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Quantifying Shortest Paths Entanglement in terms of Hierarchies and Similarities

Several problems of interest involve the flow of some quantity, henceforth understood as probabilities, from a source node to a destination node, through a number of shortest paths extending respectively between those two nodes. While the whole interconnection of a network plays an important role in the thus obtained flow, the shortest paths extending from a given source node to a destination node have special importance, as they provide the most direct route for the flow. Interestingly, more than one shortest path are often obtained between the same set of nodes, which motivate the study of the structure, especially the balance and interdependence, of the so defined shortest paths. Several theoretical and real-world systems are directly related to the above issues, including neuronal networks, genetic and molecular interactions, transportation and communication systems, to name only a few possibilities. To address the above issue constitutes the main motivation for the present work. More specifically, we described a whole framework for representing and studying the set of shortest paths extending from a source to a destination node. These structure can either exist independently, such as in multistage networks, or be obtained as subsets of larger networks into which they are found. One important feature of the considered sets of shortest paths is that they all have the same length, which allows the definition of a respective system of hierarchical levels. In addition, by constraining the flow to take place only through the nodes and links participating in the identified shortest paths, the equilibrium flow along the links of each of these levels become inherently normalized, allowing the application of the exponential of the entropy as a measurement of the effective width of the paths at each hierarchical level. In addition, we also suggest indices to characterize the entanglement between the involved paths, as well as an approach in which the shortest paths are transformed into respective coincidence similarity networks, allowing the visualization and characterization of the interrelationships between the involved shortest paths as far as their equilibrium link flow along the hierarchies are concerned. The potential of the described concepts and methods have been illustrated respectively to both a simpler case example and a geometrical network involving several nodes and paths. In the latter case, a surprisingly entangled set of shortest path has been identified.

Introduction

Graphs and complex networks (e.g. [START_REF] Da | Characterization of complex networks: A survey of measurements[END_REF][START_REF] Newman | Networks: An introduction[END_REF][START_REF] Barabási | Network Sience[END_REF]) can be understood as being the most versatile data structure possible, encompassing virtually every other structures including matrices, lists, trees, etc. Thanks to this important characteristic, complex networks have been successfully applied to a wide range of areas and problems (e.g. [START_REF] Da | Analyzing and modeling real-world phenomena with complex networks: a survey of applications[END_REF]).

Once a structure or system has been translated to a respective complex network representation, they can have their structure analyzed in terms of several topological measurements (e.g. [START_REF] Da | Characterization of complex networks: A survey of measurements[END_REF]), and/or provide a framework for respective implementation and simulation of dynamics of specific interest, including robustness to failures, diffusion, synchronization, etc.

As with most other mathematical structures, complex networks need to be property represented within the digial computers underlying their representation, characterization, modeling, and simulations. One frequently adopted approach is to represent the nodes and interconnections of a network in terms of its respective adjacency matrix.

This type of complex networks representation is of particular interest, because it evidentiates an important relationship between complex networks and dynamic systems, namely the fact that an adjacency matrix can be readily transformed into a respective transition probabilities matrix T , which can then be directly employed to estimate the unfolding, along time, of several types of stochastic dynamics of interest.

Indeed, several types of such dynamics can be consid-ered, including traditional as well as distinct types of selfavoiding random walks, each of which yielding a respective transition matrix that can then be directly consider for either numeric-analytic characterization, or for respective simulations. Interestingly, in each of these situations, the dynamical properties will be closely related, or even defined, by the respective topology of the original network representations.

Among the several topological properties that are frequently considered for the characterization of complex networks, the distribution and properties of shortest paths has especial importance as it underlies several structural and dynamical aspects of particular interest concerning the original networks. For instance, given two nodes, the distribution of shortest paths between them is closely related to the robustness of their interconnection to attacks and/or failures. At the same time, pairs of nodes that are more intensely interconnected often tend to present correlated dynamics.

The identification, characterization and modeling of shortest paths in graphs and complex networks have motivated several interesting works, including but not by no means limited to [START_REF] Frank | Shortest paths in probabilistic graphs[END_REF][START_REF] Frieze | The shortestpath problem for graphs with random arc-lengths[END_REF][START_REF] Gloaguen | Analysis of shortest paths and subscriber line lengths in telecommunication access networks[END_REF][START_REF] Ashton | Effect of congestion costs on shortest paths through complex networks[END_REF][START_REF] Domingues | Shortest paths in complex networks: Structure and optimization[END_REF][START_REF] De Arruda | Minimal paths between communities induced by geographical networks[END_REF][START_REF] Borgwardt | Shortest-path kernels on graphs[END_REF][START_REF] Da | Characterization of complex networks: A survey of measurements[END_REF][START_REF] Csardi | The igraph software package for complex network research[END_REF][START_REF] Ng | Structural robustness of complex networks[END_REF]).

In addition, the effectiveness of those shortest paths can also play a decisive role in influencing or defining dynamical respective properties. For instance, the larger the number o independent shortest paths between two nodes, the higher the chances of dynamical interactions, such as diffusion or synchronization, between them. As a more direct example, given a neuronal network, neurons that are interconnected through many shortest path will tend to have higher chances of yielding correlated activity.

In the present work, we specifically address the topic of quantifying in a systematic manner how much the set of shortest paths between a pair of nodes are mutually interrelated, or entangled topologically.

Consider the optimal situation illustrated in Figure 1, which illustrates an optimal set of three shortest paths of length four extending from node 1 to node 11. Though these paths are directed, undirected configurations are also possible.

Though shortest path optimality can be approached in several distinct manners, respective to specific interests, the type of configuration of shortest paths in Figure 1 is henceforth understood as being optimal in the sense that each of the paths is completely independent from the others, so that maximum flow of probability or information can be obtained from node 1 to node 11. In addition, eventual failures restricted to any of the individual paths will not affect the other shortest paths. In addition, observe that all the original flow converges to the destination node, which is not always the case since a portion of the flow can diverge from the nodes along the shortest paths Figure 1: An optimal configuration of three shortest paths of length four between two nodes 1 and 11. The three shortest paths, all of the same length, do not present any interaction along their respective extent, therefore providing maximum possible interaction between the two considered nodes. The weights correspond to transition probabilities maximum flow between each respective pairs of nodes. The numbers above the graph indicate the hierarchical levels along the shortest paths, while the numbers under the graph correspond to the respective number of effective interconnections between each successive pair of levels. Even more effective interconnection from node 1 to 11 can be obtained by incorporating additional independent shortest paths. Undirected versions of optimal shortest path configurations are also possible. The labeling of these nodes is completely immaterial, provided the labels are kept systematically consistent.

to other nodes and portions of the network that do not participate in the considered set of shortest paths.

Shortest path networks such as that illustrated in Figure 1 are related to multistage interconnection networks (e.g. [START_REF] Blake | Multistage interconnection network reliability[END_REF][START_REF] Solihin | Fundamentals of parallel multicore architecture[END_REF][START_REF] Nielsen | Introduction to HPC with MPI for Data Science[END_REF]), which are characterized by having a fixed number of interconnection levels. More specifically, the shortest path networks studied in the present work can be understood as sharing their connectivity topology with the particular cases of multistage interconnection networks defined between two single nodes, namely the source and destination. Incidentally, multistage networks have more recently become the subject of interest in deep learning, especially regarding multi-stage classifiers (e.g. [START_REF] Zeng | Multi-stage contextual deep learning for pedestrian detection[END_REF][START_REF] Chan | Pcanet: A simple deep learning baseline for image classification[END_REF][START_REF] Farha | Ms-tcn: Multi-stage temporal convolutional network for action segmentation[END_REF][START_REF] Javed | Anomaly detection in automated vehicles using multistage attention-based convolutional neural network[END_REF]), which present interesting properties including robustness to failures.

In practice, given a specific graph or network, the set of shortest paths between respective sets of node are likely not to be optimal as in the situation discussed above. Not only the paths will likely share nodes, but also a portion of the flow originating from the source node will diverge to other portions of the network, not reaching the destination node. These types of non-optimal sets of shortest paths will therefore be more susceptible to localized failures along any of the paths, while the flow will distribute in possibly non-uniform manner along those paths.

The present work aims at describing and illustrating concepts and methods that can be used to quantify the level of optimality (or the opposite respective entanglement), in the above specified sense, of a set of shortest paths between two nodes in a given graph or network.

More specifically, we focus on sets of shortest paths defined between a source and a destination node, so that all paths will necessarily have the same length though not being identical, which allows hierarchical levels to be defined along the shortest paths. In case the network encompassed by the set of shortest paths is self-contained, in the sense that all nodes and links participate in the considered set of shortest paths, the equilibrium flow of probability along each link at each hierarchical level will result inherently normalized (sum of probabilities equal to 1), allowing respective entropies to be calculated.

In the cases where the network incorporates nodes that do not belong to the shortest paths between the source and destination, it is possible to resource to the two following approaches: either not to to consider these nodes and respective links in the analysis, or to renormalize the probabilities along the hierarchical links so that they add to 1. The former possibility has been adopted in the present work. These approaches therefore refers to the case in which the flow of probability is assumed to proceed only through the shortest paths, thus providing an approximation to the situation involving the flow through the whole network.

The above observed properties of the networks defined by the considered set of shortest parts paved the way to most of the developments described in the current work. More specifically, these constitute of applying the exponential of entropy to quantify the effective width of the paths at each hierarchical level, and obtaining coincidence similarity networks between the equilibrium probabilities along the links in the hierarchies. Complementary information about the balance and independence (or entanglement) of the involved paths are supplied by each of these two approaches.

The above concepts and methods are illustrated respectively to a simpler network, used mostly for introducing the approaches, as well as to more intricate geometrical network involving several nodes and shortest paths. Surprising results have been obtained regarding the latter case.

This work starts by presenting the several used basic concepts, including the exponential of the entropy and the coincidence similarity index. The organization of the set of shortest paths as adopted in the present work is then presented, followed by the definition of the equilibrium states and flow that underlie the effective width measurement, as well as by how to obtain coincidence similarity networks from the set of shortest paths. These presented concepts and methods are then illustrated respectively to a geometrical network which is intrinsically related to several interesting real-world systems including neuronal networks, molecular interaction, and transportation systems.

Basic Concepts

.

A graph can be understood as a mathematical data structure composed of nodes and links between these nodes. The size of a graph corresponds to the number N of its nodes. A complex networks consists of a graph that is substantially more intricate than a regular graph, be it a deterministic lattice or a uniform random network. As a consequence, these networks cannot be summarized in terms of the average node degree, or even averages of other properties (e.g. []), requiring a wider set of respective measurements for effective representation.

Graphs can be directed or undirected, with the latter, characterized by all links being two-directional, being a particular case of the former.

A graph with N nodes can be represented in several manners, including list of edges and adjacency matrix A. The latter has dimension N ×N , and each entry A[i, j] = 1 is henceforth understood to indicate the existence of a link extending from node j to node i. The absence of links is expressed with respective zero entries in the adjacency matrix A. Weights w[i, j] can be associated to each link of a graph, being representable in terms of a respective weight matrix W .

The out-degree k out (i) of a node i corresponds to the number of edges that depart from that node. The indegree k in (i) corresponds to the number of edges that arrive at that node. In an undirected networks, all indegrees are identical to all out-degrees, being called simply node degree. The degree average among all node is called the average node degree.

Two links are said to be adjacent whenever they share at least one node. Given two nodes i and j, a path between them corresponds to a sequence of adjacent links extending between i and j. The length of a path corresponds to the number links it contains. The shortest path length between two nodes is the path that has the smallest number of links. More than one shortest path can often be identified between two nodes, differing in at least one node and/or link.

A connected component of an undirected graph corresponds to one of its subgraphs so that any respective pair of nodes are connected by at least one path. In the present work, we shall focus on graphs that do not have any isolated nodes, so that the graph corresponds to its largest connected component. In the case of a directed graphs, one of tis strongly connected component is so that it is possible to reach any of its nodes while departing from any of its other nodes. Directed or undirected nodes that correspond to their connected components will, for simplicity's sake, be called simply connected graphs.

The neighbors of a node i consists of the set of all nodes that share a link with that node (the other extremity). The sets at successive integer distances h = 1, 2, . . . from a node i are said to correspond to the respective hierarchical neighborhoods taking place at respective hierarchical level h (e.g. [START_REF] Travençolo | Hierarchical spatial organization of geographical networks[END_REF][START_REF] Costa | Hierarchical characterization of complex networks[END_REF][START_REF] Costa | What are the best concentric descriptors for complex networks[END_REF]). The reference node i can be said to be at hierarchical level zero. A hierarchical system of reference can also be established for the links. In this work, we take the hierarhical level h of nodes to correspond to the hierarchical level of the preceding links.

Given a connected graph with non-negative weights, it is possible to define a respective probability transition matrix P so that each entry P [i, j] corresponds to the weight of the link from node j to node i divided by the sum of all weights, also called the strength, of node j. Therefore, the sum of all outgoing probabilities of a given node adds necessarily to 1. The respectively obtained probability transition matrix therefore corresponds to a stochastic matrix (e.g. []), which necessarily has one eigenvalue identical to 1, with the respective eigenvector providing the equilibrium or steady state of the probabilities associated to each node. In an undirected network, or in a directed network where each node has identical in-and out-degrees, a full correlation can be observed between the node degree and the respective equilibrium probability (e.g. []).

The entropy (e.g. [START_REF] Cover | Elements of Information Theory[END_REF]) of a set of probabilities S = {p 1 , p 2 , . . . , p m }, normalized so that m k=1 p k = 1, can be calculated as:

ε S = - m k=1 p i log(p i ) (1) 
The exponential of the above entropy (e.g. [START_REF] Campbell | Exponential entropy as a measure of extent of a distribution[END_REF][START_REF] Travençolo | Accessibility in complex networks[END_REF][START_REF] Viana | Effective number of accessed nodes in complex networks[END_REF]), which will be henceforth referred to as the effective count, transform the entropy to a domain which is intrinsically commensurate with the original entries associated to the original probabilities. More specifically, we have:

η S = e ε S (2) 
For instance, in case the set of probabilities S refers to the outgoing transition probabilities of a network node i, the respective η S could be understood as corresponding to the effective count of first neighbors with which the node i interacts. The maximum number of effective neighbors would therefore correspond to n S = m. In case one (or a few) of the transition probabilities are markedly higher than the others, the effective count of neighbors will be substantially smaller than m. As a numeric example, let us consider the two following sets of normalized probabilities: S 1 = {0.25, 0.25, 0.25, 0.25} S 2 = {0.97, 0.01, 0.01, 0.01} their effective count can be calculated as:

ε S1 = 1.3862... ε S2 = 0.2879... η S1 = 4 η S2 = 1.333...
As expected, the set with identical probabilities lead to the effective count being identical to the number of entries m = 4. In set S 2 , however, tough we also have m = 4 probabilities, only η S2 = 1.333... entries are effectively taken into account as a consequence of the probability heterogeneity.

Given two non-zero column vectors r = (r 1 , r 2 , . . . , r N ) and s = (s 1 , s 2 , . . . , s N ), each with dimension N × 1 and with all entries being non-negative, the Jaccard similarity index (e.g. [START_REF] Jaccard | Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines[END_REF][START_REF]Jaccard index[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Hamers | Similarity measures in scientometric research: The jaccard index versus salton's cosine formula[END_REF][START_REF] Mahalakshmi | Properties of multisets[END_REF][START_REF] Samanthula | Secure multiset intersection cardinality and its application to Jaccard coefficient[END_REF]) between then can be calculated as follows:

J (r, s) = N k=1 min {r k , s k } N k=1 max {r k , s k } (3) with 0 ≤ J (r, s) ≤ 1.
The respective interiority index (or overlap, e.g. [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF]) can be obtained as:

I(r, s) = N k=1 min {r k , s k } min N k=1 r k , N k=1 s k (4) with 0 ≤ I(r, s) ≤ 1.
The coincidence similarity index (e.g. [START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF]) combines both indices above in order to obtain a stricter quantification of the similarity between the two vectors, being defined as:

C(r, s) = [J (r, s)] D I(r, s) (5) 
with 0 ≤ C(r, s) ≤ 1, D being a non-negative integer parameter that can be used to control how strict the implemented comparison is. More specifically, larger values of D will imply more strict comparisons.

Given a set of data elements, each characterized in terms of respective feature vectors or the same dimension N × 1, it is possible to transform this dataset into a respective coincidence similarity network [START_REF] Da | Coincidence complex networks[END_REF], which is done by associating each data element to a network node, while the values of the weights of the respective pairwise links are correspond to the coincidence similarity index between the two respective feature vectors.

In addition to providing a resource for particularly strict comparisons of vectors, the coincidence similarity index also has additional interesting properties such as being normalized in the interval [0, 1] and good tolerance to local perturbations of the elements of the vectors, which has allowed several well-succeeded respective developments and applications (e.g. [START_REF] Tokuda | Impact of the topology of urban streets on mobility optimization[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF][START_REF] Costa | A similarity approach to cities and features[END_REF][START_REF] Da | Autorrelation and cross-relation of graphs and networks[END_REF][START_REF] Tokuda | Identification of city motifs: a method based on modularity and similarity between hierarchical features of urban networks[END_REF][START_REF] Reis | Enzyme similarity networks[END_REF][START_REF] Benatti | Neuromorphic networks as revealed by features similarity[END_REF][START_REF] Da | Discovering patterns in bipartite networks[END_REF]). The concept of set of shortest paths between a source and a destination node is central to developments described in the present work. These sets of paths can have diverse origin. For instance, they can be intrinsically defined in specific problems involving routes of the same length (e.g. routing or energy distribution), or correspond to two nodes selected from a given graph or network. For simplicity's sake, the current work will focus on sets of shortest paths having a single source node and single destination node. However, the adaptation of the presented concepts and methods to more general configurations such as that illustrated in Figure 2 is straightforward.

Sets of Shortest Paths

We shall henceforth understand that the topological length of each link is one.

Given a directed (for the sake of generality) and connected network Γ, with N nodes and E, there will be N 2 -N possible sets of shortest paths, corresponding to all permutations of the N nodes, excluding self-loops. Each of these sets will therefore be respective to a source node i and a destination node j, as illustrated in Figure 1.

Each such pair of nodes will necessarily have a shortest path with length L i,j ∈ N. This length is herein understood to correspond to the number of links along the shortest paths. The cases in which there is no path between the two nodes will not be considered in this work, which is restricted to connected networks. Given that the ordered pair of nodes (i, j) is interconnected by a shortest path of length L i,j = n, where n is a finite positive integer number, several other shortest of paths may also exist, so that the total number of such paths is henceforth expressed as R. These shortest paths therefore constitute the set of shortest paths between i and j.

Because these shortest paths all have the same length n, it is possible to organize them along n successive hierarchical levels h starting at 0 for the source node i, and extending up to n for the destination node j (see Fig. 1). This hierarchical organization of the shortest path nodes is particularly important to the approach adopted in the present work.

An additional important aspect concerning the present study of sets of shortest path concerns their context respectively to an eventual network from which they have been derived. Actually, there are two main initial possible situations: (A) only one source and one destination node are originally defined, and the whole in-between network corresponds to paths with the same length; and (B) the source/destination network of interest corresponds to a subgraph obtained from a larger network. Though the concepts and methods reported in the present work are applicable to both these situations, they require specific considerations.

In case (A), the set of shortest paths consists an independent system involving a single source and a single destination interconnected through R shortest paths of the same length, the whole flow of probabilities originating from the source will reach the destination node. In other words, there is no leakage of probability along the paths towards other portions of the network. As a consequence, the transition probabilities of the links at each hierarchical level will be normalized so as to add 1, ensuring that the transition matrix is a stochastic matrix. This case can thus be immediately approached in terms of the concepts and methods suggested in this work.

In situation (B), where the set of shortest paths is obtained from a larger network by specifying a source and destination node of interest (or considering all combinations), it is highly probable that nodes that do not belong to the set of shortest path will be connected to those paths, therefore implying leakage of probability flow, so that the link transition probabilities will no longer be normalized along each hierarchical level. Two main possible approaches can ben taken in order to address this issue, as described in the following.

In the first approach, which we will call (B.i), only the nodes and links belonging to the identified set of shortest paths are kept, which completely eliminates the leakages from the probability flow between the source and destination. In this case, the transition probabilities are estimated for the constrained network of shortest paths, and normalization is therefore ensured. The application of the concepts and methods can then proceed in the same manner as for the case (A) above.

The second alternative, henceforth referred to as (B.ii), is to keep all nodes when calculating the transition probabilities, which will almost unavoidably lead to leakages along the probability flow from the source to the destination node. In this case, the probabilities at each hierarchical level of the shortest paths will need to be re-normalized so as to add to one, therefore allowing a consistent consideration of the respective entropy.

Each of the two alternatives describe above have their specific pros and cons, and should be chosen while considering the specific requirements and objectives of each research situation. In particular, approach (B.i) emphasizes the interconnection from the source to the destination node, therefore disregarding the remainder of the network. This alternative could be taken when it is known that the flow, or most of it, will proceed from source to destination, as could happen in case the random walk agents knew about the shortest paths. On the other hand, alternative (B.ii) takes into account the leaks along the paths, and could be considered in situations in which the moving agents do not know about the shortest paths. In this work, though we illustrate both possibilities (B.i) and (B.ii), focus is placed on the former approach.

Effective Widths

In this section we describe the concept of effective width along the hierarchical levels of a set of shortest paths. Basically, the effective count of links is estimated for each of those levels by using the entropy exponential discussed in Section 2, which gives rise to a respective signature corresponding to the vector:

ω = [ω 1 , ω 2 , . . . , ω L ] (6)
The closest the entries in this vector are to the total number of shortest paths R in the considered set, the most independent and less entangled each shortest path can be said to be from the other paths.

We start with a source/destination set of shortest paths such as that illustrated in Figure 3. In this particular case, we have R = 4 shortest paths of length L = 4, and each link is understood to have unit topological length (indicated in green). Weights can be associated to links, but they shall be understood as influencing the flow (flow capacity), and not as corresponding to respective lengths. Each set of shortest paths therefore defines a respective multistage network. By comparing the network defined by this set of shortest paths with the optimal configuration in Figure 1, it can be readily verified that the non-optimal configuration is characterized by interactions between the paths, which are a consequence of two or more shortest paths sharing one or more nodes. It is this mixture, or entanglement of paths which tends to decrease the robustness of the set of shortest paths to failure, in the sense that the removal of one or more of the shared nodes will impact on more than one shortest path. At the same time, the interconnections between the shortest paths will also typically lead to unbalance of probability flow along the shortest paths, implying in some paths being used below their maximum flow capacity. For all the above reasons, it becomes important to devise means to quantify the level of entanglement between the shortest paths of a give set along its respective hierarchical levels, so that bottlenecks can be identified, contributing to implementing strategies for respective improvement.

The first step consists in deriving the respective transition probabilities, which can be readily obtained by dividing the weight of each link emanating from each node by the total sum of weights of the links originating from that same node. Figure 4 illustrates the previous example network now incorporating the respective transition probabilities, which can be organized into a respective matrix T .

Figure 4: The source/destination set of shortest path in Fig. 3 incorporating the respective transition probabilities obtained for each involved link. Also shown, in the two rows below the figure are the total number of paths per hierarchical level (in magenta), and total flow capacities (in blue). Observe that the latter index is necessarily smaller or equal to the former index.

Once the transition probabilities have been calculated, it is possible to obtain the total flow capacity F h at each of the successive hierarchical levels. This index corresponds simply to the sum of transition probabilities through the individual link transition probabilities considering each hierarchical level h. These obtained total flow capacities for this particular example are shown in blue along the second row underneath the network in Figure 4. The values along the first row indicate the total number of paths N h at each hierarchical level h.

The maximum flow capacity between i and j can be calculated as:

F max = min h=i,L {F h } (7) 
The maximum number of paths between the source and destination nodes can thus be obtained as:

N max = min h=i,L {N h } (8) 
In the case of the above example, we have that F max = 1 and M max = 2.

Though the two indices discussed above already provide preliminary indication about the width of the paths along its hierarchies as one progress from source to destination nodes, these indices do not take into account the steady state flow of probabilities between those two nodes. Thus, cases in which one or more links convey only a small fraction of the flow at a specific hierarchical level will be considered in the same way as links conveying larger flows.

In order to reflect the overall flow from source to destination, we need to estimate the equilibrium, or steady state, of the flow along the network assuming that the source node continuously supply flow of intensity equal to one. Because we have assumed that the source/destination network involves only links directed along the direction from source to destination node, the eigenstate of this system cannot be obtained as corresponding to the eigenvector associated to the unit eigenvalue of the respective transition probability matrix T .

In this case, the equilibrium flow at each of the nodes can be obtained as:

ϕ = L h=1 T L ϕ 0 (9)
where ϕ 0 is a vector with all entries equal to zero, except that corresponding to the source node, which has value one. Each entry ϕ i of vector ϕ corresponds to the equilibrium flow at node i.

Figure 5 depicts the same case example as before, but now incorporating the equilibrium flow at each of its nodes. Recall that these equilibrium probabilities were obtained from the respective transition probability matrix T .

At this point, we can now calculate the quilibrium flow at each link, which can be done as follows:

ω i,j = ϕ j T i,j (10) 
The obtained equilibrium flows at each link are depicted in Figure 6. Observe that the equilibrium flow are not necessarily equal to the respective transition probabilities shown in Figure 4. Actually the values in the former can only be lower bound by the latter. Given that the flow along the links in each hierarchical level h adds up to 1, we can now calculate the effective width (exponential entropy) of the flow values obtained at each of the levels, which will be henceforth expressed in terms of a respective vector E = [E 1 , E 2 , . . . , E L ]:

E h = exp - k∈H ω k log(ω k ) ( 11 
)
where H indicates the set of links at hierarchical level h.

The values obtained for the above case example, shown in blue along the first row underneath the network in Figure 6, readily indicate the effectiveness of each layer in conveying the flow: the higher the effective widths, the most robust and effective the respective layer is for conveying the flow of probabilities emanating from the source node. The ideal situation is that shown in Figure 1, in which all levels have the maximum effective width.

In the case of the specific case example above, we have a substantial unbalance of effective width along the hierarchical levels. In particular, the smallest value 1.36 obtained at the last hierarchical level h = L = 4 identifies a substantial respective bottleneck, which undermines the flow also along the previous levels.

It is also possible to derive an additional index, henceforth called level efficiency, corresponding to the effective width at each hierarchical level divided by the number of respective links at that level, i.e.:

Z h = E h N h ( 12 
)
with 0

≤ Z h ≤ 1.
The values of Z obtained for the above case example are shown in red along the second row below the network in Figure 6.

One particularly interesting situation open by the objective quantification of the effective width and efficiency at each of the hierarchical levels of a set of shortest paths configuration concerns the possibility to change the original weights of one or more links in attempts at improving the overall properties of the shortest paths. For instance, let us change the weight of the link (1, 3) in the previous case example, as shown in Figure 7.

Figure 8 depicts the respectively obtained new set of equilibrium link flows, as well as the new values of the effective widths and level efficiency. As it can be observed, the single change in the original set of paths led to a distinct balance of flow, reflected in the new values of effective width and level efficiency. Though level 4 had its efficiency improved, this has been achieved at the expense of decreasing the balance in all the three previous hierarchical levels. This situation will be re-evaluated in the next section, in terms of an overall efficiency index. the coincidence similarity index

Table 1: The list of main symbols adopted in the present work.

Shortest Paths Similarity Networks

While the concepts and indices presented in the previous section provide an effective means to quantify the robustness and efficiency of a given set of shortest paths, they do not supply direct information about the relationships, or interactions, between the respective shortest paths. In this section, we suggest how the recently introduced coincidence similarity index can be employed for this specific finality, thus complementing our characterization of the properties of a set of shortest paths. Let a set of shortest paths containing R such paths, each with length L. The respective coincidence similarity network can be obtained by considering the equilibrium link flow probabilities along each of those paths, which are organized as respective feature vectors. For instance, in the case of the example in Section 4, we have R = 4 paths with length L = 4, each being represented by the respective feature vectors as follows: The shortest path coincidence similarity networks obtained for the above case-example, as well as its respective modified version, are shown in Figure 9(a) and (b), respectively.

r 1 = (1/3, 1/6, 1/6, 1/6) ;
Although shortest path 1 became more similar to shortest path 4, the latter node also became less similar to shortest paths 2 and 3. Therefore, one relative improvement was obtained at the expense of decreasing the similarity between other pairs of shortest paths.

Recall that in the optimal situation, shown in Figure 1, all shortest paths would be identical. Therefore, it becomes possible to consider the coefficient of variation (namely the standard deviation divided by the average) of the similarities obtained for each network as a global indication of the balance and independence between the shortest paths, which will be henceforth called overall entanglement σ of the set of shortest paths. The higher the In the case of the above case-example and its modified configuration, the respective standard deviations of similarity between the equilibrium link flows were σ a = 0.836 and σ b = 0.863, respectively. As could be expected, similar overall entanglement indices have been obtained, indicating that the local balance improvements implied by the implemented weight change were counterbalanced by worsening at other parts of the set of shortest paths.

It is also interesting to observe that the network in (b) is transitive, in the sense that nodes 2 and 3 are similar to node 4, which is similar to node 1, while the latter node is weakly similar to nodes 2 and 3.

Geometrical Complex Networks

In this section, we apply the above described concepts and methods respectively to a larger geometrical network involving substantially more nodes and shortest paths. Figure 10 illustrates the geometrical network considered in the following study.

This network, which has been obtained by distributing M nodes in a square of size equal to one in a randomly uniform manner but with an exclusion radius of ρ, and then interconnecting nodes that are at a distance smaller than a threshold value τ , is often called a geometrical network. The network considered in this section was generated with M = 40 nodes, ρ = 0.1 and τ = 0.3. In this section we will consider the set of shortest paths defined from node 1 to node 23.

Despite this network being synthetic, it can be understood as a reasonable model of several real-world systems of interest underlain by distance and/or adjacency constraints in a geographical space, including social interactions, neuronal interconnections, cortical modules interconnections, transportation systems (e.g. Internet, energy, hydrographic networks), molecular interactions (e.g. proteins, metabolites, genes), resources networks [START_REF] Da | On the dynamics of resources networks -Part I: Single source, same rates[END_REF], among several other interesting possibilities.

Of particular interest in the case of the considered geometrical network concerns how much the uniformly random distribution of points is reflected in the balance and independence of the obtained set of shortest paths. In principle, given that the nodes positions have been determined in a randomly uniform manner, it could be expected to relatively independent, and therefore little entangled, shortest paths be obtained. The remainder of this section addresses this and other interesting issues regarding the set of shortest paths in Figure 10. Given that this problem involves nodes that do not belong to the shortest paths, we shall adopt the methodology (B.i) described in Section 3.

First, we obtain all shortest paths between nodes 1 (source) and 23 (destination), yielding R = 165 shortest paths, each with length L = 6. According to the methodology (B.i), only the nodes belonging to the identified shortest paths are maintained, so that all other nodes and respective connections are excluded from our analysis. Figure 11 depicts the resulting simplified network, which contains N = 29 nodes, indicating that 72.5% of the nodes in the original network participate in the shortest paths between the chosen source and destination nodes. This implemented restriction of the original network does not change any aspect of the previously obtained set of shortest paths, which are used henceforth.

The effective widths E h obtained at each of the L = 6 hierarchical levels, as well as the respective number of links per level N h and efficiency Z h , are presented in Table 2. The effective widths, number of link, and overall efficiency calculated for each of the L = 6 hierarchical levels in the considered geometrical set of shortest paths. Interestingly, the efficiency tends mostly to decrease along the hierarchical levels.
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Interestingly, the effective width, as well as the efficiency per hierarchical level, tended mostly to decrease along the successive levels, which indicates progressive entanglement of the paths as one moves from the source to the destination nodes.

The equilibrium link flow of the considered set of shortest paths was then determined, so that the respective The obtained shortest path coincidence similarity network resulted markedly modular, with four well-separated clusters with similar sizes which have been respectively called A, B, C, and D. The sizes of these clusters are, respectively, 40, 36, 53, and 36. The nodes most frequently appearing in each of the identified clusters, as well as their respective frequency, are presented in Table 3 The nodes most frequently found in each of the four identified clusters of shortest paths, followed by their respectively observed frequency. The source and destination nodes have not been considered.

The shortest paths within each of these clusters are therefore strongly similar one another, while being little similar to the shortest paths in the other clusters. The shortest paths at the borders of clusters C and D resulted moderately similar. The strong modularity of this set of shortest path is reflected in the particularly high overall entanglement index σ = 2.09.

These results indicate that the set of shortest paths extending from the source node 1 toward the destination node 23 in the considered network, here represented in terms of its restricted version, can be organized into four groups of individuals having similar equilibrium link flow or probabilities, therefore implying a substantial level of entanglement between the shortest paths in each of the clusters and, consequently, a not particularly wellbalanced and independent organization of shortest paths.

This results is particularly surprising because the original geometrical network was constructed while considering uniformly random positions of the original nodes, which should have implied in a more regular, and therefore well balanced, structure of shortest paths. However, the statistical variations of the distances between the nodes participating in the shortest paths from node 1 to node 23 have been enough to imply significant entanglement of the respectively defined shortest paths.

In order to provide additional insights about the properties of sets of shortest paths in the geometrical network in Figure 10, we apply the above analysis considering node 1 again as source node, but taking node 36 as a new destination node.

Figure 13 presents the respective restricted network composed of the nodes and links participating in the set of shortest paths defined for this new configuration. A markedly different topology has been obtained, involving fewer nodes and paths. A total of = 18 shortest paths have been identified, all with length L = 5.

The coincidence similarity network obtained from the equilibrium link flows estimated for the second configuration of shortest paths is depicted in Figure 14. Though node 36 is adjacent to node 23 in the original geometrical network, the respectively obtained similarity network is completely different from that obtained when the latter node was taken as destination. This result illustrates the impressive diversity of shortest path structures that can be derived from a same network.

Concluding Remarks

Virtually every abstract and real-world structures and systems can be represented, to varying scales of detail, in terms of respective graphs or complex networks. Specific patterns of heterogeneous interconnections often found in these systems constitute a subject of particularly scientific and technological importance. Among the several topological aspects characterizing a given network of in- terest, the shortest paths between a given pair of nodes, understood as source and destination of a respectively implemented flow of probabilities (or other quantities), often play an important role in defining the robustness and dynamical properties of the respective network. Of particular interest, more than a single shortest path between a pair of nodes is frequently obtained in theoretical and real-world structures, so that the systematic study of the interrelationship between these paths becomes a particularly interesting perspective.

That was precisely the main motivation of the present work. More specifically, we set out at organizing the sets of shortest paths of interest along respectively hierarchical levels, therefore providing a more systematic description and characterization of the shortest path interactions and balance. In addition, by restricting the flow only along the nodes and links participating in the identified set of shortest paths, the equilibrium link flow of probabilities become normalized to 1 at each of the involved hierarchical levels. These interesting features of the considered sets of shortest path paved the way to obtaining several measurements of the respective balance and interdependence (or entanglement) between the shortest paths.

Several indices quantifying the flow heterogeneity along the involved shortest paths have been suggested, especially the concept of effective width of the set of shortest paths along its hierarchical levels. This index corresponds to the exponential of the entropy of the equilibrium flow of probabilities along the involved links, providing an indication about the independence between the paths at each hierarchical level, in the sense that a high value of effective width indicates relatively small levels of entanglement between the paths. Coincidence similarity networks have also been obtained considering the equilibrium link flow along the hierarchical levels of each of the shortest paths, allowing the visualization and characterization of the interrelationship between the involved shortest paths, each represented as a respective node in the coincidence similarity network. The coefficient of variation of the obtained similarity index values was suggested as an indication of the overall entanglement between the shortest paths.

The potential of the described concepts and methods was then illustrated respectively to a simple set of shortest paths as well as a larger and more intricate geometrical network. Interesting results have been described and discussed, including the identification of a highly modular coincidence network of shortest paths, as well as the impressive variation of the properties of the shortest paths when taking distinct nodes as source or destination.

Several prospects for further research have been allowed by the presently reported concepts, methods, and results. In particular, it would be interesting to consider all possible pairs of nodes in a given network as respective sources and destinations, so that the overall shortest path structure of the given network could be more systematically characterized in statistical terms. The suggested concepts and methods can also be applied to undirected paths between the source and destination nodes and, though our case examples focused on the (B.i) methodology, it would also be interesting to apply the alternative ap-proach (B.ii). It would be of particular interest to quantify the effect of the nodes and links not directly involved in the shortest path in the respective analysis in terms of effective width and coincidence networks.

In addition, it would be interesting to consider other types of model networks, including scale free and uniformly random, as well as other real-world networks. Another issue deserving particular attention concerns the study of the effect of the other nodes, which do not belong to the identified shortest paths, in the overall obtained flow, as well as its balance and independence.

Though the presented concepts and methods require the sets of shortest paths to be represented as multistage networks with a fixed hierarchical structure, it would also be possible to generalize the approach to incorporate longer paths. This could be done, for instance, by adding nodes (according to some criterion) along the shortest paths so as to complement the hierarchical levels.
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  Figure 2 illustrates a multistage network corresponding to a generic set of shortest paths involving L = 3 hierarchical levels h. The paths are understood to initiate at the source nodes (h = 0) at the lefthand of the networks, while the flow of probabilities proceed toward the destination nodes (h = L) at the righthand side of the figure, being eventually distributed among the nodes of a same node hierarchical level through links at those levels.

Figure 2 :

 2 Figure 2: Illustration of a generic set of shortest paths extending from the nodes at the lefthand side of the network toward the nodes in the righthand side. The hierarchical levels h are also indicated, applying to both nodes (brown) and levels (blue).

Figure 3 :

 3 Figure 3: Example of source/destination set of shortest path, including R = 4 shortest paths of length L = 4. All links are henceforth understood to have unit topological length. The successive hierarchical levels h, ranging from 0 to L, are also shown.

Figure 5 :

 5 Figure 5: The steady state, or equilibrium, probability flow at each of the node in the considered source/destination set of shortest paths. Observe that the sum of equilibrium probability flow at each hierarchical level is necessarily equal to one.

Figure 6 :

 6 Figure 6: The equilibrium flows at each link of the considered source/destination set of shortest paths. The effective widths obtained for each hierarchical are also shown in blue along the first row below the network. The levels efficiency values are also presented in red along the second row. These two indices readily reveal that this specific set of shortest paths between the source and destination nodes has a severe bottleneck at level h = L = 4 that imparts the robustness and efficiency of the overall system.

Figure 7 :

 7 Figure 7: The set of shortest paths in the previous case example, but with the weight of link (1, 3) changed from 1 to 3, which implies in the new set of transition probabilities and, consequently, the new set of equilibrium link flows shown in Fig. 8.

Figure 8 :

 8 Figure 8: The new values of equilibrium link flows obtained as a consequence of the change of the weight of the connection (1, 3). As can be observed, that single change contributed to improving the overall flow distribution (except for h = 1), which was duly reflected in the new respectively obtained effective widths (first row underneath the network) and level efficiency (second row).

r 2 =

 2 (1/3, 1/3, 1/3, 5/6) ; r 3 = (1/3, 1/3, 1/3, 5/6) ; r 4 = (1/3, 1/6, 1/6, 5/6) .The respectively obtained coincidence similarity matrix obtained for D = 3 is as follows:

Figure 9 :

 9 Figure 9: The shortest paths networks derived from the coincidence similarity between the respective equilibrium link flow of probabilities in the above case example (a), as well as its modified version (b). Each shortest path has been represented as a node, while the weight of the respective pairwise interconnections corresponds to the coincidence similarity between the equilibrium link flow of each of the four shortest paths. The respectively obtained overall entanglements indices σa = 0.836 and σ b = 0.863 indicate that the modification had relatively little effect in improving the overall independence and balance of the involved shortest paths.

Figure 10 :

 10 Figure 10: Geometrical network with M = 40 nodes, distributed within a square of size one with uniformly random probability and exclusion radius ρ = 0.1. Every pair of nodes that is closer or equal to τ = 0.3 have been linked. In this section we will be concerned about the set of shortest paths extending from node 1 to node 23.

Figure 11 :

 11 Figure 11: The network implied by the set of shortest paths from node 1 to node 23 involves only the nodes and links shown in this respectively restricted version of the original geometrical network.As we adopt the method (B.i), the respectively obtained simplified network is henceforth taken into account, ensuring probability normalization of the equilibrium link flow of probabilities at each of the L = 6 respective hierarchical levels.

  shortest path coincidence similarity network shown in Figure 12 could be obtained, while taking D = 11.

Figure 12 :

 12 Figure12: The coincidence similarity network obtained for the considered set of shortest paths while taking into account the equilibrium link flows along the L = 6 respective hierarchies. Interestingly, four well defined and separated modules, or clusters, have been obtained. Observe that the shortest paths within each of these four clusters are markedly mutually similar, while being distinct from the shortest path in the other three obtained modules. Considering the uniform random distribution of the positions of the original nodes in the considered geometrical network, the identification of such well-separated modules of shortest paths can be taken as being particularly surprising. The identified clusters of shortest paths indicate that the considered set of shortest paths is not particularly well-balanced or untangled, with a particularly high respective overall entanglement index of σ = 2.09.

Figure 13 :

 13 Figure 13: The multistage network containing the set of shortest paths in the geometrical network in Fig. 10 extending from the source node 1 to the destination node 36. A substantially distinct topology has been obtained as compared to the previous choice of destination node.

Figure 14 :

 14 Figure 14: The coincidence similarity network obtained from the equilibrium link flows at the hierarchical levels of the set of shortest paths in Fig. 13 resulted completely distinct from the counterpart obtained when taking node 23 as destination. Only to moderately separated modules can be identified.

  

Table 1

 1 presents the main symbols used in the present work.

	symbol	meaning
	N	number of nodes in a network
	h	hierarchical level of nodes or links
	H n	the set of nodes at hierarchical level h i
	H l	the set of links at hierarchical level h i
	A	adjacency matrix of a network
	W	weight matrix of a network
	T	transition probability matrix of a network
	R	the number of shortest paths in a given set
	F h	flow capacity at level h
	N h	number of links at level h
	ϕ i	equilibrium flow at node i
	ω i,j	equilibrium flow at link (i, j)
	E h	effective width at level h
	Z	

h efficiency at level h σ overall entanglement index h J (r, s)

the Jaccard similarity index I(r, s)

the interiority similarity index C(r, s)

Table 2 :
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	A 27/36 6/20 13/18 5/18 40/16 19/16
	B	29/40 27/40 3/13 10/12 40/12 15/11
	C	13/36 6/20 36/18 32/18 40/16 19/16
	D 14/53 19/24 15/22 40/20 6/20 16/18

Table 3 :
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