 

 

Fig. 16. Geometric variables of the pyramid network 
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A comparison with the numerical model was then made in order to validate the analytical model. The 

network is configured using the bar height at the center h�, ΔX being the distance between any two 

consecutive bars, the focal length F and where �� is the distance between the bar �� and the anchorage 

point (4). The various resulting geometric variables are shown in Figures 17 to 20. 

 

 

 

 

Fig. 17. View of the network in the plane comprising nodes 0, 1, 2, 4. 

 

 

 

 

 

 

 

 

 

 

Fig. 18. View of the network in the plane containing the nodes 1, 1', 3, 3' 

The geometric parameters of the systems peripheral rigging are shown in Figure 19. 
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Fig. 19. The peripheral geometric parameters of a standard network. 

 

 

Fig. 20. Top view of a portion of a pyramidal network 
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For a space antenna, as a function of their mission, the geometrical input parameters are the focal length 

F, and the radius of the reflective area R. For a fixed geometry (F, R), it’s possible to optimize the 

network as a function of p, h�  and d� acting directly on the angular parameters and consequently on 

Δh,. The geometry of the system depends on the focal length of the parabola marked F, the height of the 

bars, whose reference height ℎ� is that of the central bar. ΔX is the distance between any two consecutive 

bars of the network. The angles ./, 0/, 1/ are respectively the complementary angles formed by the 

cables 2/, 3/ ,4/ with the bar and projection. The distance between the application point of the force T 

and the �� bar is defined by d�. In this configuration, χ � 5�, and the fixed parameters are h�, d�, ΔX,
F and �. The various relational parameter necessary to solve the equations are given in Table 2. 

 

 :;<=>?@ A?@?BCDC@E FC;<DG A?@?BCDC@E 

 

α� � atan h� 	 ΔX�4FΔX   Δh� � ΔX�
4F  

 

α� � atan h� 	 Δh� 	 Δh�ΔX   Δh� � 3ΔX�
4F  

 

β� � atan h� 	 2Δh�ΔX   Δh� � ΔX�
F  

 

β� � atan h� 	 Δh� 	 Δh�ΔX    

 

γ� � atan h� 	 Δh� 	 Δh�ΔX    

 δ� � atan h� 	 2Δh�2d�    

 ϵ� � atan h� 	 2Δh�
2IJΔX2 	 d�K� 	 JΔXcos χ2K�  

 

 ψ � acos d� cos π6
IJΔX2 	 d�K� 	 JΔX cos χ2K�   

 ω � ψ � χ2   

Tab. 2. Geometrical parameters of the modelling 
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II.2 Axial forces distribution 

II.2.1 Static calculus: analytical model 

The current standard system, comprising of 19 bars and 66 cables. There are 13 independent equations 

for 13 unknowns written in APPENDIX A giving the forces according to the geometry and the tension 

introduced into the network by the peripheral ring. 

In order to solve the system, the axial forces are written based on the normal force of the central bar 

noted ��. For this, the equations are written step by step starting from the central node 0 to the node 4 

attached to the ring.  

II.2.2 FEM model and comparison between analytical and numerical model 

To assess the consistency of the analytical model, a finite element model was developed under Ansys®. 

The model is composed of bar elements (3 DOF per node). The modelling assumes that the nodes on 

which the cables at node 4 are anchored and a force is exerted on the central bar (Fig.21.). 

 

 

 

 

 

 

 

 

Fig. 21. Geometric parameters of standard network stowage. 

The network bars forming the hooking points are composed of carbon epoxy circular solid section with 

a modulus of elasticity of 125GPa with a 78,5mm² cross section. The cables connecting the bars are 

made of kevlar (elastic modulus E=125GPa, section 20mm²). The network’s geometric parameters for 

ℎ� � 0.2m are given in Table 3. The focal length of both sides of the network (illuminated and rear) is 

set at to T � 4.5m for all simulations. The diameter of the reflective surface is V � 2W � 2.2X. 
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 :;<=>?@ A?@?BCDC@E @?[ (°) FC;<DG A?@?BCDC@E �\ 

 .� 0.34 19.32 T 4.50 

 .� 0.46 26.18 ]^ 0.634 

 0� 0.37 21.10 ℎ� 0.200 

 0� 0.43 24.53 ]ℎ� 0.022 

 1� 0.51 29.34 ]ℎ� 0.067 

 _� 0.39 22.20 ]ℎ� 0.089 

 `� 0.17 9.92 �� 0.464 

 ) 0.61 35.11 V 2.20 

 * 1.14 65.11   

 

Tab. 3. Geometric parameters of the standard network for ℎ� � 0.2 X. 

 

Simulations were performed for ℎ� bar heights of 0.2m, 0.4m and 0.6m, with T tension ranging from 

50N to 300N. Results are shown in Table 4. 

 

ab � b. c \ 

 50 N 100 N 200 N 300N  

Cables Ana. FEM Ana. FEM Ana. FEM Ana. FEM C 

A1 12.11 12.11 24.28 24.28 48.37 48.38 72.59 72.60 0.01% 

A2 12.95 12.94 25.96 25.95 51.73 51.71 77.63 77.60 0.04% 

B1 12.31 12.30 24.68 24.67 49.17 49.15 73.79 73.75 0.05% 

B2 12.73 12.72 25.52 25.51 50.86 50.82 76.32 76.26 0.07% 

C2 8.06 8.06 16.17 16.16 32.21 32.19 48.34 48.31 0.07% 

D1 11.88 11.87 23.81 23.80 47.44 47.42 71.20 71.16 0.05% 

D2 7.14 7.14 14.32 14.31 28.54 28.52 42.82 42.80 0.05% 

E1 10.18 10.17 20.41 20.39 40.67 40.63 61.03 60.97 0.09% 

E2 11.35 11.34 22.76 22.74 45.34 45.30 68.04 67.98 0.09% 

Bars Ana. FEM Ana. FEM Ana. FEM Ana. FEM C 

S0 -20.14 -20.15 -40.38 -40.40 -80.45 -80.50 -120.73 -120.80 0.06% 

S1 -22.27 -22.26 -44.65 -44.64 -88.96 -88.94 -133.50 -133.46 0.03% 

S2 -14.42 -14.41 -28.90 -28.89 -57.59 -57.56 -86.43 -86.37 0.06% 

S3 -18.89 -18.88 -37.88 -37.86 -75.49 -75.43 -113.28 -113.19 0.08% 

Tab. 4. Normal forces in the elements in function of T for ℎ� � 0.4X. 

e � the maximum relative deviation of the data series from FEM and the analytical model.  



Page 20 / 43 

 

The results showed that whatever the load case, the relative deviation was less than 0.4% for the majority 

of simulations and less than 2.53% when ℎ� � 0.05m. These results validate our analytical model. As 

can be seen in Figure 22, for the same configuration, the normal stress in the elements varies linearly 

depending on the input tension T. Regardless of the bar height ℎ�, the graphs have the same profile. 

Moreover, the difference of the tensions in the central cables is very small, the principal differences 

being noted for the peripherals cables. Compared to Fuller and Geiger networks that only recover 18% 

of T tension from Fayos [13], this network can achieve more than 25% at the center. 

  

  

Fig. 22. Axial forces in elements depending on height ℎ� for various input tensions 
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III Network optimization and space antennas applications 

In order to ensure optimal tension efficiency, it is important to consider the position of the network 

(configuration 1 or 2) in relation to the antenna skeleton, as well as the different parameters that 

influence the operational phase. A membrane is added to this network to complete the system and modal 

analyses are performed. 

III.1 Optimizing network configuration 

III.1.1 Network anchoring configurations 

The results of the simulation presented in Table 5 show that for the same geometry, the mechanical 

performance at the usable area of the configuration (2) was less efficient than the configuration (1). For 

a given peripheral ring geometry, configuration (2) allows a better network arrangement than 

configuration (1), but the latter is not mechanically optimal due to the high angle values formed by the 

peripheral cables (Fig.23). 

 Configuration 1 Configuration 2 

 Axial force (N) Ratio k//� Axial force (N) Ratio k//� 

T 100  100  

A1 21.627 21.6% 19.376 19.4% 

A2 22.571 22.6% 16.744 16.7% 

B1 21.680 21.7% 18.419 18.4% 

B2 22.162 22.2% 20.299 20.3% 
Standard 

deviation 
0.445  1.517  

S0 -22.022 22.0% -23.524 23.5% 

S1 -25.716 25.7% -23.160 23.2% 

S2 -18.030 18.0% -18.647 18.6% 

S3 -23.002 23.0% -17.081 17.1% 
Standard 

deviation 
3.185  3.230  

Tab. 5. Distribution of the tensions in the elements under FEM for ℎ� � 0.2X. 

k/ designate the normal force in an element m (bar or cable) of the cable net. 
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Normal force (N)  
-25.7 to -22.0  

21.5 to 22.6  
19.3 to 20.3  
16.7 to 18.5  

  
Configuration (1) Configuration (2) 

Fig. 23. Tension distribution in various elements for both configurations. 

III.1.2 Distribution of the axial force for configuration (1) 

By tending the focal point towards the infinity, you get a flat grid. Table 6 represents the distribution of 

the forces for a tension of 200N. The relative discrepancy between the two configurations of Table 6 is 

fairly small, showing a quasi-uniform tension in the parabolic network. 

 

 Focal (m) ∞ c. fc  

  Normal force (N) Normal force (N) Relative deviation 

Cables 

A1 42.00 42.78 1.87% 

A2 42.00 44.96 7.06% 

B1 42.00 43.27 3.02% 

B2 42.00 44.36 5.62% 

C2 26.34 27.18 3.16% 

D1 40.97 43.58 6.37% 

D2 25.70 25.60 0.40% 

E1 38.60 40.19 4.11% 

E2 44.25 44.13 0.27% 

     

Bars 

S0 -37.90 -42.44 11.96% 

S1 -37.90 -50.89 34.27% 

S2 -21.27 -36.19 70.17% 

S3 -29.19 -46.13 58.02% 

Tab. 6. Tension distribution in the various elements for two different focal lengths ℎ� � 0.2X and 

T=200N 



Page 23 / 43 

Tensions in the central elements for the infinite focal length network (Fig. 24) are homogenous. Indeed, 

the following relationships for an infinite focal length are obtained: 

 A� � A� � B� � B� (15) 

 

 S� � S� (16) 

 

 

 

Fig. 24. View of the central network 

However, not all stresses in the bars and cables of the internal part of the network are homogeneous. 

The tension is not uniform in the certain elements due to edge effects. The reflectors need to have very 

high accuracy in the centre of the reflector surface. By increasing the number of bars within the network, 

it can be seen numerically that the tension is uniform in the elements located toward the centre. A study 

of network densification showed that the distribution of axial forces at the center was almost uniform 

for a 61-bar structure (Fig. 25). 
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Fig. 25. Distribution of axial force in the network for � � 5 

 

III.2 Configuration (1) Network attachment 

The vibratory environment of the satellite is a major constraining element for space structures. Studies 

carried out [6] showed that the frame was perfectly in line with the specifications, that is to say, greater 

than 1Hz to prevent interaction with the Attitude Control System of the Satellite. Due to side effects, the 

standard pyramidal network contains solid mechanisms at the periphery (Fig. 26). When considering the 

network as a single entity, some bars are not laterally stabilized. Infinitesimal mechanisms are also 

present between crowns of bars and stabilisation can be achieved by the addition of bracing cables 

avoiding rotation of the crowns one to other. 

 

 In order to take into account the influence of the bracing elements of the structure, a static analysis was 

carried out. The influence of the presence of the cables as well as their tensioning is presented in part 

IV.2. 

 

Quasi-uniform tension zone 
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Configuration (1.a)    Configuration (1.b)  

Fig. 26. Network attachment mechanism a) and braced system b) 

To avoid mechanisms, bracing cables were inserted (Fig .27). 

 

 

Zoom 
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Fig. 27. Geometric docking parameters for the reinforced network. 

III.3 Study of a definitive solution 

III.3.1 Reflective shape 

III.3.1.1 Static analyses of the antenna with the standard network 

To evaluate the influence of the membrane on the antenna, numerical simulations were performed with 

the configuration (1.a) (without bracing cable). The membrane was made of SHELL181 elements under 

Ansys®, isotropic material with a Young modulus op � 15.10qPa, and a thickness of 0.1mm. Results 

of the simulations are shown in Table 7. 
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 Element 
Network 

Ansys (N) 

Network 

Analytical 

(N) 

Relative 

difference 

Network with 

Membrane 

Relative 

difference 

 Tension T 100 100    

Inner cables 

A1 21.23 21.39 0.7% 21.13 0.5% 
A2 22.34 22.48 0.6% 19.49 12.8% 
B1 21.51 21.63 0.6% 18.76 12.8% 
B2 22.01 22.18 0.8% 18.37 16.6% 

Peripheral 

cables 

C1 - - - - 
C2 13.48 13.59 0.8% 11.82 12.3% 
D1 21.65 21.79 0.6% 19.29 10.9% 
D2 12.71 12.80 0.7% 11.14 12.3% 
E1 19.91 20.09 0.9% 18.62 6.5% 

Bars 

S0 -21.21 -21.22 0.0% -21.22 0.0% 
S1 -25.33 -25.45 0.5% -25.21 0.5% 
S2 -17.96 -18.09 0.7% -15.83 11.9% 
S3 -22.90 -23.06 0.7% -21.21 7.4% 

Tab. 7. Tension distribution in the various elements for a naked network and network with membrane 

solution ℎ� � 0.2X. 

Bars elements are compressed and cable elements are tightened, the system is properly designed. 

III.3.2 Static analyses of the antenna with the reinforced network 

To tension the reinforced cable-dome (configuration 1.b) in the FEM, the tension � is directly introduced 

at point 4, locking all rotation and displacement along the z axis. In order to validate the FEM modeling, 

equations are solved analytically. To evaluate the normal force in the bracing cable 4�, the Castigliano 

theorem was applied (1): 

 s 1E,S, t N,�X ∂N,�X∂X dX
ℓw

�
x

,y�
� 0 (1) 

 

With N, and E,  are, respectively, the normal force in the element i, the Young modulus of the bar i, ℓ, 
is the length of the element i and S, the section of the element i. Numerical and analytical results with 

� �  50k and h� � 0.2m are shown for each bar in Table 8. 
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Tab. 8. Tensions of the reinforced network calculated analytically and numerically 

Using analytical models of the standard (configuration 1.a) and reinforced (configuration 1.b) cable 

dome, coefficients of correlation have been calculated for the inner cables of the cable dome. Whatever 

the tension T and ℎ�, the coefficient of correlation for the tension in the cables in the inner part is equal 

to 1, indicating the linearity between standard and reinforced networks. The results of the ratio 
{w|}{~���� 

are presented for a tension T � 100N as a function of ℎ� in Figure 28. 

 
Fig.28. Coefficient as a function of the height for the inner cable. 
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 Elements  
 Analytical 

Method 
FEM Error 

Inner cables 

A1 9.56 9.70 1.4% 

A2 10.04 10.18 1.3% 

B1 9.67 9.81 1.5% 

B2 9.91 10.06 1.5% 

Peripheral 

cables 

C1 3.43 3.38 1.5% 

C2 6.94 7.41 6.4% 

D1 13.43 13.67 1.8% 

D2 6.53 6.99 6.5% 

E1 6.64 6.54 1.5% 

E2 12.20 12.60 3.2% 

Bars 

S0 -9.48 -9.61 1.3% 

S1 -11.37 -11.52 1.3% 

S2 -9.24 -9.85 6.2% 

S3 -10.61 -10.93 2.9% 
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To obtain the optimal geometrical configuration that gave a suitable tension in the network, lengths of 

cable dome bars are changed and the results are given as a function of the maximum absolute value in 

the cable and in the bar. So, ratios 2�/�  and ��/�  are given as a function of ℎ� (Fig.29). Results showed 

that the absolute value of the normal force in the bar rise as a function of the length of the bar. 

 

Fig.29. Ratio k//� in function of ℎ�. 

In order to study a complete solution, the peripheral hexagonal ring is added at the membrane system. 

The maximum value of the Von Mises stress is located at the attachment point of the shape. For these 

simulations, ℎ� � 20�X, op � 10��� and cable dome bars were 1cm diameter (Fig.30). Results show 

that the model is quasi linear. 
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Membrane thickness 1 mm 

  
   

T=100 N T=200 N 

Membrane thickness 3 mm 

   
T=100 N T=200 N 

Fig. 30. Distribution of stresses on the membrane 

The cable net possessed a third order circular symmetry. Stresses on the shape are distributed along the 

edge of triangular pattern and are maximals at the anchor points of the membrane with the bars of the 

cable dome (Fig.30). 

 

III.3.1.3 Modal analysis of the concept 

In order to evaluate the potential of this antenna in an operational configuration, a modal analysis was 

performed numerically. Generally, the first eigenfrequency of a space deployable antenna is low. 

Tzerodz [17] presents a circumferential ring architecture of a conical V folded shape and 4m diameter 

with a first frequency of 0.472Hz. Similary, Medzmariashvili [18] presents a conical frame with a 

diameter of 6m with a first mode of 0.624Hz, with an antenna is around 13kg. In our case, the 

requirement of the first eigenfrequency of the antenna must be higher than 1Hz. A bar of the peripheral 

rim of the antenna is embedded in the middle. The geometrical and mechanical parameters of the 

simulation are presented in Table 9. 
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 Mass (kg) 
Number 

of elements 
Element type 

Cable dome bars vary 19 LINK180 

Peripherals wires 0.808 42 LINK180 

Cable dome wires 1.014 48 LINK180 

Rim bars 2.863 192 BEAM188 

Membrane 0.315 9600 SHELL181 

Tab. 9. Parameters of the simulation 

A modal analysis, using bending prestressing uses the linear perturbation method as defined in Ansys®, 

was carried out. The ring was prestressed by reducing the length of the cables, generating a compressive 

moment and force in the ring. The deformation coefficient of the element was calculated using numerical 

simulations and calibrated using equation (A.13), defined in Annexe A, by imposing the tension T. 

The ring is composed of carbon tubes of circular hollow cross section, elastic modulus E� � 125GPa, 

density ρ� � 1550 kg/m�, thickness e� � 1mm, diameter 5cm, shear modulus G� � 90GPa. The results 

are presented in the following table for the structure with a total ring mass of 2.86kg and with a 2m bar 

length. The standard network was considered. Results for a simulation with � � 100N, ℎ� � 0.2m, a 

membrane thickness equal to 0.3mm and various density �p and Young modulus op of the membrane 

are presented in Table 10. 

�B ��</Bj  750 850 950 1050 

 F1 (Hz) F1 (Hz) F1 (Hz) F1 (Hz) 

�\ � h��? 2.4356 2.3993 2.3609 2.2890 

�\ � hb��? 2.5232 2.5082 2.4789 2.4574 

Antenna mass (kg) 6.1494 6.2701 6.3909 6.5117 

Tab.10. First eigen frequencies in function of the density and Young modulus 

Results show that for various configurations, the first frequency is higher than 1Hz.  

As seen (Fig.31), the first mode is a flexional mode, corresponding to the first mode of the ring, as 

described by Bettini [6]. 
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Ring Antenna 

 

 
 

X�/�� � 2.86 �� X������� � 6.149 �� 

F�/�� � 3.44 Hz F������� � 2.43 Hz 

First mode: Flexion 
 

First mode: Flexion 
 

Fig. 31. Shape of the first mode of the ring and of the antenna (standard) 

 

By increasing the length of the bars, it would also be possible to extend the concept to larger diameters 

antennas. It can be observed that by comparing the ratio of the natural frequency of the ring to that of 

the square root of the antenna mass to the ring mass, the results are very close Eq. 2. 

 

 
����������/p � 2.433.44 � 0.706 � �¡ X�/��X������� � ¡2.8636.149 � 0.682 (2) 

 

Thus the frequency of the first mode would not depend on the size of the reflecting surface but highly 

on its mass. 

 
�������� ¢ ��/p¡ X�/��X������� 

(3) 

 

Anchoring point 
Anchoring point 

(6 Degrees of Freedom locked) (6 Degrees of Freedom locked) 
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Hence, by optimising the ratio 
p£¤¥¦p§¥¨©¥¥§ and the mass of the ring thanks the use of lightweight and high-

performance materials such as CFRP materials (allowing to reduce the thickness of bars down to 0.1mm) 

for the ring and the dome cable bars, the natural frequency of the antenna can be optimised. 

For example, considering a ring composed of bars of length 3m, a useful surface of about 6m could be 

achieved. Using Eq. 3, with  
ª�w«¬ª«®�«« ¢ 0.5  and a f°,ª � 1.92Hz (made of carbon epoxy, with bars 

diameter =7.5cm, bars thickness =1mm), f±x�²xx± ¢ 1.35Hz.  

IV. Summary and conclusion 

This paper presents a new concept of a three-dimensional network and space antenna. It is attractive 

because of its simplicity, and the homogeneous distribution of control points allowing a more optimal 

distribution of axial forces within the network. Another advantage of this solution is the requirement for 

a simpler ring structure. In comparison with conventional cable domes of the Fuller and Geiger type, 

the transmission of forces is more homogeneous. Another advantage of this network is that it is not 

necessary to have two convex surfaces in order to obtain a three-dimensional network. Various models 

were presented: an analytical standard network model and a numerical model. The gap between the 

standard analytical model and the numerical model is very small < 0.4%. This difference is further 

reduced by a larger height of the h� bar. As a result, the use of the analytical model allows a very rapid 

sizing of the network by the designer. An optimal network configuration can be calculated based on 

various geometric parameters: focal length, network bar height, allowing rapid sizing. The uniform 

tension allows us to approach at best a parabolic surface. 

A first study verified that the antenna satisfied the frequency criteria. The influence of different 

parameters on the first mode such as the tension T, the height of the bars of the network, the mass of the 

nodes of the ring, the network type (standard or reinforced) and the thickness of the membrane must be 

evaluated.  

A more detailed study on the adaptation to large diameters should be carried out. 
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Exposure to sunlight will affect both the behavior and the RMS (surface accuracy) error of the network 

and the tensioned membrane. Thermal aspects of the environment will need to be considered in the 

modelling in order to assess the behavior of the rim, of the membrane and the dome cable during the 

operational phase.  

In addition to the useful surface, it is possible to install a similar membrane on the opposite side in order 

to ensure the correct positioning of the elements and to avoid entanglement. In this case, the standard 

cable net could be used and the analytical model permits us to give a close approximation of the solution. 

The problem of the network-membrane connection must also be solved from a technological point of 

view: transmission of forces, concentration of stresses and compliance with load limits.  

A device to avoid the entanglement of the bars should be considered. A network that marries this with 

a shapely surface will also need to be studied.  

Currently a prototype antenna with a network is being developed in the laboratory to perform static and 

dynamic tests using a gravity compensation device developed by Morterolle.  
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APPENDIX 

APPENDIX A 

 

Node 0: �A�, S� 

 3A� sin α� 	 S� � 0 (A.1) 
 

Node 1’: �A�, B�, S� 

 A� cos α� � 2B� cos β� cos π3 (A.2) 

 

 A� sin α� 	 2B� sin β� 	 S� � 0 (A.3) 
 

Node 1: �B�, A�, S� 

 2B� cos β� cos π3 � A� cos α� � 0 (A.4) 

 

 2B� sin β� 	 A� sin α� 	 S� � 0 (A.5) 
 

Node 2: �A�, D�, C� � 0, S� 

 A� cos α� � D� cos δ� � 0 (A.6) 
 

 A� sin α� 	 D1 sin δ� 	 S� � 0 (A.7) 
Node 2’: �D�, C�, S� 

 2C� cos γ� cos π3 � D� cos δ� � 0 (A.8) 

 

 2C� sin γ� 	 D� sin δ� 	 S� � 0 (A.9) 
 

Node 3’: (same that node 3) �E�, E�, B�, C� � 0, C�, S� 

 

 B� cos β� cos π6 � �E� 	 E� cos ϵ� cos ψ � 0 (A.10) 

 

 �E� � E� cos ϵ� sin ψ � C� cos γ� 	 B� cos β� sin π6 � 0 (A.11) 

 

 B� sin β� 	 �E� 	 E� sin ϵ� 	 C� sin γ� 	 S� � 0 (A.12) 
 

Node 4: �E�, E�, D�, D� 

 

 2�E� 	 E� cos ϵ� cos ω 	 �D� 	 D� cos δ� � T (A.13) 
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Solving: 

 

Node 0: �A�, S� 

 
A� � � 13 sin α�³´́µ´́¶·¸

S� 
(A.1’) 

Injecting (A.1’) in (2) and (3):  

 q�S� cos α� � 2B� cos β� cos π3 (A.2’) 

 

And, 

 q�S� sin α� 	 2B� sin β� 	 S� � 0 (A.3’) 
 

Leading to: 

 
B� � 12 q� cos α�cos β� cos π3³´́ ´µ´́ ´¶·º

S� 
(A.2’’) 

By inserting (A.2) into (A.3): 

 
S� � ��q� sin α� 	 2q� sin β�³´́ ´́ ´́ ´µ´́ ´́ ´́ ´¶·»

S� 
(A.3’’) 

 

By injecting (A.3’’) and (A.4) in (A.5): 

 
B� � � q�J2 sin β� 	 2cosβ� cos π3 tan α�K³´́ ´́ ´́ ´́ ´́ µ´́ ´́ ´́ ´́ ´́ ¶·¼

S� 
(A.5’) 

 

Similarly, by putting (A.5’) into (A.4): 

 A� � 2q� cos β� cos π3cos α�³´́ ´́ µ´́ ´́ ¶·½
S� (A.4’) 

By inserting (A.4’) in (A.6): 

 
D� � q¾ cos α�cos δ�³́ µ́´́¶·¿

S� 
(A.6’) 

 

 A� sin α� 	 D1 sin δ� 	 S� � 0 (A.7) 
 

By injecting (4’) and (6’) in (7): 

 
S� � ��q¾ sin α� 	 qÀ sin δ�³´́ ´́ ´́ ´µ´́ ´́ ´́ ´¶·Á

S� 
(A.7’) 
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 D� � 2 cos γ� cos π3cos δ�³´́ ´µ´́ ´¶·Â
C� (A.8’) 

By putting (A.7’) and (A.8’) in (A.9): 

 
C� � � qÃ2 sin γ� 	 qÄ sin δ�³´́ ´́ ´́ µ´́ ´́ ´́ ¶·Å

S� 
(A.9’) 

This can be deduced by injecting (A.9) in (A.8’): 

 D� � qÄqÆÇ·È
S� (A.8’’) 

By injecting the relation (A.2’) into equation (A.10), it comes: 

 E� 	 E� � q� cos β� cos π6cos ϵ� cos ψ³´́ ´µ´́ ´¶·º¸
S� (A.10’) 

By inserting (A.2'), (A.9') and (A.10') into (A.12): 

 
S� � ��q� sin β� 	 q�� sin ϵ� 	 qÆ sin γ�³´́ ´́ ´́ ´́ ´́ ´µ´́ ´́ ´́ ´́ ´́ ´¶·ºº

S� 
(A.12’) 

By putting (A.10’) in (A.11): 

 2E� cos ϵ� sin ψ � Jq�� cos ϵ� sin ψ 	 qÆ cos γ� � q� cos β� sin π6K S� (A.11’) 

 

 E� � q�� cos ϵ� sin ψ 	 qÆ cos γ� � q� cos β� sin π62 cos ϵ� sin ψ³´́ ´́ ´́ ´́ ´́ ´́ ´µ´́ ´́ ´́ ´́ ´́ ´́ ´¶·º»
S� (A.11’’) 

Injecting (A.11’’) in (A.10’): 

 E� � �q�� � q��S� (A.10’’) 
 

Finally, injecting (A.6’), (A.8’) and (A.10’) in (A.13): 

 S� � T2q�� cos ϵ� cos ω 	 �qÀ 	 qq cos δ� (A.13’) 

So, finally: 

 S� � Tq�� (A.13’’) 

 

T is the enter parameter, S� is known, the other parameters are deduced in function of T. Parameters are 
listed in Table A.1.  
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Standard Network parameters 

q� � � 13 sin α�  qÄ � 2 cos γ� cos π3cos δ�  

q� � 12 q� cos α�
cos β� cos π3 qÆ � � qÃ2 sin γ� 	 qÄ sin δ�  

q� � ��q� sin α� 	 2q� sin β� qq � qÄqÆ 

q� � � q�2 sin β� 	 2 cos β� cos π3 tan α� q�� � q� cos β� cos π6cos ϵ� cos ψ  

q¾ � 2q� cos β� cos π3cos α�  q�� � ��q� sin β� 	 q�� sin ϵ� 	 qÆ sin γ� 

qÀ � q¾ cos α�cos α�  q�� � q�� cos ϵ� sin ψ 	 qÆ cos γ� � q� cos β� sin π62 cos ϵ� sin ψ  

qÃ � ��q¾ sin α� 	 qÀ sin δ� q�� � 2q�� cos ϵ� cos ω 	 �qÀ 	 qq cos δ� 

Tab. A.1. Standard Network parameters 
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APPENDIX B 

Given that N,�X � M,X 	 P, : 
 s 1E,S, t M,�X 	 M,P, dy

ℓw

�
x

,y�
� 0 (B.1) 

 

 s ËM,�X 	 M,P,Ìℓ,E,S,
x

,y�
� 0 (B.2) 

 

 X s M,�ℓ,E,S,
x

,y�
	 s M,P,ℓ,E,S,

x
,y�

� 0 (B.3) 

 

 X � � ∑ M,P,ℓ,E,S,x,y�
∑ M,�ℓ,E,S,x,y�

 (B.4) 

 

The modified equations of the reinforced cable net are denoted with (*): 

 A� cos α� � D� cos δ� 	 2C� cos 1� cos χ � 0 (B.6*) 

 

 A� sin α� 	 D� sin δ� 	 2C� sin 1� 	 S� � 0 (B.7*) 

 

 �E� � E� cos ϵ� sin ψ � C� cos γ� 	 B� cos β� sin π6 � C� cos 1� � 0 (B.11*) 

 

 B� sin β� 	 �E� 	 E� sin ϵ� 	 C� sin γ� 	 S� � C� sin 1� � 0 (B.12*) 

 

The equations are wrote in function of C� � X and listed in Table B.1 and coefficients are listed in Table 
B.2. 
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Normal force Derivative following X 

 
Bars 

 S� � Tλ�� � λ��λ�� X 
∂S�∂X � �λ��λ��  

 S� � q� Tλ�� � q� λ��λ�� X 
∂S�∂X � q� �λ��λ��  

 S� � λ� Tλ�� 	 Ïλ� �λ��λ�� 	 λ�Ð X 
∂S�∂X � λ� �λ��λ�� 	 λ� 

 S� � λÀ Tλ�� 	 ÏλÀ �λ��λ�� 	 λÃÐ X 
∂S�∂X � λÀ �λ��λ�� 	 λÃ 

 
Cables 

 A� � q� Tλ�� �  q� λ��λ�� X 
∂A�∂X � q� �λ��λ��  

 A� � q¾ Tλ�� � q¾ λ��λ�� X 
∂A�∂X � q¾ �λ��λ��  

 B� � q� Tλ�� � q� λ��λ�� X 
∂B�∂X � q� �λ��λ��  

 B� � q� Tλ�� � q� λ��λ�� X 
∂B�∂X � q� �λ��λ��  

 C� � X 
∂C�∂X � 1 

 C� � λ� Tλ�� 	 Ïλ� � λ� λ��λ��Ð X 
∂C�∂X � λ� �λ��λ�� 	 λ� 

 D� � η Tλ�� 	 Ïμ � η λ��λ��Ð X 
∂D�∂X � μ 	 η �λ��λ��  

  D� � qÄλ� Tλ�� 	 qÄ Ïλ� � λ� λ��λ��Ð X 
∂D�∂X � qÄ Ïλ� �λ��λ�� 	 λ�Ð 

 E� � �λ¾ � λÄ Tλ�� � Ó�λ¾ � λÄ λ��λ�� 	 λÆÔ X 
∂E�∂X � �λ¾ � λÄ �λ��λ��  � λÆ 

 E� � λÄ Tλ�� 	 Ï�λÄ λ��λ��   	 λÆÐ X 
∂E�∂X � λÄ �λ��λ��   	 λÆ 

Tab.B.1 Representation of the normal force in function of the geometrical coefficients 
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Reinforced network 

 μ � 2 cos γ� cos π3cos γ�  λÃ � ��λ� sin γ� � sin γ� 

 η � q¾ cos α�cos δ�  λÄ � � �λ¾ cos ϵ� sin ψ � λ� cos γ� 	 q� cos β� sin π62 cos ϵ� sin ψ  

 λ� � �q¾�sin α� � cos α� tan _� λÆ � cos γ� 	 λ� cos γ�2 cos ϵ� sin ψ  

 λ� � 2 cos γ� cos π3cos δ� sin δ� � 2 sin γ� Õq � � 2 cos γ� cos π3cos δ�  

 λ� � � λ�2 sin γ� 	 qÄ sin δ� Õ�� � � q¾ cos α�cos δ�  

 λ� � � λ�2 sin γ� 	 qÄ sin δ� Õ�� � 2λ¾ cos ϵ� cos ω 	 λ�� cos δ� 	 qÄλ� cos δ� 

 λ¾ � q� cos β� cos π6cos ϵ� cos ψ  Õ�� � �λq 	 qÄλ� cos δ� 

 λÀ � ��λ¾ sin ϵ� 	 λ� sin γ� 	 q� sin β�  

Tab.B.2. Representation of different geometrical parameters 


