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Parabolic isometries of the fine curve graph of the torus

Pierre-Antoine Guihéneuf, Emmanuel Militon

May 11, 2023

Abstract

In this article we finish the classification of actions of torus homeomorphisms
on the fine curve graph initiated by Bowden, Hensel, Mann, Militon, and Webb in
[BHM+22].

This is made by proving that if f ∈ Homeo(T2), then f acts elliptically on
C†(T2) if and only if f has bounded deviation from some v ∈ Q2 \ {0}. The proof
involves some kind of slow rotation sets for torus homeomorphisms.
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1 Introduction

The fine curve graph C†(S) of a closed surface S was introduced by Bowden, Hensel,
and Webb [BHW22] to give a counterpart of the classical curve graph adapted to the
study of the group of all homeomorphisms of S. More precisely, the classical curve graph
C(S) has vertex set the isotopy classes of essential simple closed curves on S, with edges
between pairs of isotopy classes that can be realized disjointly (a slight modification
is needed for genus 1 surfaces). Note that the natural action of a homeomorphism on
curves quotients down to an action of the mapping class group Map(S) on the curve
graph C(S) by isometries. The Gromov hyperbolicity (or equivalently δ-hyperbolicity)
of C(S), showed by Masur and Minsky [MM99, MM00], then implies numerous geometric
and algebraic properties of the mapping class group Map(S) (e.g. [BBF15, BKMM12,
BM08, DGO16, Mah11]).

In this paper we will focus on the case of the torus S = T2. Let us give the precise
definition of the fine curve graph in this context.

1



Definition 1. The fine curve graph on the torus T2 is the graph C†(T2) whose vertices
are essential1 simple loops. There is an edge between two vertices α and β if and only if
the loops α and β have at most one intersection point.

As a consequence of the Gromov hyperbolicity of the classical curve graphs for punc-
tured surfaces, it was proved in [BHW22] that the fine curve graph C†(S) is Gromov
hyperbolic. This enables the authors to use large scale geometry techniques to study
Homeo(S) via its action on C†(S). As an application, they prove that, for any closed
surface S of genus ≥ 1, stable commutator length and fragmentation norm on Homeo0(S)
are unbounded, answering a question posed by Burago, Ivanov, and Polterovich [BIP08].

In the same way as the mapping class group Map(S) acts on C(S) by isometries,
the whole homeomorphism group Homeo(S) acts on C†(S) by isometries. Gromov has
classified isometries of Gromov hyperbolic spaces [Gro87, paragraph 8], [BH99], according
to the asymptotic translation length, defined for an isometry g of a Gromov hyperbolic
space X as

|g|X = lim
n→+∞

1

n
dX
(
x, gn(x)

)
.

It is a standard exercise to see that this limit exists and is independent of x. This
independence immediately implies that the asymptotic translation length is a conjugacy
invariant of isometries of X. Gromov classification is then as follows: for g an isometry
of a Gromov hyperbolic space, g is

• Hyperbolic if the asymptotic translation length is positive;

• Parabolic if the asymptotic translation length is zero but g has no finite diameter
orbits, and

• Elliptic if g has finite diameter orbits.

There is an equivalent reformulation of this trichotomy in terms of fixed points on the
Gromov boundary of X, but we do not require this point of view in the present work.

While there is no mapping class acting parabolically on2 C(S), the situation is much
richer for the action of homeomorphisms on C†(S): in [BHM+22], the authors prove that
there are homeomorphisms of T2 acting parabolically on C†(T2). They also initiate a
classification of actions of homeomorphisms on C†(T2) in terms of rotational behaviour:
they give a criterion of hyperbolicity in terms of rotation set, as well as examples of
parabolic and elliptic homeomorphisms. In the present article, we complete their work to
give a complete classification of actions of homeormorphisms of T2 in terms of rotational
behaviour.

Definition 2. Let v ∈ R2\{0}. We say that f ∈ Homeo(T2) has bounded deviation from
direction v if there exists ρ ∈ R2 and a lift f̃ : R2 → R2 of f such that |〈f̃n(x)−x−nρ, v〉|
is bounded from above, uniformly in x ∈ R2 and n ∈ N.

Observe that this definition does not depend on the chosen lift f̃ of f .
Recall the classification of homotopy classes for torus homeomorphisms: if f ∈

Homeo(T2), then f of f2 is homotopic either to the identity, or to a Dehn twist (defined
in Section 1.1), or to a linear Anosov automorphism.

1I.e. non contractible.
2It follows from [MM99, Proposition 4.6] and the Nielsen–Thurston classification [Thu88].
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A homeomorphism homotopic to a linear Anosov automorphism has unbounded devi-
ation in any direction, and a homeomorphism homotopic to a Dehn twist has unbounded
deviation in any direction but possibly one. To see this, consider one point of R2 and
some nontrivial integer translate of it, and look at the deviation between these two
points (at some point one has to use the fact that the eigendirections of linear Anosov
automorphisms have irrational slope).

Note that if f ∈ Homeo(T2) is homotopic to identity and has bounded deviation
from two non-collinear directions, then it has bounded deviation from any direction.

The main theorem of this article is the following.

Theorem A. Let f ∈ Homeo(T2). Then f acts elliptically on C†(T2) if and only if f
has bounded deviation from some v ∈ Q2 \ {0}.

Combined with the results of [BHM+22], this theorem implies a complete classifica-
tion of the action of homeomorphisms on C†(T2) in terms of rotational behaviour.

We denote by Homeo0(T2) the connected component of identity in the group
Homeo(T2); it coincides with the set of homeomorphisms that are homotopic to identity.
We denote the rotation set of f̃ by ρ(f̃). It is a compact convex subset of the plane
capturing the rotational behaviour of the homeomorphism (see Section 1.1 for precise
definitions).

Corollary 3. Let f ∈ Homeo0(T2). Then

• f acts hyperbolically on C†(T2) if and only if ρ(f̃) has nonempty interior;

• f acts parabolically on C†(T2) if and only if ρ(f̃) is a segment of irrational direction,
or ρ(f̃) is a segment of rational direction not passing through a rational point, or
f is a pseudo-rotation3 with unbounded deviation from any v ∈ Q2 \ {0};

• f acts elliptically on C†(T2) if and only if ρ(f̃) is a segment of rational direction
passing through a rational point, or f is a pseudo-rotation with bounded deviation
from some v ∈ Q2 \ {0}.

Let us explain how to deduce this corollary from Theorem A. The first point is
[BHM+22, Theorem 1.3]. Hence it suffices to distinguish homeomorphisms that act
elliptically from those that do not.

By Passeggi and Sambarino [PS20], any homeomorphism whose rotation set is a
segment of rational slope not passing by a rational point, has unbounded deviation, and
hence by Theorem A acts parabolically.

Moreover, by Dávalos [Dáv18], any homeomorphism whose rotation set is a segment
of rational direction v passing through a rational point has bounded deviation in v⊥,
and hence by Theorem A acts elliptically.

If we suppose that the Franks-Misiurewicz conjecture [FM90] holds, the above corol-
lary implies the following improvement of the second point: f acts parabolically on
C†(T2) if and only if ρ(f̃) is a segment of irrational direction, or f is a pseudo-rotation
with unbounded deviation from some v ∈ Q2 \ {0}. In particular any f whose rotation
set is a segment with rational direction acts elliptically on C†(T2).

3We call pseudo-rotation a homeomorphism f ∈ Homeo0(T2) whose rotation set is reduced to a single
point.
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Remark that there are both pseudo-rotations with bounded displacement in some
rational direction (like actual rotations) and pseudo-rotations with unbounded displace-
ment in any rational direction (see for [KT14] for rational pseudo-rotations and [KK09]
for irrational ones). Hence one cannot distinguish completely the possible types of ac-
tions of homeomorphisms on C†(T2) only in terms of rotation sets. Note that Jäger [J0̈9],
Jäger-Tal [JT17] and Kocsard [Koc21] gives criteria of semi-conjugation to a rotation for
torus homeomorphisms with bounded displacements.

One can give a statement similar to Corollary 3 from the rotation viewpoint:

Corollary 4. Let f ∈ Homeo0(T2). Then

• If ρ(f̃) has nonempty interior, then f acts hyperbolically on C†(T2);

• If ρ(f̃) is a segment with irrational slope, then f acts parabolically on C†(T2);

• If ρ(f̃) is a segment with rational slope passing through a rational point, then f
acts elliptically on C†(T2);

• If ρ(f̃) is a segment with rational slope not passing through a rational point (a case
that should never hold according to Franks-Misiurewicz conjecture [FM90]), then f
acts parabolically on C†(T2);

• If f is a pseudo-rotation with unbounded deviation from any v ∈ Q2 \ {0}, then f
acts parabolically on C†(T2);

• If f is a pseudo-rotation with bounded deviation from some v ∈ Q2 \ {0}, then f
acts elliptically on C†(T2).

Theorem A also allows to give a complete classification of the action of homeomor-
phisms on C†(T2) for the ones that are not homotopic to identity.

As proved in [BHM+22], any homeomorphism having an iterate homotopic to an
Anosov linear automorphism acts hyperbolically on C†(T2). Thus it remains to classify
the actions in the case of a homeomorphism having an iterate homotopic to a Dehn twist.

Corollary 5. Let f ∈ Homeo(T2) such that f r is homotopic to a Dehn twist.

• f acts hyperbolically on C†(T2) if and only if ρ(f̃ r) has nonempty interior;

• f acts parabolically on C†(T2) if and only if ρ(f̃ r) is a single number, and f has
unbounded displacement in the vertical direction;

• f acts elliptically on C†(T2) if and only if ρ(f̃ r) is a single number, and f has
bounded displacement in the vertical direction.

Note that by Addas-Zanata, Tal, and Garcia [AZTG14], if ρ(f̃ r) is reduced to a
single rational number, then f has bounded displacement in the vertical direction and
hence acts elliptically on C†(T2). To our knowledge, the question whether the second
case is nonempty (i.e. if there exists homeomorphisms homotopic to Dehn twists acting
parabolically on C†(T2)) is open.

Remark that by [Pas14], on a open and dense subset of Homeo0(T2), the rotation set
is a polygon with rational vertices, hence the set of parabolic elements of Homeo0(T2) is
included in a closed set with empty interior.
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A last comment: in [LRW22] Le Roux and Wolff prove that any automorphism of
a variant of the fine curve graph is realized by some homeomorphism of the surface.
They suggest that the same result holds for our definition of the fine curve graph, hence
in some sense our classification of actions of homeomorphisms on the fine curve graph
covers the whole automorphism group of the ifne curve graph.

Some open questions

1. Can we get a similar classification for higher genus surfaces4?

2. Are there some torus homeomorphisms homotopic to identity satisfying lim inf dn <
+∞ and lim sup dn = +∞, where dn is the image under a lift of fn to R2 of a fixed
fundamental domain?

3. Are there some torus homeomorphisms homotopic to identity acting parabolically
but not properly on C†(T2)?

4. More generally, what are the sets of possible good limit values? Can they be
classified?

A potential master’s student of the first author should start thinking about the last
three questions soon.
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1.1 Rotation sets for torus homeomorphisms

Let f ∈ Homeo0(T2) and fix a lift f̃ : R2 → R2.
The rotation set of f̃ is the set

ρ(f̃) =

{
v ∈ R2

∣∣∣ ∃(xk)k ∈ R2, (nk)k → +∞ :
f̃nk(xk)− xk

nk
−→
k→+∞

v

}
.

A theorem of Misiurevicz and Ziemian [MZ89] states that it is a compact convex subset
of R2 (see also Lemma 8). Some basic properties are straightforward consequences of
the definition: for any k ∈ Z, ρ(f̃k) = kρ(f̃), and ρ is a conjugacy invariant: if g ∈
Homeo0(T2) and g̃ is a lift of g to R2, then ρ(g̃f̃ g̃−1) = ρ(f̃). It depends on the lift of
f in the following way: any other lift of f can be written f̃ + v, with v ∈ Z2. Then
ρ(f̃ + v) = ρ(f̃) + v.

4The authors have a strategy for a characterization of homeomorphisms isotopic to identity acting
hyperbolically on C†(Sg): they should be the ones with nonempty interior homological rotation set, and
the ones with a pseudo-Anosov mapping class when removing some periodic orbit. It should be the
subject of a future work.
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We will be inspired by an equivalent formulation of the rotation set in Section 2 to
define good limit values: fix a fundamental domainD ⊂ R2 of the torus (e.g. D = [0, 1]2),
then (see [MZ89])

ρ(f̃) = lim
n→+∞

f̃n(D)

n
,

where the limit holds in the Hausdorff topology (and in particular, the result states that
the limit does exist).

Now, let f ∈ Homeo(T2) homotopic to a Dehn twist. By this, we mean that there
exists a basis of the torus in which f is homotopic to the linear automorphism(

1 k
0 1

)
for some k ∈ Z∗.

Fix a lift f̃ : R2 → R2, and denote by p2 : R2 → R the projection on the second
coordinate (according to the basis used to define the Dehn twist).

Following [Doe97], we can define the rotation set of f̃ as

ρ(f̃) =

{
v ∈ R

∣∣∣ ∃(xk)k ∈ R2, (nk)k → +∞ : p2

( f̃nk(xk)− xk
nk

)
−→
k→+∞

v

}
.

This set is a segment of R. As for homeomorphisms isotopic to the identity, it follows
from the definition that for any g ∈ Homeo0(T2), we have ρ(f̃) = ρ(g̃f̃ g̃−1). Moreover,
two lifts of f to R2 have rotation sets which differ by an integral translation of R.

1.2 Outline

One way of Theorem A is easy to prove: if the homeomorphism f has bounded deviation
from a rational direction, then f acts elliptically on C†(T2). We write down the proof of
this implication.

Proof of the "if" part in Theorem A. Let us say that f has bounded deviation from v ∈
Q2 \ {0}. Without loss of generality, we can suppose that v = (p, q), where either p and
q are relatively prime integers, or (p, q) ∈ {(0, 1), (1, 0)}. Let α : R/Z→ T2 be the loop
defined by t 7→ t(q,−p). When γ and γ′ are isotopic loops of T2, we denote by Cγ(γ′) the
number of lifts of γ that are met by a given lift γ̃′ of γ′. This number does not depend
on the chosen lift γ̃′ of γ′.

Note that (as already said before) a homeomorphism homotopic to a linear Anosov
automorphism has unbounded deviation in any direction, and a homeomorphism homo-
topic to a Dehn twist has unbounded deviation in any direction but possibly one. In the
last case, this direction is such that the loops (fn(α))n∈N are all homotopic one to each
other.

As f has bounded deviation from direction v = (p, q), there exists ρ ∈ R2 and a
lift f̃ : R2 → R2 of f such that |〈f̃n(x) − x − nρ, v〉| is bounded uniformly in x and n.
This implies that the sequence (Cα+nρ(f

n(α))n≥0 is bounded, where α+ nρ is the loop
t 7→ α(t) + nρ. Hence, as the loop α + nρ is either disjoint from α or equal to α, the
sequence (Cα(fn(α)))n≥0 is bounded. But, by Lemma 4.5 of [BHM+22], for any n ≥ 0,

Cα(fn(α)) + 1 ≥ dC†(T2)(α, f
n(α))

and the orbit of α under f in C†(T2) is bounded.
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To prove the direct implication, we suppose that f has unbounded deviation from
any rational direction; we want to prove that, in this case, f does not act elliptically on
C†(T2).

The first step is to define good limit values (Section 2), that are analogs of rotation
sets capturing sublinear speeds: instead of dividing by the time, one divides by the
diameter of the iterate of the fundamental domain. An important property is that good
limit values are convex, as stated in Lemma 8.

We then state a (non) ellipticity criterion in terms of good limit values. This criterion
(Proposition 9) improves a criterion given in [BHM+22] and relies on branched covering
maps of the torus by square tiled surfaces.

The next step is done in Section 4. We set a dichotomy for possible shapes of good
limit values: either one of them contains a segment of irrational slope, or there exists a
rational line containing any good limit value. In the first case, the criterion set in the
previous section applies and shows that the action of the homeomorphism is non elliptic.
It then remains to treat the second case.

The final argument is given in Section 5. We show that if any good limit value is
contained in a single rational line, and if f has unbounded deviation from any rational
direction, then (a modified version of) some good limit value contains a segment of
irrational slope. This allows to apply once again the parabolicity criterion.

2 Good limit values

In this section we define good limit values, that could also be called “slow rotation sets”:
they capture the rotational behaviour in the case when the rotation speed is sublinear.

For any n ≥ 0, we denote by dn the diameter of f̃n(D), where D is the fundamental
domain [0, 1]2 of the torus T2. The following lemma implies that there is a subsequence
of (dn)n which tends to +∞. In the sequel we will need a more precise result which is
the second part of this lemma.

Lemma 6. If f ∈ Homeo(T2) is not homotopic to a linear Anosov automorphism and
has unbounded deviation in some direction, then

sup
n∈N

dn = +∞.

More precisely, if there exists v ∈ R2, ρ ∈ ρ(f̃), (nk) going to infinity, and a sequence
of points (xk) such that for any k ∈ N, |〈f̃nk(xk)− xk − nkρ, v〉| ≥ k, then

lim
k→+∞

sup
x,y∈D

∣∣〈f̃nk(x)− f̃nk(y), v
〉∣∣ = +∞. (2.1)

Let us explain this statement. If f ∈ Homeo(T2) has no iterate homotopic to identity,
then supn∈N dn = +∞, so the first part is relevant only in the case f ∈ Homeo0(T2). If
f is homotopic to a Dehn twist about the horizontal direction, then (2.1) holds for any
v /∈ R(0, 1), so the lemma is only relevant in the case v ∈ R(0, 1), in which case one can
define 〈

f̃nk(xk)− xk − nkρ, v
〉

:= p2
(
f̃nk(xk)− xk

)
− nkρ.

In the case where f is homotopic to a linear Anosov automorphism, then (2.1) holds
for any direction v, except possibly the stable direction of the automorphism (which is
irrational).
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Proof. We prove the lemma in the case f ∈ Homeo0(T2), the case where f is homotopic
to a Dehn twist is identical.

Suppose that f has unbounded deviation in some direction v. In particular, there
exists ρ ∈ ρ(f̃), (nk) going to infinity, and a sequence of points (xk) such that for any k,
|〈f̃nk(xk)−xk−nkρ, v〉| ≥ k. Taking the image of each xk under an integral translation if
necessary, we can suppose that the points xk all belong to D. Without loss of generality,
by taking a subsequence if necessary, we can suppose that each of those scalar products
are positive.

If the set {〈ρ, v〉 | ρ ∈ ρ(f̃)} is a nontrivial segment, then the conclusion of the lemma
is straightforward. If not, then the quantity of (2.1) does not depend on the choice of
ρ ∈ ρ(f̃).

Suppose that the last limit of the lemma does not hold. Then, by considering a
subsequence if necessary, it holds that

sup
k∈N

sup
x,y∈D2

∣∣〈f̃nk(x)− f̃nk(y), v〉
∣∣ = R < +∞.

Then for any y ∈ D, applying this to x = xk, we have (considering that n0 = 0)

〈f̃nk(y)− y − nkρ, v〉 = 〈f̃nk(y)− f̃nk(xk), v〉+ 〈f̃nk(xk)− xk − nkρ, v〉
+ 〈xk − y, v〉
≥ k − 2R.

Observe that the left side of the above inequality does not change if we replace the point
y by one of its integral translate so that the inequality actually holds for any y ∈ R2.
By choosing k ≥ 2R+ 1, we get 〈f̃nk(y)− y− nkρ, v〉 ≥ 1. As this holds for any y ∈ R2,
one can iterate: for any z ∈ R2 and any ` ∈ N, we have 〈f̃ ` nk(z)− z − ` nkρ, v〉 ≥ `. In
particular, this implies that there exists ρ′ ∈ ρ(f̃) \ (ρ+ Rv⊥), a contradiction.

Fix f ∈ Homeo(T2) and a point x̃0 ∈ int(D). For any subset A of R2, any λ > 0 and
any v ∈ R2, let us denote λA+ v = {λa+ v | a ∈ A}. For any n ≥ 0, let

An =
1

dn

(
f̃n(D)− f̃n(x̃0)

)
.

More generally, fix a sequence (ak)k≥0 of positive real numbers as well as a sequence
(nk)k≥0 of integers with nk → +∞. For any k ≥ 0, define

Bk =
1

ak

(
f̃nk(D)− f̃nk(x0)

)
. (2.2)

As x̃0 ∈ D, observe that, for any n ≥ 0, 0 ∈ An. Moreover, by definition of (dn),
for any n ≥ 0, the set An is contained in the closed unit disc of R2 and has diameter
1. Recall that the set of compact subsets of the closed unit disc, endowed with the
Hausdorff topology, is compact.

We endow the set of closed subsets of R2 with the following topology, which resembles
Hausdorff convergence on any (large) ball. Let φ be the map that to any closed subset
F of R2 associates the compact subset F ∪ {∞} of the Alexandroff compactification
of R2 (which is homotopic to S2). The topology on closed subsets of R2 we consider
is then the initial topology associated to φ and Hausdorff topology on the Alexandroff
compactification of R2. The set of closed subsets of R2 endowed with this topology is
compact.
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Definition 7. We call good limit value of the sequence (An) any limit value A∞ of this
sequence such that there exists a subsequence (Ank

)k≥0 which converges to A∞ with
lim

k→+∞
dnk

= +∞.

Note that a good limit value of the sequence (An) is a limit value of the sequence
(Bk) associated to some sequence (nk) and with ak = dnk

.
By Lemma 6 — combined with the compactness of the set of compact subsets of

the unit disk endowed with Hausdorff topology — if f has unbounded deviation in some
direction, then it has at least one good limit value. More generally, for any sequences
(ak)k≥0 of positive real numbers and (nk)k≥0 of integers with nk → +∞, the sequence
(Bk) admits a limit value (not necessarily compact).

The following lemma is a direct adaptation of a result of Misiurevicz and Ziemian
[MZ89] asserting that rotation sets are convex.

Lemma 8. Suppose that limk→+∞ ak = +∞. Then any limit value B∞ of the sequence
(Bk) is a convex subset of R2.

Note that this implies that any good limit value A∞ of the sequence (An) is a convex
subset of the closed unit disc.

Proof. Let ξ1 and ξ2 be two points of a limit value B∞ of the sequence (Bk)k. Then,
extracting a subsequence if necessary, there exist sequences (pk)k and (qk)k of points of
D such that

lim
k→+∞

1

ak

(
f̃nk(pk)− f̃nk(x0)

)
= ξ1

and
lim

k→+∞

1

ak

(
f̃nk(qk)− f̃nk(x0)

)
= ξ2.

Let ξ = λξ1 +(1−λ)ξ2, with 0 < λ < 1 and let us prove that ξ ∈ B∞. For any k ≥ 0, let
zk = λf̃nk(pk) + (1− λ)f̃(qk). By Lemma 3.3 of the article [MZ89] by Misiurewicz and
Ziemia, the set f̃nk(D) is

√
2-quasi-convex, so that for any k ≥ 0 there exists a point

rk ∈ D such that d(f̃nk(rk), zk) ≤
√

2. Then the sequence(
1

ak

(
f̃nk(rk)− f̃nk(x0)

))
k

has the same limit as the sequence(
1

ak

(
zk − f̃nk(x̃0)

))
k

and this limit is ξ. Hence the point ξ belongs to B∞ and the set B∞ is convex.

3 A non-ellipticity criterion

Let f ∈ Homeo(T2) and x0 ∈ T2. The goal of this section is to prove the following
criterion, which generalizes Section 6 of [BHM+22].

Proposition 9 (Criterion of non-ellipticity). Suppose that the following holds:

1. lim
k→+∞

ak = +∞.
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2. There exists a sequence (wk)k of vectors of R2 such that the sequence

(Bk + wk)k≥0 =

(
1

ak

(
f̃nk(D)− f̃nk(x0)

)
+ wk

)
k≥0

of compact subsets of R2 converges to some closed subset B∞ for the topology defined
before Definition 7.

3. The set B∞ contains a nontrivial segment of irrational slope.

Then f does not act as an elliptic isometry of C†(T2).

Recall that by [BHM+22, Theorem 1.3], f acts hyperbolically on C†(T2) if and only
if int(ρ(f̃)) 6= ∅. Hence this criterion can be used to prove that some homeomorphism
acts parabolically on C†(T2).

To prove this proposition, we need to introduce some notation and three lemmas.
For any integer m > 0 we let

T2
m = R/mZ× R/mZ.

This space can be seen as a cover of T2 = R2/Z2 of degree m2 via the projection
T2
m → T2. We denote by pm : R2 → T2

m the projection.
We endow T2

m with the translation surface structure which makes the map

T2 = R/Z× R/Z → T2
m

(x, y) 7→ (mx,my)

an isomorphism, where T2 is endowed with the usual translation surface structure. This
means that, in comparison to the usual euclidean metric on R2, distances are multiplied
by 1

m on both coordinates (hence the diameter of T2
m is

√
2).

The first lemma we need is a purely topological lemma. We state it in the case of
the torus, which is the case we need, but it is valid on any surface.

Lemma 10. Let γ1 and γ2 be two simple paths [0, 1] → T2 which are homotopic with
fixed extremities in T2. Then there exists a nonempty open set U ⊂ T2 such that, for any
point p of U , the two paths γ1 and γ2 are homotopic with fixed extremities in T2 \ {p}.

Proof. Define the equivalence relation on T2 whose equivalence classes are the singletons
of points outside γ1, and γ1. This is the equivalence relation that shrinks the path γ1 to
a point. We denote by T1 the quotient of T2 by this equivalence relation and by q1 the
point that is the image of γ1 in T1.

The space T1 is still a 2-torus and the image α1 of γ2 in T1 is a path. As γ2 is simple,
the path α1 has only self intersections at the point q1 and the autointersection points
cannot be transverse. Hence the path α1 is a homotopically trivial loop; it is a union
of simple loops based at q1 which do not meet each other except at q1, some of them
homotopically trivial and some of them homotopically non trivial (and there is a finite
number of such last ones).

The complement of any homotopically trivial simple loop has one component which
is homeomorphic to a disk, which we call the interior of such a loop. Take the closure
C of the union of the interiors of the homotopically trivial simple loops appearing in the
decomposition of α1. Observe that C contains the point q1, we can shrink C to a point
q2 to obtain a new torus T2.
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We call α2 the image of the path α1 in the torus T2. The path α2 is the concatenation
of a finite number of homotopically non trivial simple loops. Moreover, the loop α2 has
auto-intersections only at the point q2, none of which are transverse (too see this, use the
fact that γ1 is a simple loop). We then write α2 as a concatenation of loops β1, β2, . . . , βr,
each of which is a homotopically trivial loop which cannot be written as a concatenation
of nontrivial homotopically trivial loops. Fix a lift q̃2 of the point q2 to R2 and denote
by α̃2, β̃1, β̃2, . . . , β̃r the respective lifts of α2, β1, β2, . . . , βr based at q̃2. Observe that
the loop α̃2 is the concatenation of the loops β̃1, β̃2, . . . , β̃r and that each of the latter
loop is simple. Observe that the interior of each β̃i is disjoint from its translates under
the group of deck transformations. Hence the interior of β̃i projects injectively to the
torus T2 (because no transverse autointersection is allowed and no deck transformation
has a fixed point). We call this projection the interior of the loop βi, and we denote it
by Ii. Observe also that, for i 6= j, either Ii is contained in Ij or Ii contains Ij or Ii and
Ij are pairwise disjoint. An induction on r shows that the complement of the union of
the closures of the Ii’s is nonempty. It suffices to take as a set U the preimage in T2 of
this subset of T2 to prove the lemma.

Remark 11. There is a shorter argument for the proof of this lemma, which uses the
folkloric dual function: the curve γ1γ−12 is homologous to 0. This allows to define a dual
function on the complement of its image in the torus, and any point p in which the dual
function is equal to 0 suits the conclusion of the lemma.

The three lemmas that follow are essentially proved in [BHM+22].

Lemma 12. Let α and β be two curves in C†(T2) and m ≥ 1. Then, for any respective
lifts α̃ and β̃ of α and β in T2

m (via the cover map T2
m → T2), we have

dC†(T2
m)(α̃, β̃) ≤ dC†(T2)(α, β).

Proof. This is a straightforward consequence of Lemma 6.3 in [BHM+22].

Lemma 13. Fix K > 0. There exists a square-tiled surface Σ(K) such that, for any
m > 0 and any p ∈ T2

m, there exists a branched covering map fm,p : Σ(K)→ T2
m, which

is branched only at p, with the following properties.

1. For any two essential simple closed curves α and β of T2
m with dC†(T2

m)(α, β) ≤ K
and which do not meet the point p, there exist lifts of α and β to Σ(K) which are
disjoint.

2. The map fm,p is a local isomorphism of translation surfaces outside f−1m,p({p}).

Proof. The proof is almost identical to the proof of Lemma 6.4 in [BHM+22].

The following lemma is Lemma 6.5 in [BHM+22].

Lemma 14. Let ξ ∈ R \ Q and Σ be a square-tiled surface. There exists L′ > 0 such
that any line segment in Σ of slope ξ and of length greater than L′ meets any horizontal
closed curve.

As a consequence of the above Lemma, we obtain the following corollary.

11



Corollary 15. Fix ξ and Σ as in the above lemma and take L = 2L′, where L′ is given
by the above lemma. Then there exists ε > 0 such that the following property holds. For
any line segment S which is ε-close, for the Hausdorff distance, to a line segment of slope
ξ and of length greater than L, any path which is homotopic to S with fixed extremities
in the complement of singular points in Σ meets any horizontal closed curve.

Proof. Consider the set K consisting of compact connected subsets of Σ(K) which are
either segments of length L and slope ξ or a union of two segments of Σ of slope ξ with
a common extremity which is a singularity of Σ and whose total length (i.e. the sum of
the lengths of those segments) is equal to L. By Lemma 14, any element of K meets any
horizontal closed curve of Σ. Moreover, the set K is compact for the Hausdorff topology.

For any element S′ of K, there exists εS′ > 0 such that any line segment S which is
εS′-close to S′ meets any horizontal curve. By compactness of K, we can take εS′ = ε
independent of S′. Observe that any such segment S as above has a nonzero algebraic
intersection number with any horizontal curve so that Corollary 15 holds.

Proof of Proposition 9. We prove this proposition by contradiction. Suppose that f acts
elliptically on C†(T2). We denote by α the curve t 7→ (t, 0) on T2 and by α̃ its lift
t 7→ (t, 0) to R2. Then there exists K ′ > 0 such that, for any n ≥ 0

dC†(T2)

(
α, fn(α)

)
≤ K ′.

Let K = K ′+1 and observe that, for any essential simple closed curve β which is disjoint
from α,

dC†(T2)

(
α, fn(β)

)
≤ K.

Apply Lemma 13 to obtain a square tiled surface Σ(K). Take θ ∈ R \ Q such that
the set B∞ contains a nontrivial segment with irrational slope θ. Apply Corollary 15
with this slope and the surface Σ(K). This corollary gives a number L > 0. Fix M > 0
in such a way that the set MB∞ contains an irrational segment S∞ with length > L
and slope θ. Take a compact subset C whose interior contains this segment S∞. Then
the sequence of subsets(

1

bakM c

(
f̃nk(D)− f̃nk(x0) +M

⌊ak
M

⌋
wk

))
k

converges to the subset MB∞ for the Hausdorff topology. Take an integer k0 sufficiently
large so that the set

1

bak0M c

(
f̃nk0 (D)− f̃nk0 (x0) +M

⌊ak0
M

⌋
wk0

)
∩ C

is ε-close to the set MB∞ ∩C, where ε is given by Corollary 15 and observe that the set

1

bak0M c
(
f̃nk0 (D)− f̃nk0 (x0)

)
∩ (C −Mwk0)

is ε-close to the set M(B∞ − wk0) ∩ (C −Mwk0). Fix m = bak0M c.
Hence there exist two points x, y ∈ D such that the point f̃nk0 (x)− f̃nk0 (x0) is mε-

close to one extremity of the segment m(S∞−Mwk0) and the point f̃nk0 (y)− f̃nk0 (x0) is
mε-close to the other extremity of this segment. Moreover, we choose those points x and
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y outside any lift of α. In particular, the point pm(f̃nk0 (x)− f̃nk0 (x0)) is ε-close to one
extremity of the segment S = pm(m(S∞−Mwk0)) and the point pm(f̃nk0 (y)− f̃nk0 (x0))
is ε-close to the other extremity of this segment. Observe that the length of the segment
S is greater than L. Denote by S′ the line segment in T2

m joining these two points that
remains ε-close to S and let S′′ = S′ + pm(f̃nk0 (x0)). Observe that the segment S′′ is
ε-close to a segment of the same slope and same length as S.

Take a simple path γ̃ contained in D whose extremities are the points x and y and
that does not meet any lift of α. Fix an essential simple closed curve β of T2 homotopic
to α that is disjoint from α and has a lift to R2 containing the path γ̃. Observe that the
path pm(f̃nk0 (γ̃)) is homotopic with fixed extremities to S′′ in T2

m (because those paths
admit lifts to R2 with the same endpoints). By Lemma 10, there exists a point p of T2

m,
which neither belongs to any lift of α nor to any lift of β, such that those two paths are
still homotopic with fixed extremities in T2

m \{p}. By Lemma 13, there exists a covering
map Σ(K)→ T2

m which is ramified only at the point p. By Corollary 15, any lift of the
curve pm(f̃nk0 (β̃)) to the surface Σ(K) meets any horizontal curve of Σ(K). However,
the curve pm(f̃nk0 (β̃)) is a lift of the curve fnk0 (β) to T2

m so that, by Lemma 12,

dC†(T2
m)

(
pm(f̃nk0 (β̃)), pm(α̃)

)
≤ K.

Hence the curves pm(f̃nk0 (β̃)) and pm(α̃) must admit disjoint lifts to Σ(K), which is a
contradiction as the latter curve is horizontal.

4 Possible directions of good limit values

The following proposition gives two possibilities for the possible shapes of the good limit
values of the sequence (An)n.

Proposition 16. Let f ∈ Homeo0(T2). One of the following holds.

1. There exists a good limit value of the sequence (An)n which contains a nontrivial
segment with irrational slope.

2. There exists a line with rational slope which contains any good limit value of the
sequence (An)n.

Proof. Suppose that 1. does not hold. Then any good limit value is a convex set with
empty interior (any convex set with nonempty interior contains a nontrivial segment with
irrational slope). Hence, any good limit value is a segment of rational slope, contained
in the closed unit disk, and having diameter 1.

We argue by contradiction by supposing that there are at least two different rational
directions containing a good limit value. Call these directions θ1, θ2 ∈ P(R2).

We endow P(R2) with a distance δ making it homeomorphic to the circle. For θ ∈
P(R2), denote Lθ the line of direction θ passing by 0.

As a first step, we state that if dn is large enough, then An is very close to a rational
segment. This follows from a simple compactness argument.

Claim 17. For any ε > 0, there exists R > 0 such that if dn > R, then there exists
θ ∈ P(R2) rational such that the following holds:

∀x ∈ An, d(x, Lθ) ≤ ε. (Pn,θ,ε)
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Proof. Suppose the claim is false. Then there exists ε0 > 0 and a subsequence (nk) such
that dnk

→ +∞, and that for any rational direction θ ∈ P(R2), there exists x ∈ Ank

with d(x, Lθ) > ε0.
By taking a subsequence of (nk)k if necessary, one can suppose that dnk

≥ k and
that the sets Ank

converge towards some compact set for Hausdorff topology. By the
discussion at the beginning of the proof of the proposition, this set can only be a segment
with rational slope θ0, i.e. contained in some line Lθ0 . Hence, if k is large enough, for
any x ∈ Ank

we have d(x, Lθ0) ≤ ε0. This is a contradiction.

It allows to define the following.

Definition 18. A main direction of An for ε > 0 is a direction θ such that (Pn,θ,ε) holds.
An R-excursion is any integer interval [n1, n2] on which any n ∈ [n1, n2] satisfies

dn ≥ R.

The following says that if R is large enough, then on any R-excursion, the main
directions of An cannot vary a lot.

Lemma 19. For any δ0 > 0, there exists ε > 0 and R > 0 satisfying: if [n1, n2] is an
R-excursion, then for any n, n′ ∈ [n1, n2] and any θ, θ′ such that (Pn,θ,ε) and (Pn′,θ′,ε)
hold, we have δ(θ, θ′) < δ0.

Note that if the conclusion of the lemma holds for some ε > 0, then it holds for any
0 < ε′ < ε.

Proof. Suppose it is false. Then there exists δ0 > 0 such that for any k > 0, there is a k-
excursion [nk1, n

k
2] and two directions αk1 , αk2 with δ(αk1 , αk2) ≥ δ0 such that (Pnk

1 ,α
k
1 ,1/(2k)

)

and (Pnk
2 ,α

k
2 ,1/(2k)

) hold. By extracting a subsequence, one can suppose that (αk1 , α
k
2)

converge towards (α1, α2), and more precisely that δ(αk1 , α1) ≤ 1/(2k) and δ(αk2 , α2) ≤
1/(2k). In this case, for k large enough, (Pnk

1 ,α1,1/k
) and (Pnk

2 ,α2,1/k
) hold.

We now prove that for n ∈ [nk1, n
k
2], the set of main directions cannot vary a lot

between times n and n + 1. Indeed, calling Kf = 2 max
(
d(f̃ , IdR2), d(f̃−1, IdR2)

)
, we

have
dH
(
f̃n(D)− f̃n(x̃0), f̃

n+1(D)− f̃n+1(x̃0)
)
≤ Kf

Hence,

dH

(
f̃n(D)− f̃n(x̃0)

dn
,
f̃n+1(D)− f̃n+1(x̃0)

dn

)
≤
Kf

dn
. (4.1)

But we also have |dn− dn+1| ≤ Kf , so |1− dn+1/dn| ≤ Kf/dn. The fact that — given a
compact subset A of the unit disc — the map R+ 3 λ 7→ λA is 1-Lipschitz for Hausdorff
distance dH implies that

dH

(
f̃n+1(D)− f̃n+1(x̃0)

dn
,
f̃n+1(D)− f̃n+1(x̃0)

dn+1

)
= dH

(
dn+1

dn

f̃n+1(D)− f̃n+1(x̃0)

dn+1
,
f̃n+1(D)− f̃n+1(x̃0)

dn+1

)

≤
∣∣∣∣1− dn+1

dn

∣∣∣∣ ≤ Kf

dn
.
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Combined with (4.1), by triangle inequality, this gives

dH(An, An+1) = dH

(
f̃n(D)− f̃n(x̃0)

dn
,
f̃n+1(D)− f̃n+1(x̃0)

dn+1

)
≤

2Kf

dn
.

Using the fact that dn tends to infinity, we deduce that the Hausdorff distance be-
tween An and An+1 is in O(1/k) (recall that n ∈ [nk1, n

k
2]). Hence, if (θn) and (θ′n)

are such that (Pn,θn,1/k) and (Pn+1,θ′n,1/k
) hold, then δ(θn, θ

′
n) tends to 0 as k tends

to infinity. This implies for any η > 0, the directions α1 and α2 can be joined by an
η-chain consisting of accumulation points of sequences (θnk

), where nk ∈ [nk1, n
k
2], and

(Pnk,θnk
,1/k) holds.

This proves that the set of θ ∈ P(R2) satisfying the following property contains an
interval containing both α1 and α2: there exists a sequence nk ∈ [nk1, n

k
2] such that

(Pnk,θnk
,1/k) holds, dnk

≥ k and θnk
→ θ. This is a contradiction as such an interval has

to contain an irrational direction.

We are now ready to end the proof of Proposition 16. The idea is that the images
of the fundamental domain cannot grow in two different directions on two R-excursions
of the same length. We first build such two R-excursions, and then use them to get to
a contradiction.

Let δ0 < δ(θ1, θ2)/3, and consider

α = min{∠(θ, θ′) | δ(θ1, θ) < δ0, δ(θ2, θ
′) < δ0}.

Take ε > 0 such that sinα ≥ 6ε.
Consider R associated to ε and δ0 as in Lemma 19. Increasing R if necessary, one

can suppose that R ≥ Kf , with Kf = 2 max
(
d(f̃ , IdR2), d(f̃−1, IdR2)

)
.

We now consider two R-excursions of the same length, one with main directions close
to θ1, the other with main directions close to θ2; we moreover suppose that on the first
one, the diameter increases a lot. More precisely, we first prove that there exists n1 ≤ n2
such that:

• [n1, n2] is an R-excursion;

• dn2 ≥ 4R/ε;

• dn1 ≤ 2R;

• for any n ∈ [n1, n2], there exists θ ∈ P(R2) such that δ(θ1, θ) < δ0 and (Pn,θ,ε)
holds.

Indeed, by Lemma 19, for any R′ > R, as by hypothesis there is at least two different
rational directions containing a good limit value, there exists an infinite number of R′-
excursions. Moreover, still by Lemma 19, there exists an infinite number of R′-excursions
[n1, n2] such that for any n ∈ [n1, n2] and any θ such that (Pn,θ,ε) holds, we have
δ(θ, θ1) < δ0.

So we can consider such a 4R/ε-excursion [ñ1, n2], and n1 the minimal integer such
that [n1, n2] is a R-excursion. Trivially, [n1, n2] satisfies the two firsts points and the last
point. But, as we have already seen, |dn1 − dn1−1| ≤ Kf , so dn1 ≤ dn1−1 +Kf ≤ 2R.

As, for any n, |dn+1− dn| ≤ Kf , observe that there are arbitrarily long R-excursions
with one element n of the excursion satisfying (Pn,θ2,ε). As a consequence, using
Lemma 19, one can similarly find n′1 ≤ n′2 such that:
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f̃n
′
1(D)

f̃n1(D)

f̃n
′
2−n′1

f̃n2−n1

f̃n
′
2(D)

f̃n2(D) + w

f̃n2(D)

Figure 1: Proof of Proposition 16. If f̃n2(D) and f̃n′2(D) have more or less the same size
but different main directions, then it forces f̃n′2(D) to have interior (light red shape): the
shape in deep red is impossible for f̃n′2(D) (recall that n2−n1 = n′2−n′1) because of the
shape of the integer translate f̃n2(D) +w of f̃n2(D). This forces the relation d′n2

� dn2 ,
but a symmetric argument implies that dn2 � d′n2

, leading to a contradiction.

• [n′1, n
′
2] is an R-excursion;

• n′2 − n′1 = n2 − n1;

• dn′1 ≤ 2R;

• for any n ∈ [n′1, n
′
2], there exists θ ∈ P(R2) such that δ(θ2, θ) < δ0 and (Pn,θ,ε)

holds.

Indeed, consider an R+ (n2 − n1)Kf -excursion [ñ′1, ñ
′
2], consider n′1 the minimal integer

such that [n′1, ñ
′
2] is an R-excursion, and set n′2 = n′1 + (n2 − n1); the hypothesis on the

size of the excursion ensures that [n′1, n
′
2] is a R-excursion.

The contradiction then comes as follows (see Figure 1). Take x1 ∈ D such that
‖f̃n2(x1) − f̃n2(x0)‖ ≥ dn2/2. Note that ‖f̃n1(x1) − f̃n1(x0)‖ ≤ 2R. There exists
v0, v1 ∈ Z2 such that f̃n1(x0) − v0 and f̃n1(x1) − v1 both belong to the fundamental
domain f̃n′1(D). Hence,

‖v0 − v1‖ ≤
∥∥(v0 − f̃n1(x0)

)
−
(
v1 − f̃n1(x1)

)∥∥+ ‖f̃n1(x0)− f̃n1(x1)‖
≤ dn′1 + dn1 ≤ 4R.
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Now, take any θ such that δ(θ, θ2) ≤ δ0, and consider a unit vector uθ orthogonal to Lθ.

dist : = d
(
f̃n2−n1

(
f̃n1(x0)− v0

)
− f̃n2−n1

(
f̃n1(x1)− v1

)
, Lθ

)
=
∣∣∣〈f̃n2(x0)− f̃n2(x1), uθ〉+ 〈v0 − v1, uθ〉

∣∣∣
≥
∥∥f̃n2(x0)− f̃n2(x1)

∥∥ sin
(
∠
(
f̃n2(x0)− f̃n2(x1), θ

))
− 4R

≥ dn2

2
sinα− εdn2 (this is here we use dn2 ≥ 4R/ε)

≥ dn2

2
6ε− εdn2

≥ 2εdn2 .

As the two points f̃n1(x0)− v0 and f̃n1(x1)− v1 belong to f̃n′1(D), and as (Pn′2,θ,ε) holds
for some θ such that δ(θ, θ2) ≤ δ0, then dist has to be smaller than εdn′2 for some θ such
that δ(θ, θ2) ≤ δ0. Hence, dn′2 ≥ 2dn2 . But then one can apply the exact same argument,
permuting θ1 with θ2, to deduce that dn2 ≥ 2dn′2 . This is a contradiction.

5 Rational case and end of the proof of Theorem A

We now state the last result we need to prove Theorem A.

Proposition 20. Let f ∈ Homeo(T2). Suppose that any good limit value of the sequence
(An) is contained in the horizontal axis. Then either f has bounded deviation in the
vertical direction, or there exists a sequence (an) of positive real numbers tending to
infinity, and a sequence (wn) of vectors of R2, such that some limit value of the sequence

(Bn + wn)n =

(
1

an

(
f̃n(D)− f̃n(x0)

)
+ wn

)
n

contains B(0, 1).

Let us first show how this proposition implies Theorem A.

Proof of Theorem A. Let f ∈ Homeo0(T2), and suppose that in any rational direction,
f has no bounded deviation. We want to prove that f does not act elliptically.

Apply Proposition 16. In the first case given by this proposition, Proposition 9
implies that f does not act elliptically on C†(T2).

Suppose now that the second case given by Proposition 16 holds: There exists a
line with rational slope which contains any good limit value of the sequence (An)n.
By conjugating with an element of SL2(Z) if necessary, we do not lose generality by
supposing that this direction is horizontal.

Apply Proposition 20. As f has unbounded deviation in the vertical direction, there
exists a sequence (ak) of positive real numbers tending to infinity, and a sequence (wk)
of vectors of R2, such that some limit value of the sequence (Bn +wk)k contains B(0, 1).

The parabolicity criterion (Proposition 9) applies and shows that f does not act
elliptically on C†(T2).

Now, suppose that f ∈ Homeo(T2) has an iterate homotopic to a linear Anosov home-
omorphism A. Then f has unbounded deviation from any direction, and by [BHM+22,
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Theorem 5.3], f acts hyperbolically on C†(T2). Note that we could also use our el-
lipticity criterion (Proposition 9) to conclude that f does not act elliptically: consider
(0, 0), (1, 1) ∈ D, then f̃n(1, 1) − f̃n(0, 0) = An(1, 1); using the fact that these vectors
tend to some irrational direction of P(R2) together with the quasi-convexity of funda-
mental domains we conclude that some limit set B∞ contains a nontrivial segment of
irrational slope.

Finally, suppose that f ∈ Homeo(T2) has an iterate homotopic to a Dehn twist.
Conjugating by an element of SL2(Z) if necessary, we can suppose that fn is homotopic to
a Dehn twist about the horizontal direction. Suppose that f has unbounded displacement
in the vertical direction. Then there is some k ∈ Z∗ such that f̃n(0, 1)−f̃n(0, 0) = (nk, 1).
Hence any good limit value contains a nontrivial horizontal interval. If there is a good
limit value which is not included in the horizontal axis, as such a limit value is convex
and contains a nontrivial horizontal interval, then Proposition 9 applies and f does not
act elliptically on C†(T2). If not, then any good limit value is included in the horizontal
axis, and Proposition 20 allows to once again apply Proposition 9 to prove that f does
not act elliptically on C†(T2).

Proof of Proposition 20. In this proof, for a set A and r ≥ 0, we denote B(A, r) = {x |
d(x,A) ≤ r}.

Suppose that any good limit value of the sequence (An)n is included in the horizontal
axis, and that f has unbounded displacement in the vertical direction.

Applying the same idea as in the proof of Theorem A (3 paragraphs above), by
considering the iterates of (0, 0) and (1, 1), we can see that under these conditions, an
iterate of f cannot be isotopic to a linear Anosov automorphism, or a Dehn twist in a
direction that is not horizontal (adapting the points (0, 0) and (1, 1) in the latter case if
necessary). So some iterate of f is isotopic to the identity, or to a Dehn twist. Hence,
replacing f with an iterate of it if necessary, we can suppose that f is homotopic to(

1 k0
0 1

)
for some k0 ∈ Z.

Claim 21. Suppose that any good limit value of the sequence (An)n is contained in the
horizontal axis. Suppose also that for any sequence (an) of positive real numbers tending
to infinity, and any sequence (wn) of vectors of R2, any limit value of the sequence
(Bn + wn)n does not contain B(0, 1).

Then there exists C > 0 and, for any n ≥ 0, a line Ln passing through 0 and of
direction θn such that:

• θn tends to the horizontal direction (1, 0);

• f̃n(D)− f̃n(x0) ⊂ B(Ln, C).

If moreover f has unbounded deviation in the vertical direction then, up to taking a
subsequence, we can moreover suppose the following:

• the projection of f̃n(D) on the vertical axis has length hn tending to infinity.
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Proof. For any n ∈ N, let xn, yn ∈ D such that d(f̃n(xn), f̃n(yn)) = dn. Let L′n be the
line passing by f̃n(xn) and f̃n(yn).

Let bn = max{d(f̃n(z), L′n) | z ∈ D} and zn ∈ D be such that d(f̃n(zn), L′n) = bn.
If supn bn = C/2 < +∞, the two first points of the claim are proved, by setting Ln =
L′n − f̃n(x0): in this case the distance of any point of f̃n(D) − f̃n(x0) to Ln is smaller
than 2C/2 = C.

Otherwise, there exists a subsequence (nk) along which bnk
≥ k. Let qk be the

orthogonal projection of f̃n(znk
) on L′nk

, ak =
√
bnk

. Note that qk ∈ [xnk
, ynk

] because
of the definition of xn and yn (for a, b ∈ R2, we denote by [a, b] the affine segment between
points a and b). Let also

wk =
qk + f̃nk(x0)

ak
.

Then the set

Bnk
+ wk =

f̃nk(D)− f̃nk(x0)

ak
+ wk =

f̃nk(D)− qk
ak

contains both the two points (f̃n(xnk
)− qk)/ak and (f̃n(ynk

)− qk)/ak, which belong to
the line Lnk

= L′nk
− qk passing through 0, which are at distance dnk

/ak ≥
√
k, and

such that the segment between these points contains 0; this set also contains the point
(f̃n(znk

)− qk)/ak that is at distance ≥
√
k of the line Lnk

= L′nk
− qk.

By Lemma 8, we deduce that any limit value of the sequence Bnk
+ wk contains a

quarter of disk (centered at 0) of radius 10. By modifying a bit the sequence (wk) to
(w′k), i.e. by applying a translation to each set Bnk

+ wk, we get a limit value of the
sequence (Bn + w′n)n containing B(0, 1).

For the last point of the claim, define

en = sup
{∣∣〈f̃n(x)− f̃n(y), (0, 1)

〉∣∣ | x, y ∈ D2
}

the “diameter of f̃n(D) in the vertical direction”. By Lemma 6, using that f has un-
bounded deviation in the vertical direction, we have a subsequence (nk) along which
lim enk

= +∞. This proves the last point.

Now, up to increasing the constant C of Claim 21 if necessary, suppose C ≥ 2. Let
m = 5dCe and n1 ∈ N such that hn1 ≥ 20m and |θn1 | ≤ 1/100 (by Claim 21). We denote
by p1 the projection on the first (horizontal) coordinate, and p2 the projection on the
second (vertical) one.

Let n2 ≥ n1 such that |θn2 | � |θn1 |, | tan θn2 |dn1 ≤ C and dn2 � dn1 + k0n1C.
Let x−2 , x

+
2 , x ∈ f̃n2(D) such that p1(x−2 ) = min(p1|f̃n2 (D)), p1(x

+
2 ) = max(p1|f̃n2 (D)),

and p1(x) = 1
2(min(p1|f̃n2 (D)) + max(p1|f̃n2 (D))) (see Figures 2 and Figxx1-).

Let v ∈ Z2 such that x ∈ f̃n1(D) + v. We denote D0 the integer translate of D
satisfying f̃n1(D) + v = f̃n1(D0). Let x−1 , x

+
1 ∈ f̃n1(D0) such that d(x−1 , x

+
1 ) = dn1 and

p1(x
−
1 ) < p1(x

+
1 ).

We suppose that

pLn1
(x) ≥ 1

2

(
pLn1

(x−1 ) + pLn1
(x+1 )

)
(5.1)

(we identify Ln1 with R), the other inequality can be treated identically. Similarly, we
suppose that θn1 > 0.
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x

x−1

x+1

x−2

x+2

translates
of f̃n1(D)

f̃−n1

f̃n2(D)

f̃n2−n1(D)

translates
of D

Figure 2: End of proof of Proposition 20 in the case of k0 = 0. In the case k0 6= 0 there
is a shear appearing in the translates of D.

Let n ∈ [m, 2m] ∩ N. Then

f̃n1
(
D0 + (0, n)

)
= f̃n1(D0) + wn, with wn = (k0 n1 n, n).

Let γ1 be a path included in f̃n1(D0) linking x−1 to x+1 , and γ2 a path included in
f̃n2(D) linking x−2 to x+2 . We want to prove that the paths γ1 +wn and γ2 intersect for
any n ∈ [m, 2m]. We first define an affine shear mapping A with linear part of the form(

1 0
− tan θ′n2

1

)
for some angle θ′n2

, such that the abscissa of Ax is 0, and that the points Ax−2 , Ax
+
2 are

on the horizontal axis {y = 0}. Note that it forces the angle θ′n2
to be close to θn2 , in

the sense that θ′n2
− θn2 � θn2 (because of the bound by C, and the fact that hn2 goes

to infinity).
Let us write Ax−1 = (a−1 , b

−
1 ), Ax+1 = (a+1 , b

+
1 ), Ax−2 = (−M, 0) and Ax+2 = (M, 0).

The fact that dn2 � dn1 implies that

max(|a−1 |, |a
+
1 |) ≤ max

(
d(x, x−1 ), d(x, x+1 )

)
≤ dn1 ≤M/2. (5.2)

Hence, because k0n1m ≤ 6k0n1C � dn2 ,

max
(
|a−1 + k0n1n|, |a+1 + k0n1n|

)
≤M ; (5.3)

note that a−1 + k0n1n is the abscissa of A(x−1 + wn) and a+1 + k0n1n is the abscissa of
A(x+1 + wn). The same estimates hold for any point of γ1 + wn.

We also have (see Figure 3 for the notations and the configuration.)

p2(x
−
1 − x) ≤ p2(P −Q) + 2C

= −d(P,Q) sin θn1 + 2C

≤ −dn1 − 2C

2
sin θn1 + 2C.

20



θn1
x

x−1

C
C

x+1

C

P

Q
Ln1

R

Figure 3: End of proof of Proposition 20: estimation of p2(x−1 − x). The length d(P,R)
of the red segment is bigger than dn1 − 2C.

The last inequality comes from the fact that, by the hypothesis (5.1) on x, we have that
d(P,Q) ≥ d(P,R)/2. This implies that

b−1 = p2
(
A(x−1 − x)

)
≤ −dn1 − 2C

2
sin θn1 + 2C + | tan θ′n2

p1(x
−
1 − x)|

≤ −dn1

2
sin θn1 + 3C + | tan θ′n2

||a−1 |

≤ −dn1

2
sin θn1 + 3C + 2| tan θn2 |dn1 ,

where the last inequality is a consequence of (5.2). Because we have supposed
| tan θn2 |dn1 ≤ C, we get

b−1 ≤ −
dn1

2
sin θn1 + 5C.

Moreover,

hn1 ≤ p2(R−P )+2C = sin θn1d(R,P )+2C ≤ sin θn1

(
dn1 +2C

)
+2C ≤ sin θn1dn1 +4C,

so
b−1 ≤ −

hn1 − 4C

2
+ 5C ≤ −hn1

2
+ 7C.

Hence, because hn1 ≥ 20m, 6C ≤ m and n ≤ 2m,

b−1 + n ≤ −10m+ 8C + 2m = 8(C −m) ≤ −C. (5.4)

Using the fact that n ≥ m ≥ 5C and that (because θn1 ≥ 0) p2(x+1 ) ≥ −2C (see
Figure 3), we get

b+1 + n ≥ C. (5.5)

The estimates (5.3), (5.4) and (5.5) allow to apply the following lemma:

Lemma 22. Let M,C ∈ R+, and γ2 be a path of R2 linking the points (−M, 0) and
(M, 0) of R2, that is included in [−M,M ]× [−C,C]. Let γ1 be a path of R2 linking the
points (a−1 , b

−
1 ) and (a+1 , b

+
1 ) of R2, that is included in (−M,M)×R, with b−1 < −C and

b+1 > C.
Then the paths γ1 and γ2 meet.
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Proof. It suffices to define the path α2 by concatenating (−∞,−M) × {0}, γ2 and
(M,+∞) × {0}. This is a Jordan loop of the Alexandroff compactification S2 of R2,
which is isotopic — with an isotopy with support included in [−M,M ] × [−C,C] —
to the path R × {0}. It is then easy to see that the points (a−1 , b

−
1 ) and (a+1 , b

+
1 ) lie

in different connected components of S2 \ α2, and hence that α2 and γ2 intersect. But
it is also easy to see that any intersection point cannot belong to (−∞,−M) × {0} or
(M,+∞)× {0}; this implies that γ1 and γ2 intersect.

From this we deduce that for any n ∈ [m, 2m], the paths γ1 + wm and γ2 intersect.
Hence, for any n ∈ [m, 2m] ∩ N, we have

f̃n1
(
D0 + (0, n)

)
∩ f̃n2(D) 6= ∅,

equivalently (
D0 + (0, n)

)
∩ f̃n2−n1(D) 6= ∅.

This implies that there exists two points z1, z2 ∈ fn2−n1(D) such that |p1(z1)−p1(z2)| ≤ 1
and |p2(z1)− p2(z2)| ≥ 3C. This contradicts the fact that n2 − n1 satisfies the two first
points of Claim 21: if θn2−n1 is small enough such a property is incompatible with
f̃n2−n1(D)− f̃n2−n1(x0) ⊂ B(Ln2−n1 , C).
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