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Abstract

This paper reviews methods and practices for addressing the concepts of system-level prognostics (SLP) and

system remaining useful life (SRUL) estimation applied to multicomponent systems. A precise definition of SLP is

provided, emphasizing the advantages of its use in terms of identifying the scope of SLP applications. In addition, a

comprehensive review of the literature is provided to properly classify and compare the findings of previously published

studies in the field of SLP and evaluate the effectiveness of the available methodologies within the different stages of

prognostic development. Finally, and considering that SLP is still a relatively recent research field, we also provide a

thorough discussion on the main challenges that remain to be solved before achieving complete technology transfer,

as well as future research directions.
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Introduction

Over the most recent twenty years, failure prognostics has
turned into a discipline by its own doing with an abundance
of papers covering a large number of scientific issues and
different industrial applications (1; 2). Its introduction into
the industry accelerated with the emergence of the concept
of PHM (Prognostics and Health Management), which
integrated fault detection, failure diagnostics, prognostic, and
maintenance decision support. This saved a large part of the
costs allocated to maintenance. For example, a study that
surveyed 5 industrial members of the Center for Intelligent
Maintenance Systems reported savings of over 855 Million
U.S dollars based on the successful implementation of the
predictive monitoring and PHM solutions (3).

As industrial systems are increasingly complex (such as
aircraft, power plants, etc.) and consist of several interde-
pendent and mutually influencing components, prognostics
at the system-level becomes the most appropriate level for
predicting a system’s future behavior and determining its
time of failure. However, due to large-scale engineering
systems’ complexity, prognostic studies have been limited
to the component-level. Yet, the output of these prognostic
algorithms can be practically useful for the system managers,
operators, or maintenance personnel, only if it helps them
make decisions based on system-level parameters. Therefore,

there is an emerging need to build health assessment method-
ologies at the system-level.

Several reviews exist about the topic of failure prognostics
in general, summarizing, structuring, and organizing the
literature. However, the majority of these reviews did not
report studies concerning system-level prognostics (SLP). In
contrast, the works concerning this theme are growing more
and more. Therefore, this paper aims to provide state-of-the-
art, as exhaustive as possible, of the existing SLP literature.
This includes:

• Framing and positioning of the SLP topic about
component-level prognostics (CLP) and PHM in
general;
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• Advantages and benefits of utilizing SLP approach
and methodology to choose an adapted prognostic
approach for multicomponent systems;

• Classification of the work carried out so far based on
the granularity of the modeling ;

• The different applications of SLP in the current
literature;

• Presentation of an approach to use a realistic
benchmark, which is the Tennessee Eastman Process,
for system-level prognostics purposes;

• Challenges that need to be addressed to have an
effective and applicable SLP methodology at the
industrial level.

• Some recommendations and directions for further
research to go beyond state of the art.

The paper is organized as follows. In Section 2, the
background on component-level prognostics is introduced.
Section 3 is concerned with defining the system-level
prognostics, and Section 4 by presenting its advantages and
benefits. Section 5 reviews SLP approaches and methods.
Section 6 contains the different applications of SLP in
literature and an introduction to the use of the Tennessee
Eastman Process for SLP. Section 7 detailed the challenges
related to SLP. Finally, Section 8 concludes the article
by providing a discussion of recommendations and future
research directions for this field by delivering a discussion
on recommendations and future research directions for this
field.

Background on component-level
prognostics

Failure prognostics is one of the principal added values
provided by the PHM (4). Indeed, with prognostic,
system failures are proactively prevented from limiting
their consequences and taking them into account in
future decision-making. The interest for this disciple is
primarily due to the proliferation systems where failure
is considered financially, humanly, and/or environmentally
dramatic. Hence, the maintenance of these systems must
anticipate failure patterns through the implementation of
prognostic algorithms.

To formally introduce failure prognostics, let us consider a
system with a nominal functioning state before its utilization,
and no maintenance is necessary (Figure 1). During the
early stages of its exploitation, it operates with a specific
health level that is broadly stable until a particular stage,
where an early incipient disruption occurs, and then the
failure risk increases with time. Therefore, prognostics can

be defined as the process of this failure time prediction:
i.e., the end of (useful) life (EOL) and/or the remaining
useful life (RUL). This estimation is forecasting an event
in the future, which is, by definition, uncertain. This is
based on the fundamental notions of systems’ deterioration,
monotonic damage accumulation (called soft failure process
in reliability studied in contrast with hard failure, which
are due to random shock process), pre-detectable aging
symptoms, and how it correlates with the system degradation
model. Hence, prognostic implementation aims to detect,
diagnose, and analyze system deterioration in order to
estimate the remaining useful life (RUL) (5).
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Figure 1. Prognostics illustration.

A component RUL (in the framework of component level
prognostics, CLP) is given by the difference between the
failure time tf where the system will reach the failure
threshold and the current instant tc.

RUL = tf − tc (1)

Generally, the research conducted in failure prognostics of
assets with the CLP approach is classified into three main
approaches: data-driven, model-based (also called physics
of failure), and hybrid prognostics (Figure 2). The first
approach uses the data provided by sensors (monitoring
data), which capture the system’s degradation evolution.
The data are then pre-processed to extract features, which
are used to learn models for health assessment and RUL
prediction (6; 7). Different tools and models can be used
for data-driven approaches, among them we can mention:
neural networks (8), regressions (9), hidden Markov models
(10; 11) and support vector regression (12). The second
approach requires a deep understanding of the system’s
physical phenomena, including the degradation evolution.
This approach uses physical laws or principles to build the
degradation model, which is tuned using the monitoring
data in order to compute the RUL (13; 14). Examples of
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degradation models are those related to crack by fatigue,
corrosion, and wear (15; 16). Finally, the third approach
combines both previous approaches and benefits from their
advantages, such as precision and applicability, but can also
inherit their drawbacks, such as important modeling efforts
and the need for a lot of representative data.

Prognostics approaches

Hybrid Data-drivenModel-based

Figure 2. Component-level prognostics approaches.

The reader is invited to consult these comprehensive
reviews on the topic of component-level prognostics (4; 17).

As industrial systems are increasingly complex, CLP is no
longer sufficient to ensure accurate results. Thus, prognostics
at the system-level becomes the most appropriate way to
conceive the implementation of methodologies that aim to
predict the system’s future behavior and determine its time
to failure. The following section aims to properly introduce
this topic and provide a precise definition of system-level
prognostics.

Definition of system-level prognostics

There is no consensual definition of the systems-level
prognostics in the literature yet. In (18), the authors
inventoried the papers published before 2011 that propose
a definition of prognostics in a general way. Among these
papers, partial definitions of system-level prognostics were
proposed. It was found that, collectively, these definitions
state or imply, among others, that prognostics is, or should
be, performed at the component or sub-component level. In
(19), the system-level prognostics was defined in contrast
with the cellular-level one in relation to battery health
state problem. In contrast, the system level refers, in this
case, to a single component, which is the battery made up
of several identical cells. However, this definition cannot
be applied to complex systems where we have several
heterogeneous components. In (20), it was stated that
SLP ”combines degradation models for individual system

components and information about how components interact

to define the system behavior”. This definition considers
the interactions between components but only considers
degradation models of components without referring to
the nominal models. Nevertheless, prognostics is not only

concerned with determining the system’s behavior but seeks
its evolution to predict failures.

To give a general definition of SLP, the authors proposed
transposing the definition accepted in the PHM community
of component-level prognostics at the system level by
outlining the system’s meaning. This results in the following
definition: system-level prognostics corresponds to the

estimation of a system RUL (SRUL) knowing its current

health state and future conditions of use (21). A system is
defined as a set of elements (components or subsystems)
interacting with each other and the environment to perform
one or more tasks (22). As a result, mainly due to
interactions, the system’s behavior is not the direct sum
of the behaviors of its components due to new emergent
phenomena. Consequently, the prognostics at the systems
level will allow taking into account:

• system failure due to the degradation of one of its
components,

• system failure due to degradation of several intercon-
nected components,

• system failure due to performance below the required
thresholds,

• system failure due to mission profile interruption.

In the literature, it is referred to SLP with different
terms: system-level prognostics (23; 21), system approach
of prognostics (24), multi/multiple components prognostics
(25; 26) and prognostics of complex systems (27).

Advantages and benefits of adopting SLP
approach

The prognostics at the system-level stems from the desire to
maximize the systems’ lifespan either through maintenance
actions or by modifying the mission profile to reduce the
degradation rates. Indeed, CLP is only an approximation of
the system’s behavior, while SLP considers the maximum
number of factors influencing the degradation of a system.
Besides, some of the reasons that encourage shifting
to system-level prognostics include, among others, the
following arguments.

• For system users and operators, it is important to know
whether a system as a whole can provide its designated
services(28).

• In practice, a slight degradation in several components
can concur to have a more significant impact on system
performance. This is due to the interdependence
between components. Therefore, system end-of-life
calculation is not just a simple combination of single
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component failures. The direct extrapolation of the
component RUL to the system RUL will lead to
overestimation or underestimation problems (20).

• In redundant systems, knowing the component RULs
is insufficient to determine the impact of degradations
or failures on the system’s operability. In this case, it
is more relevant to use the RUL of the whole system.

• To maintain systems or extend their life, information
on its whole future behavior is needed: e.g., to
schedule system-wide maintenance.

• Applying system-level prognostics allows localizing
the most vulnerable/critical components of the system
in order to monitor them more.

As a result, system-level prognostics can benefit all stages
of the system life-cycle by improving system reliability and
availability, increasing safety, and making systems more
sustainable (29) while reducing the maintenance costs. Also,
SLP can help localize the components to be monitored even
if they do not represent a low RUL, which can influence
other components and accelerate their degradation. Many
studies have looked at optimizing the costs of maintenance
of multiple components (30; 31), based on the individual
component prognostic. These studies will gain precision
if the structural and degradation relationships between
components are considered.

System-level prognostics can also help locate the root
causes of a failure and improve the diagnostic function (32).
It can also improve the maintenance function organization:
schedule system-wide maintenance, reduce the number of
interventions, etc.

How to choose the right level for prognostic

Adopting a system-level approach is very likely to yield more
accurate prediction results. However, implementing such an
approach is likely to generate higher implementation costs in
terms of monitoring (detection, bandwidth, etc.), computing
capacity, and expertise needed.

To choose the prognostic level to be taken into account
for the study of a multicomponent system, we propose a
scheme (Figure 3) inspired by the scheme proposed in (33)
and to which the costs related to failure and system-level
prognostics implementation are integrated.

Once the prognostics at the system level has been
determined as the appropriate level for monitoring a system’s
health state, an important question posed here is how to
choose an appropriate approach for a considered problem.
Hence, a comprehensive review of different approaches used
to implement SLP will be presented in the next section.
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Figure 3. Choice of the level of study of the prognostic system.

Literature on system-level prognostics

Several literature review papers have been published on
prognostics in general and have focused on system-level
prognostics broadly through a few paragraphs. We can
mention for example (4; 1; 34). These reviews conclude
that there are not many studies on system-level prognostics.
However, more and more works have addressed the SLP
problem for many years. The purpose of this subsection is
to exhaustively as possible introduce the literature on SLP.

In order to report the different works addressing SLP
issues, a classification based on the system modeling point
of view is proposed (Figure 4). This choice was motivated by
the fact that one of SLP’s most significant issues is the whole
system modeling degradation (40; 35) According to the
proposed classification, we can distinguish two categories
regarding the granularity of the modeling used: simplified
modeling and holistic modeling. The classification is refined
in each category regarding the using approaches and tools.
This classification is presented in Table 1 with some tools
used in each category as illustration.

Simplified modeling

The studies in this group usually simplify the system
modeling when evaluating the SRUL. These methods can
be divided into two categories: Construction of input-output
relations and Critical component selection.

Construction of input-output relations In this case, the
system can be considered as a black box (as illustrated in
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Table 1. Classification of system-level prognostics main works.

Modeling type Approach Tools and methods
Simplified modeling Construction of input-output relations Black box: ANN (35), SVM, etc.

Critical component selection FMEA (36), PRA, etc.
Holistic modeling Model-based approach System decomposition model (28), equivalent circuit,

etc.
Data-driven approach Reliability data: Fault tree (37), PDMP (38), etc.

Monitoring data: Kalman filter (39), ANN, etc.

Simplified modeling
approach

Holistic approach

Figure 4. Illustration of granularity modeling.

Figure 5), and the SRUL is estimated based on the input-
output data using machine learning methods (35), statistical
methods (41), or similarity-based methods (42). The main
tools used for this approach are sophisticated neural network
(8) (e.g., LSTM), Levy-based process (e.g., Wiener process),
stochastic filtering-based models (e.g., Particle Filtering or
Kalman filter), SVM-based methods.

System

Prognostics 

function

...

Inputs

S
e
n
s
o
rs

Outputs

...

SRUL

Figure 5. Prognostics based on input-output relations.

The advantage of this approach is that it is easy to
apply even without extensive system knowledge. On the
other hand, this approach requires many monitoring data
that are not easy to acquire in practice, resulting in a more
extended model training period, which may not be acceptable
for expensive systems that cannot remain non-operational
for long or risk of substantial margin. Also, because we
are not interested in what is actually happening inside the
system, we may lose the modeling’s physical meaning. The
health indicator used will be difficult to monitor because of
nonlinearity and non-stationarity (43). In fact, the variation
of the system health indicator of a complex system results

from all the changes that occur inside the system. Yet, the
changes can be the result of many combinations, and thus
the evolution of these changes could be unpredictable.

In (44), a combination of SVM and ARIMA methods
is proposed to estimate the RUL of an aircraft engine
from different variables. In (35), a review of tools and
methods considering rotating machinery as one component
is proposed.

In a nutshell, this approach can be assimilated into
component-level prognostics for complex systems. However,
for CLP, degradation mechanisms concern one component
with a few degradation modes. Whereas, in SLP, degra-
dations can occur in all the components with propagation
effects.

Critical component selection From this perspective, the
system prognostics is simplified to the prognostics of the
critical components determined by using risk analysis and
reliability methods (36; 45; 46). The standard (47) provides
a series of methods to support engineers in evaluating the
reliability of a given system. These methods can be divided
into two main groups, namely qualitative and quantitative
techniques. Qualitative and semi-qualitative methods rely on
expert judgments on available data to identify and evaluate
potential failures to make reasonable judgments about risks.
These techniques can be based on decisions or experiences
and provide a qualitative assessment of risks (low, medium,
and high). Qualitative methods are usually performed using
techniques such as Checklist, Failure Mode and Effects
[Criticality] Analysis (FMEA/FMECA), Preliminary Hazard
Analysis PHA, and Hazard and Operability Study (HAZOP).

The quantitative methods can be probabilistic or
deterministic. The probabilistic methods use statistical
tools to estimate measures such as failure rates, mean
time to failure (MTTF) and Mean time between failures
(MTBF) to evaluate the reliability of a system (47). The
most commonly used tools are the Fault Tree Analysis
(FTA) and the Event Tree Analysis (ETA). Moreover, the
above-mentioned methods can be combined for system
reliability and risk analysis (48).The deterministic methods
typically rely on different approaches to determine which
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component-specific parameters most impact the system-level
degradation determined by an overall health indicator. These
approaches can be physics-based (49) or data-driven (50; 51;
52).

The critical component identification approach was
applied in several cases, such as identifying the contact
wire as the most critical and impacting component of the
Overhead Contact System of railway infrastructure (45),
bearings in rotating machines, lithium-ion batteries, and
turbofan engines in commercial airplanes (46), etc.

However, this approach may be insufficient to ensure
the availability of a system whose components interact. In
this case, the identification of critical components is not an
adequate solution.

Holistic modeling

The aim of the second group of system-level methods
is to provide a holistic view of the system under study,
i.e., considering all its components and the underlying
degradation mechanisms, including degradation propagation
and environmental effect, when evaluating the SRUL
by using data-driven or model-based approaches. In
Table 2, studies that addressed SLP, as stated in the
definition given above, are presented concerning the
tool used and their capacity to consider component
interdependencies, uncertainty, mission profile effects,
and non-linear degradation mechanisms. The references
presented in this table are detailed in the remaining of the
paper.

Model-based approach The model-based approach (i.e.,
physics-of-failure, PoF) of the holistic modeling utilizes
knowledge of the life cycle loading, failure pattern models,
control models, or other phenomenological descriptive mod-
els of the system. These models are usually mathematical
aggregations of component failure models with additional
equations describing how they interact within the whole
system.

According to (70), model-based approaches better suit
system-level prognostics as it is challenging to use the
monitoring data directly to represent and get a physical
interpretation of the component interactions. The advantage
of PoF-based methods is, often, their ability to isolate
the root cause(s) that contribute to system failure (71).
However, sufficient information about the product is needed,
and it is challenging to analytically describe complex
systems. For instance, in PoF models, geometry, materials,
and operational and environmental conditions are required,
although finite element models can help. However, in

complex systems, these parameters may be difficult to obtain.
The development of models involves some knowledge of the
underlying physical processes that lead to system failure.
Therefore, it is difficult for complex systems to create
dynamic models representing the multiple physical processes
occurring in the system (72).

Currently, one of the most used models in prognostics is
the state-space representation (73), which is formulated as
follows:

x = f(t, x(t), θ(t), u(t), v(t))

y(t) = h(t, x(t), θ(t), u(t), n(t))
(2)

where x(t) ∈ R(nx) is the state vector, θ(t) ∈ R(nθ) is the
unknown parameter vector, u(t) ∈ R(nu) is the input vector,
v(t) ∈ R(nv) is the process noise vector, f is the state
equation, y(t) ∈ R(ny) is the output vector, n(t) ∈ R(nn) is
the measurement noise vector, and h is the output equation.
This model describes both the nominal behaviour and faulty
behaviour, including the fault progression function.

The use of this model in CLP allows taking into
account different parameters that influence a component’s
degradation. However, for SLP, the state-space model has
several limitations: the inability to model heterogeneous
components, the no-modeling of component interactions,
and the computation time.
Otherwise, another approach consists of building system
models by integrating the simpler behavioral equations with
experience-based models or utilizing data fusion techniques
(18). In (28), the authors propose a method to decompose
the system state-space model into independent sub-models
and then derive the SRUL based on the RUL calculated from
each sub-model. However, this approach assumes subsystem
independence. Moreover, its practical application is limited
due to the complexity of the proposed analytical models.
In (23), the same authors applied this approach to the
United States’ Airspace Management. In that perspective,
an aircraft is viewed as an independent component of a
system that is the airspace. The risks of ”loss of separation”
(two planes becoming very close) and dry breakdowns are
assumed to be reversible progressive degradations. Then,
the aim is to determine the time before these risks exceed
a certain probability. The prediction was conducted using
Monte Carlo simulation algorithms.

In order to model the interdependencies, the authors of
(56) used the state-space-based modeling where the depen-
dencies among different degradations are captured in the
matrix of diffusion coefficients. Then, by using the sequential
Kalman filtering, the hidden degradation states are identified
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Table 2. Literature review of system-level prognostics holistic approaches.

Holistic
approach

Tool/model Paper Interdependence Uncertainty Mission
profile

Non-
linearity

Model-based Input-output Model (53) ✓ ✓ ✓ ✓
First ordre model (54) ✓ ✓ ✓ ✓
Petri Nets (55) × ✓ × ×
State-space model (28) × ✓ ✓ ✓

(56) ✓ ✓ × ×
Stochastic filtering theory (57) ✓ ✓ × ×
Stochastic differential equa-
tions

(58) ✓ ✓ × ×

First order reliability
method

(20) × ✓ × ✓

Bond graphs (59) × ✓ ✓ ✓
Data-driven Fault tree (25; 60) × ✓ × ✓

(61) × ✓ × ×
Piecewise Deterministic (38) ✓ ✓ × ✓
Markov Process (62) ✓ × ✓ ✓
Multi-Agent Systems (63) ✓ ✓ × ×
Wiener process and Frank
Copula function

(64) ✓ ✓ × ×

Linear regressive model (40) × × ✓ ✓
Fuzzy logic (65) × ✓ × ×
Graph Convolutional Net-
work

(66) ✓ × × ✓

Artificial Neural Network (67) ✓ × × ✓
Bayesian networks (68) ✓ ✓ × ×
Extrapolation (25) ✓ × × ×
Expectation-maximization
algorithm

(69) × ✓ × ✓

based on multi-dimensional observations. Meanwhile, the
model’s unknown parameters are updated iteratively by the
expectation-maximization (EM) algorithm. However, this
approach was applied to simplistic systems where homoge-
neous components are involved. To address the limitation of
state-space modeling regarding the heterogeneous system, in
(25), the calculus of the SRUL is made on one global perfor-
mance indicator. This later is derived from the aggregation of
the individual component performance indicators calculated
using independent individual component state-space model-
ing while taking into account system architecture. However,
it is assumed that the relationship between the deterioration
of health indicators and system performance is known.

Furthermore, one of the main challenges when applying
the model-based prognostics approach is the uncertainty
quantification that slows the involved calculation of
the SRUL. Khorasgani et al. presented a prognostics
methodology for system-level RUL prediction that considers
different sources of uncertainty such as model uncertainty,
measurement uncertainty, and output uncertainty (20).
Two methods were developed to model the uncertainties:
stochastic simulation and inverse FORM (First-Order

Reliability Method) approaches. The authors presented
an analysis of the computational complexity of the two
developed methods and showed that the inverse FORM
approach was faster than the stochastic simulation approach.
In (57), the uncertainty related to component dependencies
and their effect on system RUL was tackled using stochastic
filtering theory.

A more phenomenological approach to system degra-
dation is addressed in (54), where authors developed an
approach to decompose an electronic system into circuits
instead of components. Because of the difficulty of mon-
itoring miniaturized electronic components, this approach
presents obvious interest. The circuit-level faults are merged
to obtain a global fault indicator of the system. In this work,
the assumptions of monotonically increasing degradation
and component independence are explicitly taken. Also, one
can reveal the problem of determining how to decompose
a system in circuits, which can be challenging in complex
architectures. Although, in this study, the application was
made on a simplistic system consisting of a bandpass filter
(BPF), mixer, and low pass filter (LPF) circuit, respectively,
in series. In (58) and (39), the authors investigated the
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stochastic dependencies of multiple components through
stochastic differential equations, which are developed based
on the physical understanding of the system.

In contrast to the state-based modeling of state-space
models, in (74), component deteriorations can be regarded
as a time-dependent stochastic process. The author assumed
that the deterioration process could be modeled as a gamma
process, and a Poisson process generates the stochastic
process of the load. Then, the component failure is defined
as the event at which stress exceeds a strength that is liable
to deterioration. However, since real systems are generally
non-linear and sometimes non-stationary over time, it is not
possible to model their degradation over time (75).

Other models are discussed in the literature, such as bond
graphs or Petri nets. In (59) using bond graphs, multiple
degradation models are suggested and are adapted with new
information about the monitored system’s degradation states.
In (32), a new model brought back from economic studies
was introduced as a unified framework for SLP, namely
the Input-output Inoperability Model (IIM), which can take
into account inner component degradation, dependencies
between components, and the effect of mission profile. Based
on the IIM, an online methodology for SRUL calculation
based on particle filtering for health state estimation
and prediction and gradient descent for model parameter
estimation was presented and applied for the Tennessee
Eastman Process (76). In (77; 78; 55), based on Petri nets, a
generic online health monitoring architecture was proposed;
this architecture is capable of using several prognostic
methods for the different components depending on the
available models. But it does not consider the operating
conditions (mission profile) during the system’s utilization.

Data-driven approach Holistic data-based approaches,
even if they do not describe the phenomenology of system
degradation, can account for their evolution through the
monitoring of health indicators by sensors. One of the most
widely used methods in this category is neural networks
with multiple inputs to account for the correlation between
different system variables. This can correspond roughly
to the degradation interdependence between components.
The authors in (67) presented an architecture where the
prognostic process is defined at the component and global
levels; each local agent uses specific prognostic methods
according to the knowledge available on the monitored
component, and the global agent feeds a neural network
with data collected from local agents. This network of
neurons is presented as a global prognostic tool to aggregate
local prognostic. The weights in the networks can be

determined using monitoring data and expertise. In (66), a
graph convolutional neural network is used, where system
components, sensor data, and interactions are represented
and analyzed as a graph.

Other methods, such as the Bayesian network and its
extensions, have been used from the same perspective. For
instance, in (68), causal Bayesian Networks (BNs) are used
to model the dependencies existing between component
degradations to improve the decision-making on system
troubleshooting. A method is presented for the integration
of information from multiple levels, such as prior knowledge
and direct experience data, in order to characterize the fault
propagation in an electromechanical actuator.

Regression methods based on run-to-failure or seeded
fault experiments are also used for SLP. In (40), a linear
regressive model was used to estimate the SRUL of a
system with redundant components. The main feature of
the method presented in this study is the re-computation
of the component RULs due to system reconfiguration
after a component failure. Nonparametric regression of the
system health state evolution was proposed for SLP through
extrapolation (25) and expectation-maximization algorithm
(69).

To handle the data uncertainty, multivariate distributions
were explored through gamma distributions (79) and Copula
(80; 81). The paper (38) provides a framework for evaluating
the reliability and the RUL of a system with two components:
a pump degrading following a discrete process and a valve
with a continuous degradation process. The authors of (26)
proposed a statistical approach for prognostic to estimate
the RUL of a system by considering the degradation rate
interactions between its components. A probabilistic Weibull
model is used to establish a common prognostic approach
for each component. This model enables representing the
failure probability of each component in the system. Still,
each component can only be the ”initiator of” or ”subject
to” degradation on another component (uni-dimensional
degradation relationship). Another way to consider data
uncertainty is the use of fuzzy logic, especially for expertise
data. In (65), the fuzzy analytic hierarchy process was used
to evaluate the satellite power system-level health state.

Data aggregation methods have been used through multi-
agent methods in (82; 63) and fault trees (25; 60; 37).
In (82), the authors proposed a distributed architecture
composed of several agents coordinated to monitor a given
component or subsystem through a diagnostic algorithm.
The agent switches to the prognostic mode, and when a
critical condition is detected, it informs the base station.
This latter works as a manager of resources and agent
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Figure 6. System-level prognostics approaches and their advantages and disadvantages.

control. Recently, (63) proposed a new approach for system-
level prognostics based on Multi-agent systems (MAS)
applied to the lorry system. MAS is an approach derived
from distributed artificial intelligence based on an ensemble
of individual autonomous and cooperative entities called
agents. This approach is a time-dependent degradation one
with the system states’ discretization, which reduces its
applicability. Also, only linear independent degradations are
accounted for in this study. In a series of papers (25; 60),
the authors used the functional architecture of a system
described by a fault tree to calculate the SRUL from
component RULs. From the system minimum cut sets, the
probability of system failure is obtained using logic gates
and each component’s probability density function. In this
study, SRUL is determined regarding the time remaining for
the probability of system failure to reach a certain threshold.
Fault trees are effective tools, but their disadvantage is that
the basic events must be independent. In (37), the structural
dependencies are considered using a fault tree to improve
the scheduling of inspection periods without considering the
system mission profile.

Recently, research (83) has considered the problem of
system-level prognostics in the cloud. This research has
considered applying system-centric architecture to cloud-
based systems that leverage shared computational resources
to reduce cost and maximize reach.

So far, we have discussed the different approaches used
to implement system-level prognostics. A summary of the
advantages and disadvantages of each approach is presented

in Figure 6. The next section will examine the SLP
applications for various systems.

Applications of system-level prognostics in
industry

Any multicomponent system subject to degradation mech-
anisms that can lead to damageable failures can be appli-
cations for prognostics at the system level. Transportation,
aerospace, automotive, manufacturing systems, (nuclear)
energy production and storage, chemical processes, and
smart grids are some examples. Table 3 gives an introductory
summary of some systems that had been treated with a
system-level prognostic approach and the degradation/failure
mechanisms considered.

Because of the scarcity of in-field data and benchmarks
that would permit the SLP approach evaluation, the number
of SLP approaches proposed in the literature remains far
below its importance and possible contributions. Indeed,
in practice, it is difficult to convince an end-user to let
his/her system operate until its complete failure to gather
representative data for prognostics.

In order to encourage the proposal of approaches to
address the SLP problem, we present hereafter a realistic
benchmark of a real industrial system, namely the Tennessee
Eastman Process (TEP). We believe that the TEP could be a
relevant alternative for testing scientific developments about
SLP as it contains all the points present in the SLP definition.
However, as this system was not intended for prognostics
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Table 3. Applications of system-level prognostics in industry

Field/Industry Systems Degradation/failure mode
Transportation Underground Multiple failure modes (53)

Aircraft bleed system Loss of air flow due to valve failure (40)
Aircraft electrical system Power loss due to generators or switches failure

(37)
National Airspace System loss of separation (23)
Planetary rover Friction damage (28)
Ski lift Degradation of Jacks strength (26)
Braking system of rail vehicles Demagnetization fault mechanism (84)
Environmental control system in an air-
craft

Pressure loss of the control valves (85)

Helicopter gearboxes Tooth crack (86)
Lead acid and li-ion batteries in hybrid
vessel

The fade of capacity (87)

Manufacturing
systems

Chemical plant (Tennessee Eastman Pro-
cess)

System shutdown due to parameter drift (88)

Chlorine dioxide generation system Multiple failure modes (66)
Petrochemical plant Tube fouling (89)
HVAC Multiple failure modes(90)
Production and maintenance scheduling Production downtime (91)
Tank system Pump failure (62)
Milling machine Tool worn-out and breakage (92; 93)
Pump and valve system Valve failure (38)
Blast furnace Thermal wear (56)

Electronics Rectifier Electrolytic evaporation (20)
MOSFETs/IGBTs and ECaps Multiple failure modes (thermal, fatigue, etc.) (94)
Electrical hybrid system Multiple failure modes (59)
Radio frequency receiver system Gain reduction (54)

Energy production
and storage

Hydrogenerator Multiple failure modes (Thermal aging, wear and
erosion) (77)

Gas Turbine Engine Erosion and fouling degradation (95)
Turbofan engine Creep rupture in the turbine blades(27)
Transmission substation in power grid Multiple failure modes (61)
Lithium-ion cells in a battery pack State-of-Charge (96)
Wind turbine Multiple failure modes (97)
Satellite Power System Multiple failure modes (65)

Miscellaneous Cloud health care monitoring Service loss(83)
Bearings Crack (31)

purposes, an adaptation and a paradigm shift should be made
as proposed in (98).

Benchmark: Tennessee Eastman Process

The Tennessee Eastman Process (99) is used in the
literature as a realistic benchmark for process control
optimization (100), fault diagnostics (101) and, to a lesser
extent, for component-level prognostics. The TEP comprises
five major units (working in an open-loop): a reactor, a
condenser, a separator, a stripper, and a compressor. The
piping and instrumentation diagram (P&ID) of the TEP is
given in Figure 7.

The aim of the TEP is the synthesis of two liquid products
from gaseous reactants. The process is monitored by 53
measured variables. There are, in total, 28 faults that can be

injected in the process (102). These faults are related to step
changes, drifts, and random variations of some variables.

SLP in the Tennessee Eastman Process

For this benchmark, an interruption of the operational
continuity resulting from the violation of the variables
shutdown limits is considered as a system failure. Therefore,
only the components having shutdown constraints are
considered, i.e., the reactor, the stripper, and the separator.
A single parameter is used to monitor each of these
components: gas pressure for the reactor and liquid level
for the stripper and the separator. These parameters should
respect the operational constraints listed in Table 4 in order to
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Figure 7. PI&D of the Tennessee Eastman Process.

Table 4. Process operating constraints in the TEP (99).

Normal operating limits Shutdown limits
Process variables Low limit High limit Low limit High limit
Reactor pressure none 2895 kPa none 3000 kPa
Separator level 3.3 m 9.0 m 1.0 m 12 m
Stripper level 3.5 m 6.6 m 1.0 m 8.0 m

avoid the system shutdown. However, several parameters can
be used/fused to infer the system components’ health state.

The Tennessee Eastman Process simulation originally
includes 21 pre-programmed faults (99). In (102), the
authors added 7 faults, bringing the total to 28. These faults
are related to setpoint changes (IDV (3) and (25)), drifts
(IDV (13), (16) and (17)), and random variations (IDV (11))
of some variables (as shown in Table 5). The simulation
program allows the faults to be injected either individually
or in combination with another.

The simulation code for the process is available in
FORTRAN and can be implemented in Matlab®, and a
detailed description of the process and the simulation is
presented in (99; 102).

Table 5. Examples of process disturbances in the TEP
(99; 102).

Fault number Description
IDV (3) Step in D feed temperature (Stream 2)
IDV (11) Random variation of the reactor cooling

water inlet temperature
IDV (13) Reaction kinetics deviation
IDV (16) Heat transfer deviation of the heat

exchanger of the stripper
IDV (17) Heat transfer deviation in reactor
IDV (25) Step in E feed flow (Stream 3)

There are six modes of process operation (i.e., the system
mission profiles) corresponding to various product mass
ratios and their hourly production rates. The product mix is
typically dictated by product demands, and the production
rate is set by market demand or capacity limitations.

Depending on the approach to be developed, the system
can be put on a closed- or an open-loop, allowing to take into
account or not the effect of the control signals.

Challenges related to system-level
prognostics and future research directions

In light of the literature review in the previous section, it
can be concluded that system-level prognostics present some
challenges not yet faced when dealing with prognostics at
the component-level. In what follows, we have compiled
the various obstacles to be addressed by future SLP studies
(Figure 8), as well as some possible solutions.

Interdependencies

Interactions between component degradations have been
intuitively felt since the first works on component wear
and reliability of systems (103). This has resulted in a
large literature in the areas of condition-based maintenance
(CBM) and reliability. For instance, maintenance policies of
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Figure 8. Challenges related to system-level prognostics.

multicomponent systems have been widely reviewed in the
following papers (104; 105; 103; 106). However, in CBM,
these dependencies are merely being studied as a stepping
stone to maintenance optimization. Hence, an exhaustive
classification of the component interactions from PHM point
of view (Table 6), inspired by (107), is proposed in this
subsection. This classification is divided as follows.

1. Structural interdependencies concern the structural
and static relationships between components. First,
they can be related to situations where one component
replacement requires the dismantling or the replace-
ment of other components (105; 108; 30). Second,
components can be dependent on the system’s phys-
ical or functional structure, influencing how it fails.
Indeed, a system with a series configuration is more
sensitive to the failure of one component than in a
parallel configuration or with a k/N architecture (37;
21). Moreover, the failure of a system with parallel
architecture is influenced by the switching strategy
between redundant components. Thus, a system with
hot redundancy degrades less quickly than a system
with warm or cold redundancies (109).

2. Stochastic interdependencies refer to the (partial)
dependence between component degradation or failure
processes. We can distinguish four types of stochastic
interdependencies:

• Degradation interactions. A degradation of one
component influences (generally by accelerat-
ing) other component degradations (38; 21;
63). Wind turbines are an example of a typ-
ical mechanical system where, for example,
the degradation of hydrodynamic bearings may
result in increasing looseness of the primary
transmission shafts, which in turn may increase
the vibration levels in the gearbox (58).

• Failure induced damages. Failure of one com-
ponent leads to an immediate increase of the
degradation level or even immediate loss of other
components (30). For example, the failure of a
computer fan will induce processor degradation
or failure.

• Load sharing, which can be induced by a
component failure or degradation. Indeed, one or
more components’ failure increases the load on
the functioning ones, hence deteriorating faster.
This fact can be observed in a set of pumps used
to distribute the same amount of gas/liquid (40).
A component deterioration can also increase the
load on the other ones, as outlined in (89) for the
fouling of tubes in a distribution network.

• Common mode deterioration. Several compo-
nents can fail or deteriorate simultaneously due
to similar mission profile (53) (e.g., components
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Table 6. Component interdependencies classification.

Structural Technical • Maintenance restrictions (105)
• Usage restrictions (30)

Architecture • Series configuration (21)
• Parallel configuration (hot (37; 110),

warm (111), and cold redundancy)
• k/N configuration (112)(79)
• Arbitrary configuration

Stochastic Load sharing • Failure load-based sharing (40)
• Degradation load-based sharing (89)

Common mode degradation • Environment (113)(114)
• Mission profile (53)

Failure induced damages (30)
Degradation interactions (38; 21; 63)

Resources Workers (115), spares (116; 117; 60), tools and transport sharing
Economic Negative (118) or positive (106; 31) economic dependencies

sharing a common power supply) or environmen-
tal conditions (113) (e.g., wind turbines in an
offshore field under weather conditions).

3. Resources interdependencies, which arise when
several components are connected through a shared
limited set of spares (116), workers (115), tools,
or budget. Consequently, maintenance optimization
is required on the system level rather than on the
component level.

4. Economic interdependencies refers to the situations
where maintaining several components at a once is
either more expensive (negative economic depen-
dence) (118) or less expensive (positive economic
dependence) (106; 31) than maintaining components
separately.

In practice, not all of the above-mentioned interdependen-
cies are investigated in SLP. Indeed, only stochastic inter-
dependencies directly influence the system health state evo-
lution and, therefore, its SRUL. The other interdependence
types concern post-prognostic decision-making regarding
maintenance actions.

Uncertainty

Uncertainty is intrinsically related to any prediction (119)
and, therefore, to failure prognostics. The main types of
uncertainty (Figure 9) that affect both the current and future
degradation state are process uncertainty, model uncertainty,
measurements uncertainty, and future uncertainty.

First, process uncertainty relates to the variability in the
behavior of a process due to operating conditions and the
environment. In detail, this uncertainty translates into the
variation of the system’s physical parameters (resistance,
inductance, stiffness, capacitance) (4). To alleviate this
uncertainty, new systems should be robustly designed to have

minimal sensitivity to material, manufacturing, or operating
variations (120). For systems already in operation, the
uncertainty related to the system parameters can be tackled
by using adequate methods such as interval ones (121).

Second, the uncertainty related to modeling greatly affects
the prediction accuracy in prognostics (122). For the nominal
model of a system, the uncertainties can result from a
set of assumptions used during the modeling process and
lead to models that do not fit precisely the real behavior
(4). Indeed, either for the nominal model or the system’s
degradation model, it is only an approximation of the
real behavior, which does not consider all the involved
parameters. The degradation model is generally obtained
from accelerated life tests conducted on different samples of
components (72). However, data resulting from accelerated
life tests conducted under identical operating conditions
may exhibit different degradation patterns because of the
degradation stochasticity. To handle this type of uncertainty,
the system state modeling and estimation problem has been
approached in a probabilistic form and by using tools
derived from possibility theory (fuzzy logic) (123; 124)
or Dempster-Shafer theory (evidential theory) (86). The
probabilistic representation of uncertainty is often used in
filtering methods (Particle filter (125), Kalman filter (126),
etc.) to estimate the system state by combining imprecise
models and noisy measurements.

Third, whatever the approach used for prognostic, consid-
ering measurement uncertainty is of utmost importance in
the prediction process. Indeed, sensor data are used to learn
algorithms in data-based approaches and estimate model
parameters in model-based ones. However, sensors are also
affected by uncertainty. Indeed, sensor noise can result from
a variety of sources like electrical interference, digitization
error, sensor bias, dead-band, backlash, and nonlinearity in
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the response (127). Therefore, it is necessary to consider this
noise when estimating the system’s health state.

Finally, once the system’s state is known and its
uncertainty quantified, the purpose of prognostics is to
predict the system’s future evolution, which is inherently
uncertain. In fact, future system usage and future operating
conditions are unknown, which makes future state and RUL
predictions highly uncertain. In this scope, Markov chains
have been proposed to simulate the battery usage profiles
in (128). Similarly, the authors in (72) reviewed some
methods used to integrate the life-cycle loading profile in the
degradation of electronic devices.

The above-mentioned uncertainty types involve numerous
challenges for failure prognostics. Moreover, the transition
from component-level to system-level prognostics increases
the uncertainty source number, which causes more issues
when predicting the SRUL.

SRUL determination

The SRUL provides information related to the time when
the whole system fails (i.e., when the combined failures
of the individual components lead to a system failure)
(25) or when the system reaches a performance that is
considered unacceptable. It allows giving a unique measure
of the possibility of a system to perform the task(s) for
which it was designed. However, the consequence of the
degradation of one or more components depends on the
considered architecture. Hence, we have to calculate the
SRUL according to the system configuration.

In a case of deterministic prediction and a system with
a series configuration, the SRUL represents the minimum
RULs of the components:

SRUL = min
i=1,...,M

(RULi) (3)

whereas, for components in parallel, the SRUL corresponds
to the maximum:

SRUL = max
i=1,...,M

(RULi) (4)

In (56), a particular case of parallel architecture was
presented, called summation structure. In this case, the
failure mode results from a combination of multiple
component degradations. For instance, a system is assumed
to be failed if the sum of all the degradations hits the failure
threshold. This architecture only concerns homogeneous
systems.

However, in practice, and given the complexity of
industrial systems, it is important to consider the uncertainty.
In (88), and based on the new paradigms proposed in
(130; 131), a probabilistic SRUL calculation is proposed for
series and parallel configuration. Many systems are made
up of these types of configurations or with more complex
compositions from these simple ones, e.g., parallel-series or
series-parallel. However, there exist complex configurations
that cannot be reduced to sub-configuration in series and/or
parallel, such as networked structure, k/N architecture with
active or passive redundancies, bridge configuration, or
arbitrary configurations (Figure 10) (132). Assessing the
SRUL of those complex systems is difficult and complicated,
and it was not yet addressed in the SLP field. The solution for
this issue could be relying on methods allowing the analysis
and modeling of the functional operation using, for instance:
network reliability, structured analysis and design technics
(SADT), graph theory, reliability block diagram, or systems
modeling language (SysML), etc.

Components heterogeneity

Nowadays, systems are composed of several components
with different characteristics. These components can
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Table 7. General parameters which can be monitored in components (129).

Category Parameter
Thermal Temperature, heat flux, heat dissipation
Electrical Voltage, current, resistance, inductance, capacitance, dielectric constant, charge,

polarization, electric field, frequency power, noise level, impedance
Mechanical Length, area, volume, velocity or acceleration, mass flow, force, torque, stress, strain,

density, stiffness, strength, angular, direction, pressure, acoustic intensity, power,
acoustic spectral distribution

Chemical Species concentration, gradient, re-activity, mess, molecular weight
Humidity Relative humidity, absolute humidity
Optical Intensity, phase, wavelength, polarization, reflection, transmittance, refraction index,

distance, vibration, amplitude and frequency
Magnetic Magnetic field, flux density, magnetic moment, permeability, direction, distance,

postition, flow

Component 

Component 

Component 

Component 

Component 

Component 

Component 

Component 

Figure 10. Example of an arbitrary configuration.

be electronic, mechanical, hydraulic, pneumatic, etc.
Each component uses different energies, and the energy
transformations within systems make them able to perform
complex tasks (133). This heterogeneity of components
poses a big challenge for SLP (134). Indeed, as shown in
Table 7, regarding the component nature, its health indicator
may be different in terms of dynamic or measurement, i.e.,
the sensor used to monitor it.

As shown in the following, some systems with serious
degradation problems present totally different functioning
mechanisms. This is the case for gears, which are one
of the most common components used in mechanical
transmission systems; lithium-ion batteries that are widely
used in commercial products; liquid-crystal display (LCD);
and light-emitting diode (LED), whose light intensity drops
with usage (135). In (129), a review was made of the different
parameters that can be utilized to monitor the state of health
(SoH) of systems.

Several studies have been carried out in the literature
on diagnostics of heterogeneous systems, but only a
few addressed these systems’ prognostic. Specifically, the
problem here is how to design a single model for the
degradation of an entire system. In (25), the authors proposed
a performance function that links the parameter degradation
of each component with the health indicator of the global
system performance. However, this method suggests that the
influence of the system performance component is known,

which is a strong assumption. In (21), it was proposed to
normalize all the health indicators of a component to one
parameter called inoperability. A distributed approach for
prognostics on system-level is also proposed in (78; 28;
63). This approach addressed the problem of component
heterogeneity so that different parameters and different
models can monitor each component. However, it assumes
that the component degradations are independent.

Mission profile

How a system is controlled to perform its tasks under a given
mission profile (MP) greatly influences its current and future
degradation state; hence this reduces or extends its lifespan
(53; 136). This MP can be a steady-state operating (such as
in thermo-fluid systems) or have a particular cyclic pattern.
This kind of pattern can be found, for instance, in an aircraft
MP (Figure 11). Each step of this MP impacts the aircraft
components differently.

Cruise

Figure 11. Illustration of a standard aircraft mission profile.

In prognostic, future mission profiles and their impact on
the system should be adequately characterized to perform
efficient and accurate RUL/SRUL predictions. Indeed, future
inputs are among the largest sources of uncertainty for
prognostic algorithms (137). In prognostic literature, mission
profile is referred to by usage profile, exogenous output,
usage pattern, system inputs, etc. Some works have focused
on characterizing future mission profiles based on their
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Figure 12. SRUL evolution of the mission profiles population through generations of genetic algorithm.

past evolution through machine learning (138) or statistical
methods (128). In (27), the mission profile is considered
in the gearbox degradation by using Response Surface
Methodology (RSM) to model the effects of the system’s
usage pattern on system-level health. Even if RSM is
represented as a polynomial, RSM results are almost as
accurate as the ANN results, resulting from a black-box
method. In (53), the effect of the mission profile on an
underground modeled by a mechatronic system is analyzed
in relationship to the duration and amplitude of the MP. It
was found that the SRUL can be decreased by up to 8% due
to driver-induced.

As a mission profile can accelerate the degradation of
some components more than others thus, it is necessary
to evaluate which mission profile will maximize the SRUL
while respecting operational constraints (139). For example,
in (53), the authors used a genetic algorithm to optimize the
underground mission profile. In the end, the SRUL of the
system was extended by more than 22 % compared to the
primary mission profile implemented in metros (Figure 12.
In (140), it was proposed integrating the feedback loop
of the effects of already made decisions on the monitored
system in the process of prognostic process. Then, ant colony
optimization is used to build future decisions about mission
profiles.

Relationship between local and global health
indicators

In some cases, the SoH of the system is not sufficient to
determine a system’s ability to provide the services that
are devolved to it. Indeed, in some cases, the SoH of the
components may be ”satisfactory”, while some criteria of the
system as a whole are no longer satisfactory. Thus, it can be

deduced that health status is not always correlated with its
ability to provide the service for which it was manufactured.

The study (86) demonstrates how the system level vari-
ables can enhance prognostics at the component level.
Indeed, as systems are generally conducted regarding the
global system variables, those variables should be consid-
ered. It will be better to construct modeling that considers
variables at different levels, using metamodel, for example.
In (141), the relationship between different variables in a
system is described based on a hierarchical architecture
consisting of three layers; system-level, subsystem-level,
and component-level. Based on this hierarchy, four types of
variables are defined, i.e., system-level variables, subsystem-
level variables, load variables, and stress factors.

Systems of systems

Another area of future prognostic developments is the
system of systems level (Figure 13). The latter concept
defines a collection of systems (interacting or not) that pool
their resources and capabilities together to create a new,
more complex system that offers more functionality and
performance than simply the sum of the constituent systems
(142). A PHM policy at the level of a fleet of systems
will allow better operational proactivity (91) and resource
allocation. Prognostics can then be used to predict either
the failure of this type of system or the loss of specific
performance.

In general, what is called system of systems engineering is
a critical research discipline for which frames of reference,
thought processes, quantitative analysis, tools, and design
methods are incomplete (143). However, some prognostic
works are beginning to address large-scale systems. For
instance, in (23), the risks of ”loss of separation” (two
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Figure 13. Systems of systems.

aircraft becoming very close) and dry breakdowns are
considered as reversible progressive degradation, and the
aim is to determine, by Monte Carlo simulation algorithms,
the time before these risks exceed a certain probability.
In (88), in a large-scale industrial system composed of
several interconnected systems, a failure is considered as
the interruption of the operational continuity resulting from
the violation of the variables shutdown limits. In (63), the
authors proposed a method based on multi-agent computing
to update information on the health status of several
components/systems. Each system is monitored separately,
and a kernel is in charge of merging the various information
to decide on the general SoH of the system of systems, on the
condition that the different influences between the systems
are known. The use of microsimulation models (144) could
reduce this effort to model interactions between systems.
Finally, it can be considered that work in CBM focuses on the
economic ((118; 31)) and resource ((115; 116)) interactions
between components/systems can be applied to a system of
systems. An RUL prediction at the system of systems level
will improve the results of these studies.

Conclusions and perspective

Conclusions on SLP

The purpose of this paper is to fill a gap in the
literature regarding system-level prognostics. Indeed, the
literature on prognostics, in general, has grown considerably
over the last two decades, with works covering a wide

range of methodologies and applications. As a result,
several literature reviews exist summarizing, structuring,
and organizing the literature on the topic of prognostics.
However, these reviews have a blind spot concerning the
topic of prognostics at the system level, while the works
concerning this theme are growing more and more.

In this literature review, we have tried to define a research
perimeter for this theme and to give a clear definition. Then
we have listed the advantages and benefits of choosing an
approach at the system level and a diagram allowing us to
select the best level for predicting the failure of a system
according to its specificities and the means in work. After
that, we reviewed the different works done until now through
a classification based on the granularity of the representation
of the system behavior and refined by the approaches used:
data or models. In a nutshell, the insight that emerges is that
model-based approaches are more accurate and interpretable
but challenging to implement for complex systems. On the
other hand, data-driven approaches are easy to implement
but lack interpretability and uncertainty management. In
addition, we have identified the different applications that
have been done so far with the SLP approach. It reveals that
the most currently studied systems are critical systems (in
terms of safety or financial costs), which demonstrates the
difficulty and cost of implementing a system-level approach.
Finally, we have tried to identify the particular challenges
that need to be addressed in order to reach sufficient maturity
for the theme to be applied. Among these challenges that
correspond to the current limitations of the literature, we
can mention 1) the consideration of the interdependencies
of the heterogeneous component degradation of a system
and its mission profile (which are the most specific factors
of the SLP compared to the CLP), the consideration of the
expanding uncertainty in the case of the SLP because of the
multiplicity of its sources, 3) the calculation of the SRUL for
systems having functional and structural architectures other
than the series and parallel, etc.

In the following, we will mention the perspective of SLP
studies in light of Industry 4.0.

Future research directions in SLP

Like other scientific fields of PHM, system-level prognostics
will be an active field of research in the upcoming years with
the potential to provide a safe and appropriate framework
for the condition-based maintenance of complex systems.
Some promising research directions for future studies are as
follows:
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Explainable artificial intelligence for SLP. Facing the
challenges related to large-scale systems and the diverse
interdependencies between their components, the model-
based prognostic approaches become infeasible. Besides,
data-based approaches, according to many researchers,
may be the most appropriate to cope with the increasing
complexity of systems. Of the many data-driven tools and
methods, those related to artificial intelligence, especially
deep learning, are the most promising. However, the
latter methods suffer from a lack of interpretability. This
characteristic becomes more crucial in PHM applications
of critical equipment, e.g., transportation and nuclear.
Indeed, companies show resistance to deploying AI-enabled
PHM solutions because decision-makers and domain
experts cannot correctly use predictive techniques without
adequate explanation of the results, even though presenting
performance levels that enable them for deployment. Until
now, there is no clear way of understanding how and/or why
deep learning models reach these positive results. Besides,
as networks get deeper in terms of the number of layers, the
tracking down of output towards its inputs becomes more
unfeasible.

To remedy the working opacity of artificial intelligence
methods, explainable artificial intelligence (XAI) is studied
to see inside this black box and determine how and
why a given model outputs some result. Several methods
have been used to mitigate the ”black box” effect of
deep learning methods in recent years. These include
Local Interpretable Model-Agnostic Explanation (LIME)
and Shapley Additive Explanations (SHAP). Other methods
are detailed in (145). All those methods allow increase the
interpretability, explainability, and transparency of the AI
approaches and permit better monitoring of the health state of
complex systems. The studies of XAI approaches dedicated
to SLP should be able to integrate the expert knowledge
about system architecture and physics behaviors.

Hybrid modeling approaches for SLP Both model-based
and data-driven prognostic approaches have their own merits
and limitations, as was discussed earlier in this paper. Model-
based approaches generally give accurate results and take
uncertainty into account. However, despite the robustness of
the results obtained with this approach, it is challenging for
complex systems to obtain their degradation models since
it is necessary to know all the underlying phenomena that
cause this degradation. Data-driven methods are becoming
popular due to their fast developmental cycle. Although
these approaches do not require prior knowledge about
fault mechanisms, they often require statistically sufficient

data and have difficulties learning the complex non-linear
relationship in fault diagnostic and prognostic, and struggle
to capture the stochastic nature of degradation phenomena.

Hybrid modeling approaches in SLP (4) aim to integrate
the merits of model-based and data-driven methodologies
while minimizing limitations for better system-level health
state estimation and SRUL prediction. They should be able
to model different component interdependencies and impact
of mission profile to deal with the uncertainty propagation in
SRUL determination.

Digital twins Digital Twins (DTs), also known as ”device
shadows”, are digital replicas of an object, process, or
system that can be used for a variety of purposes. This
concept has the potential to transform the way systems
and their components are designed, managed, maintained,
and operated. A hierarchical DT model framework could
be a feasible solution for tackling challenges related to
SLP, particularly addressing challenges of components
heterogeneity and large-scale systems. This solution allows
investigating the system’s behavior in various abnormal
situations and thus contributes to solving the problem of
missing failure data when training prognostic models.

Prognostic decision making As previously mentioned, IoT
has changed how we currently approach concepts such as
”process monitoring” and ”system reliability”. As smart
devices are now able to continuously acquire operational data
and upload files to cloud servers, large databases have begun
to accumulate valuable information for decision-making
purposes. Literature offers plenty of articles associated with
the use of diagnostic procedures for system SoH estimation
and failure prognostic algorithms to predict the evolution
of SoH in time, conditional on a characterization of future
usage profiles. However, only very recently, researchers
have started to offer contributions on topics such as Post-
Prognostic Decision Making or Prognostic Decision Making
(PDM) strategies, which could leverage failure prognostics
outcomes to efficiently make decisions about the system
operation (e.g., optimization of preemptive and predictive
maintenance, mission re-planning, or mission re-design).
Condition-based maintenance (CBM) is a straightforward
application of PDM strategies. Indeed, CBM aims at
scheduling maintenance actions based on information
provided by failure diagnostic and prognostic modules, using
for this purpose estimates of Remaining Useful Life (RUL)
as inputs of the optimization problem where maintenance
policies are defined. However, PDM strategies can be used
not only to extend the life of components but also to increase
the system’s throughput. However, as decision-making is
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generally made on system-level parameters, prognostics at
the system-level, providing information about the system’s
remaining useful life can improve this decision-making.
Hence, integrating the obtained prognostic results into the
system control, enhancing its resilience, and keeping it in
operation in good conditions and as long as possible should
be deepened in further research works.
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