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ABSTRACT
Explaining predictions made by inductive classifiers whose inter-
nal reasoning is left unspecified (black-boxes) is becoming a hot
topic. Abductive explanations are one of the most popular types of
explanations that are provided for the purpose. They are sufficient
reasons for making predictions. They are generated from the whole
feature space, which is not reasonable in practice. This paper inves-
tigates functions that generate abductive explanations from a set
of instances. It shows that such explainers should be defined with
great care since they cannot satisfy two desirable properties at the
same time, namely existence of explanations for every individual
decision (success) and correctness of explanations (coherence). The
paper provides a general argumentation-based setting in which
various functions satisfying one of the two properties are defined.
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1 INTRODUCTION
Explaining predictions of black-box classification models has be-
come a vital need, and has generated a lot of research (see [6, 7, 9,
12, 14, 15, 21] for more on explainability). One of the most studied
types of explanation is the so-called abductive explanations, which
highlight feature-values that are sufficient for making a given pre-
diction. Such explanations are generally generated from the whole
feature space (eg., [1, 4, 10, 13]), which is reasonable when mod-
els are interpretable, like Decision Trees, but not tractable in case
of black-boxes [8]. As a solution, the two prominent explanation
functions Anchors [19] and LIME [18] and the argument-based
function [2] generate abductive explanations from a sample (i.e.,
subset) of instances, avoiding thus exploring the whole feature
space. However, it has been shown in [2, 16] that explanations of
Anchors/LIME may be globally inconsistent and thus incorrect. The
third function ensures correct explanations but does not guarantee
the existence of explanations for every instance. It is also very cau-
tious as it discards all conflicting explanations generated from the
sample.
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This paper investigates explanation functions that generate ab-
ductive explanations from a sample while satisfying desirable prop-
erties. It starts by proving an impossibility result, which states that
a function which generates abductive explanations from a sam-
ple cannot guarantee both existence of explanations (success) and
their correctness (coherence). Then, it proposes a parametrized
argumentation-based approach for defining in a systematic way
various functions satisfying one of the two incompatible properties.

2 PRELIMINARIES
Throughout the paper, we consider a classification theory as a tuple
T = ⟨F, dom, C⟩made of a finite set F of features, a function domwhich
returns the domain of every feature and a finite set C of classes. We
call literal any pair (𝑓 , 𝑣) where 𝑓 ∈ F and 𝑣 ∈ dom(𝑓 ) and instance
any subset of literals in which every attribute 𝑓 ∈ F appears exactly
once. We denote by Lit(T) the set of all possible literals of a theory
T and by Inst(T) the set of all its instances, called also feature space.
We say that a set of literals is consistent if it does not contain two
literals having the same feature but distinct values. A classification
model, or classifier, is a surjective function R that assigns a single
class from C to every instance 𝐼 ∈ Inst(T). An explainer is a func-
tion which returns the reasons (explanations) behind predicting
the class of a given instance by a classifier. Throughout the paper,
we assume an arbitrary theory T and a classifier R.

3 ABDUCTIVE EXPLANATIONS
Abductive explanations are sufficient reasons for making a predic-
tion. They are generated by exploring the whole feature space; we
call such explanations absolute abductive explanations.

Definition 1. Let 𝐼 ∈ Inst(T). An absolute abductive explana-
tion of R(𝐼 ) is a set 𝐿 ⊆ Lit(T) such that:

• 𝐿 ⊆ 𝐼 ,
• ∀𝐼 ′ ∈ Inst(T) \ {𝐼 } such that 𝐿 ⊆ 𝐼 ′, R(𝐼 ′) = R(𝐼 ),
• �𝐿′ ⊂ 𝐿 such that 𝐿′ satisfies the above conditions.

We denote by g𝑎 the function which assigns to every instance 𝐼 ∈
Inst(T) the set of all absolute abductive explanations of R(𝐼 ).

Example 1. Consider a theory made of two binary features 𝑓1, 𝑓2
and two classes (0,1). Assume the classifier R such that for 𝐼 ∈ Inst(T),
R(𝐼 ) = 𝑓1∨ 𝑓2. For 𝐼 = {(𝑓1, 1), (𝑓2, 1)}, R(𝐼 ) = 1 and g𝑎 (𝐼 ) = {𝐿1, 𝐿2}
with 𝐿1 = {(𝑓1, 1)} and 𝐿2 = {(𝑓2, 1)}.

Generating absolute explanations from the whole feature space
(second condition) may not be feasible in practice especially for
black-box classifiers. Hence, we introduce plausible abductive ex-
planations, which are based on a subset of instances only.

Definition 2. Let Y ⊆ Inst(T) and 𝐼 ∈ Y. A plausible abduc-
tive explanation of R(𝐼 ) is a set 𝐿 ⊆ Lit(T) such that: • 𝐿 ⊆ 𝐼 ,



• ∀𝐼 ′ ∈ Y \ {𝐼 } such that 𝐿 ⊆ 𝐼 ′, R(𝐼 ′) = R(𝐼 ),
• �𝐿′ ⊂ 𝐿 such that 𝐿′ satisfies the above conditions.

We denote by g𝑝 the function generating them for every instance.

Example 2. Assume a classification problem of deciding whether
to go hiking (1) or not (0). The decision is based on four binary features:
Being on vacation (𝑉 ), having a concert (𝐶), having a meeting (𝑀)
and having an exhibition (𝐸). Assume a classifier R that assigns classes
to instances of Y ⊂ Inst(T) as shown in the table below.

Y 𝑉 𝐶 𝑀 𝐸 R(𝐼𝑖 )
𝐼1 0 0 1 0 0
𝐼2 1 0 0 0 1
𝐼3 0 0 1 1 0
𝐼4 1 0 0 1 1
𝐼5 0 1 1 0 0
𝐼6 0 1 1 1 0
𝐼7 1 1 0 1 1

𝐿1 = {(𝑉 , 0)}
𝐿2 = {(𝑀, 1)}
𝐿3 = {(𝐶, 1), (𝐸, 0)}
𝐿4 = {(𝑉 , 1)}
𝐿5 = {(𝑀, 0)}

g𝑝 (𝐼1) = g𝑝 (𝐼3) = g𝑝 (𝐼6) = {𝐿1, 𝐿2}
g𝑝 (𝐼2) = g𝑝 (𝐼4) = g𝑝 (𝐼7) = {𝐿4, 𝐿5}
g𝑝 (𝐼5) = {𝐿1, 𝐿2, 𝐿3}

We show that every absolute explanation of an instance is a
superset of a plausible explanation of the same instance. This shows
that a plausible explanation is not larger than an absolute one.

Proposition 1. Let T be a theory and Y ⊆ Inst(T). For every
𝐼 ∈ Y, if 𝐿 ∈ g𝑎 (𝐼 ), then ∃𝐿′ ⊆ 𝐿 such that 𝐿′ ∈ g𝑝 (𝐼 ).

The following example shows that a plausible explanation may
not be the subset of any absolute explanation.
Example 2 (Cont.) Assume the instance 𝐼8 below is labelled 1.

𝑉 𝐶 𝑀 𝐸 R(𝐼8)
𝐼8 1 1 0 0 1

While 𝐿3 ∈ g𝑝 (𝐼5) in Y, 𝐿3 cannot be (a subset of) an absolute
explanation of the decision R(𝐼5).

4 IMPOSSIBILITY RESULT
A property that should be satisfied by any explainer has been intro-
duced in [2]. It states that two explanations of instances labelled
with different classes should be inconsistent. This property prevents
the following three undesirable situations: Assume two instances
𝐼 , 𝐼 ′ ∈ Inst(T) such that R(𝐼 ) ≠ R(𝐼 ′). Assume also that 𝐿 is an
explanation for 𝐼 and 𝐿′ is an explanation for 𝐼 ′. We may have the
three cases: i) 𝐿 = 𝐿′, ii) 𝐿 ⊂ 𝐿′, or iii) 𝐿 ⊈ 𝐿′ and 𝐿∪𝐿′ is consistent.
It is clearly not reasonable to predict different classes on the basis
of the same set of information ((i), ii)). For the third case, assume 𝐿
and 𝐿′ stand respectively for: Age ≤ 45, salary ≤ 50𝐾 and R(𝐼 ) and
R(𝐼 ′) stand for accepting and rejecting a loan respectively. The two
explanations are incompatible since they both match a profile of a
customer whose age is 30 and salary is 40K. The first rule predicts
acceptance while the second predicts rejection of the loan.

Principle 1. (Coherence) An explainer g satisfies coherence iff
the following holds: for any classifier R, for any theory T, for all
𝐼 , 𝐼 ′ ∈ Inst(T), if R(𝐼 ) ≠ R(𝐼 ′), then for every 𝐿 ∈ g(𝐼 ), for every
𝐿′ ∈ g(𝐼 ′), we have that 𝐿 ∪ 𝐿′ is inconsistent.

We introduce another property stating that an explainer should
always provide outcomes. A similar property has been defined in
[3] for functions that explain classes instead of instances.

Principle 2. (Success) An explainer g satisfies success iff, for any
classifier R, for any theory T, for any 𝐼 ∈ Inst(T), g(𝐼 ) ≠ ∅.

It has been shown in [2] that g𝑎 satisfies both properties while
the function g𝑝 satisfies Success but violates Coherence.
Example 2 (Cont.) Consider the two instances 𝐼1 and 𝐼2. Note
that R(𝐼1) ≠ R(𝐼2) while 𝐿1 ∈ g𝑝 (𝐼1), 𝐿5 ∈ g𝑝 (𝐼2) and 𝐿1 ∪ 𝐿5
is consistent. Consequently, there exists 𝐼 ′ ∈ Inst(T) such that
𝐿1 ∪ 𝐿5 ⊆ 𝐼 ′. Since 𝐼 ′ is assigned a single class, then at least one of
the two explanations (𝐿1, 𝐿5) is incorrect.

The aim is to define explanation functions that generate plausible
explanations (from samples) and that satisfy the two principles. Let
us first introduce the notion of refined plausible explainer.

Definition 3. Let Y ⊆ Inst(T). A refined plausible explainer
is a function g mapping every 𝐼 ∈ Y into g(𝐼 ) ⊆ g𝑝 (𝐼 ).

We show that the two principles are incompatible as there is no
refined plausible explainer that can satisfy the two principles at the
same time for every classifier, every theory, and every sample.

Theorem 1. There is no refined plausible explainer that satisfies
both Coherence and Success.

This negative result shows that generating abductive explana-
tions from a subset of feature space is a tricky problem and one has
to choose between the quality of explanations and their existence.

5 ARGUMENT-BASED EXPLAINERS
Argumentation is a powerful approach for reasoning with conflict-
ing or incomplete information (see [5, 17, 20] for more information).
We propose a parametrized family of argumentation-based explana-
tion functions, each of which satisfies one of the two incompatible
properties. The approach starts by generating arguments in favour
of classes; an argument is a pair ⟨𝐿, 𝑐⟩ where 𝐿 is a plausible ex-
planation for the class 𝑐 . In Example 2, the pairs 𝑎 = ⟨𝐿1, 0⟩ and
𝑏 = ⟨𝐿5, 1⟩ are arguments. The approach identifies conflicts among
arguments, where a conflict occurs when two arguments violate
Coherence. For instance, the two arguments 𝑎 and 𝑏 are conflicting
since 𝐿1 and 𝐿5 violate Coherence, hence we say that 𝑎 and 𝑏 attack
each other. For evaluating arguments, an extension semantics from
[11], namely stable, is used. The outcome is a set of sets of argu-
ments that can be jointly accepted. Finally, the approach identifies
accepted arguments, and uses the latter for defining novel types
of abductive explanations. Accepted arguments are defined in our
approach using two parameters: selection function and inference
rule. The former selects a subset of stable extensions. For instance,
one may consider all extensions, or those that contain more argu-
ments, or that cover more instances. The latter selects (accepted)
arguments from the chosen extensions. Two criteria are investi-
gated: the universal criterion which selects arguments belonging
to all extensions and the existential one which elects every argu-
ment appearing in at least one extension. The supports of selected
arguments are used for explaining instances. We define various
functions combining different instantiations of the two parameters.
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