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Learning height for top-down grasps with the DIGIT sensor

Thais Bernardi1,2,3,∗, Yoann Fleytoux1,∗, Jean-Baptiste Mouret1, Serena Ivaldi1

Abstract— We address the problem of grasping unknown
objects identified from top-down images with a parallel gripper.
When no object 3D model is available, the state-of-the-art
grasp generators identify the best candidate locations for planar
grasps using the RGBD image. However, while they generate
the Cartesian location and orientation of the gripper, the height
of the grasp center is often determined by heuristics based on
the highest point in the depth map, which leads to unsuccessful
grasps when the objects are not thick, or have transparencies
or curved shapes. In this paper, we propose to learn a regressor
that predicts the best grasp height based from the image. We
train this regressor with a dataset that is automatically acquired
thanks to the DIGIT optical tactile sensors, which can evaluate
grasp success and stability. Using our predictor, the grasping
success is improved by 6% for all objects, by 16% on average
on difficult objects, and by 40% for objects that are notably
very difficult to grasp (e.g., transparent, curved, thin).

I. INTRODUCTION

We consider the case of a robotic manipulator equipped
with a parallel gripper and a RGBD camera mounted at the
end-effector, which needs to grasp unknown objects (i.e.,
the object 3D model is unknown) using a 4D grasp, also
known as top-grasp. A 4D grasp is generally defined as
the (x, y, z, θ), where (x, y, z) are the Cartesian coordinates
of the grasp center and θ is the yaw orientation of the
gripper on the planar surface. In the last years, several grasp
generators based on images have been proposed, and they
proved successful in finding 4D grasps. For example, Dex-
Net [1] generates grasps candidates for an object and ranks
them according to a grasp quality functions. GG-CNN [2]
and GR-ConvNet [3] are other data-driven methods that
generate pixel-wise grasp affordance maps.

However, while the x, y component of the grasp center
are set, the grasp height z is often determined by heuristics
based on the highest height determined by the point cloud.
Widely used grasp representations such as oriented rectangles
[4], [5] or pixel-level grasp maps [6], [7], [8], [9] take into
account the center of the grasp, the distance between two
jaws, the size of the gripper and its orientation, but do not
encode the grasp height z. Heuristics for the height work
most of the time, especially when objects are thick or full,
but they are often inadequate when objects have thin parts,
transparent parts, holes or curved shapes, because of the
intrinsic error in the height estimation from the point cloud
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Fig. 1. Typical problem of planar grasps: the grasp center height is often
set with an heuristic based on the highest surface. If the object’s shape is
unknown, this can lead to unsuccessful grasps. On the left, a depth gray-
scale image of an object generated from the point cloud captured by the
RGBD camera mounted on the robot’s end effector. On the center and on
the right, two top-down grasps generated by Dex-Net [1] and GPD [10],
two classical grasp generators. The Dex-Net grasp in the center is too low,
the object is not grasped by the gripper jaws, while the GPD grasp on the
right is too high to be successful. Without prior knowledge of the object
and how thick it is, a wrong height prediction can lead to failure.

or simply the absence of knowledge on what is behind the
object’s surface, which requires the object 3D model. Figure
1 shows an example of grasp failures in this sense: two state-
of-the art grasp generators, Dex-Net [1] and GPD [10], fail
because of the grasp height (in one case too low, in the other
too high, in both cases the gripper does not properly touch
the object while closing).

In this paper, we address this problem by proposing to
predict the best grasp height from the RGBD image, using a
regressor that is previously trained with a dataset of the best
grasp height from several grasp candidates. We posit that
the “best grasp height” can be automatically learned from a
sensor-driven data collection, where the robot attempts differ-
ent heights candidates (z0, z1, . . . ) on the same 3D candidate
grasp (x, y, θ), using the contact information provided by a
tactile sensor. In our work, we used DIGIT, an optical tactile
sensor that provides a contact ellipsoid measure, which we
found experimentally to be a good predictor of grasp stability
and grasp success. Our experiments with several objects
show that the predicted grasp height slightly improves the
grasp success, by 6% overall on all the objects, but most
importantly it enables to successfully grasp objects that were
otherwise failing, with improvement up to 40%.

The main contributions in this paper are: i) the charac-
terization of the DIGIT sensor, with several experiments to
investigate whether its output can be used for stable grasp
prediction (note: we found that its output does not relate
to the contact force, which is a useful information); ii) the
experimental validation of the optical contact ellipsoid as a



predictor of grasp stability and success; iii) the method to
identify the best candidate grasp using DIGIT’s measures
and then train a grasp height regressor based on latent
grasp patches. All our findings are the result of several real-
world experiments with the Franka robot equipped with the
standard gripper, mounting two Digit sensors (acquired from
GelSight).

II. RELATED WORK

Tactile sensors have become widely used in robotics to
extract relevant information about the manipulated objects
[11], such as contact wrench, contact area and location,
texture [12]. Tactile sensors can have a different physical
nature [11]: for example, they can be capacitive, piezore-
sistive, piezoelectric, inductive, opto-electric. A wide range
of materials can be used in their fabrication [13], such as
substrate materials, active materials, or flexible electrodes,
which makes them useful in a range of applications, from
robotics to healthcare and even surgery.

In this context, vision-based sensors such as the DIGIT
[14] have the initial idea of correlating contact force with
the changes in the surface of an elastometer. Deformable
elastometers have been developed as a medium of contact
for this use, notably GelSight [15] (used in the upper part of
the DIGIT sensor), which measures high-resolution geometry
that can be used to infer local normal and shear force. The
DIGIT is designed to be used naturally as a “fingertip”
mounted on existing grippers.

In [14], the authors describe the design and manufacturing
process of DIGIT, the analysis of its properties, and use it
in a task that involves learning to manipulate small objects
from visual images. With the sensor, the PyTouch library
was developed and released as open-source [16]: the library
can operate on real-world data to provide touch detection,
slip and object pose estimations. A simulator for vision-
based tactile sensing, supporting DIGIT, is also available
[17]. Its properties make it suitable for precise manipulation
and grasping, even of soft objects [18].

An analogous sensor, GelSlim 3.0 [19], was used to
reconstruct 3D geometry, estimate the spatial distribution of
3D contact forces, and detect slips.

While optical tactile sensors are appealing for data-driven
learning methods (especially deep-learning methods that are
efficient in processing images), the visual measure is unusual
for traditional grasping methods to assess stable grasps,
which usually require force information – see [20] for a re-
view on grasping methods and performance. To predict grasp
success, in [21] the authors use reasoning in the wrench space
of the task; to evaluate the effectiveness of adding tactile
feedback to the analytic grasp success prediction, the study
relies on the tactile feedback to alleviate contact placement
uncertainties. To the best of our knowledge, the grasping
performance improvement brought by DIGIT/GelSight is
only empirically proved by [22]. The authors use an end-to-
end learning approach for predicting grasp outcome, training
deep neural-networks for vision-based, touch-based and com-
bined vision and touch-based grasp outcome prediction. The

subsequent work, [23] uses the GelSight in a grasping robot,
employing a deep, multimodal convolutional network that
predicts the outcome of a candidate grasp adjustment, and
using the raw visuo-tactile data, iteratively selects the most
promising actions. The operating performance of the sensors,
however, is not fully known. In particular, it is unknown
whether the optical measure of the sensor is correlated with
the contact wrench or contact normal force, an information
that is extremely important to assess the grasp stability
and success using traditional measures based on force. For
this reason, in this paper, we conducted an experimental
characterization of the behavior of DIGIT, before using it
for assessing grasping performance.

III. MATERIALS AND METHOD

A. Robotics setup

Our experimental setup consists of a Franka Emika Panda
7 DOF robot arm, equipped with an Intel RealSense D415
Depth Camera mounted on the standard gripper, hosting two
DIGIT tactile sensor (Fig. 1).We use the Expanding Space
Tree (ESTk) [24] motion planner from MoveIt to plan the
trajectories for the robot, and libfranka 5.0 library to control
the arm.

B. DIGIT sensor characterization

DIGIT [14] is a vision-based tactile sensor: it consists of
an acrylic window that is, in the outermost side, covered
by an elastometer, and in the internal side it is lighted
by three colored LEDs (red, green and blue). A CMOS
camera, inside, captures the acrylic window as an image,
which is the sensor’s output. When an object pushes on the
surface of the sensor, the acrylic window deforms and the
effect of the object is noticeable in the output image. All
DIGITS used in this work used the reflective elastometer;
they were set to the default configurations (image acquisition
set at 60 fps, illumination intensity at maximum), except
when stated otherwise. Some examples of sensor’s outputs
for different objects are shown in Fig. 2 and in the Video
attachment1. Flat surface objects are the least perceived by
DIGIT, and not obvious to recognize by the human eye in
the output image (Fig. 2(d)), opposing to small objects or
objects with edges (a and b). Curved objects, when grabbed
anywhere other then the center, also are less perceptible (c).

To quantify the DIGIT response of any contact with the
sensor, we consider two metrics. The first is δP , i.e., the
multi-channel (since the sensor has RGB channels) sum
of the pixel by pixel difference between the current image
output Pimage and a baseline image Pno−contact, obtained
when there is no contact: δP = 1

n∗m
∑n

i=0

∑m
j=0(pi,jimage−

pi,jno−contact
), where p is the value of each pixel in the

[0, 255] range and images are of size n×m. The second is the
area of the contact surface of the object with the sensor. The
contact area, often difficult to identify with the naked eye,
is computed by the ContactArea function from the PyTouch
library [16], which finds the ellipse enclosing the contact

1Video also available at https://youtu.be/aZ1Hjaziv6Y



(a) Small object completely in-
side the sensor

(b) Big object with edges and
not completely inside the sensor

(c) Curved object without rough
edges

(d) Flat surface object in touch
with the entire surface of the
sensor

.

Fig. 2. DIGIT’s output to different types of contact and objects.

(a) (b)

Fig. 3. (a) DIGIT’s output in presence of contact with an object; (b) the
ellipsoid ϵ enclosing the contact area, computed by PyTouch.

surface; as shown in Fig. 3, ϵ, the contact area approximated
by the ellipsoid can be calculated in pixels.

To characterize the behavior of the sensor, we conducted
the following tests:
Test 1: drift. The goal is to determine if there is a drift on
the baseline measure, i.e., the one when the sensor is not in
contact with an object, to plan suitable re-calibration or reset
procedures if necessary. The test consists of collecting data
at 1Hz rate in two separate sessions of 30 and 90 minutes,
without any contact.
Test 2: sensitivity to environment lightning. To verify if the
environment lighting changes the sensor’s output, we collect
data at 1Hz rate in a 2-minute session, with three different
levels of environmental lighting that are artificially generated
by a lamp and randomly set.
Test 3: relation between the sensor’s output and the
contact force. The goal is to determine whether the output
of DIGIT relates to the contact force. For simplicity, we
only conduct the test for the normal force. To carry out
the test, we use the Franka gripper, mounting DIGITs on
both “fingers”, and an Optoforce sensor (model OMD-20-
FG-100N) to measure the contact force. The first part of
the test consists in closing the gripper with different force
and velocity settings, using the libfranka API. Then, the
second consists in closing the gripper to grasp a pin (the one

Fig. 4. Some frames of the GRASPA stability procedure. Once the object
is grasped, the robot lifts it and executes an excitation trajectory.

shown in Fig. 2 (a)) of 0.005m of diameter and 0.015m of
height, vertically positioned, its edge close to the middle of
the sensor. This kind of object presents well defined edges
that are easily detected by DIGIT. The open-close gripper
commands are sent across several minutes, in loop, with
different set forces. Images from DIGIT are acquired at
60Hz.
Test 4: repeatability of contact measures. The goal is to
verify if the images have consistent measures in presence of
the same contact, same force, to detect possible hysteresis or
drift. The test is executed with the gripper equipped with two
DIGITs as “fingers”. It consists in closing and opening the
gripper 180 times, applying the same force, with an object
placed between the 2 DIGITs, collecting images at 60Hz.

C. Validation procedure of the contact ellipsoid as grasp
success predictor

Following the observations of [22], we hypothesize that
the contact ellipsoid is a good predictor for grasp success
and stability. To test this hypothesis, we design the following
procedure. We select N objects, placed one by one on the
robot’s workspace in the same location, and perform several
grasps (e.g., 7-10) with different grasp heights, applying the
same force. For each grasp, we evaluate two metrics: the
grasp success and grasp stability. The grasp is successful
if the object is lifted from the table and brought to a fix
location (0.55cm above the table). The grasping is stable if
the object does not slip during or after the GRASPA stability
procedure, proposed by [25]: the object is held by the gripper
(without further squeezing) while the end-effector moves
for 40 seconds along an excitation trajectory consisting of
fast roto-translations, in particular rotations around the end-
effector axis. Fig. 4 shows some postures during this proce-
dure; an example can be viewed in the Video attachment.
For each grasp, we log the DIGIT output, the minimal
contact area ϵ measured by PyTouch ContactArea, and the
binary information of success or fail for both grasp success
and stability. Note that the ellipse computation of PyTouch
sometimes fails and return nothing, e.g., there is a contact
with an object but it is not detected. Then we consider the
following cases: True positive: the algorithm finds an ellipse
and the grasp is successful; True negative: the algorithm does
not find an ellipse and the grasp was unsuccessful; False
positive: the algorithm finds an ellipse and and the grasp was
unsuccessful; False negative: the algorithm does not find an
ellipse and the grasp was successful.



Fig. 5. Finding the best grasp height: 5 heights are tried for each 3D grasp,
the height associated with the highest ϵ for the two DIGITs is retained. The
best height and its grasp, encoded by the VAE of [26], is saved into a dataset
used to train the height regressor.

D. Best grasp height collection procedure

The experiments in the Section IV will show that grasp
contact area ϵ is a good predictor of grasp success, which
means we can use it to automatize the finding of a good
grasping height. To collect a dataset of the best grasp height
for given 3D grasp candidates, we design the following
procedure. We collect a series of top down grasps, where
the gripper’s center position (x, y) and orientation θ are
manually set, and the initial depth of the grasp (the z-position
of the gripper) zi is computed by finding in the height of
the point cloud the closest distance to the camera near the
grasp position, as done in [26]. The object is then grasped
sequentially at 5 different heights: 2cm above zi, 1cm above
zi, at zi, 1cm below, 2cm below. Light and unstable objects
are held in place by the experimenter, heights below the
workspace plan are ignored. For each grasp, we compute
the contact area ϵ of each DIGIT. The height of the grasp
with the highest combined contact areas, zc, is considered
the best. Fig. 5 illustrates the procedure. The best height
associated to each 3D grasp (x, y, θ), encoded by the latent
representation (VAE of grasps represented by image patches)
of [26], is added to the dataset of 4D grasp demonstrations,
used to train the height regressor described in the next step.
We collected 54 demonstrations from 10 objects from the
YCB dataset (see Table. III objects 1-10) using this sensor
driven collection.

E. Training the grasp height prediction

For a given RGB-D image (W,H, 4), the dataset of
the previous section III-D contains grasp demonstrations,
represented in the image coordinates by the gripper’s center
position (x, y), rotated according to the orientation θ and
encoded using the same grasp encoding from [26]. Each
grasp is represented as a rotated patch (w, h, 7) centered on
the middle of the grasp, the patch is fed to a Variational
Auto-Econder (VAE) to get a latent representation m. The
patch representation is a practical representation inherited
from [27], and the latent encoding proved to be data efficient
in [26]. This representation is then used to train a height
regressor that learns to predict the correction c in meters
between the initial height zi estimation and the height zc
found using the two DIGITs (section III-D). In principle,

there is not a preferable method for the design of the
regressor, so we compared different methods: SVR, Random
Forest, AdaBoost, Gaussian Process, Linear Regression and
Neural Network. Training can be done offline. Online, the
initial height zi is computed using the depth data from the
RGB-D camera: we extract an oriented cropped patch of the
depth point cloud with the width of the selected grasp and
a fixed height (5 pixels), and we use the closest point to
the gripper (that is, the highest point of the object). zc is
found by adding the output c of the regressor to zi. Fig. 6
illustrates how the height prediction module is incorporated
in the grasping pipeline.

IV. EXPERIMENTS & RESULTS

A. Sensor characterization

We report here the results of the 4 tests to characterize the
behavior of DIGIT. Fig. 7 shows the results of Test 1 & 2.
Each color channel has values in the range [0,255]. In the first
2 plots (short and long session) the values for each channel
are almost constant and close to 0, which is consistent with
absence of contact (although there are some visible image
stream errors causing spikes2). The third plot shows that the
lightning does not influence the baseline measure.

Fig. 8 shows the results of Test 3, where 3 set of forces
were applied to the two DIGITs. We use the metric δP
(section III-B), i.e., the pixel-by-pixel difference averaged
on the 3 channels. The pin object was selected such that
the contact area ϵ would not change during the experiment.
The results for different repetitions is the same: there is
no relation between the DIGIT’s output in terms of pixel
values and the contact force. This means that pixel-by-
pixel measures with DIGIT cannot be used to distinguish
contact forces, but only contact areas.

Finally, Fig. 9 shows the result of Test 4. We executed pe-
riodic grasps with the gripper, applying the same force on the
pin, 180 times. Two things should be noted. First, the value
of δP for the two digits is different: this could be attributed
to an asymmetrical distribution of the contact force, even
if we used a symmetrical object to avoid this issue. Second,
as time progresses we observe strange consecutive “leaps” in
the pixel-based measure, appearing at different times for both
sensors. We carried out the same experiment many times,
and always observed a similar behavior, though the “leaps”
seems to happen randomly. This experiment suggests that
the pixel response of DIGIT to same contact forces is not
consistent over time, but it is subject to additive constant
noise. This test further confirms that DIGIT cannot be used
in relation to forces across real-world experiments without
further investigation.

In addition, we report other issues that we observed during
the experiments with DIGIT, that strongly limits its use for
repeated grasping in real-world experiments: the elastomer
layer is very fragile and easily wear and breaks, which

2During our extensive tests with the DIGIT, we observed frequent image
stream errors: the output image is transmitted, but it is shifted and so
unusable.



Fig. 6. The grasping pipeline, assuming that the VAE and depth regressor have been trained before and that a suitable top-down grasp candidate generation
algorithm is provided (e.g., GR-ConvNet [3], Dex-Net [1], ...). From a RGB-D image, a grasp generator outputs a grasp candidate. The initial grasp height
zi is computed using the depth image. The grasp candidate is represented as rotated patches centered on the the gripper’s center position (x, y). It is fed
to a VAE to get its latent representation m, which is, in turn, the input of the height regressor (Sec. III-E) trained on the dataset collected with the help
of DIGIT (Sec. III-D) to obtain the corrected height zc.

Fig. 7. Test 1 & 2: DIGIT’s output as δP to repeatability test over time
for different sessions, and for changing environment lighting conditions.

Fig. 8. Test 3: DIGIT’s output as δP in relation to different contact forces.

changes the output images; contacts with the edge of the
sensor are not well detected; finally, textured objects are often
not perceived by PyTouch, which limits the slip detection
performance.

For all these considerations, DIGIT does not seem to
be suitable for repetitive, long-lasting real-world grasping
experiments. It seems to be indicated for limited use for
contact detection and contact area estimation.

Fig. 9. Test 4: DIGIT’s output as δP in relation to repeated contacts of
the same force, generated by the gripper.

TABLE I
CONFUSION MATRIX FOR Contact surface METHOD, FILTERING THE

ELLIPSES FOUND FOR THE CONTACT SURFACE AREA BASED IN THE

GRASP INFORMATION LOGGED FOR EACH OBJECT AND EXPERIENCE.

Prediction label (ellipse presence)
Positive Negative

True label
(object grasped)

Positive 114 60
Negative 7 15

B. Grasp stability and contact ellipsoid

In this experiment we want to evaluate if the contact area
ϵ can be used to predict the grasp success and stability.
We expect that higher contact areas ϵ lead to more stable
grasps. We selected 10 objects with different levels of
grasping difficulty and evaluated several grasps (up to 11, for
each object) with different height, following the procedure
described in section III-C, for a total of 192 images.

Table I shows a bigger value for the false negatives,
meaning that there were more experiments were there was an
object touching the DIGIT sensor, but it was not perceived by
the processing of the sensor image. In particular, as shown
in Table II, the plastic bolt, which has a particular shape
and ridged texture, was “perceived” by the sensor (visible
change in the visual output, at least to the human eye)
but PyTouch never detected any ellipse. The accuracy and
precision of the perception of an object were 65.81% and
94.21%, respectively. Out of the 114 true positive images,
14 had ellipses that did not correspond to the contour of the



Fig. 10. Boxplot of the contact ellipse area of the two DIGITs in the
fail/success cases, for grasp and stability tests.

TABLE II
RELATION BETWEEN THE SUCCESS RATIO OF GRASP AND STABILITY IN

THE PHYSICAL TESTS, AND THE SUCCESS RATIO FOR THE ELLIPSE

CALCULATION BY THE ContactArea METHOD, CONSIDERING THE

UNFILTERED DATA.

object Grasp
success

Stability
success

Ellipse
calculated

Digit 0 Digit 1
bottle 9/11 5/11 9/11 9/11

dust shovel 7/9 6/9 7/9 7/9
screwdriver 7/8 7/8 7/8 6/8
white tube 6/8 5/8 7/8 7/8

green shovel
(handle) 10/10 7/10 9/10 4/10

strawberry 7/7 7/7 3/7 3/7
green shovel

(inside) 10/10 9/10 7/10 9/10

ear protector 6/9 6/9 5/9 1/9
golf ball 9/9 7/9 7/9 7/9

plastic bolt 8/8 8/8 0/8 0/8

object. Fig. 10 shows the relation between the contact area
ϵ and grasp success and stability. The results confirm that
the higher contact area is associated to higher probability of
grasp stability and success.

C. Training the stable grasp height predictor

Using the procedure described in Section III-E, stable
grasps are used to train a grasp height predictor. We con-
ducted a 4 fold cross-validation to compare several regressor
models (from Scikit-learn) with different parameters found
from a grid-search. the same grasp encoding from [26] with
a VAE trained on a dataset of 2349 RGB-D scenes (339
objects different from the one used in the experiment), with
grasps generated using the GR-ConvNet [3], Dex-Net [1]
and GPD [10] algorithms.The models were trained using a
Nvidia GTX 1080, and a Intel(R) Xeon(R) Gold 5118 CPU
at 2.30GHz. Fig. 11 compares their performance: the best
results were obtained by a simple linear regression algorithm.

D. Testing the stable grasp height predictor

We evaluate the performance of the learned stable grasp
height predictor by grasping the 10 YCB objects (objects

Fig. 11. Performances of different regressor model using 4 fold cross
validation. For each fold the models was trained with the same train and
validation data (using 75% of the dataset), a grid-search was used to find
suitable parameters, the results above relates the performances of each splits
on their remaining test grasp demonstrations.

TABLE III
RESULTS ROBOT GRASPING EXPERIMENT WITH AND WITHOUT USING

THE DEPTH REGRESSOR.

with regressor without

object Grasp
success

Stability
success

Grasp
success

Stability
success

1 YCB screwdriver 10/10 10/10 10/10 10/10
2 YCB power drill 7/10 3/10 6/10 2/10
3 YCB scissors 8/10 7/10 9/10 8/10
4 YCB orange plastic bolt 10/10 10/10 10/10 10/10
5 YCB adjustable wrench 6/10 6/10 6/10 5/10
6 YCB hammer 9/10 3/10 8/10 2/10
7 YCB glass cleaner 10/10 10/10 10/10 10/10
8 YCB big spring clamps 10/10 10/10 10/10 10/10
9 YCB bleach cleanser 10/10 7/10 10/10 3/10
10 YCB rope 10/10 10/10 10/10 10/10
11 ear protector 8/10 7/10 8/10 8/10
12 bottle 10/10 10/10 10/10 10/10
13 white tube 10/10 10/10 10/10 9/10
14 green shovel (inside) 4/10 4/10 0/10 0/10
15 dust shovel 7/10 4/10 5/10 5/10

1-10 in Table III) seen in training, but presented in new
positions, and 5 new and difficult to grasp objects that are
not part of the training dataset.

To evaluate the impact of the height regressor model, we
compare the grasp and stability success with and without the
height correction (i.e., with and without the regressor). All
the objects were grasped at a similar (x, y) location in the
workspace. Using the regressor led to an improvement of 5-
6% over 300 grasps (20 by objects) for both seen and unseen
objects, as reported in Table III, showing that the regressor
was able to generalise to new scenes of previously seen
objects and also novel objects (objects 11-15) . While the
improvement is overall very modest, it must be noted that the
height correction is crucial to enable grasping of challenging
objects (objects 2-6-9-14-15), that otherwise have little to
zero chance of being successfully grasped, with an overall
improvement of 16% for grasping and 18% in stability.

V. CONCLUSIONS

Despite its limits, DIGIT can be used for automated
data collection of stable grasps, as we experimentally found
that the higher contact ellipsoid is associated to higher
grasp success and stability. We used DIGIT to automati-
cally determine the best grasp height z for top-down grasp
candidates (x, y, θ) which otherwise would use heuristics.



The overall improvement in terms of grasp success and
stability is relatively modest across all the objects, meaning
that the heuristic is often enough for most of everyday
objects. However, our height prediction becomes significant
for challenging objects (with transparencies, curved shapes,
etc.) that would be otherwise very difficult or impossible to
grasp with the simple heuristics.
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